File size: 1,983 Bytes
d323a32
 
 
7f7be6e
bc314a3
79e15de
 
08da4b3
79e15de
f93e55e
79e15de
5c918be
 
f93e55e
5cbf752
f93e55e
2d55e63
f93e55e
553cb25
f93e55e
5a414f5
f93e55e
e5d628e
 
08da4b3
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
---
license: mit
---

A collection of regularization / class instance datasets for the [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) model to use for DreamBooth prior preservation loss training. Files labeled with "mse vae" used the [stabilityai/sd-vae-ft-mse](https://huggingface.co/stabilityai/sd-vae-ft-mse) VAE. For ease of use, datasets are stored as zip files containing 512x512 PNG images. The number of images in each zip file is specified at the end of the filename.


Currently this repository contains the following datasets (datasets are named after the prompt they used):

* "**artwork style**": 4125 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.

* "**illustration style**": 3050 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.

* "**fighter jet**": 1600 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.

* "**train**": 2669 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.

* "**person**": 2115 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.

* "**woman**": 4420 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.

* "**erotic photography**": 2760 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.

* "**supermodel**": 4411 images generated using 50 DDIM steps and a CFG of 7, using the MSE VAE.


I used the "Generate Forever" feature in [AUTOMATIC1111's WebUI](https://github.com/AUTOMATIC1111/stable-diffusion-webui) to create thousands of images for each dataset. Every image in a particular dataset uses the exact same settings, with only the seed value being different.

You can use my regularization / class image datasets with: https://github.com/ShivamShrirao/diffusers, https://github.com/JoePenna/Dreambooth-Stable-Diffusion, https://github.com/TheLastBen/fast-stable-diffusion, and any other DreamBooth projects that have support for prior preservation loss.