--- license: apache-2.0 dataset_info: features: - name: case dtype: int64 - name: sex dtype: int64 - name: age dtype: int64 - name: sec dtype: int64 - name: min dtype: int64 - name: hour dtype: int64 - name: date dtype: int64 - name: month dtype: int64 - name: year dtype: int64 - name: country dtype: int64 - name: i1 dtype: int64 - name: i2 dtype: int64 - name: i3 dtype: int64 - name: i4 dtype: int64 - name: i5 dtype: int64 - name: i6 dtype: int64 - name: i7 dtype: int64 - name: i8 dtype: int64 - name: i9 dtype: int64 - name: i10 dtype: int64 - name: i11 dtype: int64 - name: i12 dtype: int64 - name: i13 dtype: int64 - name: i14 dtype: int64 - name: i15 dtype: int64 - name: i16 dtype: int64 - name: i17 dtype: int64 - name: i18 dtype: int64 - name: i19 dtype: int64 - name: i20 dtype: int64 - name: i21 dtype: int64 - name: i22 dtype: int64 - name: i23 dtype: int64 - name: i24 dtype: int64 - name: i25 dtype: int64 - name: i26 dtype: int64 - name: i27 dtype: int64 - name: i28 dtype: int64 - name: i29 dtype: int64 - name: i30 dtype: int64 - name: i31 dtype: int64 - name: i32 dtype: int64 - name: i33 dtype: int64 - name: i34 dtype: int64 - name: i35 dtype: int64 - name: i36 dtype: int64 - name: i37 dtype: int64 - name: i38 dtype: int64 - name: i39 dtype: int64 - name: i40 dtype: int64 - name: i41 dtype: int64 - name: i42 dtype: int64 - name: i43 dtype: int64 - name: i44 dtype: int64 - name: i45 dtype: int64 - name: i46 dtype: int64 - name: i47 dtype: int64 - name: i48 dtype: int64 - name: i49 dtype: int64 - name: i50 dtype: int64 - name: i51 dtype: int64 - name: i52 dtype: int64 - name: i53 dtype: int64 - name: i54 dtype: int64 - name: i55 dtype: int64 - name: i56 dtype: int64 - name: i57 dtype: int64 - name: i58 dtype: int64 - name: i59 dtype: int64 - name: i60 dtype: int64 - name: i61 dtype: int64 - name: i62 dtype: int64 - name: i63 dtype: int64 - name: i64 dtype: int64 - name: i65 dtype: int64 - name: i66 dtype: int64 - name: i67 dtype: int64 - name: i68 dtype: int64 - name: i69 dtype: int64 - name: i70 dtype: int64 - name: i71 dtype: int64 - name: i72 dtype: int64 - name: i73 dtype: int64 - name: i74 dtype: int64 - name: i75 dtype: int64 - name: i76 dtype: int64 - name: i77 dtype: int64 - name: i78 dtype: int64 - name: i79 dtype: int64 - name: i80 dtype: int64 - name: i81 dtype: int64 - name: i82 dtype: int64 - name: i83 dtype: int64 - name: i84 dtype: int64 - name: i85 dtype: int64 - name: i86 dtype: int64 - name: i87 dtype: int64 - name: i88 dtype: int64 - name: i89 dtype: int64 - name: i90 dtype: int64 - name: i91 dtype: int64 - name: i92 dtype: int64 - name: i93 dtype: int64 - name: i94 dtype: int64 - name: i95 dtype: int64 - name: i96 dtype: int64 - name: i97 dtype: int64 - name: i98 dtype: int64 - name: i99 dtype: int64 - name: i100 dtype: int64 - name: i101 dtype: int64 - name: i102 dtype: int64 - name: i103 dtype: int64 - name: i104 dtype: int64 - name: i105 dtype: int64 - name: i106 dtype: int64 - name: i107 dtype: int64 - name: i108 dtype: int64 - name: i109 dtype: int64 - name: i110 dtype: int64 - name: i111 dtype: int64 - name: i112 dtype: int64 - name: i113 dtype: int64 - name: i114 dtype: int64 - name: i115 dtype: int64 - name: i116 dtype: int64 - name: i117 dtype: int64 - name: i118 dtype: int64 - name: i119 dtype: int64 - name: i120 dtype: int64 - name: i121 dtype: int64 - name: i122 dtype: int64 - name: i123 dtype: int64 - name: i124 dtype: int64 - name: i125 dtype: int64 - name: i126 dtype: int64 - name: i127 dtype: int64 - name: i128 dtype: int64 - name: i129 dtype: int64 - name: i130 dtype: int64 - name: i131 dtype: int64 - name: i132 dtype: int64 - name: i133 dtype: int64 - name: i134 dtype: int64 - name: i135 dtype: int64 - name: i136 dtype: int64 - name: i137 dtype: int64 - name: i138 dtype: int64 - name: i139 dtype: int64 - name: i140 dtype: int64 - name: i141 dtype: int64 - name: i142 dtype: int64 - name: i143 dtype: int64 - name: i144 dtype: int64 - name: i145 dtype: int64 - name: i146 dtype: int64 - name: i147 dtype: int64 - name: i148 dtype: int64 - name: i149 dtype: int64 - name: i150 dtype: int64 - name: i151 dtype: int64 - name: i152 dtype: int64 - name: i153 dtype: int64 - name: i154 dtype: int64 - name: i155 dtype: int64 - name: i156 dtype: int64 - name: i157 dtype: int64 - name: i158 dtype: int64 - name: i159 dtype: int64 - name: i160 dtype: int64 - name: i161 dtype: int64 - name: i162 dtype: int64 - name: i163 dtype: int64 - name: i164 dtype: int64 - name: i165 dtype: int64 - name: i166 dtype: int64 - name: i167 dtype: int64 - name: i168 dtype: int64 - name: i169 dtype: int64 - name: i170 dtype: int64 - name: i171 dtype: int64 - name: i172 dtype: int64 - name: i173 dtype: int64 - name: i174 dtype: int64 - name: i175 dtype: int64 - name: i176 dtype: int64 - name: i177 dtype: int64 - name: i178 dtype: int64 - name: i179 dtype: int64 - name: i180 dtype: int64 - name: i181 dtype: int64 - name: i182 dtype: int64 - name: i183 dtype: int64 - name: i184 dtype: int64 - name: i185 dtype: int64 - name: i186 dtype: int64 - name: i187 dtype: int64 - name: i188 dtype: int64 - name: i189 dtype: int64 - name: i190 dtype: int64 - name: i191 dtype: int64 - name: i192 dtype: int64 - name: i193 dtype: int64 - name: i194 dtype: int64 - name: i195 dtype: int64 - name: i196 dtype: int64 - name: i197 dtype: int64 - name: i198 dtype: int64 - name: i199 dtype: int64 - name: i200 dtype: int64 - name: i201 dtype: int64 - name: i202 dtype: int64 - name: i203 dtype: int64 - name: i204 dtype: int64 - name: i205 dtype: int64 - name: i206 dtype: int64 - name: i207 dtype: int64 - name: i208 dtype: int64 - name: i209 dtype: int64 - name: i210 dtype: int64 - name: i211 dtype: int64 - name: i212 dtype: int64 - name: i213 dtype: int64 - name: i214 dtype: int64 - name: i215 dtype: int64 - name: i216 dtype: int64 - name: i217 dtype: int64 - name: i218 dtype: int64 - name: i219 dtype: int64 - name: i220 dtype: int64 - name: i221 dtype: int64 - name: i222 dtype: int64 - name: i223 dtype: int64 - name: i224 dtype: int64 - name: i225 dtype: int64 - name: i226 dtype: int64 - name: i227 dtype: int64 - name: i228 dtype: int64 - name: i229 dtype: int64 - name: i230 dtype: int64 - name: i231 dtype: int64 - name: i232 dtype: int64 - name: i233 dtype: int64 - name: i234 dtype: int64 - name: i235 dtype: int64 - name: i236 dtype: int64 - name: i237 dtype: int64 - name: i238 dtype: int64 - name: i239 dtype: int64 - name: i240 dtype: int64 - name: i241 dtype: int64 - name: i242 dtype: int64 - name: i243 dtype: int64 - name: i244 dtype: int64 - name: i245 dtype: int64 - name: i246 dtype: int64 - name: i247 dtype: int64 - name: i248 dtype: int64 - name: i249 dtype: int64 - name: i250 dtype: int64 - name: i251 dtype: int64 - name: i252 dtype: int64 - name: i253 dtype: int64 - name: i254 dtype: int64 - name: i255 dtype: int64 - name: i256 dtype: int64 - name: i257 dtype: int64 - name: i258 dtype: int64 - name: i259 dtype: int64 - name: i260 dtype: int64 - name: i261 dtype: int64 - name: i262 dtype: int64 - name: i263 dtype: int64 - name: i264 dtype: int64 - name: i265 dtype: int64 - name: i266 dtype: int64 - name: i267 dtype: int64 - name: i268 dtype: int64 - name: i269 dtype: int64 - name: i270 dtype: int64 - name: i271 dtype: int64 - name: i272 dtype: int64 - name: i273 dtype: int64 - name: i274 dtype: int64 - name: i275 dtype: int64 - name: i276 dtype: int64 - name: i277 dtype: int64 - name: i278 dtype: int64 - name: i279 dtype: int64 - name: i280 dtype: int64 - name: i281 dtype: int64 - name: i282 dtype: int64 - name: i283 dtype: int64 - name: i284 dtype: int64 - name: i285 dtype: int64 - name: i286 dtype: int64 - name: i287 dtype: int64 - name: i288 dtype: int64 - name: i289 dtype: int64 - name: i290 dtype: int64 - name: i291 dtype: int64 - name: i292 dtype: int64 - name: i293 dtype: int64 - name: i294 dtype: int64 - name: i295 dtype: int64 - name: i296 dtype: int64 - name: i297 dtype: int64 - name: i298 dtype: int64 - name: i299 dtype: int64 - name: i300 dtype: int64 splits: - name: train num_bytes: 762136240 num_examples: 307313 download_size: 531039600 dataset_size: 762136240 --- # Personality Alignment with Personality Inventories (PAPI) Dataset ## Overview The Personality Alignment with Personality Inventories (PAPI) dataset is a large-scale, real-world collection of personality assessments designed to evaluate the consistency between Personality-aligned Language Models (LLMs) and human preferences. This dataset contains 307,313 samples of multiple-choice questionnaire responses, providing a comprehensive resource for research in personality psychology and AI alignment. ## Dataset Description ### Size and Structure - Total samples: 307,313 (Dev-Set and Test-Set) - Each sample contains: - IPIP-NEO-120 questionnaire responses - IPIP-NEO-300 questionnaire responses ### Question Format - Each question is associated with one of the five major personality dimensions - Questions correlate positively or negatively with specific behavioral patterns or preferences - Five response options ranging from "Very Accurate" to "Very Inaccurate" ### Demographic Information - Gender distribution: - Female: ~60% (185,149 participants) - Male: ~40% (122,164 participants) - Age range: 10 to 99 years - Average age: 25.19 years - Geographical diversity: Participants from various countries including the USA, UK, France, India, and China ## Data Collection - Source: International Personality Item Pool (IPIP) - Collection period: 1998 to 2019 - Method: Online surveys - Survey duration: 30 to 50 minutes per participant - Anonymity: All responses are anonymous ## Data Processing - K-Means clustering applied to create a representative Test-Set - 300 representative clusters selected as Test-Set - Remaining data released as Dev-Set ## Evaluation Methods - Behavioral difference score used as an evaluation metric - Scoring function assigns values from 5 to 1 for responses ranging from "Very Accurate" to "Very Inaccurate" - Aligned Score calculated for each Big Five trait ## Ethical Considerations - Voluntary participation with no monetary compensation - Data anonymization: No personally identifiable information (PII) included - Compliance with data protection regulations (e.g., GDPR) - Adherence to ethical principles outlined in the Belmont Report ## Dataset Analysis Detailed analysis of the dataset is provided, including: - Demographic distributions (age, gender, country) - Personality trait distributions for the Big Five traits - Comparison between the Total dataset and the Test-Set ## Citation If you use this dataset in your research, please cite: ``` @misc{zhu2024personalityalignmentlargelanguage, title={Personality Alignment of Large Language Models}, author={Minjun Zhu and Linyi Yang and Yue Zhang}, year={2024}, eprint={2408.11779}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2408.11779}, } ``` ## Contact For questions or additional information about the PAPI dataset, please contact: zhuminjun@westlake.edu.cn ## Acknowledgments We thank the administrators of the International Personality Item Pool (IPIP) for granting permission to use their items, scales, and inventories. We also express our gratitude to all the volunteers who participated in this study, contributing to the advancement of personality research and AI alignment.