|
import json |
|
|
|
import datasets |
|
from datasets.tasks import QuestionAnsweringExtractive |
|
|
|
_DESCRIPTION = """\ |
|
combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers |
|
to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but |
|
also determine when no answer is supported by the paragraph and abstain from answering. |
|
""" |
|
|
|
_URLS = { |
|
"train": "https://huggingface.co/datasets/TurkuNLP/squad_v2_fi/resolve/main/train-v2.0.json.gz", |
|
"dev": "https://huggingface.co/datasets/TurkuNLP/squad_v2_fi/resolve/main/dev-v2.0.json.gz", |
|
} |
|
|
|
|
|
class SquadV2Config(datasets.BuilderConfig): |
|
"""BuilderConfig for SQUAD.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for SQUADV2. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(SquadV2Config, self).__init__(**kwargs) |
|
|
|
|
|
class SquadV2(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
SquadV2Config(name="squad_v2_fi", version=datasets.Version( |
|
"1.0.0"), description="Finnish SQuAD v2.0"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": datasets.features.Sequence( |
|
{ |
|
"text": datasets.Value("string"), |
|
"answer_start": datasets.Value("int32"), |
|
} |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://turkunlp.org/", |
|
task_templates=[ |
|
QuestionAnsweringExtractive( |
|
question_column="question", context_column="context", answers_column="answers" |
|
) |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
urls_to_download = _URLS |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={ |
|
"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={ |
|
"filepath": downloaded_files["dev"]}), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
squad = json.load(f) |
|
for example in squad["data"]: |
|
title = example.get("title", "") |
|
for paragraph in example["paragraphs"]: |
|
context = paragraph["context"] |
|
for qa in paragraph["qas"]: |
|
question = qa["question"] |
|
id_ = qa["id"] |
|
|
|
answer_starts = [answer["answer_start"] |
|
for answer in qa["answers"]] |
|
answers = [answer["text"].strip( |
|
' .,-:') for answer in qa["answers"]] |
|
|
|
yield id_, { |
|
"title": title, |
|
"context": context, |
|
"question": question, |
|
"id": id_, |
|
"answers": { |
|
"answer_start": answer_starts, |
|
"text": answers, |
|
}, |
|
} |
|
|