|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""NPSC_orto: Norwegian Parliament Speech Corpus""" |
|
|
|
import io |
|
import json |
|
import tarfile |
|
import datasets |
|
from datasets.tasks import AutomaticSpeechRecognition |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{johansen2019ner, |
|
title={}, |
|
author={}, |
|
booktitle={LREC 2022}, |
|
year={2022}, |
|
url={https://arxiv.org/abs/} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The Norwegian Parliament Speech Corpus (NPSC) is a corpus for training a Norwegian ASR (Automatic Speech Recognition) models. The corpus is created by Språkbanken at the National Library in Norway. |
|
|
|
NPSC is based on sound recording from meeting in the Norwegian Parliament. These talks are orthographically transcribed to either Norwegian Bokmål or Norwegian Nynorsk. In addition to the data actually included in this dataset, there is a significant amount of metadata that is included in the original corpus. Through the speaker id there is additional information about the speaker, like gender, age, and place of birth (ie dialect). Through the proceedings id the corpus can be linked to the official proceedings from the meetings. |
|
|
|
The corpus is in total sound recordings from 40 entire days of meetings. This amounts to 140 hours of speech, 65,000 sentences or 1.2 million words. |
|
|
|
This dataset builds on this corpus. In addition it adds two columns with machine generated orthographic text. |
|
""" |
|
|
|
_HOMEPAGE = "https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-58/" |
|
|
|
|
|
_DATA_URL = "https://huggingface.co/datasets/NbAiLab/NPSC_orto/resolve/main/data/{split}/{shard}_{config}.tar.gz" |
|
|
|
_METADATA_URL = "https://huggingface.co/datasets/NbAiLab/NPSC_orto/resolve/main/data/{split}/{shard}.json" |
|
|
|
_SHARDS = { |
|
"eval": ["20170209", "20180109", "20180201", "20180307", "20180611"], |
|
"test": ["20170207", "20171122", "20171219", "20180530"], |
|
"train": ["20170110", "20170208", "20170215", "20170216", "20170222", "20170314", "20170322", "20170323", "20170403", "20170405", "20170419", "20170426", "20170503", "20170510", "20170516", "20170613", "20170615", "20171007", "20171012", "20171018", "20171024", "20171208", "20171211", "20171213", "20180316", "20180321", "20180404", "20180410", "20180411", "20180601", "20180613", "20180615"], |
|
} |
|
|
|
|
|
class Npsc_ortoConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for NPSC_orto.""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
"""BuilderConfig for NPSC_orto. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(Npsc_ortoConfig, self).__init__(*args, **kwargs) |
|
|
|
|
|
class Npsc_orto(datasets.GeneratorBasedBuilder): |
|
"""NPSC_orto dataset.""" |
|
|
|
DEFAULT_WRITER_BATCH_SIZE = 1000 |
|
BUILDER_CONFIGS = [ |
|
Npsc_ortoConfig( |
|
name="48K_mp3", |
|
version=datasets.Version("1.0.0"), |
|
description="NPSC_orto with samples in 48KHz stereo mp3)", |
|
), |
|
Npsc_ortoConfig( |
|
name="16K_mp3", |
|
version=datasets.Version("1.0.0"), |
|
description="NPSC_orto with samples in 16KHz mono mp3)", |
|
), |
|
Npsc_ortoConfig( |
|
name="48K_mp3_bokmaal", |
|
version=datasets.Version("1.0.0"), |
|
description="NPSCi_orto with Bokmål samples in 48KHz stereo mp3)", |
|
), |
|
Npsc_ortoConfig( |
|
name="16K_mp3_bokmaal", |
|
version=datasets.Version("1.0.0"), |
|
description="NPSC_orto with Bokmål samples in 16KHz mono mp3)", |
|
), |
|
Npsc_ortoConfig( |
|
name="48K_mp3_nynorsk", |
|
version=datasets.Version("1.0.0"), |
|
description="NPSCi_orto with Nynorsk samples in 48KHz stereo mp3)", |
|
), |
|
Npsc_ortoConfig( |
|
name="16K_mp3_nynorsk", |
|
version=datasets.Version("1.0.0"), |
|
description="NPSC_orto with Nynorsk samples in 16KHz mono mp3)", |
|
), |
|
] |
|
|
|
def _info(self): |
|
sampling_rate = 16_000 if self.config.name.startswith("16K") else 48_000 |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"sentence_id": datasets.Value("int32"), |
|
"meeting_date": datasets.Value("string"), |
|
"sentence_order": datasets.Value("int32"), |
|
"speaker_id" : datasets.Value("int32"), |
|
"speaker_name": datasets.Value("string"), |
|
"sentence_text": datasets.Value("string"), |
|
"sentence_nob": datasets.Value("string"), |
|
"sentence_nno": datasets.Value("string"), |
|
"sentence_language_code": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"start_time": datasets.Value("int32"), |
|
"end_time": datasets.Value("int32"), |
|
"normsentence_text": datasets.Value("string"), |
|
"transsentence_text": datasets.Value("string"), |
|
"translated": datasets.Value("int32"), |
|
"audio": datasets.features.Audio(sampling_rate=sampling_rate), |
|
|
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
task_templates=[ |
|
AutomaticSpeechRecognition( |
|
audio_column="audio", |
|
transcription_column="sentence_nob", |
|
) |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_urls = {} |
|
config_name = self.config.name |
|
if config_name.endswith("bokmaal") or config_name.endswith("nynorsk"): |
|
config_name, *_ = config_name.rsplit("_", 1) |
|
for split in ["train", "eval", "test"]: |
|
data_urls[split] = [] |
|
for shard in _SHARDS[split]: |
|
data_urls[split] += [( |
|
_METADATA_URL.format(split=split, shard=shard), |
|
_DATA_URL.format(split=split, shard=shard, config=config_name) |
|
)] |
|
train_downloaded_data = dl_manager.download(data_urls["train"]) |
|
validation_downloaded_data = dl_manager.download(data_urls["eval"]) |
|
test_downloaded_data = dl_manager.download(data_urls["test"]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={ |
|
"filepaths": train_downloaded_data, |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={ |
|
"filepaths": validation_downloaded_data, |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={ |
|
"filepaths": test_downloaded_data, |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepaths): |
|
"""Yields examples.""" |
|
data_fields = list(self._info().features.keys()) |
|
data_fields.remove("audio") |
|
lang_code = None |
|
if self.config.name.endswith("bokmaal"): |
|
lang_code = "nb-no" |
|
elif self.config.name.endswith("nynorsk"): |
|
lang_code = "nn-no" |
|
for metadata_path, archive_path in filepaths: |
|
metadata = {} |
|
with open(metadata_path) as metadata_file: |
|
for line in metadata_file.read().split("\n"): |
|
if line: |
|
metadata_object = json.loads(line) |
|
if "path" in metadata_object: |
|
metadata_key = metadata_object["path"].split("/", 1)[-1] |
|
metadata[metadata_key] = metadata_object |
|
with open(archive_path, "rb") as archive_fs: |
|
archive_bytes = io.BytesIO(archive_fs.read()) |
|
with tarfile.open(fileobj=archive_bytes, mode="r") as tar: |
|
for audio_file in tar.getmembers(): |
|
if audio_file.isfile(): |
|
metadata_key = audio_file.name.split(".mp3", 1)[0].split("/", 1)[-1] |
|
audio_bytes = tar.extractfile(audio_file).read() |
|
audio_dict = {"bytes": audio_bytes, "path": audio_file.name} |
|
fields = {key: metadata[metadata_key][key] for key in data_fields} |
|
if lang_code: |
|
if lang_code == fields.get("sentence_language_code", "").lower(): |
|
yield metadata_key, {"audio": audio_dict, **fields} |
|
else: |
|
yield metadata_key, {"audio": audio_dict, **fields} |
|
|