khulnasoft
commited on
Upload KEV-EPSS.ipynb
Browse files- KEV-EPSS.ipynb +368 -0
KEV-EPSS.ipynb
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# CISA KVE EPSS Data Analyis "
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 1,
|
13 |
+
"metadata": {
|
14 |
+
"execution": {
|
15 |
+
"iopub.execute_input": "2024-06-13T12:06:35.696872Z",
|
16 |
+
"iopub.status.busy": "2024-06-13T12:06:35.696682Z",
|
17 |
+
"iopub.status.idle": "2024-06-13T12:06:36.061991Z",
|
18 |
+
"shell.execute_reply": "2024-06-13T12:06:36.061411Z"
|
19 |
+
}
|
20 |
+
},
|
21 |
+
"outputs": [],
|
22 |
+
"source": [
|
23 |
+
"import pandas as pd\n",
|
24 |
+
"import json\n",
|
25 |
+
"import requests\n",
|
26 |
+
"import os\n",
|
27 |
+
"import glob\n",
|
28 |
+
"import numpy as np"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"execution_count": 2,
|
34 |
+
"metadata": {
|
35 |
+
"execution": {
|
36 |
+
"iopub.execute_input": "2024-06-13T12:06:36.064813Z",
|
37 |
+
"iopub.status.busy": "2024-06-13T12:06:36.064546Z",
|
38 |
+
"iopub.status.idle": "2024-06-13T12:06:36.401780Z",
|
39 |
+
"shell.execute_reply": "2024-06-13T12:06:36.401250Z"
|
40 |
+
}
|
41 |
+
},
|
42 |
+
"outputs": [],
|
43 |
+
"source": [
|
44 |
+
"cisa_df = pd.read_csv(\"https://www.cisa.gov/sites/default/files/csv/known_exploited_vulnerabilities.csv\")\n",
|
45 |
+
"cisa_df = cisa_df\n",
|
46 |
+
"cisa_df.columns = cisa_df.columns.str.strip(\"\\u200b\")\n",
|
47 |
+
"cisa_df = cisa_df.rename(columns={\"cveID\": \"CVE\", \"shortDescription\" : \"Description\"})"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "code",
|
52 |
+
"execution_count": 3,
|
53 |
+
"metadata": {
|
54 |
+
"execution": {
|
55 |
+
"iopub.execute_input": "2024-06-13T12:06:36.404476Z",
|
56 |
+
"iopub.status.busy": "2024-06-13T12:06:36.404086Z",
|
57 |
+
"iopub.status.idle": "2024-06-13T12:06:36.511674Z",
|
58 |
+
"shell.execute_reply": "2024-06-13T12:06:36.511045Z"
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"outputs": [],
|
62 |
+
"source": [
|
63 |
+
"epss = pd.read_csv('epss_scores-current.csv', skiprows=1)\n",
|
64 |
+
"epss = epss.rename(columns={\"cve\": \"CVE\", \"epss\" : \"EPSS\", \"percentile\" : \"EPSS Percentile\"})"
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"cell_type": "code",
|
69 |
+
"execution_count": 4,
|
70 |
+
"metadata": {
|
71 |
+
"execution": {
|
72 |
+
"iopub.execute_input": "2024-06-13T12:06:36.514515Z",
|
73 |
+
"iopub.status.busy": "2024-06-13T12:06:36.514280Z",
|
74 |
+
"iopub.status.idle": "2024-06-13T12:07:15.249255Z",
|
75 |
+
"shell.execute_reply": "2024-06-13T12:07:15.248534Z"
|
76 |
+
}
|
77 |
+
},
|
78 |
+
"outputs": [],
|
79 |
+
"source": [
|
80 |
+
"row_accumulator = []\n",
|
81 |
+
"for filename in glob.glob('nvdcve-1.1-*.json'):\n",
|
82 |
+
" with open(filename, 'r', encoding='utf-8') as f:\n",
|
83 |
+
" nvd_data = json.load(f)\n",
|
84 |
+
" for entry in nvd_data['CVE_Items']:\n",
|
85 |
+
" cve = entry['cve']['CVE_data_meta']['ID']\n",
|
86 |
+
" try:\n",
|
87 |
+
" base_score = entry['impact']['baseMetricV3']['cvssV3']['baseScore']\n",
|
88 |
+
" except KeyError:\n",
|
89 |
+
" base_score = '0.0'\n",
|
90 |
+
" new_row = { \n",
|
91 |
+
" 'CVE': cve, \n",
|
92 |
+
" 'CVSS3': base_score,\n",
|
93 |
+
" }\n",
|
94 |
+
" row_accumulator.append(new_row)\n",
|
95 |
+
" nvd = pd.DataFrame(row_accumulator)\n",
|
96 |
+
" \n",
|
97 |
+
"nvd['CVSS3'] = pd.to_numeric(nvd['CVSS3']);\n",
|
98 |
+
"nvd['CVSS3'] = nvd['CVSS3'].replace(0, np.NaN); "
|
99 |
+
]
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"cell_type": "code",
|
103 |
+
"execution_count": 5,
|
104 |
+
"metadata": {
|
105 |
+
"execution": {
|
106 |
+
"iopub.execute_input": "2024-06-13T12:07:15.252268Z",
|
107 |
+
"iopub.status.busy": "2024-06-13T12:07:15.252057Z",
|
108 |
+
"iopub.status.idle": "2024-06-13T12:07:15.355130Z",
|
109 |
+
"shell.execute_reply": "2024-06-13T12:07:15.354404Z"
|
110 |
+
}
|
111 |
+
},
|
112 |
+
"outputs": [],
|
113 |
+
"source": [
|
114 |
+
"epss_kev = pd.merge(cisa_df, epss, left_on='CVE', right_on='CVE')\n",
|
115 |
+
"epss_kev_nvd = pd.merge(epss_kev, nvd, left_on='CVE', right_on='CVE')\n",
|
116 |
+
"epss_kev_nvd = epss_kev_nvd[[\"CVE\", \"CVSS3\", \"EPSS\", \"EPSS Percentile\", \"Description\"]]"
|
117 |
+
]
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"cell_type": "markdown",
|
121 |
+
"metadata": {},
|
122 |
+
"source": [
|
123 |
+
"## CISA KEV Score Scatter Plot"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": 6,
|
129 |
+
"metadata": {
|
130 |
+
"execution": {
|
131 |
+
"iopub.execute_input": "2024-06-13T12:07:15.358208Z",
|
132 |
+
"iopub.status.busy": "2024-06-13T12:07:15.357967Z",
|
133 |
+
"iopub.status.idle": "2024-06-13T12:07:16.483860Z",
|
134 |
+
"shell.execute_reply": "2024-06-13T12:07:16.483165Z"
|
135 |
+
}
|
136 |
+
},
|
137 |
+
"outputs": [
|
138 |
+
{
|
139 |
+
"name": "stderr",
|
140 |
+
"output_type": "stream",
|
141 |
+
"text": [
|
142 |
+
"/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/site-packages/pandas/plotting/_matplotlib/core.py:1345: UserWarning: No data for colormapping provided via 'c'. Parameters 'cmap' will be ignored\n",
|
143 |
+
" scatter = ax.scatter(\n"
|
144 |
+
]
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"data": {
|
148 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAABlUAAANXCAYAAACsYNmPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAADEXUlEQVR4nOzde3icZZk4/ntIQ2laGtpkytmmJREUTxEtQmgARVlFXNz1FNflsFXXw7Yqqy58VcAj6oqiUZfvKqJFyKL+XFYXV9dlq4HAF1ZpUFEwIUkBD3SS0pQkQGn6/v5gEzttMp20SWYy8/lcV6+reZ453Dm878w89/vcdypJkiQAAAAAAADI6YBCBwAAAAAAADAXSKoAAAAAAADkQVIFAAAAAAAgD5IqAAAAAAAAeZBUAQAAAAAAyIOkCgAAAAAAQB4kVQAAAAAAAPIgqQIAAAAAAJAHSRUAAAAAAIA8SKoAAABzWiqVissuu2zK9/vJT34SqVQqfvKTn0x7TBPZ1zj319e//vVIpVLR19c36889FX19fZFKpeIzn/nMXm972WWXRSqVyhqrq6uL888/f/zrqfx+x57761//+hSjBgCg3EiqAAAwZ9x///3xt3/7t7Fy5co46KCDYvHixdHU1BSf//zn47HHHhu/XV1dXbzyla/Muu/Q0FBceuml8axnPSsWLlwYNTU18bznPS/e9a53xe9///sJn+8HP/hBpFKpOOKII2Lnzp15x3n++efHokWL9hj/xS9+EbW1tVFXV1f0C9xTddppp0UqlZrw33HHHVfo8PJ2/fXXx5VXXlmQ5/7sZz8bqVQq/uu//mvS23zlK1+JVCoV3/ve92YxstJRyN8vAAClYV6hAwAAgHzcdNNN8drXvjbmz58f5557bjzrWc+K7du3x6233hrve9/74p577ol//ud/nvC+Tz75ZDQ3N8e9994b5513XqxduzaGhobinnvuieuvvz5e/epXxxFHHLHH/a677rrxBMh///d/xxlnnLHP8f/qV7+Kl7zkJbFw4cLYsGFD1NXV7fNjFaujjjoqLr/88j3Gq6urCxDN3jU3N8djjz0WBx544PjY9ddfH7/61a/i3e9+96zH84Y3vCHe9773xfXXXz/p39r1118fNTU18fKXv3yWoysuH/zgB+Oiiy7KeZup/H6XL18ejz32WFRWVs5EuAAAlBBJFQAAil5vb2+84Q1viOXLl8d///d/x+GHHz4+9853vjO6u7vjpptumvT+N954Y2zcuDGuu+66eOMb35g19/jjj8f27dv3uM/w8HD827/9W1x++eVxzTXXxHXXXbfPSZV77rknXvziF8eCBQtiw4YNsWLFin16nGJXXV0db3rTmwodRt4OOOCAOOiggwodxrgjjjgiTj/99Pjud78b//RP/xTz58/Pmv/d734X7e3t8da3vnVOLP7v2LEjdu7cmZXUmC7z5s2LefNyf5ydyu83lUoV1d8CAADFS/kvAACK3qc//ekYGhqKq6++OiuhMqa+vj7e9a53TXr/+++/PyIimpqa9pgbKyO2u3/913+Nxx57LF772tfGG97whvjud78bjz/++JRj/81vfhMveclLYv78+bFhw4ZYuXJl1vxYqbJbb701Vq1aFQcddFCsXLky1q9fv8dj9fT0xGtf+9pYunRpVFVVxYte9KKsZFKSJFFbWxsXXnjh+NjOnTvjkEMOiYqKiti6dev4+Kc+9amYN29eDA0NRcSfSpb97ne/i3POOScWLVoU6XQ63vve98bo6OiUv++JPPbYY3HcccfFcccdl1WubcuWLXH44YfHySefPP5cY/H09PTEmWeeGQsXLowjjjgiPvKRj0SSJHt9ro0bN8bLX/7yWLx4cSxatChe8pKXxP/7f/8v6za799w47bTT4qabbopNmzaNly7bdUfRE088EZdeemnU19fH/Pnz4+ijj473v//98cQTT2Q97hNPPBHvec97Ip1Ox8EHHxyvetWr4qGHHsrrZ/SmN70pBgcHJ0wS/su//Evs3Lkz/uqv/ipnD5B8erdM5e9u69at8e53vzuOPvromD9/ftTX18enPvWprJJ4u/ZDufLKK+OYY46J+fPnx69//evYvn17XHLJJXHCCSdEdXV1LFy4MFavXh0bNmyYNL7Pfe5zsXz58liwYEGceuqp8atf/SprfqKeKrubyu93sp/nvffeG695zWti6dKlcdBBB8ULXvCCPUqvPfnkk/HhD384Ghoa4qCDDoqampo45ZRT4sc//nHO+AAAmJskVQAAKHrf//73Y+XKlXHyySfv0/2XL18eERHr16/Pa0E+4qnSX6effnocdthh8YY3vCEeffTR+P73vz+l573vvvvixS9+ccybNy82bNgQxxxzzIS36+7ujte85jXx0pe+NK644opYsmRJnH/++XHPPfeM3+bhhx+Ok08+OX70ox/FO97xjvj4xz8ejz/+eLzqVa+Kf/3Xf42IpxbTm5qaor29ffx+v/jFL2JwcDAiIjo6OsbHb7nllmhsbMzq/TI6Ohpnnnlm1NTUxGc+85k49dRT44orrpi0rNruRkdHo7+/f49/w8PDERGxYMGC+MY3vhHd3d3xgQ98YPx+73znO2NwcDC+/vWvR0VFRdbj/dmf/Vkceuih8elPfzpOOOGEuPTSS+PSSy/NGcc999wTq1evjrvvvjve//73x4c+9KHo7e2N0047Le64445J7/eBD3wgnve850VtbW1ce+21ce21147339i5c2e86lWvis985jNx9tlnR2tra5xzzjnxuc99Ll7/+tdnPc6b3/zmuPLKK+NlL3tZfPKTn4zKyso466yz8voZ/sVf/EUcdNBBcf311+8xd/3118fy5csnTA7ui3z+7kZGRuLUU0+Nb37zm3HuuefGF77whWhqaoqLL744K3k35pprronW1tZ461vfGldccUUsXbo0tm3bFl/96lfjtNNOi0996lNx2WWXRSaTiTPPPDM6Ozv3eIz169fHF77whXjnO98ZF198cfzqV7+KF7/4xfHwww/v1/eb6/c7kXvuuSde9KIXxW9+85u46KKL4oorroiFCxfGOeecM37MRTyV4Pnwhz8cp59+enzxi1+MD3zgA/G0pz0t7rrrrv2KFwCAIpUAAEARGxwcTCIi+fM///O877N8+fLkrLPOGv96ZGQkOfbYY5OISJYvX56cf/75ydVXX508/PDDE97/4YcfTubNm5d85StfGR87+eST847hvPPOSyorK5PDDz88OeKII5Lf/va3OWONiKS9vX18bPPmzcn8+fOTv//7vx8fe/e7351ERHLLLbeMjz366KPJihUrkrq6umR0dDRJkiT5x3/8x6SioiLZtm1bkiRJ8oUvfCFZvnx5smrVquQf/uEfkiRJktHR0eSQQw5J3vOe92TFHBHJRz7ykaz4GhsbkxNOOGGv3/Opp56aRMSE//72b/8267YXX3xxcsABByTt7e3Jt7/97SQikiuvvHKPn2FEJGvXrh0f27lzZ3LWWWclBx54YJLJZMbHIyK59NJLx78+55xzkgMPPDC5//77x8d+//vfJwcffHDS3Nw8PrZhw4YkIpINGzaMj5111lnJ8uXL9/j+rr322uSAAw7I+vknSZJcddVVSUQkHR0dSZIkSWdnZxIRyTve8Y6s273xjW/cI87JvPa1r00OOuigZHBwcHzs3nvvTSIiufjii5MkSZLe3t4kIpJrrrlmj/vv/jzXXHNNEhFJb2/v+Fi+f3cf/ehHk4ULF+7xN3zRRRclFRUVyQMPPJAVz+LFi5PNmzdn3XbHjh3JE088kTX2yCOPJIceemjyN3/zN+NjY4+xYMGC5KGHHhofv+OOO5KIyPp7vfTSS5PdP84uX748Oe+888a/nsrvd6Kf50te8pLk2c9+dvL444+Pj+3cuTM5+eSTk4aGhvGx5z73uVnnGwAASpudKgAAFLVt27ZFRMTBBx+8z4+xYMGCuOOOO+J973tfRER8/etfjzVr1sThhx8ea9eu3aN807/8y7/EAQccEH/5l385PtbS0hL/8R//EY888khezzm2a2Pp0qVRW1ub87bPfOYzY/Xq1eNfp9PpOPbYY6Onp2d87Ac/+EGsWrUqTjnllPGxRYsWxVvf+tbo6+uLX//61xERsXr16hgdHY3bbrstIp7akbJ69epYvXp13HLLLRER8atf/Sq2bt2a9Zxj3va2t2V9vXr16qw4cqmrq4sf//jHe/zbvSn4ZZddFscff3ycd9558Y53vCNOPfXUWLdu3YSP+Xd/93fj/0+lUvF3f/d3sX379viv//qvCW8/Ojoa//mf/xnnnHNOVqm1ww8/PN74xjfGrbfeOv43NRXf/va34xnPeEYcd9xxWbtwXvziF0dEjJey+sEPfhARscf3M5XG929605vi8ccfj+9+97vjY2M7V/7qr/5qyrFPJp+/u29/+9uxevXqWLJkSdb3fcYZZ8To6GjWrqiIiL/8y7+MdDqdNVZRUTHeV2Xnzp2xZcuW2LFjR7zgBS+YcDfHOeecE0ceeeT416tWrYoTTzxx/Gc7G7Zs2RL//d//Ha973evi0UcfHf++BwYG4swzz4yurq743e9+FxERhxxySNxzzz3R1dU1a/EBAFA4kioAABS1sX4njz766H49TnV1dXz605+Ovr6+6Ovri6uvvjqOPfbY+OIXvxgf/ehHs277zW9+M1atWhUDAwPR3d0d3d3d0djYGNu3b49vf/vbeT3fggULYv