just use strings for license and language, unit test in bigbio repo can check correctness
faeb088
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
BIOSSES computes similarity of biomedical sentences by utilizing WordNet as the | |
general domain ontology and UMLS as the biomedical domain specific ontology. | |
The original paper outlines the approaches with respect to using annotator | |
score as golden standard. Source view will return all annotator score | |
individually whereas the Bigbio view will return the mean of the annotator | |
score. | |
Note: The original files are Word documents, compressed using RAR. This data | |
loader uses a version that privides the same data in text format. | |
""" | |
import datasets | |
import pandas as pd | |
from .bigbiohub import pairs_features | |
from .bigbiohub import BigBioConfig | |
from .bigbiohub import Tasks | |
_DATASETNAME = "biosses" | |
_DISPLAYNAME = "BIOSSES" | |
_LANGUAGES = ["English"] | |
_PUBMED = False | |
_LOCAL = False | |
_CITATION = """ | |
@article{souganciouglu2017biosses, | |
title={BIOSSES: a semantic sentence similarity estimation system for the biomedical domain}, | |
author={Soğancıoğlu, Gizem, Hakime Öztürk, and Arzucan Özgür}, | |
journal={Bioinformatics}, | |
volume={33}, | |
number={14}, | |
pages={i49--i58}, | |
year={2017}, | |
publisher={Oxford University Press} | |
} | |
""" | |
_DESCRIPTION = """ | |
BIOSSES computes similarity of biomedical sentences by utilizing WordNet as the | |
general domain ontology and UMLS as the biomedical domain specific ontology. | |
The original paper outlines the approaches with respect to using annotator | |
score as golden standard. Source view will return all annotator score | |
individually whereas the Bigbio view will return the mean of the annotator | |
score. | |
""" | |
_HOMEPAGE = "https://tabilab.cmpe.boun.edu.tr/BIOSSES/DataSet.html" | |
_LICENSE = "GPL_3p0" | |
_URLs = { | |
"source": "https://huggingface.co/datasets/bigscience-biomedical/biosses/raw/main/annotation_pairs_scores.tsv", | |
"bigbio_pairs": "https://huggingface.co/datasets/bigscience-biomedical/biosses/raw/main/annotation_pairs_scores.tsv", | |
} | |
_SUPPORTED_TASKS = [Tasks.SEMANTIC_SIMILARITY] | |
_SOURCE_VERSION = "1.0.0" | |
_BIGBIO_VERSION = "1.0.0" | |
# The BIOSSES dataset does not provide canonical train/dev/test splits. | |
# However the BLUE and BLURB datasets use the following split definitions. | |
# see https://github.com/bigscience-workshop/biomedical/issues/664 | |
TRAIN_INDEXES = [ | |
78, | |
45, | |
35, | |
50, | |
27, | |
13, | |
87, | |
1, | |
58, | |
99, | |
55, | |
74, | |
66, | |
39, | |
44, | |
18, | |
84, | |
76, | |
19, | |
10, | |
75, | |
46, | |
15, | |
86, | |
60, | |
14, | |
51, | |
79, | |
29, | |
34, | |
94, | |
28, | |
62, | |
42, | |
21, | |
30, | |
11, | |
53, | |
6, | |
12, | |
26, | |
48, | |
31, | |
32, | |
77, | |
37, | |
95, | |
85, | |
36, | |
56, | |
43, | |
61, | |
16, | |
5, | |
67, | |
65, | |
54, | |
3, | |
73, | |
98, | |
17, | |
4, | |
92, | |
93, | |
] | |
DEV_INDEXES = [ | |
88, | |
82, | |
8, | |
63, | |
47, | |
68, | |
40, | |
90, | |
100, | |
24, | |
41, | |
91, | |
80, | |
9, | |
72, | |
2, | |
] | |
TEST_INDEXES = [ | |
59, | |
96, | |
70, | |
22, | |
81, | |
38, | |
57, | |
23, | |
33, | |
89, | |
69, | |
49, | |
7, | |
71, | |
97, | |
25, | |
83, | |
64, | |
52, | |
20, | |
] | |
class BiossesDataset(datasets.GeneratorBasedBuilder): | |
"""BIOSSES : Biomedical Semantic Similarity Estimation System""" | |
DEFAULT_CONFIG_NAME = "biosses_source" | |
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | |
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) | |
BUILDER_CONFIGS = [ | |
BigBioConfig( | |
name="biosses_source", | |
version=SOURCE_VERSION, | |
description="BIOSSES source schema", | |
schema="source", | |
subset_id="biosses", | |
), | |
BigBioConfig( | |
name="biosses_bigbio_pairs", | |
version=BIGBIO_VERSION, | |
description="BIOSSES simplified BigBio schema", | |
schema="bigbio_pairs", | |
subset_id="biosses", | |
), | |
] | |
def _info(self): | |
if self.config.name == "biosses_source": | |
features = datasets.Features( | |
{ | |
"id": datasets.Value("int64"), | |
"document_id": datasets.Value("int64"), | |
"text_1": datasets.Value("string"), | |
"text_2": datasets.Value("string"), | |
"annotator_a": datasets.Value("int64"), | |
"annotator_b": datasets.Value("int64"), | |
"annotator_c": datasets.Value("int64"), | |
"annotator_d": datasets.Value("int64"), | |
"annotator_e": datasets.Value("int64"), | |
} | |
) | |
elif self.config.name == "biosses_bigbio_pairs": | |
features = pairs_features | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=str(_LICENSE), | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
my_urls = _URLs[self.config.schema] | |
dl_dir = dl_manager.download_and_extract(my_urls) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": dl_dir, | |
"split": "train", | |
"indexes": TRAIN_INDEXES, | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": dl_dir, | |
"split": "validation", | |
"indexes": DEV_INDEXES, | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": dl_dir, | |
"split": "test", | |
"indexes": TEST_INDEXES, | |
}, | |
), | |
] | |
def _generate_examples(self, filepath, split, indexes): | |
df = pd.read_csv(filepath, sep="\t", encoding="utf-8") | |
df = df[df["sentence_id"].isin(indexes)] | |
if self.config.schema == "source": | |
for uid, row in df.iterrows(): | |
yield uid, { | |
"id": uid, | |
"document_id": row["sentence_id"], | |
"text_1": row["sentence_1"], | |
"text_2": row["sentence_2"], | |
"annotator_a": row["annotator_a"], | |
"annotator_b": row["annotator_b"], | |
"annotator_c": row["annotator_c"], | |
"annotator_d": row["annotator_d"], | |
"annotator_e": row["annotator_e"], | |
} | |
elif self.config.schema == "bigbio_pairs": | |
for uid, row in df.iterrows(): | |
yield uid, { | |
"id": uid, | |
"document_id": row["sentence_id"], | |
"text_1": row["sentence_1"], | |
"text_2": row["sentence_2"], | |
"label": str( | |
( | |
row["annotator_a"] | |
+ row["annotator_b"] | |
+ row["annotator_c"] | |
+ row["annotator_d"] | |
+ row["annotator_e"] | |
) | |
/ 5 | |
), | |
} | |