369fHrX/86zjrrrPESWBN52tOetsfYkiVLshI4mzZtimOPPXaP2z3jGc8Yn4+IeP7znx9VVVXjCZSxpEpzc3P87Gc/i8cff3x8btcETcRT/WV2XxDfPY5cFi5cGGecccYe/4477ris2x144IHxta99LXp7e+PRRx+Na665ZsL+GAcccMAePWie/vSnR8RTPTAmkslkYmRkZNKf1c6dO+PBBx/M6/vZVVdXV9xzzz2RTqez/o3Fs3nz5oh46vdwwAEH7FHqbaJ4JvPyl788li5dmlUCrK2tLZ773OfG8ccfP+XYJ5PP311XV1f88Ic/3OP7PuOMMyLiT9/3mBUrVkz4XN/4xjfiOc95znjPkXQ6HTfddNN4abpdNTQ07DH29Kc/fdLf+Uzo7u6OJEniQx/60B7f+1j5ubHv/SMf+Uhs3bo1nv70p8ezn/3seN/73he/+MUvZi1WAABm17xCBwAAALksXrw4jjjiiD0aVe+P5cuXx9/8zd/Eq1/96li5cmVcd9118bGPfSwinlpE/p//+Z+ImHhx97rrrou3vvWteT3PG97whnjkkUfiHe94R/zFX/xFfP/73x+/Yn9Xu/YR2VWSZ/+XXVVWVsaJJ54Y7e3t0d3dHX/84x9j9erVceihh8aTTz4Zd9xxR9xyyy1x3HHHTbijYLb86Ec/ioiIxx9/PLq6uiZdjC8WO3fujGc/+9nx2c9+dsL5o48+etqeq7KyMl73utfFV77ylXj44YfjgQceiK6urvj0pz89fpvJmrSPjo7m/Tz5/N3t3LkzXvrSl8b73//+CW87llQas2DBgj1u881vfjPOP//8OOecc+J973tfLFu2LCoqKuLyyy+P+++/P+94Z9POnTsjIuK9731vnHnmmRPepr6+PiIimpub4/77749/+7d/i//8z/+Mr371q/G5z30urrrqqnjzm988azEDADA7JFUAACh6r3zlK+Of//mf4/bbb4+TTjpp2h53yZIlccwxx2QlbK677rqorKyMa6+9do9F51tvvTW+8IUvxAMPPDDhVf4Tefvb3x5btmyJD37wg/GmN71pvLTYVC1fvjzuu+++Pcbvvffe8fkxq1evjk996lPxX//1X1FbWxvHHXdcpFKpOP744+OWW26JW265JV75yldOOYbp8otf/CI+8pGPxAUXXBCdnZ3x5je/OX75y19GdXV11u127twZPT09WQv3v/3tbyPiqVJjE0mn01FVVTXpz+qAAw7ImQCZLFlxzDHHxN133x0veclLJr1NxFO/h507d8b999+ftTtlonhy+au/+qu46qqr4oYbboje3t5IpVLR0tIyPr9kyZKIiNi6dWvW/cZ2LE2XY445JoaGhsZ3puyL73znO7Fy5cr47ne/m/WzG9vxsbuJymj99re/nfR3PhW5fne7GtshVVlZmdf3vnTp0rjgggviggsuiKGhoWhubo7LLrtMUgUAoAQp/wUAQNF7//vfHwsXLow3v/nN8fDDD+8xf//998fnP//5Se9/9913R39//x7jmzZtil//+tdZi9/XXXddrF69Ol7/+tfHa17zmqx/Yz1Z2traphT/Bz7wgXjPe94T3/72t+Nv//Zvp3TfMa94xSvizjvvjNtvv318bHh4OP75n/856urq4pnPfOb4+OrVq+OJJ56IK6+8Mk455ZTxheTVq1fHtddeG7///e8n7KcyG5588sk4//zz44gjjojPf/7z8fWvfz0efvjheM973jPh7b/4xS+O/z9JkvjiF78YlZWV8ZKXvGTC21dUVMTLXvay+Ld/+7esclEPP/xwXH/99XHKKaeMl5SbyMKFCycsSfW6170ufve738VXvvKVPeYee+yx8fJuL3/5yyMi4gtf+ELWba688spJn3MiTU1NUVdXF9/85jfjhhtuiFNPPTWOOuqo8fnFixdHbW3tHj1NvvzlL0/pefbmda97Xdx+++3jO4t2tXXr1tixY8deH2MsObnrDpg77rgj6295VzfeeON4v5KIiDvvvDPuuOOO8Z/t/pjs97u7ZcuWxWmnnRb/9//+3/jDH/6wx3wmkxn//8DAQNbcokWLor6+fo9eTQAAlAY7VQAAKHrHHHNMXH/99fH6178+nvGMZ8S5554bz3rWs2L79u1x2223xbe//e04//zzJ73/j3/847j00kvjVa96VbzoRS+KRYsWRU9PT3zta1+LJ554Ii677LKIeGqht7u7O6s5+q6OPPLIeP7znx/XXXdd/MM//MOUvocrrrgiHnnkkfjqV78aS5cujU996lNTuv9FF10UbW1t8fKXvzzWrVsXS5cujW984xvR29sb/9//9/9l7X456aSTYt68eXHfffdllSprbm6Of/qnf4qImJGkyuDgYHzzm9+ccO5Nb3pTRER87GMfi87Ozrj55pvj4IMPjuc85zlxySWXxAc/+MF4zWteE694xSvG73PQQQfFD3/4wzjvvPPixBNPjP/4j/+Im266Kf7P//k/e5Qu29XHPvax+PGPfxynnHJKvOMd74h58+bF//2//zeeeOKJrBJaEznhhBPihhtuiAsvvDBe+MIXxqJFi+Lss8+Ov/7rv45vfetb8ba3vS02bNgQTU1NMTo6Gvfee29861vfih/96Efxghe8IJ73vOdFS0tLfPnLX47BwcE4+eST4+abb47u7u4p/SxTqVS88Y1vjE984hMR8VTfjt29+c1vjk9+8pPx5je/OV7wghdEe3v7+E6e6fK+970vvve978UrX/nKOP/88+OEE06I4eHh+OUvfxnf+c53oq+vL2pra3M+xitf+cr47ne/G69+9avjrLPOit7e3rjqqqvimc98ZgwNDe1x+/r6+jjllFPi7W9/+3hysKamZtISZFMx2e93Il/60pfilFNOiWc/+9nxlre8JVauXBkPP/xw3H777fHQQw/F3XffHRERz3zmM+O0006LE044IZYuXRo/+9nP4jvf+c6k5xEAAOa4BAAA5ojf/va3yVve8pakrq4uOfDAA5ODDz44aWpqSlpbW5PHH398/HbLly9PzjrrrPGve3p6kksuuSR50YtelCxbtiyZN29ekk6nk7POOiv57//+7/HbrV27NomI5P777580hssuuyyJiOTuu++e9DbnnXdesnDhwj3Gd+zYkZxzzjlJRCSXX375hLGOOfXUU5NTTz01a+z+++9PXvOa1ySHHHJIctBBByWrVq1K/v3f/33CGF74whcmEZHccccd42MPPfRQEhHJ0UcfnXfMl156aZLPx4ZTTz01iYhJ/yVJkvz85z9P5s2bl6xduzbrvjt27Ehe+MIXJkcccUTyyCOPZMVz//33Jy972cuSqqqq5NBDD00uvfTSZHR0NOv+EZFceumlWWN33XVXcuaZZyaLFi1KqqqqktNPPz257bbbsm6zYcOGJCKSDRs2jI8NDQ0lb3zjG5NDDjkkiYhk+fLl43Pbt29PPvWpTyXHH398Mn/+/GTJkiXJCSeckHz4wx9OBgcHx2/32GOPJevWrUtqamqShQsXJmeffXby4IMPThhnLvfcc08SEcn8+fPHfy67GhkZSdasWZNUV1cnBx98cPK6170u2bx58x7Pc8011yQRkfT29o6PTeXv7tFHH00uvvjipL6+PjnwwAOT2tra5OSTT04+85nPJNu3b0+SJEl6e3uTiEj+8R//cY/H3LlzZ/KJT3wiWb58eTJ//vyksbEx+fd///fkvPPOy/r57voYV1xxRXL00Ucn8+fPT1avXr3H8TbR3+Xy5cuT8847b/zrqfx+x577mmuuyXrM+++/Pzn33HOTww47LKmsrEyOPPLI5JWvfGXyne98Z/w2H/vYx5JVq1YlhxxySLJgwYLkuOOOSz7+8Y+P/2wAACgtqSTZh+6XAAAAM+j888+P73znOxPuZAAAACgUPVUAAAAAAADyIKkCAAAAAACQB0kVAAAAAACAPOipAgAAAAAAkAc7VQAAAAAAAPIgqQIAAAAAAJCHeYUOYLbt3Lkzfv/738fBBx8cqVSq0OEAAAAAAAAFlCRJPProo3HEEUfEAQfk3otSdkmV3//+93H00UcXOgwAAAAAAKCIPPjgg3HUUUflvE3ZJVUOPvjgiHjqh7N48eICRwMAAAAAABTStm3b4uijjx7PH+RSdkmVsZJfixcvllQBAAAAAAAiIvJqGaJRPQAAAAAAQB4kVQAAAAAAAPIgqQIAAAAAAJAHSRUAAAAAAIA8SKoAAAAAAADkQVIFAAAAAAAgD5IqAAAAAAAAeZBUAQAAAAAAyIOkCgAAAAAAQB4kVQAAAAAAAPJQ0KRKe3t7nH322XHEEUdEKpWKG2+8ca/3+clPfhLPf/7zY/78+VFfXx9f//rXZzxOAAAAAACAgiZVhoeH47nPfW586Utfyuv2vb29cdZZZ8Xpp58enZ2d8e53vzve/OY3x49+9KMZjhQAAAAAACh38wr55C9/+cvj5S9/ed63v+qqq2LFihVxxRVXRETEM57xjLj11lvjc5/7XJx55pkzFSYAAAAAAMDc6qly++23xxlnnJE1duaZZ8btt98+6X2eeOKJ2LZtW9Y/AAAAAACAqZpTSZU//vGPceihh2aNHXroobFt27Z47LHHJrzP5ZdfHtXV1eP/jj766NkIFQAAAAAAKDFzKqmyLy6++OIYHBwc//fggw8WOiQAAAAAAGAOKmhPlak67LDD4uGHH84ae/jhh2Px4sWxYMGCCe8zf/78mD9//myEBwAAAAAAlLA5tVPlpJNOiptvvjlr7Mc//nGcdNJJBYoIAAAAAAAoFwVNqgwNDUVnZ2d0dnZGRERvb290dnbGAw88EBFPle4699xzx2//tre9LXp6euL9739/3HvvvfHlL385vvWtb8V73vOeQoQPAAAAAACUkYImVX72s59FY2NjNDY2RkTEhRdeGI2NjXHJJZdERMQf/vCH8QRLRMSKFSvipptuih//+Mfx3Oc+N6644or46le/GmeeeWZB4gcAAAAAAMpHKkmSpNBBzKZt27ZFdXV1DA4OxuLFiwsdDgAAAAAAUEBTyRvMqZ4qAAAAAAAAhSKpAgAAAAAAkAdJFQAAAAAAgDxIqgAAAAAAAORBUgUAAAAAACAPkioAAAAAAAB5kFQBAAAAAADIw7xCBwAAADCdejJDsWnLSNTVLIwVtQsLHQ4UtRvufCBu7x2IpmNq47UvOLrQ4cyacjxPfPHmrui4vz9WN6TjHafXFzoc5pCf3rc5Oh/aGs9/2pJY3ZAudDizohy/Z6ZH3UU3jf+/75Nn7ffjzcTr1d/f0Bl39A3ESStr4x9f+9xpecxyk0qSJCl0ELNp27ZtUV1dHYODg7F48eJChwMwY8rxgyIA5W3ryPZY19YZ7V2Z8bHmhnS0tjRGdVVlASMjYm68NymnRbRfPrQ1Xv3l22LHzj8tCcw7IBXfe2dTPPPI6gJGNrPK8TxxW3cm3vjVO/cYv+EtL4oTj6kpQETMFZsGhuOcL3XEIyNPjo8tqaqM773zlDi6pqqAke1pus7fc+l7prjUX3RT7JhgfH5E3LcPyZWZeL36158/GO/59i/2GP/C658Xr2o8cp8es5RMJW8gqQJQYsrxgyKUg7mwGAmFdu7Vd0ZHd3+M7vIRpyKViqb62li/ZlUBIytvc+G9yUwtohXzuXvXK2l3Nx1X1harV3z+lvj1H7btMX78EYvjpnWrCxDRzCvX3/VMKOZjeiY8/eKbYvsEq4bzUxH3XV4cfzvTff5+3of/M7Y+9uQe44csqIzOS1+2X7FS2qb7XDsT72u9HuQ2lbyBnioAJWZdW2d0dPdnjXV098fato0FigjYH1tHtse5V98ZL77ip3HBNf8Tp3/mJ3Hu1XfG4MieH/bYu57MUGy4b3P09g8XOpQJ/fS+zfH5m38bt+yy+Ex+ejJD0d6VyfrgGRExmiTR3pUp2t95OZgL7012X5CLiHhk5Ml41Zdu3afHK/Zz9w13PpBz/ts/e3CWIpldPZmhCRMqERH3/H5bSZ4nvnhzV875L2/onqVI5rZiP6Znwk/v2zxhQiUi4okkiua9ynSev3963+YJEyoREVsfe7JovmeKT65kRT7zu5uJ97V/f0Nnzvn3ffvuKT9mOZNUASghFpSg9Lzjuruyru6OiGjvysTbr/t5gSKam4p9MWTTwHA0fuQ/47xr/ic+9+Ou+Our74zGj/xnPDgwUujQ5oxNW3L/rPoGvAYWwlx4b/LT+zbvsSA35pGRfVtEK/ZE0sdu+nXO+Y9+/55ZimR2Xf6D3+Sc/+Re5ueir9/Wm3P+a7f2zFIkc1uxH9Mz4cJvdeacf8+/FP57n+7z94b7Nuec/+/f5J6H6TIT72t/+tvcf78b7n14yo9ZziRVAEqIBSUoLT2Zobjt/oEJ5267f6AoFiPnimJfDJnuq+TL0ebBx3PO9z/6xCxFwq7mwnuTzoe25py/64FHpvR4cyGR9OgToznnt+1lfq76xe+25py/+6Gp/a7ngsefzP273Ns8c+OYngmTJSvGbCmCC1Om+/y9dOH83POLDpzS48G+Wr40d+m6upqplx9MH5z773vZwQdN+THLmaQKQAmZiRdeoHDu6J04oTI+35N7nqcU+2LITFwlX47++GjupMrvBx/b58cu9rJxxWwuvDc5bC+LCEdUL5jS482FRNLeFgJKdaEgFam93qLUPG1J7mNseREcg8VuLhzTM6FyLyeCvc3PhucddUjO+ec/bcmUHu+5R1Xnfr6jcz8fTJeV6UXR3JCOilT261JFKhXNDel96ul0/skrcs5fcEruebIVwSkQgOmyMr0olkzS8HVJVWVZNFOE0pJ7cWeSMtfsptgXQ6b7KstyNd0LKxHFXzZuLpiJRYHptqw6d1Kldi9Xdu5uLiSSliyc+P3imKV7mZ+rqg6syDm/cC/zc9GqY2pyzr9wRe555sYxPRMWLch9Hjh4QeF3bZx67LKcn39XN6Sn9Hg79zK/Y6d338ye1pbGaKqvzRprqq+N1pbGfXq8nXv59Djq73tKJFUASkhPZijn1c6usIW55cQVS3POv2ilhZB8FPtiyEwkA8rR0Xv5PR+1JPf8RIq9bNxcMd2LAtNtbx+K5x0wtd0LcyGRdOrTl+WcP+3Y3PNz1THpRTnn65cdPEuRzJ7ahbkXvpdNMWm4q3LZxTcXjumZkN5LKaxli/b9b2c6fe+dp+yRWFlSVRnfe+cpU36sYn/PSHmprqqM9WtWxYb3nhbXXPDC2PDe02L9mlVRPUkice9csDed5hU6AACmTz5XY5fqm34oRSvTi+KklTVx+wRlvk5aWeN4ztPYYkhHd39WCbCKVCqa6msL/nMcu8pyoqT4vlxlWa6m+zVwrGzc7nYtG1fov525YmxRoLd/OPoGhqOuZmFR/exm4srk1pbGWNu2MetvqJgSSX/34vr47sbfTTr/zhc3zGI0s+fFz1gWP87RaPr040ovmXT/XhIe3ZuHpvyYW0e2x7q2zqy/7+aGdLS2NO7HYl9xK/ZjeiYcvbQq7n148r+PvV3MMFuOrqmKjZe8LG7pysRdDzwSz3/akn1+71Ts7xkpXqnInZTYn+KSK2qn532TC/aml6QKQAlxZQ2UnqvedMIeH+LHFi7IX7EvhnzvnafEq750a1ZiZV+vsixX0/0a6EKF6TddiwLTbSbePxV7ImllelE896jquPuhwT3mnntUdVHFOp321h/nyCVT658zN0z/tce5dvGtX7Nq2p+vGBT7MT0TMkNP5Jzf/Gju+dm2uiE9LReiFPt7RorTTCZVpsuDe3lv+9AjIyV/XptOkioAJcSVNVB6yvFD/Ewo9p/jwQvmxbOPPCTrA/yzjzwkFu+lnjl/Mt2vgS5UKB9jPekm2y22P+eKYk0kRUSs/5sTyy5p//vBx3LO/+6R3PNz0TnPOzL+dePvJ51/9fOPnNLjlfsuvmI+pqdb7V7Ke6WLpPzXdCv294wUpyMPOSge3Pr4pPNHF0HSPp8+jnbI509PFYAS87Fzjo/FC7Jz5osXzIuPn/OsAkUExW8u1ARfUbswTj92mQ91+6lYf456d0yP6ezdUa419MtRufak2/rY9vjl77Zmjf3yd1tj22MT/yxKQebR7bnn93Jl/lx06rHLYvFBE19Pu/igeVNeQMtnFx+l4aXPODT3/PG55+e6Yn3PSHE67vDFOeeP3cv8bNDHcXrZqQJQYj544z2x7bEdWWPbHtsRH7jxVyW7HR/2VTnWBKf4lPtVv9Npuq8uVQKkPJRrqbezW2+NbY9nv2d8ZOTJOKv1lvjFZWcWKKqZlT44d9P2Ur3y/qa1q6etxKRdfOVjWfVBOedrDy7N4wX2xW/+sG2/5mfD3vogHbWkOPokzRWSKgAlxMIcTE051gSn+JTrgu5Mmq7yLHOpBEhPZig2bRkp6hiLVTkuEv/0vs17JFTGbHt8R9zSlSnJEiAnrsjdhPfEEm3Sq5E3+6Icz42wrw6cl7sY1IEVhe+q4jPH9JJUASghXiQhf3MtCWnBtHRZtCh+xVxD34479sWNnZP32IiI+Ne7fleSSZWV6UWxqm5p3Nm3ZY+5VXVLi/Y4ny7T1cj7Y+ccH3/+pY6snS/KDZceCTTI3+GLF0RP/+TrMYcfUvieKj5zTC89VQBKiBdJyN9cqQm+dWR7nHv1nfHiK34aF1zzP3H6Z34S5159ZwxOUv+fuUfvDvaHfjz7b668HkynRx/P/RoyNMkullKwY3R0kvGdsxzJ3JWr3DClZTp7lUEpG96e+3Vz+InSfV0tV5IqACXEwhzkb29vguYdUPgt2hEWTMuFRQv2xdiOu12vII7I3nHH3pXjRSlHL8l9xezRSwt/Re1M6MkMxV0PDk44d9eDWx0zeXDemX49maHYcN/movzZjZXB3PDe0+KaC14YG957Wqxfs8pOSNhNei89hvY2PxvK8SKSmaT8F0CJ0VQX8rO361F37Ez2couZN9dKlLHv5lLvDoqHsp/sqyULczds39v8XPXvv8hd9uymX/w+/u7FDbMUzdzkvDN95lL5xmIugwnF4IxnHBo//s3mSedf+szDZjGaiZXjRSQzSVIFoMRYmIP8zIU3lRYuyo9FC6ZiLpzH5oJyPNemDz4o53zNosJfUTsT9rYToCfjKt29cd6ZPrl2I69fs6pAUU1Mbz/IbWfkviBvtAgu2NMnaXop/wVQolbULozTj13mhREmMRfK5Vm4AHKZC+exuaAcz7Unrliac/5FK2tmKZLZtaJ2Ue75dOn9rqeb8870mCtl1PT2g/xkHt2ee37oiVmKJDclh6ePpAoAULaK/U2lhQtgb4r9PDYXrEwvipMmSSKctLKmJM+15fg9R0S88jmH72X+iFmKZG5z3tl/c6W3gd5+kJ/0wbnLZqaLZAfoWGWT9X/zwnjPSxvi2jWr9EnaR8p/AQBla+xNZftvM7HxwUfi+U9bEqsb0oUOK4s+SUAuyn5Oj91y13sdLwVXvemEPV5fxvo5lKoH97KQ/dAjI46fPDjv7L+5sENObz/I34krcu/wPLFIdoDOpV5OxU5SBQAoW3PhTaWFCyAf+vHsu57MUNx2/8CEc7fdP1CyC4fJXuq/l6LOh7bmnL/rgUeK7uKKYua8s+/Gdovd3rPnuadYdouVY78p2Fcr04vi5GNqJnw/cfIxxXFMR0S847q79oixvSsTb7/u53H9W15UoKjmJuW/AICyNZdKGuiTBDAz5koZnuk2l14Dp8vzjjok5/zzn7ZkdgKBKP4dcnNhNw0Uk3/6qxOiebfEfHNDOv7pr04oUETZ8rmIhPxJqgAAZWmuNAgFYGbt7UPxvAOKZIVzGpXra+Cpxy6L6gUTF+yoXjDPLhVmzVxY3CzX3kuwr4p9B+gdvROfc8bnJ9g5x+QkVQCAslSuVyYDkG3nXuZ37CzuRZJ9Uc6vgcceunhK4zAT5soxWOy7aaCYvOO6u/boQzRWWqs45D5wS+/dzsySVAEAypKSBgBElOfrQTl+zxFP7Q64s2/LhHN39m0pit0BlIe5cAzOhd00UCzmwvFy4oqlOedfNMnONCYmqQIAlKWV6UXR3JCOit0utatIpaK5Ia2kAUCZKMfXg3It6zNXdgdQ+ubCecfxAvmbC6W1yvW1f6ZIqgAAZau1pTGa6muzxprqa6O1pbFAEQHsm57MUGy4b3NRXAk5F5Xj60E5lvWZC7sDKB/Fft5xvMBUzI3SWle96YRo3q1/WHNDOq560wkFimjumrhDGwBAGaiuqoz1a1ZFb/9w9A0MR13NQlfoAHPK1pHtsa6tM6uGd3NDOlpbGqO6qrKAkc0t5fZ6kE+ZklL8/lemF8WSqsp4ZOTJPeaWVFWW5PdM8Sr2887YbpqO7v4YTf60JFyRSkVTfW1RxQqFdkT1QTnnj1qyYJYiya3YzztziZ0qAEDZW1G7ME4/dpk3lMCcs66tMzq6+7PGOrr7Y23bxgJFNLeVy+tBuZb16ckMTZhQiYh4ZORJO70oiGI+7xT7bhooFnc/tDX3/IO552dbMZ935go7VQAAAOagnsxQ1g6VMaNJEu1dmZLdbcD+K9eyPvkkkxwz8Ceuaof8/OKhwdzzD+aeZ+6xUwUAAMib3h3Fo1x3G7D/VqYXxcnHTNys9uRjSrdZbbkmk2B/uaodcjv4oNz7FhbtZZ65x28UAADYK707io8FYvZHMknX3MnGS4EeEQDMhBetqIl/3fj7SedPmuRCBuYuO1UAAIC90ruj+IwtEFekUlnjFalUNDekLRAzqZ7MUNzeM3Gj+tt7Bkp6J5oeEQBMt52R+4qE0Z0lfMVCmbJTBQDmsJ7MUGzaMqK+MTCj9O4oXq0tjbG2bWPW78cCMXtTzr1F9IgAYPqlcs5KqZQeSRUAmIOU4QFmUzkvwBY7C8TsC6XjnuoR4VgBYDocUX1QzvmjliyYpUiYLcp/AcAcpAwPMJsswBY/TYQBAApj517mdyj/VXIkVQBgjhkrwzO6WyfZXcvwAEwnvTugtOSz+wwAyM9MXoDUkxmKDfdtntbP+TPxmOVG+S8AmGOU4QEKQe8OKB17u7py3gG5a8MDAH+yMr0o5h2QmnBHyrwDUvv0+XwmSn4rIz59JFUAYI5RhgcohLnUu6MnMxSbtowUdYxQSMqUAMD0+el9myd97dyxM4lbujKxuiE9pcfMVfJ7/ZpV+xTnTDxmuZJUAYA5ZqwMT0d3f1YJsIpUKprqay0gAjOqmJs7u/oO8uMCDQCYPp0Pbc05f9cDj0wpqTJW8nt3u5b8nur78Zl4zHKmpwoAzEGtLY3RVF+bNaYMD1Ducl19B/zJyvSiOPmYmgnnTj6mxqIKAEzBYQcflHP+iOoFU3q8meh9pp/a9LJTBQDmoLlUhgdgNrj6DqYmmaTC12TjAMDEprus5kzsKLVLdXrZqQIAc9iK2oVx+rHLLBQCZc/Vd5C/nsxQ3N4zMOHc7T0D0dvveAH+pCczFBvu2+zcAJPKnTRJTfHRxkp+V6Sy71mRSkVzQ3qfPv+vTC+KJZOUw11SVWlNYYrsVAEAAOY8V99B/vJJQlpcAfQqg/ycuGLikprj8ytzz0+ktaUx1rZtzDr+9qfkd09mKB4ZeXLCuUdGnrSre4okVQAAgDlv7Iq+ju7+GN2lflFFKhVN9bU+JMIuJCGBfOTqVbZ+zaoCRQXF58G9XKzw0CMjU34vOt0lv11QMb2U/wIAAEpCa0tjNNXXZo3tzxV9UKpmoqwIUFrGepWN7tZoaddeZcBTOh/amnP+rgce2efHnq6S3y6omF52qgAAACVhuq/og1I23WVFgNLiqnbI3/OOOiTn/POftmR2AsnBru7pJakCAACUlBW1kimwN5KQQC57K20z74Cptt6G0nX0XnaBHLUk9/xscUHF9JFUAQAAgDKV7FbaByAiYude5nfsdO6AMXNlZ5cLKqaPpAoAAACUma0j22NdW2fW1arNDelobWmM6qrKAkYGFAP9FyB/c+14sat7/2lUDwAAAGVmXVtndHT3Z411dPfH2raNBYoIKCZj/RcqUtllvipSqWhuSFuQhV04XsqPpAoAAACUkZ7MULR3ZbIa1UZEjCZJtHdlord/uECRAcWktaUxmuprs8b0X4CJOV7Ki/JfAAAAUEbmSu13oLD0X4D8OV7Ki6QKAABloyczFJu2jPiQA5S1uVb7HSgs/Rcgf46X8iCpAgBAydOQGeBPxmq/d3T3Z5UAq0iloqm+1mIQAEAOeqoAAFDyNGQGyKb2OwDAvrFTBQCAkjbWkHl3uzZkdlU2UG7UfgcA2DeSKgAAlDQNmcuP3jmQP7XfAQCmRlIFAICSpiFz+dA7B8iX5Cvk76f3bY7Oh7bG85+2JFY3pAsdDkDBSaoAAFDSNGQuH7l656xfs6pAUQHFRPIV8rdpYDjO+VJHPDLy5PjYkqrK+N47T4mja3JftAJQyjSqBwCg5GnIXPrGeufsmjiLyO6dA5Ar+Qpk2z2hEhHxyMiT8aov3VqgiACKg50qAACUPA2ZS5/eOcDejCVfd7dr8tV5Ap7y0/s275FQGfPIyJNxS1dGKTCgbNmpAgBA2VhRuzBOP3aZRbMSpHcO7JuezFBsuG9zWezmyif5Cjyl86GtOefveuCR2QkEoAjZqQIAAMx5eufA1JRjbxHJV8jf8446JOf885+2ZHYCAShCdqoAAAAlQe8cyF859hYZS75WpFJZ4xWpVDQ3pCVfYRdH7yUJedQSjeqB8mWnCgAAUBL0zoH8lHNvkdaWxljbtjHr+5d8hT3pVQb75qf3bY7Oh7bG85+2RN+hEiapAgAAlJQVtZIpkEs5L5Ymkez9RoByeTBFmwaG45wvdcQjI0+Ojy2pqozvvfOUOLrGzq5So/wXAAAAlJFyXix9x3V37bFLp70rE2+/7ucFigiKk3J5MDW7J1QiIh4ZeTJe9aVbCxQRM0lSBQAAAMpIuS6W9mSG4rb7Byacu+3+gejtH57liKC46VUG+fnpfZv3SKiMeWTkybhlgpKbzG3KfwEAAECZKcfeInf0TpxQGZ/vGSjZhBLsi7FeZe2/3RwbH9QjAibT+dDWnPN3PfCIY6fESKoAAABAmRlbLO3tH46+geGoqyn9XkT/0/tI7vm+LfGGVU+bpWig+G0d2R7r2jqzkq/NDelobWmM6qrKAkYGxeV5Rx2Sc/75T1syO4Ewa5T/AgAAgDKVJOXTuP0Pg4/t1zyUm3VtndHR3Z811tHdH2vbNhYoIihOpx67LJZMkmhcUlVpl0oJslMFAAAAykw5XoF+3GGL4/aeLZPOP+OwxbMYDRS3nsxQ1vlhzGiSRHtXJnr7h0t+dxtMxffeeUq86ku3ZvVWWVJVGd975ykFjIqZIqkCAAAAZSbXFejr16wqUFQz669PWh7X3NY36fybTqqbtVig2G3aMpJzvm9AUgV2dXRNVWy85GVxS1cm7nrgET2ISpykCgAAAMwRPZmh2LRlZL96oJTrFegr04vi+U87JO56YOsec89/2iEl+T3Dvlq+tCrnfF2N4wUmsrohLZlSBiRVAAAAoMhNZ7mucr4C/crXPy/+/Esde5Rn+fzrGwsYFRSflelF0dyQjo7u/hjdpfdSRSoVTfW1JXuOAMiHRvUAAABQ5KazYXQ5X4H+wRvviW2P7cga2/bYjvjAjb8qUERQvFpbGqOpvjZrrKm+NlpbJCGB8manCgAAABSx6S7XVa5XoJdr2TPYV9VVlbF+zaro7R+OvoHh/So7ONOmozQiQL4kVQAA5gAfFAHK10yU62ptaYy1bRuzkgylfgV6OZc9g/2xorZ4339OZ2lEgHxJqgAAFDEfFGHqJCEpNTNRrmsuXYE+XfZW/3zeAalZiQOYPrlKI65fs6pAUQGlTlIFAKCI+aAI+ZOEpFTNZLmuZJfHK3U79zK/Y2f5/CygFCjpBxSKRvUAAEVq7IPi6G4LXrt+UAT+ZDobeUOxme6G0VtHtse5V98ZL77ip3HBNf8Tp3/mJ3Hu1XfG4MiT0xFuUZqJHT9A4eRT0g9gJtipAgBQpNR+h/y5WpVSN93luuyEBOY6iVKgUOxUAQAoUj4oQv5crUq5WFG7ME4/dtl+JVTKdSek8wSUlrHSiBWp7H5IFalUNDekXUxBQfRkhmLDfZtL9rWUp9ipAgBQpGayhj6UGklIyF+57oR0noDS09rSGGvbNmbtVt2f0oiwr/T2Ky+SKgAARcwHRciPJCTkr1yTC84TUHqmuzQi7CtlNcuLpAoAQBHzQRHyJwkJ+Snn5ILzBJSmFbXeI1M4evuVH0kVAIA5wAdF2DtJSMhfuSYXnCcAmG7lWlaznEmqAAAAJUUSEvau3JMLzhMATJdyLatZziRVAAAAoExJLgAATM0BhQ4AAAAAAADmonzKf1FaJFUAAAAAAGAfKP9VfiRVAAAAAIAJ9WSGYsN9m6O339X2MJGV6UXR3JCOilQqa7wilYrmhrQymyVITxUAAAAAIMvWke2xrq0z2rsy42PNDelobWmM6qrKAkYGxae1pTHWtm3MOl6a6mujtaWxgFExU+xUAQAAAACyrGvrjI7u/qyxju7+WNu2sUARQfFKIil0CMwiSRUAAAAAYFxPZijauzIxmmQvFI8mSbR3ZZQCg92847q7snapRES0d2Xi7df9vEARMZMkVQAAAACAcZu2jOSc7xuQVIExPZmhuO3+gQnnbrt/QBKyBEmqAAAAAADjli+tyjlfV6PxNoy5o3fihMr4fE/ueeYeSRUAAAAAYNzK9KJobkhHRSqVNV6RSkVzQzpW1EqqwJ+kcs7qtlJ6JFUAAAAAgCytLY3RVF+bNdZUXxutLY0FigiK04krluacf9HKmlmKhNkyr9ABAAAAAADFpbqqMtavWRW9/cPRNzAcdTUL7VCBCaxML4qTVtbE7ROU+TppZY3jpgTZqQIAAAAATGhF7cI4/dhlFoYhh6vedEI0N6Szxpob0nHVm04oUETMJDtVAAAAAABgH43t7Gr/7ebY+ODWeP7TlsTq3ZIslA5JFQAAAAAA2EdbR7bHurbOaO/KjI81N6SjtaUxqqsqCxgZM0H5LwAAAAAA2Efr2jqjo7s/a6yjuz/Wtm0sUETMJEkVAAAAAADYBz2ZoWjvysRokmSNjyZJtHdlord/uECRMVMkVQAAAAAAYB9s2jKSc75vQFKl1EiqAAAAAADAPli+tCrnfF3NwlmKhNkiqQIAAAAAAPtgZXpRNDekoyKVyhqvSKWiuSEdK2olVUqNpAoAAAAAAOyj1pbGaKqvzRprqq+N1pbGAkXETJpX6AAAAAAAAGCuqq6qjPVrVkVv/3D0DQxHXc1CO1RKmKQKAAAAAADspxW1kinlQFIFAAAAylRPZig2bRlxRS0AQJ4kVQAAAKDMbB3ZHuvaOqO9KzM+1tyQjtaWxqiuqixgZAAAxU2jegAAACgz69o6o6O7P2uso7s/1rZtLFBEAABzg6QKAAAAlJGezFC0d2ViNEmyxkeTJNq7MtHbP1ygyAAAip+kCgAAAJSRTVtGcs73DUiqAABMRlIFAAAAysjypVU55+tqNKwHAJiMpAoAAACUkZXpRdHckI6KVCprvCKViuaGdKyolVQBAJiMpAoAAACUmdaWxmiqr80aa6qvjdaWxgJFBBSrnsxQbLhvs35LAP9rXqEDAAAAAGZXdVVlrF+zKnr7h6NvYDjqahbaoQJk2TqyPda1dUZ7V2Z8rLkhHa0tjVFdVVnAyAAKy04VAAAAKFMrahfG6ccuk1AB9rCurTM6uvuzxjq6+2Nt28YCRQTFz86u8mCnCgAAAAAwriczlLVDZcxokkR7VyZ6+4clY2EXdnaVl4LvVPnSl74UdXV1cdBBB8WJJ54Yd955Z87bX3nllXHsscfGggUL4uijj473vOc98fjjj89StAAAAABQ2jZtGck53zfgKnzYlZ1d5aWgSZUbbrghLrzwwrj00kvjrrvuiuc+97lx5plnxubNmye8/fXXXx8XXXRRXHrppfGb3/wmrr766rjhhhvi//yf/zPLkQMAAABAaVq+tCrnfF2NXSowZmxn12iSZI3vurOL0lLQpMpnP/vZeMtb3hIXXHBBPPOZz4yrrroqqqqq4mtf+9qEt7/tttuiqakp3vjGN0ZdXV287GUvi5aWlr3ubgEAAAAA8rMyvSiaG9JRkUpljVekUtHckFb6C3ZhZ1f5KVhSZfv27fHzn/88zjjjjD8Fc8ABccYZZ8Ttt98+4X1OPvnk+PnPfz6eROnp6Ykf/OAH8YpXvGLS53niiSdi27ZtWf8AAAAAgMm1tjRGU31t1lhTfW20tjQWKCIoTnZ2lZ+CNarv7++P0dHROPTQQ7PGDz300Lj33nsnvM8b3/jG6O/vj1NOOSWSJIkdO3bE2972tpzlvy6//PL48Ic/PK2xAwAAAEApq66qjPVrVkVv/3D0DQxHXc1CO1RgAmM7uzq6+7NKgFWkUtFUX+u4KUEFb1Q/FT/5yU/iE5/4RHz5y1+Ou+66K7773e/GTTfdFB/96Ecnvc/FF18cg4OD4/8efPDBWYwYAAAAAOauFbUL4/Rjl1kYhhzs7CovBdupUltbGxUVFfHwww9njT/88MNx2GGHTXifD33oQ/HXf/3X8eY3vzkiIp797GfH8PBwvPWtb40PfOADccABe+aI5s+fH/Pnz5/+bwAAAAAAgLJnZ1d5KdhOlQMPPDBOOOGEuPnmm8fHdu7cGTfffHOcdNJJE95nZGRkj8RJRUVFREQku2ytAgAAAACA2WRnV3ko2E6ViIgLL7wwzjvvvHjBC14Qq1atiiuvvDKGh4fjggsuiIiIc889N4488si4/PLLIyLi7LPPjs9+9rPR2NgYJ554YnR3d8eHPvShOPvss8eTKwAAAADA9OjJDMWmLSOuvAf4XwVNqrz+9a+PTCYTl1xySfzxj3+M5z3vefHDH/5wvHn9Aw88kLUz5YMf/GCkUqn44Ac/GL/73e8inU7H2WefHR//+McL9S0AAAAAQMnZOrI91rV1RntXZnysuSEdrS2NUV1VWcDIAAorlZRZ3axt27ZFdXV1DA4OxuLFiwsdDgAAAAAUnXOvvjM6uvtjdJelw4pUKprqa2P9mlUFjAxg+k0lb1CwnioAAAAAQPHpyQxFe1cmK6ESETGaJNHelYne/uECRQZQeJIqAAAAAMC4TVtGcs73DUiqAOVLUgUAAAAAGLd8aVXO+boaDeuB8iWpAgAAAACMW5leFM0N6ahIpbLGK1KpaG5Ix4paSRWgfEmqAAAAAABZWlsao6m+Nmusqb42WlsaCxQRQHGYV+gAAAAAAIDiUl1VGevXrIre/uHoGxiOupqFdqgAhKQKAAAAADCJFbWSKQC7Uv4LAAAAAAAgD5IqAAAAAAAAeZBUAQAAAAAAyIOeKgAAAADAhHoyQ7Fpy4hG9QD/S1IFAAAAAMiydWR7rGvrjPauzPhYc0M6Wlsao7qqsoCRARSW8l8AAAAAQJZ1bZ3R0d2fNdbR3R9r2zYWKCKA4iCpAgAAAACM68kMRXtXJkaTJGt8NEmivSsTvf3DBYoMoPAkVQAAAACAcZu2jOSc7xuQVAHKl6QKAAAAADBu+dKqnPN1NRrWA+VLUgUAAAAAGLcyvSiaG9JRkUpljVekUtHckI4VtZIqQPmSVAEAAAAAsrS2NEZTfW3WWFN9bbS2NBYoIoDiMK/QAQAAAAAAxaW6qjLWr1kVvf3D0TcwHHU1C+1QAQhJFQAAAABgEitqJVMAdqX8FwAAAAAAQB4kVQAAAAAAAPIgqQIAAAAAAJAHPVUAAAAAgAn1ZIZi05YRjeoB/pekCgAAAACQZevI9ljX1hntXZnxseaGdLS2NEZ1VWUBIwMoLOW/AAAAAIAs69o6o6O7P2uso7s/1rZtLFBEAMVBUgUAAAAAGNeTGYr2rkyMJknW+GiSRHtXJnr7hwsUGUDhSaoAAAAAAOM2bRnJOd83IKkClC89VQAAAICyovE25LZ8aVXO+boaxw1MxOtLeZBUAQAAAMqCxtuQn5XpRdHckI6O7v6sEmAVqVQ01ddaLIbdeH0pL8p/AQAAAGVB423IX2tLYzTV12aNNdXXRmtLY4EiguLl9aW82KkCAAAAlLyxxtu727Xxtqvv4U+qqypj/ZpV0ds/HH0Dw8oZwSS8vpQfO1UAAACAkqfxNuybFbUL4/Rjl1kUhkl4fSk/kioAAABAydN4G4CZ4PWl/EiqAAAAACVvrPF2RSqVNV6RSkVzQ9pV+ADsE68v5UdSBQAAACgLGm8DMBM+ds6zYvGC7PblixfMi4+f86wCRcRM0qgeAAAAKAsabwMwEz54469i22M7ssa2PbYjPnDjr2L9mlUFioqZIqkCAAAAlJUVteWXTOnJDMWmLSMSSQDTrCczFO1dmT3GR5Mk2rsy0ds/7LxbYiRVAAAAoExZaC99W0e2x7q2zqwFv+aGdLS2NEZ1VWUBIwMoDZu2jOSc7xuQVCk1kioAAABQZiy0l491bZ3R0d2fNdbR3R9r2zYqSQMwDZYvrco5X1cjoVJqNKoHAACAMpNroZ3SMVaSZjRJssZ3LUkDwP5ZmV4UzQ3pqEilssYrUqlobkjbpVKCJFUAAACgjFhoLx/5lKQBYP+1tjRGU31t1lhTfW20tjQWKCJmkvJfAAAAUEbUfi8fStIAzI7qqspYv2ZV9PYPR9/AsF5lJU5SBQAAAMqIhfbyMVaSpqO7P2tnUkUqFU31tRb8AKbZilrJlHKg/BcAAACUEbXfy4uSNAAwvVJJslsR1RK3bdu2qK6ujsHBwVi8eHGhwwEAAIBZNzjyZKxt2xjtXZnxseaGdLS2NEZ1VWUBI2OmKEkDAJObSt5AUgUAAADKlIV2AICp5Q30VAEAAICI6MkMxaYtI2WVYFD7HQBgaiRVAAAAKGtbR7bHurZOpbAAANgrjeoBAAAoa+vaOqOjuz9rrKO7P9a2bSxQRAAAFCtJFQAAAMpWT2Yo2rsyMbpbu9HRJIn2rkz09g8XKDIAAIqRpAoAAABla9OWkZzzfQOSKgAA/ImeKgAAAJSt5Uurcs7X1WjiXop6MkOxactI1NUsjBW1fscAQP4kVQAAAChbK9OLYklVZTwy8uQec0uqKi24l5itI9tjXVtntHdlxseaG9LR2tIY1VWVBYwMgFIgaV8eJFUAAAAoWz2ZoQkTKhERj4w8Gb39wxZFSsi6ts7o6O7PGuvo7o+1bRtj/ZpVBYoKgLlO0r686KkCAABA2dJTpXz0ZIaivSsTo0mSNT6aJNHelYnefr9rAPZNrqQ9pUdSBQAAgLKlp0r5kEADYCZI2pcfSRUAAADK1sr0omhuSEdFKpU1XpFKRXNDWumvEiKBBsBMkLQvP5IqAAAAlLXWlsZoqq/NGmuqr43WlsYCRcRMWJleFEsmqWu/pKpSAg2AfSJpX340qgcAAKCsVVdVxvo1q6K3fzj6BoajrmahBfYS1JMZikdGnpxw7pGRJ6O3f9jvHYApG9v12tHdn1UCrCKViqb6Wq8tJchOFQCg7PVkhmLDfZvVugUocytqF8bpxy6z+FGilGcBYKbY9Vpe7FQBAMrW1pHtsa6tM9q7MuNjzQ3paG1pjOpJyoMAAHOT8iwAzBS7XsuLnSoAQNla19YZHd39WWMd3f2xtm1jgSICAGbKWHmWilQqa7wilYrmhrTFL5iEXd2QP7tey4OdKgBAWerJDGXtUBkzmiTR3pVRVx0ASlBrS2OsbduY9R5AeRaYmF3dABOTVAEAylI+ddUlVQCgtCjPAvnLtat7/ZpVBYoKoPAkVQCAsqSuOgCUrxW1kimQi13dAJPTUwUAKEvqqgMAwMTy2dUNUK4kVQCAstXa0hhN9bVZY+qqAwBQ7uzqBpic8l8AQNlSVx2ActeTGYpNW0a8BgJZxnZ1d3T3x2iSjI9XpFLRVF/rfAGUNUkVAKDsqasOQLnZOrI91rV1ZvVMaG5IR2tLY1RXVRYwMqBYtLY0xtq2jVnnCbu6ASJSSbJLurkMbNu2Laqrq2NwcDAWL15c6HAAAABg1p179Z2TXoG+fs2qAkYGFBu7uoFyMJW8gZ0qAAAAUEZ6MkNZV56PGU2SaO/KRG//sIVTYJxd3QDZNKoHAACAMrJpy0jO+b6B4VmKBABg7pFUAQAAgDKyfGlVzvm6GlekAwBMRlIFAAAAAAAgD5IqAAAAUEaU/wIA2HeSKgAAAFBGlP8CANh3kioAAABQRlamF0VzQzoqUqms8YpUKpob0rGiVlIFAGAykioAAABQZlpbGqOpvjZrrKm+NlpbGgsUEQDA3DCv0AEAAAAAs6u6qjLWr1kVvf3D0TcwHHU1C+1QAQDIg6QKAAAAlKkVtZIpAABTIakCAAAAEdGTGYpNW0bs2gAAYFKSKgAAAJS1rSPbY11bZ7R3ZcbHmhvS0drSGNVVlQWMDACAYqNRPQAAAGVtXVtndHT3Z411dPfH2raNBYoIAIBiJakCAABA2erJDEV7VyZGkyRrfDRJor0rE739wwWKDACAYiSpAgAAQNnatGUk53zfgKQKAAB/oqcKAAAAZWv50qqc83U1GtYDAPnpyQzFpi0jUVezMFbUeg9RqiRVAAAAKFsr04uiuSEdHd39WSXAKlKpaKqvtSACAOzV1pHtsa6tM9q7MuNjzQ3paG1pjOqqygJGxkxQ/gsAAICy1trSGE31tVljTfW10drSWKCIAIC5ZF1bZ3R092eNdXT3x9q2jQWKiJlkpwoAAABlrbqqMtavWRW9/cPRNzCsZAcAkLeezFDWDpUxo0kS7V2Z6O0f9r6ixEiqAAAAQESsqJVMAQCmZtOWkZzzfQOSKqVG+S8AAAAAANgHy5dW5Zyvq5FQKTWSKgAAQEnpyQzFhvs2R2//cKFDAQCgxK1ML4rmhnRUpFJZ4xWpVDQ3pO1SKUHKfwEAACVh68j2WNfWmVXTurkhHa0tjVFdVVnAyAAAKGWtLY2xtm1j1vvQpvraaG1pLGBUzJRUkiRJoYOYTdu2bYvq6uoYHByMxYsXFzocAABgmpx79Z3R0d0fo7t8xKlIpaKpvjbWr1lVwMigePVkhmLTlpGoq9FPBgD2V2//cPQNDHtdnYOmkjewUwUAAJjzejJDWVcGjhlNkmjvykRvvwahsCs7uwBg+q2olUwpB3qqAAAAc96mLSM55/sG9FeBXa1r64yO7v6ssY7u/ljbtrFAEQEAzA2SKgAAwJy3fGlVzvm6GlcMwpixnV2ju1UD33VnFwAAE5NUAQAA5ryV6UXR3JCOilQqa7wilYrmhrQyDLALO7sAAPadpAoAAFASWlsao6m+Nmusqb42WlsaCxQRFCc7uwBgZvRkhmLDfZvt+ixxGtUDAAAlobqqMtavWRW9/cPRNzAcdTUahcJExnZ2dXT3Z5UAq0iloqm+tiyOm57MUGzaMuI8AcC02DqyPda1dUZ7V2Z8rLkhHa0tjVFdVVnAyJgJqSTZrYhqidu2bVtUV1fH4OBgLF68uNDhAAAAwKwbHHky1rZtLLvFH4teAMyEc6++c9KLFdavWVXAyMjXVPIGdqoAAABAmSnXnV3r2jqjo7s/a6yjuz/Wtm206AWTsLMLcuvJDGUl68eMJkm0d2Wit3/YsVNiJFUAAACgTK2oLZ9FUoteMDV2dkF+Nm0ZyTnfN+D1pdRoVA8AAACUvHwWvYA/ybWzC/iT5Uurcs7X1UiolBpJFQAAAKDkWfSC/I3t7BrdrRXzrju7gKesTC+K5oZ0VKRSWeMVqVQ0N6TtUilBkioAQNnryQzFhvs2+3AIACXMohfkz84umJrWlsZoqq/NGmuqr43WlsYCRcRM0lMFAChb6kQDQHlpbWmMtW0bs177LXrBnuzsgqmprqqM9WtWRW//cPQNDEddTfn0LCtHkioAQNnKVSd6/ZpVBYoKAJgpFr0AmEkrar2ulANJFQCgLI3Vid7drnWivRkGgNJk0Qtyy6f8l2MIKFd6qgAAZUmdaAAAmJjyXwCTk1QBAMqSD4oAADCxlelF0dyQjopUKmu8IpWK5oa0XSpAWZNUAQDK0sr0ojj5mJoJ504+psYHRQAAylprS2M01ddmjTXV10ZrS2OBIgIoDnqqAABlK0mmNg4AAOWiuqoy1q9ZFb39w9E3MBx1NXoRAURIqgAAZaonMxS39wxMOHd7z4BG9QAAEBEraiVTAHal/BcAUJY0qgcAAACmyk4VAKAsaVQPAAB715MZik1bRpT/AvhfkioAQFlamV4UzQ3p6Ojuj9FdmqhUpFLRVF/rAyMAAGVt68j2WNfWGe1dmfGx5oZ0tLY0RnVVZQEjAygs5b8AgLLV2tIYTfW1WWNN9bXR2tJYoIgAAKA4rGvrjI7u/qyxju7+WNu2sUARARQHO1UAgLJVXVUZ69esit7+4egbGFbSAADKhHJGkFtPZihrh8qY0SSJ9q5M9PYPO3aAsiWpAgCUvRW1FlQAoBwoZwT52bRlJOd834CkClC+lP8CAAAAyoJyRpCf5Uurcs7X1UioAOVLUgUAAAAoeWPljEaTJGt813JGwFNWphdFc0M6KlKprPGKVCqaG9J2qQBlTVIFAAAAKHn5lDMC/qS1pTGa6muzxprqa6O1pbFAEQEUBz1VAAAAgJKnnBFMTXVVZaxfsyp6+4ejb2A46mr0IQSIsFMFAAAAKAPKGcG+SXYrmQdQ7uxUAQAAAMpCa0tjrG3bGO1dmfEx5YxgYltHtse6ts6s46W5IR2tLY1RXVVZwMgACiuVlFm6edu2bVFdXR2Dg4OxePHiQocDAAAAzDLljGDvzr36zujo7o/RXZYOK1KpaKqvjfVrVhUwMoDpN5W8gZ0qAAAAQFlZUSuZArn0ZIaydqiMGU2SaO/KRG//sGMIKFt6qgAAAAAA4zZtGck53zcwPEuRABQfSRUAAAAAYNzypVU55+tq7FIBypekCgAAAAAwbmV6UTQ3pKMilcoar0ilorkhrfQXUNYKnlT50pe+FHV1dXHQQQfFiSeeGHfeeWfO22/dujXe+c53xuGHHx7z58+Ppz/96fGDH/xglqIFAAAAgNLX2tIYTfW1WWNN9bXR2tJYoIgAikNBG9XfcMMNceGFF8ZVV10VJ554Ylx55ZVx5plnxn333RfLli3b4/bbt2+Pl770pbFs2bL4zne+E0ceeWRs2rQpDjnkkNkPHgAAAABKVHVVZaxfsyp6+4ejb2A46moW2qECEBGpJEmSQj35iSeeGC984Qvji1/8YkRE7Ny5M44++uhYu3ZtXHTRRXvc/qqrrop//Md/jHvvvTcqKyv36Tm3bdsW1dXVMTg4GIsXL96v+AEAAAAAgLltKnmDgpX/2r59e/z85z+PM84440/BHHBAnHHGGXH77bdPeJ/vfe97cdJJJ8U73/nOOPTQQ+NZz3pWfOITn4jR0dFJn+eJJ56Ibdu2Zf0DAAAAAACYqoIlVfr7+2N0dDQOPfTQrPFDDz00/vjHP054n56envjOd74To6Oj8YMf/CA+9KEPxRVXXBEf+9jHJn2eyy+/PKqrq8f/HX300dP6fQAAAAAAAOWh4I3qp2Lnzp2xbNmy+Od//uc44YQT4vWvf3184AMfiKuuumrS+1x88cUxODg4/u/BBx+cxYgBAAAAAIBSUbBG9bW1tVFRUREPP/xw1vjDDz8chx122IT3Ofzww6OysjIqKirGx57xjGfEH//4x9i+fXsceOCBe9xn/vz5MX/+/OkNHgAAAAAAKDsF26ly4IEHxgknnBA333zz+NjOnTvj5ptvjpNOOmnC+zQ1NUV3d3fs3LlzfOy3v/1tHH744RMmVAAAAAAAAKZLQct/XXjhhfGVr3wlvvGNb8RvfvObePvb3x7Dw8NxwQUXRETEueeeGxdffPH47d/+9rfHli1b4l3velf89re/jZtuuik+8YlPxDvf+c5CfQsAAAAAAECZKFj5r4iI17/+9ZHJZOKSSy6JP/7xj/G85z0vfvjDH443r3/ggQfigAP+lPc5+uij40c/+lG85z3viec85zlx5JFHxrve9a74h3/4h0J9CwAAAAAAQJlIJUmSFDqI2bRt27aorq6OwcHBWLx4caHDAQAAAAAACmgqeYOC7lQBAAAACqcnMxSbtoxEXc3CWFG7sNDhAAAUPUkVAAAAKDNbR7bHurbOaO/KjI81N6SjtaUxqqsqCxgZAEBxK2ijegAAAGD2rWvrjI7u/qyxju7+WNu2sUARAQDMDZIqAAAAUEZ6MkPR3pWJ0d1arI4mSbR3ZaK3f7hAkQEAFD9JFQAAACgjm7aM5JzvG5BUAQCYjJ4qAAAAUEaWL63KOV9XU/oN63syQ7Fpy0jU1SyMFbWl//0CANNHUgUAAADKyMr0omhuSEdHd39WCbCKVCqa6mtLOsmwdWR7rGvrjPauzPhYc0M6Wlsao7qqsoCRAQBzhfJfAAAAUGZaWxqjqb42a6ypvjZaWxoLFNHsWNfWGR3d/VljHd39sbZtY4EiAgDmGjtVAAAAoMxUV1XG+jWrord/OPoGhsuiDFZPZihrh8qY0SSJ9q5M9PYPl/zPAADYf5IqAAAAUKZW1JZ+MmXMpi0jOef7BiRVAIC9k1QBAAAASt7ypVU55+tqJFSAp/RkhmLTlpGy2MUHTJ2kCgDAHOCDHQDsn5XpRdHckI6O7v4YTZLx8YpUKprqa72+ArF1ZHusa+vMKhXY3JCO1pbGqK6qLGBkQDFJJcku7yTKwLZt26K6ujoGBwdj8eLFhQ4HACAnH+wAYPoMjjwZa9s2el0FJnTu1XdOmnhdv2ZVASMDZtpU8gZ2qgAAFLF1bZ3R0d2fNdbR3R9r2zb6YAcAU1RdVRnr16yK3v7h6BsYtgMUGNeTGcpKuI4ZTZJo78pEb7++S8BTJFUAAIqUD3YAMDNW1EqmQL7KpQztpi0jOef7Brz3Bp4iqQIAUKR8sAMAoFDKrQzt8qVVOefrarzvBp5yQKEDAABgYj7YAQBQKLnK0JailelF0dyQjopUKmu8IpWK5oa0i5mAcZIqAABFygc7AAAKYawM7a4N2yOyy9CWotaWxmiqr80aa6qvjdaWxgJFBBQj5b8AAIpYa0tjrG3bmFV2wQc7AABmUrmWoa2uqoz1a1ZFb/9w9A0Ml3wfGWDfSKoAABQxH+wAAJht5V6GdkWt99zA5CRVAADmAB/sAACYLWNlaDu6+7NKgFWkUtFUX+t9KVDW9FQBAAAAALJ87JzjY/GC7OuxFy+YFx8/51kFigigOEiqAAAAAABZPnjjPbHtsR1ZY9se2xEfuPFXBYoIoDhIqgAAAAAA43oyQ9Helckq/RURMZok0d6Vid7+4QJFBlB4kioAAAAAwLhNW0ZyzvcNSKoA5UtSBQAAAAAYt3xpVc75uhqN6oHyJakCAAAAAIxbmV4UzQ3pqEilssYrUqlobkjHilpJFaB8SaoAAAAAAFlaWxqjqb42a6ypvjZaWxoLFBFAcZhX6AAAAAAAgOJSXVUZ69esit7+4egbGI66moV2qACEpAoAAAAAMIkVtZIpALtS/gsAAAAAACAPkioAAAAAAAB5kFQBAAAAAADIg6QKAAAAAABAHiRVAAAAAAAA8iCpAgAAAAAAkId9Tqps37497rvvvtixY8d0xgMAAAAAAFCUppxUGRkZiTVr1kRVVVUcf/zx8cADD0RExNq1a+OTn/zktAcIAAAAABRGT2YoNty3OXr7hwsdChQ9x0t5mDfVO1x88cVx9913x09+8pP4sz/7s/HxM844Iy677LK46KKLpjVAAAAAAGB2bR3ZHuvaOqO9KzM+1tyQjtaWxqiuqixgZFB8HC/lZco7VW688cb44he/GKecckqkUqnx8eOPPz7uv//+aQ0OAAAAAJh969o6o6O7P2uso7s/1rZtLFBEULwcL+VlykmVTCYTy5Yt22N8eHg4K8kCAAAAAMw9PZmhaO/KxGiSZI2PJkm0d2WUNoJdOF7Kz5STKi94wQvipptuGv96LJHy1a9+NU466aTpiwwAAAAAmHWbtozknO8bsEgMYxwv5WfKPVU+8YlPxMtf/vL49a9/HTt27IjPf/7z8etf/zpuu+22+OlPfzoTMQIAAAAAs2T50qqc83U1C2cpEih+jpfyM+WdKqecckrcfffdsWPHjnj2s58d//mf/xnLli2L22+/PU444YSZiBEAAAAAmCUr04uiuSEdFbuV+q9IpaK5IR0rai0SwxjHS/lJJcluxd5yePLJJ+Nv//Zv40Mf+lCsWLFiJuOaMdu2bYvq6uoYHByMxYsXFzocAAAAACg6gyNPxtq2jdHelRkfa25IR2tLY1RXVRYwMig+jpe5byp5gyklVSIiqquro7OzU1IFAAAAAEpcb/9w9A0MR13NQlfcw144XuauqeQNplz+65xzzokbb7xxX2MDAAAAAOaIFbUL4/Rjl1kghjw4XsrDlBvVNzQ0xEc+8pHo6OiIE044IRYuzP4DWbdu3bQFBwAAAAAAUCymXP4rV9mvVCoVPT09+x3UTFL+CwAAAAAAGDOVvMGUd6r09vbuc2AAAAAAAABz1ZR7quwqSZKY4kYXAAAAAACAOWmfkirr16+PZz/72bFgwYJYsGBBPOc5z4lrr712umMDAAAAAAAoGlMu//XZz342PvShD8Xf/d3fRVNTU0RE3HrrrfG2t70t+vv74z3vec+0BwkAAAAAAFBo+9So/sMf/nCce+65WePf+MY34rLLLiv6nisa1QMAc1FPZig2bRmJupqFsaJ2YaHDAQAAgJIxo43q//CHP8TJJ5+8x/jJJ58cf/jDH6b6cAAA5LB1ZHusa+uM9q7M+FhzQzpaWxqjuqqygJEBAABA+ZlyT5X6+vr41re+tcf4DTfcEA0NDdMSFAAAT1nX1hkd3f1ZYx3d/bG2bWOBIgIAAIDyNeWdKh/+8Ifj9a9/fbS3t4/3VOno6Iibb755wmQLAAD7piczlLVDZcxokkR7VyZ6+4eVAgMAAIBZNOWdKn/5l38Zd9xxR9TW1saNN94YN954Y9TW1sadd94Zr371q2ciRgCAsrRpy0jO+b6B4VmKBAAAAIjYh50qEREnnHBCfPOb35zuWAAA2MXypVU55+tq7FIBAACA2TTlnSo/+MEP4kc/+tEe4z/60Y/iP/7jP6YlKAAAIlamF0VzQzoqUqms8YpUKpob0kp/wSR6MkOx4b7N0dtvNxcAADC9ppxUueiii2J0dHSP8SRJ4qKLLpqWoAAAeEprS2M01ddmjTXV10ZrS2OBIoLitXVke5x79Z3x4it+Ghdc8z9x+md+EudefWcMjjxZ6NAAAIASkUqSJJnKHRYsWBC/+c1voq6uLmu8r68vjj/++BgeLu6rwbZt2xbV1dUxODgYixcvLnQ4AAB56e0fjr6B4airWWiHCkzi3KvvjI7u/hjd5SNORSoVTfW1sX7NqgJGBgAAFLOp5A2mvFOluro6enp69hjv7u6OhQt9wAcAmAkrahfG6ccuk1CBSfRkhqK9K5OVUImIGE2SaO/KKAUGAABMiyknVf78z/883v3ud8f9998/Ptbd3R1///d/H6961aumNTgAAIB8bNoyknO+b0BSBQAA2H9TTqp8+tOfjoULF8Zxxx0XK1asiBUrVsQznvGMqKmpic985jMzESMAAEBOy5dW5Zyvq7HLCwAA2H/zpnqH6urquO222+LHP/5x3H333bFgwYJ4znOeE83NzTMRHwAAwF6tTC+K5ob0pD1VlM4DAACmw5Qb1c91GtUDAEBpGhx5Mta2bYz2rsz4WHNDOlpbGqO6qrKAkQEAAMVsKnmDvHeq3H777TEwMBCvfOUrx8fWr18fl156aQwPD8c555wTra2tMX/+/H2PHAAAYB9VV1XG+jWrord/OPoGhqOuZqEdKgAAwLTKu6fKRz7ykbjnnnvGv/7lL38Za9asiTPOOCMuuuii+P73vx+XX375jAQJAACQrxW1C+P0Y5dJqAAAANMu76RKZ2dnvOQlLxn/+l/+5V/ixBNPjK985Stx4YUXxhe+8IX41re+NSNBAgAAAAAAFFreSZVHHnkkDj300PGvf/rTn8bLX/7y8a9f+MIXxoMPPji90QEAAAAAABSJvJMqhx56aPT29kZExPbt2+Ouu+6KF73oRePzjz76aFRWav4IAAAAAACUpryTKq94xSvioosuiltuuSUuvvjiqKqqitWrV4/P/+IXv4hjjjlmRoIEAAAAAAAotHn53vCjH/1o/MVf/EWceuqpsWjRovjGN74RBx544Pj81772tXjZy142I0ECAAAAAAAUWipJkmQqdxgcHIxFixZFRUVF1viWLVti0aJFWYmWYrRt27aorq6OwcHBWLx4caHDAQAAAAAACmgqeYO8d6qMqa6unnB86dKlU30oAAAAAACAOSPvnioAAAAAAADlbMo7VQAAAAAASlVPZig2bRmJupqFsaJ2YaHDAYqMpAoAAAAAUPa2jmyPdW2d0d6VGR9rbkhHa0tjVFdVFjAyoJgo/wUAAAAAlL11bZ3R0d2fNdbR3R9r2zYWKCKgGOWdVPntb38bd955Z9bYzTffHKeffnqsWrUqPvGJT0x7cAAAAAAAM60nMxTtXZkYTZKs8dEkifauTPT2DxcoMqDY5J1U+Yd/+If493//9/Gve3t74+yzz44DDzwwTjrppLj88svjyiuvnIkYAQAAAABmzKYtIznn+wYkVYCn5N1T5Wc/+1m8//3vH//6uuuui6c//enxox/9KCIinvOc50Rra2u8+93vnvYgAQAAAABmyvKlVTnn62o0rAeekvdOlf7+/jjqqKPGv96wYUOcffbZ41+fdtpp0dfXN63BAQAAAADMtJXpRdHckI6KVCprvCKViuaGdKyolVQBnpJ3UmXp0qXxhz/8ISIidu7cGT/72c/iRS960fj89u3bI9mt5iAAAAAAwFzQ2tIYTfW1WWNN9bXR2tJYoIiAYpR3+a/TTjstPvrRj8aXv/zl+Pa3vx07d+6M0047bXz+17/+ddTV1c1AiAAAAAAAM6u6qjLWr1kVvf3D0TcwHHU1C+1QAfaQd1Ll4x//eLz0pS+N5cuXR0VFRXzhC1+IhQv/dFK59tpr48UvfvGMBAkAAAAAMBtW1EqmAJNLJVOo2bVjx4645557Ip1OxxFHHJE1d/fdd8dRRx0VNTU10x7kdNq2bVtUV1fH4OBgLF68uNDhAAAAAAAABTSVvEHeO1UiIubNmxfPfe5zs8Z27NgRjz/++B7jAAAAAAAApSTvRvXf//734+tf/3rW2Mc//vFYtGhRHHLIIfGyl70sHnnkkemODwAAAAAAoCjknVT57Gc/G8PDw+Nf33bbbXHJJZfEhz70ofjWt74VDz74YHz0ox+dkSABAAAAAKCY9WSGYsN9m6O3f3jvN2bOyrv81z333BOf/exnx7/+zne+Ey996UvjAx/4QEREHHTQQfGud70r6zYAAAAAAFDKto5sj3VtndHelRkfa25IR2tLY1RXVRYwMmZC3jtVHn300awm9Lfeemu85CUvGf/6+OOPj9///vfTGx0AAADANHMlMQDTaV1bZ3R092eNdXT3x9q2jQWKiJmU906VI488Mn7zm9/E0572tBgaGoq77747Pve5z43PDwwMRFVV1YwECQAAALC/XEkMwHTryQxlva6MGU2SaO/KRG//cKyoXViAyJgpee9Uee1rXxvvfve749prr423vOUtcdhhh8WLXvSi8fmf/exnceyxx85IkAAAAAD7y5XEAEy3TVtGcs73DdgVWWry3qlyySWXxO9+97tYt25dHHbYYfHNb34zKioqxufb2tri7LPPnpEgAQAAAPaHK4kBmAnLl+au3lRX47Wl1OSdVFmwYEGsX79+0vkNGzZMS0AAAAAA0y2fK4klVQCAvck7qRIR8f/+3/+L73//+7F9+/Z4yUteEn/2Z382U3EBAAAATBtXEgMwEyTty0/ePVW+853vRFNTU3z+85+Pr371q3HWWWfFZz7zmZmMDQAAAGBarEwviuaGdFSkUlnjFalUNDekLXgBsE8k7ctP3kmVyy+/PN7ylrfE4OBgPPLII/Gxj30sPvGJT8xkbAAAAADTprWlMZrqa7PGmupro7WlsUARQfHryQzFhvs2R2+/ZtswEUn78pNKkiTJ54aLFi2Kzs7OqK+vj4iI7du3x8KFC+N3v/tdLFu2bEaDnE7btm2L6urqGBwcjMWLFxc6HAAAAGCW9fYPR9/AcNTVLLTYBZPYOrI91rV1RntXZnysuSEdrS2NUV1VWcDIoPgMjjwZa9s2Ol7msKnkDfJOqhxwwAHxxz/+MSuBcvDBB8fdd98dK1eu3L+IZ5GkCgAAAADkdu7Vd0ZHd3+M7rJ0WJFKRVN9baxfs6qAkUHxkrSfu6aSN5hSo/qvfvWrsWjRovGvd+zYEV//+tejtvZPW2fXrVs3xXABAAAAgGLRkxnKuuJ+zGiSRHtXJnr7Nd6GiayolUwpB3knVZ72tKfFV77ylayxww47LK699trxr1OplKQKAAAAAMxhm7aM5JzvG5BUAcpX3kmVvr6+GQwDAAAAACgGy5dW5Zyvq5FQAcrXAYUOAAAAAAAoHivTi6K5IR0VqVTWeEUqFc0NabtUgLKWd1LlFa94RQwODo5//clPfjK2bt06/vXAwEA885nPnNbgAAAAAIDZ19rSGE31tVljTfW10drSWKCIAIpDKkmSJJ8bVlRUxB/+8IdYtmxZREQsXrw4Ojs7Y+XKlRER8fDDD8cRRxwRo6OjMxftNNi2bVtUV1fH4OBgLF68uNDhAAAAAEDR6u0fjr6B4air0YAbKF1TyRvk3VNl99xLnrkYAAAAAGCOWlErmQKwKz1VAAAAAAAA8pB3UiWVSkVqt+ZUu38NAAAAAABQqqZU/uv888+P+fPnR0TE448/Hm9729ti4cKntv898cQTMxMhAAAAAABAEcg7qXLeeedlff2mN71pj9uce+65+x8RAAAAAABAEco7qXLNNdfMZBwAAAAAAABFTaN6AAAAAACAPEiqAAAAAAAA5EFSBQAAAAAAIA9591QBAAAAKAU9maHYtGUk6moWxorahYUOBwCYQyRVAAAAgLKwdWR7rGvrjPauzPhYc0M6Wlsao7qqsoCRAQBzhfJfAAAAQFlY19YZHd39WWMd3f2xtm1jgSICAOYaSRUAAACg5PVkhqK9KxOjSZI1Ppok0d6Vid7+4QJFBgDMJZIqAAAAQMnbtGUk53zfgKQKALB3kioAAABAyVu+tCrnfF2NhvUAwN5JqgAAAAAlb2V6UTQ3pKMilcoar0ilorkhHStqJVUAgL2TVAEAAADKQmtLYzTV12aNNdXXRmtLY4EiAgDmmnmFDgAAAABgNlRXVcb6Nauit384+gaGo65moR0qsBc9maHYtGXE8QLwvyRVAAAAgLKyotbiMOzN1pHtsa6tM9q7MuNjzQ3paG1pjOqqygJGBlBYyn8BAAAAAFnWtXVGR3d/1lhHd3+sbdtYoIgAioOkCgAAAAAwriczFO1dmRhNkqzx0SSJ9q5M9PYPFygygMKTVAEAAAAAxm3aMpJzvm9AUgUoX5IqAAAAAMC45Uurcs7X1ehJBJQvSRUAAAAAYNzK9KJobkhHRSqVNV6RSkVzQzpW1EqqAOVLUgUAAAAAyNLa0hhN9bVZY031tdHa0ligiACKQ1EkVb70pS9FXV1dHHTQQXHiiSfGnXfemdf9/uVf/iVSqVScc845MxsgAAAAAJSR6qrKWL9mVWx472lxzQUvjA3vPS3Wr1kV1VWVhQ4NoKAKnlS54YYb4sILL4xLL7007rrrrnjuc58bZ555ZmzevDnn/fr6+uK9731vrF69epYiBQAAAIDysqJ2YZx+7DIlvwD+V8GTKp/97GfjLW95S1xwwQXxzGc+M6666qqoqqqKr33ta5PeZ3R0NP7qr/4qPvzhD8fKlStnMVoAAAAAAKBcFTSpsn379vj5z38eZ5xxxvjYAQccEGeccUbcfvvtk97vIx/5SCxbtizWrFmz1+d44oknYtu2bVn/AAAAAABgOvVkhmLDfZujt3+40KEwg+YV8sn7+/tjdHQ0Dj300KzxQw89NO69994J73PrrbfG1VdfHZ2dnXk9x+WXXx4f/vCH9zdUAAAAAADYw9aR7bGurTPauzLjY80N6WhtadSHqAQVvPzXVDz66KPx13/91/GVr3wlamtr87rPxRdfHIODg+P/HnzwwRmOEgAAAACAcrGurTM6uvuzxjq6+2Nt28YCRcRMKuhOldra2qioqIiHH344a/zhhx+Oww47bI/b33///dHX1xdnn332+NjOnTsjImLevHlx3333xTHHHJN1n/nz58f8+fNnIHoAAAAAAMpZT2Yoa4fKmNEkifauTPT2D8eK2oUFiIyZUtCdKgceeGCccMIJcfPNN4+P7dy5M26++eY46aST9rj9cccdF7/85S+js7Nz/N+rXvWqOP3006OzszOOPvro2QwfAAAA5jS13wFg/2zaMpJzvm/Aa2ypKehOlYiICy+8MM4777x4wQteEKtWrYorr7wyhoeH44ILLoiIiHPPPTeOPPLIuPzyy+Oggw6KZz3rWVn3P+SQQyIi9hgHAAAAJqb2OwBMj+VLq3LO19XYpVJqCp5Uef3rXx+ZTCYuueSS+OMf/xjPe97z4oc//OF48/oHHnggDjhgTrV+AQAAgKKWq/b7+jWrChQVAMw9K9OLorkhHR3d/TGaJOPjFalUNNXXKv1VglJJsstvugxs27YtqqurY3BwMBYvXlzocAAAAGBW9WSG4sVX/HTS+Q3vPc0CEABMweDIk7G2baMdoHPYVPIGBd+pAgAAAMyefGq/S6oAQP6qqypj/ZpV0ds/HH0Dw1FXs9BraQlTVwsAAADKiNrvADAzyqwoVNmyUwUAAADKiNrvT5VA27RlxJXEAEyLrSPbY11bp/JfZUJPFQAAACgz5Vr73aIXTJ0kJOzduVffOenFCuvXrCpgZORLTxUAAABgUuVa+31dW2d0dPdnjXV098fato0WvWA3kpCQn57MUNZxMmY0SaK9KxO9/XqVlRo9VQAAAKBMrahdGKcfu6wsFnvGFr1GdyvYseuiF/AnuZKQwJ9s2jKSc75vwOtLqZFUAQAAAEqeRS/InyQk5G/50qqc83U1pX/hQrmRVAEAAABKnkUvyJ8kJORvZXpRnHxMzYRzJx9TUxa7QcuNpAoAAABQ8lamF0VzQzoqUqms8YpUKpob0ha9YBeSkDA1u23q2us4c5ukCgAAAFAWWlsao6m+Nmusqb42WlsaCxQRFCdJSMhfT2Yobu8ZmHDu9p4B5fJK0LxCBwAAAAAwG6qrKmP9mlXR2z8cfQPDUVez0OIwTKK1pTHWtm2M9q7M+JgkJOwpn3J5XmtKi6QKAAAAUFZW1EqmwN5IQkJ+lMsrP5IqAAAAAMCEJCEht7FyeR3d/TG6SxOVilQqmuprHT8lSE8VAAAAAADYR3p2lRc7VQAAAICy0pMZik1bRpQzAmBaKJdXXiRVAAAAgLKwdWR7rGvrzGq83dyQjtaWxqiuqixgZFC8JCEhf8rllQdJFQAAAKAsrGvrjI7u/qyxju7+WNu2MdavWVWgqKA4SUICTExPFQAAAKDk9WSGor0rk9VEOCJiNEmivSsTvf3DBYoMilOuJCRAOZNUAQAAAErepi0jOef7BiRVYIwkJMDkJFUAAACAkrd8aVXO+boaNfBhjCQkwOQkVQAAAICStzK9KJob0lGRSmWNV6RS0dyQ1lgYdiEJCfumJzMUG+7bbDdXidOoHgAAACgLrS2NsbZtY1bj7ab62mhtaSxgVFB8xpKQHd39WSXAKlKpaKqvlYSE3Wwd2R7r2jqzXl+aG9LR2tIY1VWVBYyMmZBKkt2KI5a4bdu2RXV1dQwODsbixYsLHQ4AAAAwy3r7h6NvYDjqahZaHIZJDI48uUcS0iIxTOzcq++cNAm5fs2qAkZGvqaSN7BTBQAAACgrK2olU2BvqqsqY/2aVZKQsBc9maGs5OOY0SSJ9q5M9PYPO3ZKjKQKAAAAADAhSUjIbdOWkZzzfQOSKqVGUgUAAAAAmFBPZig2bRmxUwUmsXxpVc75uhrHTamRVAEAAAAAsmi8DflZmV4UzQ3pSXuqSEaWngMKHQAAAACUop7MUGy4b3P09g8XOhSAKVvX1hkd3f1ZYx3d/bG2bWOBIoLi1drSGE31tVljTfW10drSWKCImEl2qgAAAMA0cnU3MNdpvA1TU11VGevXrIre/uHoGxhWLq/E2akCAAAA08jV3cBcl0/jbWBPK2oXxunHLpNQKXGSKgAAADBNxq7u3rWmekT21d0UntJskJvG2wCTU/4LAAAApkk+V3e7erVwlGaD/Gi8DTA5O1UAAABgmri6u7gpzQb503gbSpPdmvvPThUAAACYJq7uLl4ab8PUaLwNpcVuzeljpwoAAABMI1d3FyeNt2HfaLwNpcFuzeljpwoAAABMI1d3Fyel2QAoV3ZrTi87VQAAAGAGuLq7uIyVZqtIpbLGK1KpaG5I+z0BULLs1pxekioAAABAWVCaDYByZLfm9FL+CwAAACgLSrMBUI7Gdmt2dPfHaJKMj1ekUtFUX+u1cIrsVAEAAADKitJsAJQbuzWnj50qAAAAAACwn3oyQ7Fpy0hR7oS0W3P6SKoAAAAAAMA+2jqyPda1dUZ7V2Z8rLkhHa0tjVFdVVnAyPa0olYyZX8p/wUAAAAAAPtoXVtndHT3Z411dPfH2raNBYqImSSpAgAAAAAA+6AnMxTtXZmsBvAREaNJEu1dmejtHy5QZMwUSRUAAAAAANgHm7aM5JzvG5BUKTWSKgAAAAAAsA+WL63KOV9Xo39JqZFUAQAAAACAfbAyvSiaG9JRkUpljVekUtHckNYUvgRJqgAAAAAAwD5qbWmMpvrarLGm+tpobWksUETMpHmFDgAAAAAAAOaq6qrKWL9mVfT2D0ffwHDU1Sy0Q6WESaoAAAAAAMB+WlErmVIOlP8CAAAAAADIg6QKAAAAAABAHiRVAAAAAAAA8qCnCgAAAFBWejJDsWnLiEbCAMCUSaoAAECRsMgHMLO2jmyPdW2d0d6VGR9rbkhHa0tjVFdVFjAyAGCukFQBAIACs8gHMDvWtXVGR3d/1lhHd3+sbdsY69esKlBUAMBcoqcKAAAUWK5FPgCmR09mKNq7MjGaJFnjo0kS7V2Z6O0fLlBkAMBcIqkCAAAFZJEPKKSezFBsuG9zWZxrNm0ZyTnfN1D6PwMAYP8p/wUAAAWUzyKf/irAdCvHsoPLl1blnK+rca4FAPbOThUAACggi3xAIZRj2cGV6UXR3JCOilQqa7wilYrmhrQENgCQF0kVAAAoIIt8wGwr57KDrS2N0VRfmzXWVF8brS2NBYoIAJhrlP8CAIACa21pjLVtG7PK8FjkA2ZKOZcdrK6qjPVrVkVv/3D0DQxHXc3Ckv1eAYCZIakCAAAFZpEPmE3KDkasqHWeBQD2jaQKAAAUCYt8wGxYmV4UJx9TE7fdP7DH3MnH1DgPlaiezFBs2jIicQ8A+0lSBQAAAMrMbu1U9jrO3LV1ZHusa+vMKjHZ3JCO1pbGqK6qLGBkADA3aVQPAAAAZaQnMxS39+y5SyUi4vaegZJuVF+O1rV1Rkd3f9ZYR3d/rG3bWKCIAGBuk1QBAACAMpJPo3pKQ09mKNq7MjG62xak0SSJ9q6MBBoA7ANJFQAAACgjGtWXDwk0AJh+kioAAABQRlamF0VzQzoqUqms8YpUKpob0pqYlxAJNACYfpIqAAAAUGZaWxqjqb42a6ypvjZaWxoLFBEzQQINAKZfKkl2K6xZ4rZt2xbV1dUxODgYixcvLnQ4AAAAUDC9/cPRNzAcdTULLbCXqMGRJ2Nt28Zo78qMjzU3pKO1pTGqqyoLGBkAFI+p5A0kVQAAAABKnAQaAExuKnmDebMUEwAAAAAFsqJWMgUApoOeKgAAAAAAAHmQVAEAAAAAAMiDpAoAAAAAAEAe9FQBAAAApk1PZig2bRnREB1KhGMaIJukCgAAALDfto5sj3VtndHelRkfa25IR2tLY1RXVRYwMmBfOKYBJqb8FwAAALDf1rV1Rkd3f9ZYR3d/rG3bWKCIgP3hmAaYmKQKAAAAsF96MkPR3pWJ0STJGh9NkmjvykRv/3CBIgP2hWMaYHKSKgAAAMB+2bRlJOd834AFWJhLHNP/f3t3Hh9lee///z2EsCQhIckMmwJJSFhEI2EJQiRWRalaXI61mh8tFNCeKoVStS3UCj3igrb2qJGirQpFbNT2KAetVSkHiQaUNVYUMTFhccFMQhaSIEuY7x/+kjIwuTNJZua+Z+7X8/HIH1zXzPDJZO5lrs91fS4AaB1JFQAAAAAA0CmDk2IM+1OS2dwaCCcc0wDQOpIqAAAAAADYVJm7Xhv2VHS6lE+aK065GS5FORxe7VEOh3IzXEp1MgALhBOOaQBoncPjOa04YoSrq6tTQkKCamtrFR8fb3Y4AAAAAACEXE3jMc0rKFZhibulLTfDpfy8LCXERHfoNWsbj2tuwc6AviYA83BMA7CT9uQNSKoAAAAAAGAz05/eoqLSSq9NqKMcDuWkO7VqdnanXru8skF7qxqUkhzLbHYgAnBMA7CD9uQNuoYoJgAAAAAAYAFl7nqvmefNmjweFZa4VV7Z0KmB01QnA69AJOGYBgBv7KkCAAAAAICN7DvUaNi/t6pz+6sAAABEMpIqAAAAAADYyOCkGMP+lGRmpAMAALSGpAoAAAAAADaS5opTboZLUQ6HV3uUw6HcDBdlfgAAAAyQVAEAAAAAwGby87KUk+70astJdyo/L8ukiAAAAMIDG9UDAAAAAGAzCTHRWjU7W+WVDdpb1aCUZDaiBgAA8AdJFQAAAAAAbCrVSTIFAACgPSj/BQAAAAAAAAAA4AdWqgAAAAAAAFspc9dr36FGyp4BAIB2I6kCAAAAAABsoabxmOYVFKuwxN3SlpvhUn5elhJiok2MDAAAhAvKfwEAAAAAAFuYV1CsotJKr7ai0krNLdhpUkQAACDckFQBAAAAAAARr8xdr8ISt5o8Hq/2Jo9HhSVulVc2mBQZACBSlLnrtWFPBdeUCEf5LwAAAAAAEPH2HWo07N9b1cD+KgCADqG8pL2wUgUAAAAAAES8wUkxhv0pySRUAAAdQ3lJeyGpAgAAAAAAIl6aK065GS5FORxe7VEOh3IzXKxSAQB0COUl7YekCgAAAAAAsIX8vCzlpDu92nLSncrPyzIpIsD62CMCMOZPeUlEFvZUAQAAAAAAtpAQE61Vs7NVXtmgvVUNSkmOZYUK0Ar2iAD8Q3lJ+2GlCgAAAAAAsJVUZ6wuHtaHhApggD0iAP9QXtJ+SKoAAAAAAAAAaMEeEUD7UF7SXij/BQAAAAAAAKCFP3tEMPse+Lfm8pKFn1Ro54EajR6UqEkZLrPDQpCQVAEAAAAAAADQgj0igPZhDyJ7ofwXAAAAAAAAIk6Zu14b9lRQqqoD2CMCaB/2ILIXVqoAAAAAAAAgYjBjPDDy87I0t2Cn1/vIHhHAmZr3IDrdqXsQkYiMLCRVAAAAAAAAEDGMZoyvmp1tUlThp3mPiPLKBu2talBKciwDw4AP7EFkPyRVAAAAAAAAEBGYMR54qU6SKYAR9iCyH/ZUAQAAAAAAQETwZ8Y4AAQSexDZD0kVAAAAAAAARARmjAMwQ35elnLSnV5t7EEUuSj/BQAAAAAAgIjQPGO8qLRSTR5PS3uUw6GcdCczxgEEBXsQ2QsrVQAAAAAAABAxmDEeWGXuem3YU6HySkqnAW1Jdcbq4mF9SKhEOFaqAAAAAAAAIGIwYzwwahqPaV5BsQpL3C1tuRku5edlKSEm2sTIAOsqc9dr36FGzjsRzuHxnLIW0gbq6uqUkJCg2tpaxcfHmx0OAAAAAAAAYDnTn97Sahm1VbOzTYwMsB6SkOGvPXkDyn8BAAAAAAAAaFHmrldhidsroSJJTR6PCkvclAIDTjOvoFhFpZVebUWllZpbsNOkiBBMJFUAAAAAAAAAtNh3qNGwf28VSRWgGUlI+yGpAgAAAAAAAKDF4KQYw/6UZPaKAJqRhLQfkioAAAAAAAAAWqS54pSb4VKUw+HVHuVwKDfDxQbcwClIQtoPSRUAAAAAAAAAXvLzspST7vRqy0l3Kj8vy6SIAGsiCWk/Do/ntGJvEa6urk4JCQmqra1VfHy82eEAAAAAAAB4KXPXa9+hRqUkxzIYB9OVVzZob1UDn0fAQG3jcc0t2KnCEndLW26GS/l5WUqIiTYxMvirPXkDkioAAAAAAAAWUNN4TPMKihmUA4AwRRIyfLUnb0D5LwAAgDCwcU+FHl3/id4+ZZAFAABElnkFxSoqrfRqKyqt1NyCnSZFBABoj1RnrC4e1oeESoTranYAAAAAaN2+qgZdu6xI1Y3HW9oSY6K1ds6FGphsvCEiAADwzYrltcrc9V4rVJo1eTwqLHGrvLLBMrECAGBnJFUAAAAs7PSEiiRVNx7X1cve0c5Fl5sUFQAA4cnK5bX2HWo07N9bRVIFAAAroPwXAACARW3cU3FGQqVZdeNxSoEBANBOVi6vNTjJeAVqSjIJFQAArICkCgAAgEUVf1Zj2L9jf3VoAgEAIAI0l9dq8ni82k8tr2WmNFeccjNcinI4vNqjHA7lZrhYpQIAgEWQVAEAALCoUWf3NuwfPSgxNIEAABAB/CmvZbb8vCzlpDu92nLSncrPyzIpIgAAcDr2VAEAALCoi4b1UWJMtM8SYIkx0ZqU4TIhKgAAwlM4lNdKiInWqtnZKq9s0N6qBqUkx7JCBaYrc9dr36FGPo8A8P8jqQIAAGBha+dcqKuXveOVWEmMidbaOReaGBUAAOGnubxWUWmlVwmwKIdDOelOSw0WpzoZvIb5ahqPaV5BsQpP2ccvN8Ol/LwsJcREmxgZAJjL4fGcVkw0wtXV1SkhIUG1tbWKj483OxwAAAC/vF3i1o791Ro9KJEVKgCAgLHbDPTaxuOaW7CTQWLAD9Of3tJqEnLV7GwTIwOAwGtP3oCVKgAAAGFgUoaLZAoAIGDsOgOd8lqAf8rc9V7nh2ZNHo8KS9wqr2zg2AFgW5bYqH7ZsmVKSUlRjx49NH78eG3ZsqXVx/7pT3/SpEmTlJiYqMTERE2ePNnw8QAAAAAAwNu8gmIVlVZ6tRWVVmpuwU6TIgqtVGesLh7Wh0FhoBX7DjUa9u+taghRJABgPaYnVV544QXdfvvtWrx4sXbs2KHzzz9fU6ZMUUVFhc/Hv/XWW8rLy9OGDRu0efNmDRw4UJdffrk+//zzEEcOAAAAAED4aZ6B3nRaNfBTZ6ADsLfBSTGG/SnJJCQB2JfpSZXf//73uuWWWzRz5kydc845euKJJxQTE6NnnnnG5+Ofe+453XbbbRo1apSGDx+up556SidPntT69et9Pv7o0aOqq6vz+gEAAAAAwK6YgQ6gLWmuOOVmuBTlcHi1Rzkcys1wscoLgK2ZmlQ5duyYtm/frsmTJ7e0denSRZMnT9bmzZv9eo3GxkYdP35cSUlJPvsfeOABJSQktPwMHDgwILEDAAAAABCOmIEOwB/5eVnKSXd6teWkO5Wfl2VSRABgDaZuVF9ZWammpib17dvXq71v3776+OOP/XqNX/7ylxowYIBXYuZUCxcu1O23397y77q6OhIrAAAAAADbap6BXlRa6VUCLMrhUE66kxnoACRJCTHRWjU7W+WVDdpb1aCU5FjOD0Abytz12neokeMlwpmaVOmspUuX6vnnn9dbb72lHj16+HxM9+7d1b179xBHBgAAAACAdeXnZWluwU4Vlrhb2piBDsCXVCeDw0BbahqPaV5Bsdd1NTfDpfy8LCXERJsYGYLB1KSK0+lUVFSUvvrqK6/2r776Sv369TN87u9+9zstXbpU//znP5WZmRnMMAEAAAAAiCjMQAcAIHDmFRSrqLTSq62otFJzC3Zq1exsk6JCsJi6p0q3bt00ZswYr03mmzednzBhQqvPe+ihh7RkyRK9/vrrGjt2bChCBQAAAAAg4qQ6Y3XxsD4kVAAA6KAyd70KS9xeJTUlqcnjUWGJW+WVDSZFhmAxNakiSbfffrv+9Kc/6c9//rN2796tW2+9VQ0NDZo5c6Ykafr06Vq4cGHL4x988EHdfffdeuaZZ5SSkqKDBw/q4MGDqq+vN+tXAAAAAAAAAADY0L5DjYb9e6tIqkQa0/dUufHGG+V2u7Vo0SIdPHhQo0aN0uuvv96yef3+/fvVpcu/cz/Lly/XsWPH9N3vftfrdRYvXqzf/OY3oQwdAAAAAAAAAGBjg5NiDPtTklkNGmkcHs9p65IiXF1dnRISElRbW6v4+HizwwEAAAAAAAAAhLHpT29RUWmlVwmwKIdDOelO9lQJE+3JG5he/gsAAAAAAAAAgHCVn5elnHSnV1tOulP5eVkmRYRgMr38FwAAAAAAAAAA4SohJlqrZmer8JMK7TxQo9GDEjUpw2V2WAgSkioAAAAAAAAAAHRQTeMxzSsoVmGJu6UtN8Ol/LwsJcREmxgZgoHyXwAAAAAAAAB8KnPXa8OeCpVXNpgdCmBZ8wqKVVRa6dVWVFqpuQU7TYoIwcRKFQAAAAAAAABemHkP+KfMXe91nDRr8nhUWOJWeWWDUp2xJkSGYGGlCgAAAAAAAAAvzLwH/LPvUKNh/94qVnlFGpIqAAAAAAAAAFo0z7xv8ni82k+deQ/gG4OTYgz7U5JZpRJpSKoAAAAAAAAAaMHMewBoHUkVAAAAAAAAAC2YeQ/4jySk/ZBUAQAAAAAAAACgA0hC2g9JFQAAAAAAAAAtmHkPAK0jqQIAAAAAAACgBTPvAf+RhLQfkioAAAAAAAAAWqS54pSb4VKUw+HVHuVwKDfDpVQnSRWgGUlI+yGpAgAAAAAAbKXMXa8NeypUXsnsYaA1+XlZykl3erXlpDuVn5dlUkSANaW54pQYE+2zLzEmmiRkBOpqdgAAAAAAAAChUNN4TPMKilVY4m5py81wKT8vSwmtDIgBdpUQE61Vs7NVXtmgvVUNSkmOZXAY8KHMXa/qxuM++6obj6u8soFjJ8KwUgUAANges1UBALCHeQXFKiqt9GorKq3U3IKdJkUEWF+qM1YXD+vDoDDQCvZUsR9WqgAAANtitioAAPZR5q73uuY3a/J4VFjiZiYxAKBDwm1PlTJ3vfYdamT1WSeQVAEAALZlNFt11exsk6ICAADB4M9MYgaXAADtleaKU26GS0WllWryeFraoxwO5aQ7LXNtYVJh4FD+CwAA2FLzbNVTb3ol79mqAAAgcoTbTGIAQPjIz8tSTrrTqy0n3an8vCyTIjoTJTADh5UqAADAlpitCgCAvYTLTGIAQPhJiInWqtnZKvzErZ0HqjV6UKImZbjMDqsFJTADi6QKAACwJWarAgBgP/l5WZpbsNNrYMlqM4kBAOHH6qW1mFQYWCRVAACALTFbFQAA+2meSVxe2aC9VQ1s0gsACIjbntuhTZ9WebUVlrh163Pb9ZdbLjApqn9jUmFgsacKAACwrXCoewsAAAIv1Rmri4f1IaECAOi0Mnf9GQmVZps+rbLEfp3NkwqjHA6v9iiHQ7kZLq6H7cRKFQAAYFvMVgUAAACMlbnrte9QI/fKQCveK/edUGnpL6uyxLFDCczAIakCAABsL9XJF0QAAADgVFbfIwKwDodhr8ewN3SYVBg4lP8CAAAAAAAA4GVeQbGKSiu92opKKzW3YKdJEQHWND41ybD/grTkEEXiH0pgdh5JFQAAAAAAAAAtytz1Kixxq8njPce+yeNRYYnbEntEAFaR5orThFYSJxPSkkleRCCSKgAAAAAAAABa7DvUaNi/t4qkCnCqB6/PVOJpZfESY6L10PWZJkWEYCKpAgAAAAAAAKDF4KQYw/6UZGbeA6f69Zpdqjtywqut7sgJ3bVml0kRIZhIqgAAAAAAAABokeaKU26GS1EO7w24oxwO5Wa4KGcEnIJyefZDUgUAAAAAAACAl/y8LOWkO73actKdys/LMikiwJool2c/Xc0OAAAAAAAAAIC1JMREa9XsbJVXNmhvVYNSkmNZoQL4QLk8+yGpAgAAAAAAAMCnVCfJFMBIc7m8otJKrxJgUQ6HctKdHD8RiPJfAAAAAAAAAAB0EOXy7IWVKgAAAAAAAAAAdBDl8uyFpAoAAAAAAAAAAJ1EuTx7IKkCAAAAAABspcxdr32HGplJDAAA2o2kCgAAAAAAsIWaxmOaV1CswhJ3S1tuhkv5eVlKiIk2MTIAABAu2KgeAAAAAADYwryCYhWVVnq1FZVWam7BTpMiAgAA4YakCgAAAAAAiHhl7noVlrjV5PF4tTd5PCoscau8ssGkyAAAQDghqQIAAAAAACLevkONhv17q0iqAAA6p8xdrw17KkjURzj2VAEAAAAAABFvcFKMYX9KMhvWAwA6hj277IWVKgAAAAAAIOKlueKUm+FSlMPh1R7lcCg3w6VUJ0kVAEDHsGeXvZBUAQAAAAAAtpCfl6WcdKdXW066U/l5WSZFBAAId+zZZT+U/wIAAAAAALaQEBOtVbOzVV7ZoL1VDUpJjmWFCgCgU/zZs4trTWQhqQIAAAAAAGwl1UkyBfBXmbte+w41koQEWsGeXfZDUgUAAAAAAACAFzbeBgDf2FMFAAAAAAAAgBc23gb88175IcP+d8uqQhQJQoWkCgAAAAAAAIAWbLwNtIfHsNcRoigQOiRVAAAAAAAAALTwZ+NtAN8Yn5ps3J9m3I/wQ1IFAAAAAAAAQAs23gb8l+aK08QhvhMnE4ckK9XJ8RJpSKoAAAAAFlHmrteGPRWU1AAQMpx3APiS5opTboZLUQ7vwkVRDodyM1wMEgOnWT5tjHIzXF5tuRkuLZ82xqSIEEwOj8djXPQtwtTV1SkhIUG1tbWKj483OxwAAABANY3HNK+gWIUl7pa23AyX8vOylBATbWJkACIV5x0AbaltPK65BTs5TwDtUF7ZoL1VDUpJjiX5GGbakzcgqQIAAACYbPrTW1RUWum1GWyUw6GcdKdWzc42MTIAkYrzDgB/MUgMwA7akzeg/BcAAABgojJ3vQpL3F4Dm5LU5PGosMRNSR4AAcd5B0B72Gw+NgC0qavZAQAAAAB2tu9Qo2H/3qoGZoUCCCjOOwD8QZlAAPCNlSoAAACAiQYnxRj2pyQzsAkgsDjvAPDHvIJiFZVWerUVlVZqbsFOkyICAGsgqQIAAACYKM0Vp9wMl6IcDq/2KIdDuRkuZosDCDjOOwDaQplAAGgdSRUAAADAZPl5WcpJd3q15aQ7lZ+XZVJEACId5x0ARvwpEwjgTGXuem3YU0HiMcKxpwpalLnrte9Qo1KSY5mZBAAAEEIJMdFaNTtb5ZUN2lvVwP0YgKDjvAPACGUCgfZhDyJ7IakCDnoAAACLSHUyqAkgtDjvAPAlzRWnxJhoVTceP6MvMSaa8wZwGqM9iFbNzjYpKgQL5b/AxmMAAAAAAABoUeau95lQkaTqxuOUNgJOwR5E9kNSxeY46AEAAAAAdkPNe8AYe6oA/uN4sR/Kf9mcPwc9SzoBAAAAIDLZbW9Nyl8D/mFPFcB/HC/2Q1LF5jjoAQAAAMB+7JpcuHX1Dm0uq/JqKyxx68ert6vgRxeYFBVgPWmuOOVmuFRUWulV3STK4VBOutMWSVjAX+xBZD+U/7K55otklMPh1R7lcCg3w8VBDwAAAAAR6LbndnglVKRvkgu3PrfdpIiCr8xdf0ZCpdnmsipKgQGnyc/LUk6606stJ92p/LwskyICrIk9iOyHlSpQfl6W5hbs9Lqh5iIJAAAAAJGpzF2vTZ/6Ti5s+vSb5EIkTrB7r/yQYf+7ZVUR+XsDHZUQE61Vs7NVXtmgvVUNtikTCLQX2yvYD0kVcJEEAAAAABt5r9x3QqWlP2KTCx7DXodhL2BfqU7GiQAjbK9gPyRV0IKLJAAAAADYgXH6wDj1EL7GpyYb96cZ9wMA4At7ENkPe6oAAAAAAGAj41OTDPsviNDkQporThOH+P7dJg5JZtALANBh7EFkL6xUAQAAAADARtJccZqQluxz0/YJaZGdXFg+bcwZe4rmZrgY9AIAdArbK9gLSRUAAGB7Ze567TvUyI0vAMA2Hrw+U9cse0fVjcdb2hJjovXQ9ZkmRhV8DHoB7ce9MuA/jydSi2jiVCRVAACAbdU0HtO8gmKfs1UTYqJNjAwAgOD69Zpdqjtywqut7sgJ3bVml1bNzjYpqtBhT1GgbeF0r0ziB2YLp+MFnceeKgAAwLbmFRSrqLTSq62otFJzC3aaFBEAAMFX5q5XYYnbazNdSWryeFRY4lZ5ZYNJkQGwknC4V65pPKbpT2/RJQ9v1MwVW3Xx797S9Ke3qPaUVXhAKNy6eodXQkWSCkvc+vHq7SZFhGAiqQIAAGyJASUAgF3tO9Ro2L+3imsgYHfhcq8cDokfRL4yd73PfcokaXNZlWWOFwQOSRUAAGBLDCgBAOxqcFKMYX9KMqVzALsLh3vlcEn8IPK9V37IsP/dVhIuCF8kVQAAgC0xoAQAsKs0V5xyM1yKcji82qMcDuVmuNiPAEBY3CuHQ+IHdmG8Ob3DsBfhiKQKAACwJQaUAAB2lp+XpZx0p1dbTrpT+XlZJkUEwErSXHGaOCTZZ9/EIcmWuFcOh8QP7GF8qu9jpaU/zbgf4aer2QEAAACYJT8vS3MLdnptKMiAEgDADhJiorVqdrbKKxu0t6pBKcmxlhgkDZUyd732HWq03e8NtIenlcn3rbWHWvMkqaLSSq8SYFEOh3LSnRzbCJnmJOSmT88s82WVJCQCy+HxWOVUGBp1dXVKSEhQbW2t4uPjzQ4HAABYgF0HlAAAsJuaxmOaV1DsNaEiN8Ol/LwsJcREmxgZYC1l7npd8vDGVvs33PktS9w31zYeP2OSFMc0zLC/qlHXLHtH1Y3HW9oSY6K1ds6FGphsvKoK1tCevAErVQAAgO2lOkmmAABgB7c9t+OMmcSFJW7d+tx2/eWWC0yKCrAef/YrscL9s91X3cE6fr1ml+qOnPBqqztyQnet2aVVs7NNigrBQlIFAAAAAABEvDJ3vc/SLJK06dMqlVdaY5AYsIJw26+ESVIwU5m73mu1VLMmj0eFJW6uLxGIjeoBAAAAAEDEe6/cd0Klpb/MuB+wk+b9SqIcDq/2KIdDuRkuBoiBU/izsguRhaQKAAAAAACwAYdhr602nAX8kJ+XpZx0p1dbTrpT+XlZJkUEWFO4rexC55FUAQAAAACEpTJ3vTbsqVB5JTNA0bbxqUmG/RekJYcoEiA87D/UoE2fVnq1bfq0Up9XG8/KB+wmzRWnhJ6+d9lI6NmVlV0RiD1VAAAAAABhpabxmOYVFHvVL8/NcCk/L0sJMdEmRgYrS3PFaUJasjb7KPM1IS2ZQS/gNNf9YZNOnPRew3XipEdXLytS6f1XmhQVYD1l7nrVnrZJfbPaIyfYUyUCsVIFAAAAABBW5hUUq6jUe/Z0UWml5hbsNCkihIsnvj9GuRkur7bcDJee+P4YkyICrOmFLfvPSKg0O3HSo79uOxDiiADreq/8kGH/u+zZFXFYqQIAAAAACBtl7nqvFSrNmjweFZa4mQ0KQwkx0Vo1O1vllQ3aW9WglORYPi+AD5vLjQeBiz6t1A1jB4YoGsDqjHflMt7RC+GIpAoAAAAAIGzsO2Rcy39vFUkVtC3VSTIFMJLujDPsH9qnV4giAaxvfKrxnlzj2bMr4lD+CwAAAAAQNgYnxRj2pyQzUA4AnZXcq7thf2JstxBFAljfNxvV+97TLaFnNEn8CERSBQAAAAAQNtJcccrNcCnK4V1MI8rhUG6Gi4ELAAgIyhkB/vpmo/rjPvtqjxxXeWVDiCNCsJFUAQAAAACElfy8LOWkO73actKdys/LMikiAIgslDMC/OdPaVJEFvZUAQAAAACEFTYbB4DgSnPFaeKQZG369MwN6ycOSeacC5yC0qT2w0oVAAAAAEBYSnXG6uJhfRjcA4AgWD5tjHIzXF5tuRkuLZ82xqSIAGs60MZKlc+qjfsRflipAgAAAAAAbKXMXa99hxpZ5QQYYFUgrMaq5+7iz2oM+3fsr9ak0xKUCG8kVQAgQln1ZgMAgGDjGgigNTWNxzSvoFiFJe6WttwMl/LzspQQE21iZIB1pTq5nsJcVj939+vVw7B/QELPEEWCUCGpAgARxuo3GwAABAvXQKD97JaEnFdQrKLSSq+2otJKzS3YqVWzs02KCrA2u50nYD1WP3f3STBOqjh7dQ9RJAgVkioAEGGsfrMBAECwcA0E/GfHJGSZu97r923W5PGosMSt8soGBoyBU9jxPAHrCYdzNxvV2w8b1QNABGm+2WjyeLzaT73ZAAAgEnENBNrHKAkZqfa1sZHw3irOE8Cp7HiegPVw7oYVkVQBgAjCzQYAwK64BgL+s2sSkpnEgP/sep6A9YTDuZv7UPshqQIAESQcbjYAAAgGroGA/+w6+JPmilNuhktRDodXe5TDodwMl+nlYwArset5AtYTDufutgbYu3ZxtPEIhBuSKgAQQcLhZgOwojJ3vTbsqWDGHRDGuAYC/rNzEjI/L0s56U6vtpx0p/LzskyKCLAmO58nYD1WP3efbKP/xElPG49AuGGjegCIMPl5WZpbsNNrIzcr3WwAVsLmm0Bk4RoI+CfNFafslERt2Vt9Rl92SlJEJyETYqK1ana2yisbtLeqQSnJsRH9+wJAJLD6uZskpP2QVAGACGP1mw3ASow231w1O9ukqAB0FNdAwH97vjrcSntdiCMxR6qT8wNgxJ/yXxxDCDWrnrsPtHG8fFbdaMm40XGU/wKACJXqjNXFw/pw4QZaweabQOTiGggY27inQrVHTvjsqz1yQm+fstoLgD1V1H5t2F95+GiIIgGsb8OeCsP+9bu/ClEkCBWSKggr1LwHAAQKm28CAOyq+LMaw/4d+88sCwbAXv7ZxiDwuo8OhigSwPqSYrsZ9jvjuocoEoQK5b8QFqh5DwAINOreAgDsatTZvQ37Rw9KDE0gJipz12vfoUbKBAKtcLexEsV9+FiIIgGs7zuZA/T7dSWt9l+VOSCE0SAUSKogLFDzHgAQaGmuOOVmuFRUWulVAizK4VBOupMBFgBAxLpoWB8lxkSruvH4GX2JMdGalOEyIarQYMIe4B9XL+OZ9X3a6AeASEb5L1geNe8BAMGSn5elnHSnV1tOulP5eVkmRQQAQGisnXOhEk9LIiTGRGvtnAtNiig0jCbsAfi3sxKNV3X3790zRJEA1kdpafthpQosz58TE7OJAQAdkRATrVWzs1Ve2aC9VQ2UAAEA2MbA5BjtXHS53i5xa8f+ao0elBjRK1Skf0/YO92pE/a4DwC+4WxjjwhWqgD/VlH7tWF/ZRvl9BB+SKrA8qh5DzugpjNgrlQnxx4AwJ4mZbgiPpnSjAl7gP8qG4wHgSsOGw8iA3ay+2CdYf9HXxj3I/yQVIHlUfMekYyazgAAAGgPJuN0HBP2AP8ltbFSxRnHShWgWVKs8fGQFGd8PCH8sKcKwgI17xGpqOkMAEDglbnrtWFPBXvvIaLUNB7T9Ke36JKHN2rmiq26+HdvafrTW1TrY7N5+NY8YS/K4fBqj3I4lJvhIkkVgbgedFzfXj2M++ON+wE7Of/sBMP+UQN7hyYQhAwrVRAWqHmPSERNZ8A6Nu6pUPFnNbaoJw9EMlaAorOsfD0wmoyzanZ2h1/Xbitf8vOyNLdgp9d5ggl7kYfrQee1Vc7owy9qdYMGhigawNq+aGNPlc+qj4QoEoQKSRWEFWreI5JQ0xkw376qBl27rEjVp8zyTYyJ1to5F2pgsnGJEADWE6xBZ0Q+q18PgjEZx66Dzs0T9go/cWvngWpLJtDQeVwPOq/uyAnD/vqvjfsBO3G3scdQVT0b1Ucayn8BgEmo6QyY7/QBNEmqbjyuq5e9Y1JEADqqedD51D34JO9B5868NuVjIts1j/u+Hkx93BrXA38m47SXXcvQNpdRm/7MFv33uhL94OkttimjZpdzWTCvB3bikcew/6RxN2AzDsNeDpfIw0oVADBJc03notJKrxv+KIdDOelOVqkAQbZxT8UZA2jNqhuP6+0Sd4dnrgajlIrdyrMA7RWMFaB2nclvNxv3VKjmiO/rQc2Rzl0PAiXQk3HsXIbWjisY7HYuoyJAYPTuafzZSIzAz86prFwOEtbzwWc1hv27PqsNTSAIGZIqAGAiajoD5ilu48Z3x/7qdn+BCsaghd0GQoCOamsJftcuxjMIfbHj4KsdbdhTYdj/f7srTB9QC/RkHLsOOts1mWS3cxkVAQIjMba7YX/v2G4hiiS0rF4OEtZ0oNr4urq/jesuwg/lvwDARM01nTfc+S2tmDlOG+78llbNzmagFAiBUWf3NuwfPSix3a8ZjFIqdi3PYld2Kc0SDCfb6D/RzjollI+xj6Q2Bg6T4qwxcJifl6WcdKdXW0cn49h10DkYZdSszo7nsuYkZJTDO5ke5XAoN8MVkYmzYHD1Mj73ueKMz53hivLA6AhHG7eZDMBHHlaqAIAFpDop5wOE2kXD+igxJtpnCbDEmOh2z0oOxuxXu86otSNWJHVeoAeJ7TqT346+k9lfv1/3iUH/gBBG07rmyTjllQ3aW9VAOcgOsGMyya7nMioCdN6AhJ6G/WclGveHo2CWB0Zk87SxILqtyT8IPyTKAACAba2dc+EZ9aCbl/e3VzBmv9pxRq1dsSKp89Jcca3Wd0+MiW73oKEdB1/tKs0Vp3GDfa9OHDc40XIDzqnOWF08rE+n4rLr9SXNFaeoVga+ohyy3N86EOx6LgunigBWXaX6Re3Xhv2fVR8JUSSh4095YMCXc/onGPcPiA9RJAgVVqoAAADbGpgco52LLtfbJW7t2F/dqY0ogzFoYdeBELthRVJglLnrDWeXtvd9DPQeFrC2p2aMO2NWe/NqsUgUjD2IwsHGPRVqaqVES5NHETkL3e7nMitXBLD+KlXjekaReJYIRnlg2MNPLknXSzs/N+jPCGE0CAVWqgAAANublOHSTy8d2qmBlGDU76YmuD3YdcZ4oAXjfQzkHhawtuZZ7atmZetnl2Xo2dnZlp3VHgiB3oMoXGzYU2HYv373VyGKJLQ4l1mT1Vep2rH8V3N5YF86Uh4Y9nGgjfvQz9rYyB7hh5UqAADA9src9dp3qLHT9emDUb+bmuCRjxVJgRGM95E9LOzD+jPGA8uu5x1HG3PrT5/EECk4l1lPOKxSfb+NUljvH6iJyCTD2jkX6upl73itfu1oeWAEXqC+twXamuLWV6lI0ss7Po/I48XOSKoAAADbCvQgWjAGLRgIiXx2L80SKMF8H61cPgaBYTRjfNXsbJOiCh67nndqjxxro993CcFIwbnMOvxZXWn23+rFrQcM+1/YeiAiSxoFsjwwAsfqkx8Of33CsL/+68i+vtgR5b8AAGiFVTeNROAEq+xCIDYRDsVrwjoozRIYvI/oiOYZ46cmFyTvGeORyI7HS5nb+G/5qbs+RJFEhnC4V7ZqjOGwWqyqwTgJWVl/NESRmCMQ5YEROFYvlxffwzixE9+z44kfq57H7I6VKgAAnMbqs2AQGOFQduFUVl3qjsBgRVJgNL+PhZ9UaOeBmoDNLuX4i2zhMGM8GDxtbEIdiVy9uneqP9wF6lwWDvfKVo8xzRWn+O5dVXf0zNnt8d27WuKc07WLcTm86Db6gUAJh+9tZW0k5dtK6vsSzPMY97adR1IFAIDT2K0EiF0FcxAtkDepVh8UQGDtr2rQvz6rUdcuDr7gdECgjxeOP3sIhxnjwXDr6h3aXFbl1VZY4taPV29XwY8uMCmq4BqYaPy3HpQUmX/rQJ/LwuFe2eoxlrnrfSZUJKnu6AlLDBKTMoFVhMPkh7o2ynvVdKC8ZDDOY9zbBg7lvwAgQgV6iahdlpzatQRIuAnE5zEYg2g1jcc0/ektuuThjZq5Yqsu/t1bmv70FtU2tv8mupnVl7ojMPZVNSjrnjc1Y8VW/fe6Ev3g6S3KuudNHagy/hIJb4E+Xjj+7CHNFafEVgYSEmOiTR+oCYYyd/0ZCZVmm8uqIvZ+Z3912wNzkSiQ57JwuFcOhxif3bzXsH91G/2h0HTSeDVbW/3hzi7ff8NBW4PXba2qCoUhrjjD/ow+xv2nC9Z5jHvbwGGlCgBEGGbpdk44zIKxM6t/HgM9mygclrojMK5+/B3VHvGesVrdeFzfefxtvb94iklRhZdAHy8cf4Fn1VITZe56VbeS/K5uPB6Rf+v3yg8Z9r9bVhVxv7PU9kqVtiZchFKgjpdAn8vC4V45HGI8UH3EsL+t3yEUevWIVsPx1vdN6dWJPSKszOrfN+zoi1rj4+XzNo6nULhkRF+t213Rav+3hvdp1+sF4zzGvW1gsVIFACLMrat3nHGhbC7l0BF2m8lg1xIg4SKQn+/3yn3P0G3pb2UGb2uCMZvIn5tphL+NeyrOSKg0qz1yQm/7+PJjpmDM3AzEawb6eAm342/jngo9uv4Ty31epOCs4gukcPtbB8InBw8b9pd+ZdzfFqvO8K5ro/xK3de+z8WhFOjjJdCf73C4Vw6HGC8b0dewf8rIfiGKpHX9E3oY9p+V0DNEkfgnUOcdu33/DQdtXbNKOnnNCoSqw60nICWpuuFYu14vGOcxO97vBBMrVQBYjlVnMYYDf0o5MEvXWJorTrkZLhWVVnoNjkc5HMpJd0bc7xtOAv35dh82vrF11xvfGJ8uGLOJwmFQINy8sGW/NpdXKWeIUzeMHdjp1wvENWvDntZntUnS+t1fBWSz9c4KxszNQL5moEtDBPv427inQsWf1Wj0oMRO/X33VTXo2mVFXistEmOitXbOhRqYbI1Z98HcuyMQ72Mwy4pY9b72QBtlsA4c6tisX6vP8F730UHD/jd2fanf3nB+iKLxLdCrXgN9LguHe+U0V5wmpCX7vG+ckJZsiRhvzB6kX770Qav9gbhH6axPK4033i5pY2PuUAnkeceO33/DgaeNHX6aLFCJrrSN4+WTCvMTP3y3DCxLrFRZtmyZUlJS1KNHD40fP15btmwxfPxf//pXDR8+XD169NB5552n1157LUSRAggmq89iDAf+lHJoD7vOZMjPy1JOutOrLSfdqfy8LJMighT4z7erVzfj/rju7Xo9blKt7YPPapT+q9f0y5c+0JqdX+jnf/uX0n/1mj76vLZDrxfIa1ZdK6tUmtVbYOa0FJyZm7c953v12a3PtX/1WaBLQzQPHEY5vL/IRzkcys1wdXhQJdD755yeUJG+KVl19bJ3OvR6gRasvTsC+T4Go6yI1e9rP/isxrD/X58b97fG6jO8G483dao/2IKx6jUYewaFw71y08mTrbRbYPRV3ySEjVhh1WHd18bHgxVWdkmBPe/Y9fuv1V08zHjSxKUj2ldaKxii2kj8RHdp3xA8n0XrMz2p8sILL+j222/X4sWLtWPHDp1//vmaMmWKKip8X2A2bdqkvLw8zZ49Wzt37tS1116ra6+9Vrt27Qpx5AACzepfwsKB+/DXhv1V7Zx5b9dB4oSYaK2ana0Nd35LK2aO04Y7v6VVs7MtMcPS3oy/BLd3HvH41GTj/jTj/tNtbSPps22vcb8vr/7ryzb6v2j3a9rVdX/YpBOnDaScOOnR1cuKOvR6gbxmedr4bFth/CcYA31l7npt+tT3YPumT9s/2O5uo+xCZTuvgVJwBg4DmQTZuKfCcC8QKwzKBToh3iyQ72OgVy5K1r+vPdRGGZL23jNK4bE5+Anf4+x+9wdbMAbR/NkzqL2sfq9c5q7Xlr3VPvu27D1kic/immLje7iXd3weokjCW6DPO3b9/ovO+7SNlVulFe1b2UX5L+szPany+9//Xrfccotmzpypc845R0888YRiYmL0zDPP+Hz8o48+qm9/+9v6+c9/rhEjRmjJkiUaPXq0Hn/88RBHDiCQwuFLWDhw9TKue5vczpn3B9q46H7WRumIcJfqjNXFw/qwxNsiAp0ESXPFaeIQ38+ZOKT9pSHWFBt/+X1552ftej1J+scHxl+4/9FG0gXfeGHL/jMSKs1OnPTor9sOtOv1An3NSnXGGfe7zD8HBeNLWKD3NVrTxgBURwaoAj1wGOgkSHEbqw127Pc9qBhKr7YxcPj3DiSHA/0+BnrlYjjc13brajwU0L2Nfl8YrOm8cBtEs+q9cqCvL8FhgRkTESDQn+9grVJF5/hTKtd0Ha8U6lMwPoskDQPL1KTKsWPHtH37dk2ePLmlrUuXLpo8ebI2b97s8zmbN2/2erwkTZkypdXHHz16VHV1dV4/AKyHL2GBMT41ybD/gnYOOofDYA3sI9BJEElaPm2Mck+rwZ+b4dLyaWPa/Vpx3Y23qmur35fWBg2bHWps34aHdrW5jcGVok8rDftPF+hr1ncy+7fRP6BdrxcMwfgSFuiVJRVtrNb8qq5je0RIgRs4DPR1ddTZvQ37Rw9KbNfrBUNbNcbbO3NTCvz7GOikfTjc1944dpBh/03Zg9v9mgzWdB6DaIFiPLpphXTGtaPOMuy/brRxfyi0NUYc4DHkDgnG5zscytvZTVKs8eQHZzsnPwRD3jjj6+r/N96435dAfxZJGgaWqUmVyspKNTU1qW/fvl7tffv21cGDvjeQO3jwYLse/8ADDyghIaHlZ+BA8zf7AnAme97sB17zpoy+dGRTxnAYrIG9BDIJIgV2Fvr3LzAegPrBhJR2v+Z5ZyUY9p/fxjGKb0xoY8A0Z4jTsP90wdj0d9xg3+fTcYMTLfEFJxhfwgK9urKt4yHLAtesQF9XLxrWx3CvhI5u3B5I/eON/84DEnq2+zUD/T4GOmkfDve1i64eadj/6++c0+7XZLAmMBhE67xATzQLhouG9VF8D98TbuJ7dLXE+fuyNvapmDKyr2F/KATj82318nZ21NYEo6ssMAHpxuxBimol0xjlkG4Y2/7x6GB8FkkaBo7p5b+CbeHChaqtrW35OXCgfeUdAISGHW/2g+WJ7/sedH7i++0fdA6HwRrYS7C+5ARiFvpFw/oovpXVKPHdO/bleOGVIwz7F7TRj2/cmD1IXbv4/pbTtYuj3V9ygnHNemrGOJ/n7qdmjGv3awVLoL+EBXrQ67kfTTDsf/bmC9r1esEQjOvq2jkXnvGaiTHRWjvnwg7FGGg/u2yocf/lxv2+BON9DGTSPlzua5+ePrZd7f5gsKbzGETrvEBPNAuWv8+d5PP8/fe5k0yKyNsf27gHeeIHHT9XBFKwPt9WLW9nR2muOGWn+L5vzE5Jsszf6JWfXHjGd46uXRx65SeduycL5GeRpGHgODwej2krH48dO6aYmBj97W9/07XXXtvSPmPGDNXU1Oh///d/z3jOoEGDdPvtt2v+/PktbYsXL9aaNWv0/vvvt/l/1tXVKSEhQbW1tYqPjw/ErwEgQGobj2tuwU4VnlIHOzfDpfy8LE7wHVBe2aC9VQ1KSY7t1MX3QFWjrl72jlcZoubBmoHJxjMxAbsJxvFy5aOF+ujLw2e0n9O/l177aW6HY7Wbjz6v1dXLirz2VunaxaG1c3J0ThsrgnwJ1jUrUOfuYApkjHl/fFebfdS2n5CWrIIftT8J8szbZbrn77vPaF901QjNmpTWoRgDLVjX1bdL3Nqxv1qjByVabtLDyLtfU8PxM792xkY79OGSKzv0msF6HwP1+Q6n+9p7X/1I75S6dWG6q0MrVHyx8rksZcHfW+3bu/SqEEYSelb+uwRaOB2DVj5/P//ePi14edcZ7UuvO1c3jW9/mcBgstPn247C6Zj+67YDKvq0UjlDnB1aoQLztCdvYGpSRZLGjx+v7Oxs5efnS5JOnjypQYMG6Sc/+YkWLFhwxuNvvPFGNTY26pVXXmlpmzhxojIzM/XEE0+0+f+RVAGsj5sha7LyzT5gNYE8XsLpC0Q4CPSXHK5ZnROsz/cPnnpXxZ/VaNTZvS2xQsUXO11XgzlBw+rvI+cI6xm64O/ytSNZN0mfRHhSxY44BgPjx89u09Z9hzRucJJlVqjAnjimEUxhlVR54YUXNGPGDD355JPKzs7WI488ohdffFEff/yx+vbtq+nTp+uss87SAw88IEnatGmTLrroIi1dulRXXXWVnn/+ed1///3asWOHzj333Db/P5IqAAAgHPEFApGMz7c9WD0BAns5dcVKpK9QAQAAbWtP3sB34e8QuvHGG+V2u7Vo0SIdPHhQo0aN0uuvv96yGf3+/fvVpcu/t36ZOHGi/vKXv+jXv/61fvWrXykjI0Nr1qzxK6ECAAAQrlKdDDYjcvH5todJGS6SKbAMEikAAKCjTF+pEmqsVAEAAAAAAAAAAM3akzfoYtgLAAAAAAAAAAAASSRVAAAAAAAAAAAA/EJSBQAAAAAAAAAAwA8kVQAAAAAAAAAAAPxAUgUAAAAAAAAAAMAPJFUAAAAAAAAAAAD8QFIFAAAAAAAAAADADyRVAAAAAAAAAAAA/EBSBQAAAAAAAAAAwA8kVQAAAAAAAAAAAPxAUgUAAAAAAAAAAMAPJFUAAAAAAAAAAAD8QFIFAAAAAAAAAADADyRVAAAAAAAAAAAA/EBSBQAAAAAAAAAAwA8kVQAAAAAAAAAAAPxAUgUAAAAAAAAAAMAPJFUAAAAAAAAAAAD8QFIFAAAAAAAAAADADyRVAAAAAAAAAAAA/EBSBQAAAAAAAAAAwA8kVQAAAAAAAAAAAPxAUgUAAAAAAAAAAMAPJFUAAAAAAAAAAAD8QFIFAAAAAAAAAADADyRVAAAAAAAAAAAA/EBSBQAAAAAAAAAAwA9dzQ4g1DwejySprq7O5EgAAAAAAAAAAIDZmvMFzfkDI7ZLqhw+fFiSNHDgQJMjAQAAAAAAAAAAVnH48GElJCQYPsbh8Sf1EkFOnjypL774Qr169ZLD4TA7nA6rq6vTwIEDdeDAAcXHx5sdDmB5HDOA/zheAP9xvAD+43gB/MfxArQPxwzgP44X3zwejw4fPqwBAwaoSxfjXVNst1KlS5cuOvvss80OI2Di4+P58APtwDED+I/jBfAfxwvgP44XwH8cL0D7cMwA/uN4OVNbK1SasVE9AAAAAAAAAACAH0iqAAAAAAAAAAAA+IGkSpjq3r27Fi9erO7du5sdChAWOGYA/3G8AP7jeAH8x/EC+I/jBWgfjhnAfxwvnWe7jeoBAAAAAAAAAAA6gpUqAAAAAAAAAAAAfiCpAgAAAAAAAAAA4AeSKgAAAAAAAAAAAH4gqQIAAAAAAAAAAOAHkiphZvny5crMzFR8fLzi4+M1YcIE/eMf/zA7LCAsLF26VA6HQ/Pnzzc7FMByfvOb38jhcHj9DB8+3OywAEv7/PPP9f3vf1/Jycnq2bOnzjvvPG3bts3ssADLSUlJOeMa43A4NGfOHLNDAyynqalJd999t1JTU9WzZ08NGTJES5YskcfjMTs0wJIOHz6s+fPna/DgwerZs6cmTpyorVu3mh0WYAmFhYWaOnWqBgwYIIfDoTVr1nj1ezweLVq0SP3791fPnj01efJklZSUmBNsmCGpEmbOPvtsLV26VNu3b9e2bdt0ySWX6JprrtGHH35odmiApW3dulVPPvmkMjMzzQ4FsKyRI0fqyy+/bPl55513zA4JsKzq6mrl5OQoOjpa//jHP/TRRx/p4YcfVmJiotmhAZazdetWr+vLunXrJEk33HCDyZEB1vPggw9q+fLlevzxx7V79249+OCDeuihh5Sfn292aIAl3XzzzVq3bp2effZZffDBB7r88ss1efJkff7552aHBpiuoaFB559/vpYtW+az/6GHHtJjjz2mJ554Qu+9955iY2M1ZcoUff311yGONPw4PEx3CHtJSUn67W9/q9mzZ5sdCmBJ9fX1Gj16tP7whz/o3nvv1ahRo/TII4+YHRZgKb/5zW+0Zs0aFRcXmx0KEBYWLFigoqIivf3222aHAoSd+fPn69VXX1VJSYkcDofZ4QCW8p3vfEd9+/bV008/3dJ2/fXXq2fPnlq9erWJkQHWc+TIEfXq1Uv/+7//q6uuuqqlfcyYMbriiit07733mhgdYC0Oh0Mvv/yyrr32WknfrFIZMGCA7rjjDt15552SpNraWvXt21crV67UTTfdZGK01sdKlTDW1NSk559/Xg0NDZowYYLZ4QCWNWfOHF111VWaPHmy2aEAllZSUqIBAwYoLS1N06ZN0/79+80OCbCstWvXauzYsbrhhhvUp08fZWVl6U9/+pPZYQGWd+zYMa1evVqzZs0ioQL4MHHiRK1fv16ffPKJJOn999/XO++8oyuuuMLkyADrOXHihJqamtSjRw+v9p49e7LqHmhDeXm5Dh486DVWlpCQoPHjx2vz5s0mRhYeupodANrvgw8+0IQJE/T1118rLi5OL7/8ss455xyzwwIs6fnnn9eOHTuoqQq0Yfz48Vq5cqWGDRumL7/8Uv/1X/+lSZMmadeuXerVq5fZ4QGWU1ZWpuXLl+v222/Xr371K23dulXz5s1Tt27dNGPGDLPDAyxrzZo1qqmp0Q9/+EOzQwEsacGCBaqrq9Pw4cMVFRWlpqYm3XfffZo2bZrZoQGW06tXL02YMEFLlizRiBEj1LdvXxUUFGjz5s1KT083OzzA0g4ePChJ6tu3r1d73759W/rQOpIqYWjYsGEqLi5WbW2t/va3v2nGjBnauHEjiRXgNAcOHNBPf/pTrVu37oyZKwC8nTr7MTMzU+PHj9fgwYP14osvUl4S8OHkyZMaO3as7r//fklSVlaWdu3apSeeeIKkCmDg6aef1hVXXKEBAwaYHQpgSS+++KKee+45/eUvf9HIkSNVXFys+fPna8CAAVxfAB+effZZzZo1S2eddZaioqI0evRo5eXlafv27WaHBiCCUf4rDHXr1k3p6ekaM2aMHnjgAZ1//vl69NFHzQ4LsJzt27eroqJCo0ePVteuXdW1a1dt3LhRjz32mLp27aqmpiazQwQsq3fv3ho6dKhKS0vNDgWwpP79+58xoWXEiBGUzQMM7Nu3T//85z918803mx0KYFk///nPtWDBAt10000677zz9IMf/EA/+9nP9MADD5gdGmBJQ4YM0caNG1VfX68DBw5oy5YtOn78uNLS0swODbC0fv36SZK++uorr/avvvqqpQ+tI6kSAU6ePKmjR4+aHQZgOZdeeqk++OADFRcXt/yMHTtW06ZNU3FxsaKioswOEbCs+vp6ffrpp+rfv7/ZoQCWlJOToz179ni1ffLJJxo8eLBJEQHWt2LFCvXp08drM2EA3hobG9Wli/dQTVRUlE6ePGlSREB4iI2NVf/+/VVdXa033nhD11xzjdkhAZaWmpqqfv36af369S1tdXV1eu+999i72w+U/wozCxcu1BVXXKFBgwbp8OHD+stf/qK33npLb7zxhtmhAZbTq1cvnXvuuV5tsbGxSk5OPqMdsLs777xTU6dO1eDBg/XFF19o8eLFioqKUl5entmhAZb0s5/9TBMnTtT999+v733ve9qyZYv++Mc/6o9//KPZoQGWdPLkSa1YsUIzZsxQ1658DQVaM3XqVN13330aNGiQRo4cqZ07d+r3v/+9Zs2aZXZogCW98cYb8ng8GjZsmEpLS/Xzn/9cw4cP18yZM80ODTBdfX29V/WJ8vJyFRcXKykpSYMGDdL8+fN17733KiMjQ6mpqbr77rs1YMAAXXvtteYFHSa4mw0zFRUVmj59ur788kslJCQoMzNTb7zxhi677DKzQwMAhLHPPvtMeXl5qqqqksvl0oUXXqh3331XLpfL7NAASxo3bpxefvllLVy4UPfcc49SU1P1yCOPsJEw0Ip//vOf2r9/PwPDQBvy8/N1991367bbblNFRYUGDBig//zP/9SiRYvMDg2wpNraWi1cuFCfffaZkpKSdP311+u+++5TdHS02aEBptu2bZsuvvjiln/ffvvtkqQZM2Zo5cqV+sUvfqGGhgb96Ec/Uk1NjS688EK9/vrr7EvsB4fH4/GYHQQAAAAAAAAAAIDVsacKAAAAAAAAAACAH0iqAAAAAAAAAAAA+IGkCgAAAAAAAAAAgB9IqgAAAAAAAAAAAPiBpAoAAAAAAAAAAIAfSKoAAAAAAAAAAAD4gaQKAAAAAAAAAACAH0iqAAAAAAAAAAAA+IGkCgAAAAAAAAAAgB9IqgAAAAA2d/DgQc2dO1dpaWnq3r27Bg4cqKlTp2r9+vU6duyYnE6nli5d6vO5S5YsUd++fXX8+HE1NTVp6dKlGj58uHr27KmkpCSNHz9eTz31VMvj3W63br31Vg0aNEjdu3dXv379NGXKFBUVFbUa30svvaSxY8eqd+/eio2N1ahRo/Tss88a/k4rV66Uw+Fo+YmLi9OYMWP00ksvdexNCqCXX35ZF1xwgRISEtSrVy+NHDlS8+fPNzssAAAAAH7oanYAAAAAAMyzd+9e5eTkqHfv3vrtb3+r8847T8ePH9cbb7yhOXPm6OOPP9b3v/99rVixQgsWLPB6rsfj0cqVKzV9+nRFR0dr0aJFevLJJ/X4449r7Nixqqur07Zt21RdXd3ynOuvv17Hjh3Tn//8Z6Wlpemrr77S+vXrVVVV1WqMSUlJuuuuuzR8+HB169ZNr776qmbOnKk+ffpoypQprT4vPj5ee/bskSQdPnxYK1as0Pe+9z19+OGHGjZsWCffuY5Zv369brzxRt133326+uqr5XA49NFHH2ndunVB+z+bmprkcDjUpQtz6gAAAIDOcng8Ho/ZQQAAAAAwx5VXXql//etf2rNnj2JjY736ampq1Lt3b33wwQfKzMzU22+/rQsvvLCl/6233tLFF1+s3bt3a/jw4Ro1apSuu+46LV682Of/VVNTo8TERL311lu66KKLOhX36NGjddVVV2nJkiU++1euXKn58+erpqampe3kyZPq0aOHnnvuOd1www2SpGeffVaPPvpoy+9/ySWX6JFHHlGfPn0kSdXV1frJT36iN998U/X19Tr77LP1q1/9SjNnzpQkHThwQHfccYfefPNNdenSRZMmTdKjjz6qlJQUn3HNnz9f77//vjZs2GD4+73yyiu655579MEHHyguLk6TJk3Syy+/3BLTT3/6U73yyis6evSoLrroIj322GPKyMjw+t1XrVqlBQsW6JNPPlFpaan69++vu+66SwUFBaqpqdG5556rBx98UN/61rf8fdsBAAAA22OqEgAAAGBThw4d0uuvv645c+ackVCRpN69e0uSzjvvPI0bN07PPPOMV/+KFSs0ceJEDR8+XJLUr18//d///Z/cbrfP/y8uLk5xcXFas2aNjh492qGYPR6P1q9frz179ig3N9fv5zU1NenPf/6zpG8SMs2OHz+uJUuW6P3339eaNWu0d+9e/fCHP2zpv/vuu/XRRx/pH//4h3bv3q3ly5fL6XS2PHfKlCnq1auX3n77bRUVFSkuLk7f/va3dezYMZ9x9OvXTx9++KF27drVaqx///vfdd111+nKK6/Uzp07tX79emVnZ7f0//CHP9S2bdu0du1abd68WR6PR1deeaWOHz/e8pjGxkY9+OCDeuqpp/Thhx+qT58++slPfqLNmzfr+eef17/+9S/dcMMN+va3v62SkhK/30cAAADA7lipAgAAANjUli1bNH78eL300ku67rrrDB/75JNP6s4779SXX36puLg4HT58WP369dNjjz2m2bNnS5I++ugjffe739WePXs0cuRITZw4Uddcc42uuOKKltf5n//5H91yyy06cuSIRo8erYsuukg33XSTMjMzDf//2tpanXXWWTp69KiioqL0hz/8QbNmzWr18StXrtTMmTNbkkVHjhxRdHS0nnjiCa+kyem2bdumcePG6fDhw4qLi9PVV18tp9N5RkJJklavXq17771Xu3fvlsPhkCQdO3ZMvXv31po1a3T55Zef8ZyGhgZ973vf02uvvabBgwfrggsu0OWXX65p06ape/fukqSJEycqLS1Nq1evPuP5JSUlGjp0qIqKijRx4kRJUlVVlQYOHKg///nPuuGGG1p+9+LiYp1//vmSpP379ystLU379+/XgAEDWl5v8uTJys7O1v3339/qewIAAADg31ipAgAAANhUe+ZX5eXlqampSS+++KIk6YUXXlCXLl104403tjzmnHPO0a5du/Tuu+9q1qxZqqio0NSpU3XzzTe3POb666/XF198obVr1+rb3/623nrrLY0ePVorV640/P979eql4uJibd26Vffdd59uv/12vfXWW349p7i4WDt37tT999+vH//4x3rllVdaHrN9+3ZNnTpVgwYNUq9evVrKku3fv1+SdOutt+r555/XqFGj9Itf/EKbNm1qee7777+v0tJS9erVq2UVTlJSkr7++mt9+umnPmOKjY3V3//+d5WWlurXv/614uLidMcddyg7O1uNjY2SpOLiYl166aU+n79792517dpV48ePb2lLTk7WsGHDtHv37pa2bt26eSWqPvjgAzU1NWno0KEtscbFxWnjxo2txgoAAADgTGxUDwAAANhURkaGHA6HPv744zYfGx8fr+9+97tasWKFZs2a1bLpe1xcnNfjunTponHjxmncuHGaP3++Vq9erR/84Ae66667lJqaKknq0aOHLrvsMl122WW6++67dfPNN2vx4sWGK0i6dOmi9PR0SdKoUaO0e/duPfDAA4b7gZz6HEnKzMzUm2++qQcffFBTp05VQ0ODpkyZoilTpui5556Ty+XS/v37NWXKlJbyXVdccYX27dun1157TevWrdOll16qOXPm6He/+53q6+s1ZswYPffcc2f83y6Xy/D9HDJkiIYMGaKbb75Zd911l4YOHaoXXnhBM2fOVM+ePQ2f64+ePXu2rJ6RpPr6ekVFRWn79u2Kioryeuzpf0MAAAAArWOlCgAAAGBTSUlJmjJlipYtW6aGhoYz+k/d5F2SZs+erXfeeUevvvqqNm3a1FL2y8g555wjST5f/9THGPX7cvLkyQ7tyxIVFaUjR45Ikj7++GNVVVVp6dKlmjRpkoYPH66KiooznuNyuTRjxgytXr1ajzzyiP74xz9K+mZvlpKSEvXp00fp6elePwkJCX7HlJKSopiYmJb3IDMzU+vXr/f52BEjRujEiRN67733Wtqqqqq0Z8+elvfal6ysLDU1NamiouKMWPv16+d3rAAAAIDdsVIFAAAAsLFly5YpJydH2dnZuueee5SZmakTJ05o3bp1Wr58uVdJqdzcXKWnp2v69OkaPnx4y54ezb773e8qJydHEydOVL9+/VReXq6FCxdq6NChGj58uKqqqnTDDTdo1qxZyszMVK9evbRt2zY99NBDuuaaa1qN8YEHHtDYsWM1ZMgQHT16VK+99pqeffZZLV++3PB383g8OnjwoKRv9lRZt26d3njjDS1atEiSNGjQIHXr1k35+fn68Y9/rF27dmnJkiVer7Fo0SKNGTNGI0eO1NGjR/Xqq69qxIgRkqRp06bpt7/9ra655hrdc889Ovvss7Vv3z699NJL+sUvfqGzzz77jJh+85vfqLGxUVdeeaUGDx6smpoaPfbYYzp+/Lguu+wySdLixYt16aWXasiQIbrpppt04sQJvfbaa/rlL3+pjIwMXXPNNbrlllv05JNPqlevXlqwYIHOOussw/dw6NChmjZtmqZPn66HH35YWVlZcrvdWr9+vTIzM3XVVVcZvpcAAAAAvsFKFQAAAMDG0tLStGPHDl188cW64447dO655+qyyy7T+vXrz0haOBwOzZo1S9XV1T43iZ8yZYpeeeUVTZ06VUOHDtWMGTM0fPhwvfnmm+ratavi4uI0fvx4/fd//7dyc3N17rnn6u6779Ytt9yixx9/vNUYGxoadNttt2nkyJHKycnR//zP/2j16tVee7X4UldXp/79+6t///4aMWKEHn74Yd1zzz266667JH2zAmXlypX661//qnPOOUdLly7V7373O6/X6NatmxYuXKjMzEzl5uYqKipKzz//vCQpJiZGhYWFGjRokP7jP/5DI0aM0OzZs/X1118rPj7eZ0wXXXSRysrKWhJTV1xxhQ4ePKg333xTw4YNkyR961vf0l//+letXbtWo0aN0iWXXKItW7a0vMaKFSs0ZswYfec739GECRPk8Xj02muvKTo62vD9WLFihaZPn6477rhDw4YN07XXXqutW7dq0KBBhs8DAAAA8G8OT3t2pwQAAAAAAAAAALApVqoAAAAAAAAAAAD4gaQKAAAAAAAAAACAH0iqAAAAAAAAAAAA+IGkCgAAAAAAAAAAgB9IqgAAAAAAAAAAAPiBpAoAAAAAAAAAAIAfSKoAAAAAAAAAAAD4gaQKAAAAAAAAAACAH0iqAAAAAAAAAAAA+IGkCgAAAAAAAAAAgB9IqgAAAAAAAAAAAPjh/wFLMRKR6whxsAAAAABJRU5ErkJggg==",
|
149 |
+
"text/plain": [
|
150 |
+
"<Figure size 2000x1000 with 1 Axes>"
|
151 |
+
]
|
152 |
+
},
|
153 |
+
"metadata": {},
|
154 |
+
"output_type": "display_data"
|
155 |
+
}
|
156 |
+
],
|
157 |
+
"source": [
|
158 |
+
"ax = epss_kev_nvd.plot.scatter(x='CVSS3',\n",
|
159 |
+
" y='EPSS',\n",
|
160 |
+
" colormap='jet',\n",
|
161 |
+
" figsize=(20, 10),\n",
|
162 |
+
" title='CISA Known Exploited Vulnerabilities');\n",
|
163 |
+
"ax.set_xlabel(\"CVSS 3 Base Score\");\n",
|
164 |
+
"ax.set_ylabel(\"EPSS Score\");\n",
|
165 |
+
"ax.figure.savefig('epss_kev_nvd.png');"
|
166 |
+
]
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"cell_type": "markdown",
|
170 |
+
"metadata": {},
|
171 |
+
"source": [
|
172 |
+
"## Export to CSV"
|
173 |
+
]
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"cell_type": "code",
|
177 |
+
"execution_count": 7,
|
178 |
+
"metadata": {
|
179 |
+
"execution": {
|
180 |
+
"iopub.execute_input": "2024-06-13T12:07:16.486692Z",
|
181 |
+
"iopub.status.busy": "2024-06-13T12:07:16.486084Z",
|
182 |
+
"iopub.status.idle": "2024-06-13T12:07:16.503023Z",
|
183 |
+
"shell.execute_reply": "2024-06-13T12:07:16.502362Z"
|
184 |
+
}
|
185 |
+
},
|
186 |
+
"outputs": [
|
187 |
+
{
|
188 |
+
"data": {
|
189 |
+
"text/html": [
|
190 |
+
"<div>\n",
|
191 |
+
"<style scoped>\n",
|
192 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
193 |
+
" vertical-align: middle;\n",
|
194 |
+
" }\n",
|
195 |
+
"\n",
|
196 |
+
" .dataframe tbody tr th {\n",
|
197 |
+
" vertical-align: top;\n",
|
198 |
+
" }\n",
|
199 |
+
"\n",
|
200 |
+
" .dataframe thead th {\n",
|
201 |
+
" text-align: right;\n",
|
202 |
+
" }\n",
|
203 |
+
"</style>\n",
|
204 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
205 |
+
" <thead>\n",
|
206 |
+
" <tr style=\"text-align: right;\">\n",
|
207 |
+
" <th></th>\n",
|
208 |
+
" <th>CVE</th>\n",
|
209 |
+
" <th>CVSS3</th>\n",
|
210 |
+
" <th>EPSS</th>\n",
|
211 |
+
" <th>EPSS Percentile</th>\n",
|
212 |
+
" <th>Description</th>\n",
|
213 |
+
" </tr>\n",
|
214 |
+
" </thead>\n",
|
215 |
+
" <tbody>\n",
|
216 |
+
" <tr>\n",
|
217 |
+
" <th>0</th>\n",
|
218 |
+
" <td>CVE-2021-27104</td>\n",
|
219 |
+
" <td>9.8</td>\n",
|
220 |
+
" <td>0.01409</td>\n",
|
221 |
+
" <td>0.86505</td>\n",
|
222 |
+
" <td>Accellion FTA contains an OS command injection...</td>\n",
|
223 |
+
" </tr>\n",
|
224 |
+
" <tr>\n",
|
225 |
+
" <th>1</th>\n",
|
226 |
+
" <td>CVE-2021-27102</td>\n",
|
227 |
+
" <td>7.8</td>\n",
|
228 |
+
" <td>0.00083</td>\n",
|
229 |
+
" <td>0.35561</td>\n",
|
230 |
+
" <td>Accellion FTA contains an OS command injection...</td>\n",
|
231 |
+
" </tr>\n",
|
232 |
+
" <tr>\n",
|
233 |
+
" <th>2</th>\n",
|
234 |
+
" <td>CVE-2021-27101</td>\n",
|
235 |
+
" <td>9.8</td>\n",
|
236 |
+
" <td>0.00761</td>\n",
|
237 |
+
" <td>0.81192</td>\n",
|
238 |
+
" <td>Accellion FTA contains a SQL injection vulnera...</td>\n",
|
239 |
+
" </tr>\n",
|
240 |
+
" <tr>\n",
|
241 |
+
" <th>3</th>\n",
|
242 |
+
" <td>CVE-2021-27103</td>\n",
|
243 |
+
" <td>9.8</td>\n",
|
244 |
+
" <td>0.01217</td>\n",
|
245 |
+
" <td>0.85338</td>\n",
|
246 |
+
" <td>Accellion FTA contains a server-side request f...</td>\n",
|
247 |
+
" </tr>\n",
|
248 |
+
" <tr>\n",
|
249 |
+
" <th>4</th>\n",
|
250 |
+
" <td>CVE-2021-21017</td>\n",
|
251 |
+
" <td>8.8</td>\n",
|
252 |
+
" <td>0.64257</td>\n",
|
253 |
+
" <td>0.97891</td>\n",
|
254 |
+
" <td>Acrobat Acrobat and Reader contain a heap-base...</td>\n",
|
255 |
+
" </tr>\n",
|
256 |
+
" <tr>\n",
|
257 |
+
" <th>5</th>\n",
|
258 |
+
" <td>CVE-2021-28550</td>\n",
|
259 |
+
" <td>8.8</td>\n",
|
260 |
+
" <td>0.62292</td>\n",
|
261 |
+
" <td>0.97836</td>\n",
|
262 |
+
" <td>Adobe Acrobat and Reader contains a use-after-...</td>\n",
|
263 |
+
" </tr>\n",
|
264 |
+
" <tr>\n",
|
265 |
+
" <th>6</th>\n",
|
266 |
+
" <td>CVE-2018-4939</td>\n",
|
267 |
+
" <td>9.8</td>\n",
|
268 |
+
" <td>0.96914</td>\n",
|
269 |
+
" <td>0.99720</td>\n",
|
270 |
+
" <td>Adobe ColdFusion contains a deserialization of...</td>\n",
|
271 |
+
" </tr>\n",
|
272 |
+
" <tr>\n",
|
273 |
+
" <th>7</th>\n",
|
274 |
+
" <td>CVE-2018-15961</td>\n",
|
275 |
+
" <td>9.8</td>\n",
|
276 |
+
" <td>0.97436</td>\n",
|
277 |
+
" <td>0.99946</td>\n",
|
278 |
+
" <td>Adobe ColdFusion contains an unrestricted file...</td>\n",
|
279 |
+
" </tr>\n",
|
280 |
+
" <tr>\n",
|
281 |
+
" <th>8</th>\n",
|
282 |
+
" <td>CVE-2018-4878</td>\n",
|
283 |
+
" <td>9.8</td>\n",
|
284 |
+
" <td>0.97279</td>\n",
|
285 |
+
" <td>0.99859</td>\n",
|
286 |
+
" <td>Adobe Flash Player contains a use-after-free v...</td>\n",
|
287 |
+
" </tr>\n",
|
288 |
+
" <tr>\n",
|
289 |
+
" <th>9</th>\n",
|
290 |
+
" <td>CVE-2020-5735</td>\n",
|
291 |
+
" <td>8.8</td>\n",
|
292 |
+
" <td>0.02271</td>\n",
|
293 |
+
" <td>0.89649</td>\n",
|
294 |
+
" <td>Amcrest cameras and NVR contain a stack-based ...</td>\n",
|
295 |
+
" </tr>\n",
|
296 |
+
" </tbody>\n",
|
297 |
+
"</table>\n",
|
298 |
+
"</div>"
|
299 |
+
],
|
300 |
+
"text/plain": [
|
301 |
+
" CVE CVSS3 EPSS EPSS Percentile \\\n",
|
302 |
+
"0 CVE-2021-27104 9.8 0.01409 0.86505 \n",
|
303 |
+
"1 CVE-2021-27102 7.8 0.00083 0.35561 \n",
|
304 |
+
"2 CVE-2021-27101 9.8 0.00761 0.81192 \n",
|
305 |
+
"3 CVE-2021-27103 9.8 0.01217 0.85338 \n",
|
306 |
+
"4 CVE-2021-21017 8.8 0.64257 0.97891 \n",
|
307 |
+
"5 CVE-2021-28550 8.8 0.62292 0.97836 \n",
|
308 |
+
"6 CVE-2018-4939 9.8 0.96914 0.99720 \n",
|
309 |
+
"7 CVE-2018-15961 9.8 0.97436 0.99946 \n",
|
310 |
+
"8 CVE-2018-4878 9.8 0.97279 0.99859 \n",
|
311 |
+
"9 CVE-2020-5735 8.8 0.02271 0.89649 \n",
|
312 |
+
"\n",
|
313 |
+
" Description \n",
|
314 |
+
"0 Accellion FTA contains an OS command injection... \n",
|
315 |
+
"1 Accellion FTA contains an OS command injection... \n",
|
316 |
+
"2 Accellion FTA contains a SQL injection vulnera... \n",
|
317 |
+
"3 Accellion FTA contains a server-side request f... \n",
|
318 |
+
"4 Acrobat Acrobat and Reader contain a heap-base... \n",
|
319 |
+
"5 Adobe Acrobat and Reader contains a use-after-... \n",
|
320 |
+
"6 Adobe ColdFusion contains a deserialization of... \n",
|
321 |
+
"7 Adobe ColdFusion contains an unrestricted file... \n",
|
322 |
+
"8 Adobe Flash Player contains a use-after-free v... \n",
|
323 |
+
"9 Amcrest cameras and NVR contain a stack-based ... "
|
324 |
+
]
|
325 |
+
},
|
326 |
+
"execution_count": 7,
|
327 |
+
"metadata": {},
|
328 |
+
"output_type": "execute_result"
|
329 |
+
}
|
330 |
+
],
|
331 |
+
"source": [
|
332 |
+
"epss_kev_nvd.to_csv(\"epss_kev_nvd.csv\", index=False)\n",
|
333 |
+
"epss_kev_nvd.head(10)"
|
334 |
+
]
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"cell_type": "code",
|
338 |
+
"execution_count": null,
|
339 |
+
"metadata": {},
|
340 |
+
"outputs": [],
|
341 |
+
"source": []
|
342 |
+
}
|
343 |
+
],
|
344 |
+
"metadata": {
|
345 |
+
"interpreter": {
|
346 |
+
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
|
347 |
+
},
|
348 |
+
"kernelspec": {
|
349 |
+
"display_name": "Python 3 (ipykernel)",
|
350 |
+
"language": "python",
|
351 |
+
"name": "python3"
|
352 |
+
},
|
353 |
+
"language_info": {
|
354 |
+
"codemirror_mode": {
|
355 |
+
"name": "ipython",
|
356 |
+
"version": 3
|
357 |
+
},
|
358 |
+
"file_extension": ".py",
|
359 |
+
"mimetype": "text/x-python",
|
360 |
+
"name": "python",
|
361 |
+
"nbconvert_exporter": "python",
|
362 |
+
"pygments_lexer": "ipython3",
|
363 |
+
"version": "3.10.14"
|
364 |
+
}
|
365 |
+
},
|
366 |
+
"nbformat": 4,
|
367 |
+
"nbformat_minor": 4
|
368 |
+
}
|