|
""" |
|
modified based on diffusion library from Huggingface: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py |
|
""" |
|
import inspect |
|
import warnings |
|
from typing import List, Optional, Union |
|
|
|
import torch |
|
|
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.pipeline_utils import DiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler |
|
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer |
|
|
|
|
|
class ComposableStableDiffusionPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for text-to-image generation using Stable Diffusion. |
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offsensive or harmful. |
|
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. |
|
feature_extractor ([`CLIPFeatureExtractor`]): |
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPFeatureExtractor, |
|
): |
|
super().__init__() |
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
) |
|
|
|
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): |
|
r""" |
|
Enable sliced attention computation. |
|
When this option is enabled, the attention module will split the input tensor in slices, to compute attention |
|
in several steps. This is useful to save some memory in exchange for a small speed decrease. |
|
Args: |
|
slice_size (`str` or `int`, *optional*, defaults to `"auto"`): |
|
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If |
|
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, |
|
`attention_head_dim` must be a multiple of `slice_size`. |
|
""" |
|
if slice_size == "auto": |
|
|
|
|
|
slice_size = self.unet.config.attention_head_dim // 2 |
|
self.unet.set_attention_slice(slice_size) |
|
|
|
def disable_attention_slicing(self): |
|
r""" |
|
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go |
|
back to computing attention in one step. |
|
""" |
|
|
|
self.enable_attention_slicing(None) |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]], |
|
height: Optional[int] = 512, |
|
width: Optional[int] = 512, |
|
num_inference_steps: Optional[int] = 50, |
|
guidance_scale: Optional[float] = 7.5, |
|
eta: Optional[float] = 0.0, |
|
generator: Optional[torch.Generator] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
weights: Optional[str] = "", |
|
**kwargs, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
height (`int`, *optional*, defaults to 512): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to 512): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator`, *optional*): |
|
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation |
|
deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
|
|
if "torch_device" in kwargs: |
|
device = kwargs.pop("torch_device") |
|
warnings.warn( |
|
"`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0." |
|
" Consider using `pipe.to(torch_device)` instead." |
|
) |
|
|
|
|
|
if device is None: |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
self.to(device) |
|
|
|
if isinstance(prompt, str): |
|
batch_size = 1 |
|
elif isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if "|" in prompt: |
|
prompt = [x.strip() for x in prompt.split("|")] |
|
print(f"composing {prompt}...") |
|
|
|
|
|
text_input = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0] |
|
|
|
if not weights: |
|
|
|
print("using equal weights for all prompts...") |
|
pos_weights = torch.tensor( |
|
[1 / (text_embeddings.shape[0] - 1)] * (text_embeddings.shape[0] - 1), device=self.device |
|
).reshape(-1, 1, 1, 1) |
|
neg_weights = torch.tensor([1.0], device=self.device).reshape(-1, 1, 1, 1) |
|
mask = torch.tensor([False] + [True] * pos_weights.shape[0], dtype=torch.bool) |
|
else: |
|
|
|
num_prompts = len(prompt) if isinstance(prompt, list) else 1 |
|
weights = [float(w.strip()) for w in weights.split("|")] |
|
if len(weights) < num_prompts: |
|
weights.append(1.0) |
|
weights = torch.tensor(weights, device=self.device) |
|
assert len(weights) == text_embeddings.shape[0], "weights specified are not equal to the number of prompts" |
|
pos_weights = [] |
|
neg_weights = [] |
|
mask = [] |
|
for w in weights: |
|
if w > 0: |
|
pos_weights.append(w) |
|
mask.append(True) |
|
else: |
|
neg_weights.append(abs(w)) |
|
mask.append(False) |
|
|
|
pos_weights = torch.tensor(pos_weights, device=self.device).reshape(-1, 1, 1, 1) |
|
pos_weights = pos_weights / pos_weights.sum() |
|
neg_weights = torch.tensor(neg_weights, device=self.device).reshape(-1, 1, 1, 1) |
|
neg_weights = neg_weights / neg_weights.sum() |
|
mask = torch.tensor(mask, device=self.device, dtype=torch.bool) |
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
if do_classifier_free_guidance: |
|
max_length = text_input.input_ids.shape[-1] |
|
|
|
if torch.all(mask): |
|
|
|
uncond_input = self.tokenizer( |
|
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" |
|
) |
|
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] |
|
|
|
|
|
|
|
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) |
|
|
|
|
|
neg_weights = torch.tensor([1.0], device=self.device) |
|
mask = torch.tensor([False] + mask.detach().tolist(), device=self.device, dtype=torch.bool) |
|
|
|
|
|
|
|
|
|
|
|
|
|
latents_device = "cpu" if self.device.type == "mps" else self.device |
|
latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8) |
|
if latents is None: |
|
latents = torch.randn( |
|
latents_shape, |
|
generator=generator, |
|
device=latents_device, |
|
) |
|
else: |
|
if latents.shape != latents_shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") |
|
latents = latents.to(self.device) |
|
|
|
|
|
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) |
|
extra_set_kwargs = {} |
|
if accepts_offset: |
|
extra_set_kwargs["offset"] = 1 |
|
|
|
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) |
|
|
|
|
|
if isinstance(self.scheduler, LMSDiscreteScheduler): |
|
latents = latents * self.scheduler.sigmas[0] |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): |
|
|
|
latent_model_input = ( |
|
torch.cat([latents] * text_embeddings.shape[0]) if do_classifier_free_guidance else latents |
|
) |
|
if isinstance(self.scheduler, LMSDiscreteScheduler): |
|
sigma = self.scheduler.sigmas[i] |
|
|
|
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5) |
|
|
|
|
|
noise_preds = [] |
|
|
|
for latent_in, text_embedding_in in zip( |
|
torch.chunk(latent_model_input, chunks=latent_model_input.shape[0], dim=0), |
|
torch.chunk(text_embeddings, chunks=text_embeddings.shape[0], dim=0), |
|
): |
|
noise_preds.append(self.unet(latent_in, t, encoder_hidden_states=text_embedding_in).sample) |
|
noise_preds = torch.cat(noise_preds, dim=0) |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond = (noise_preds[~mask] * neg_weights).sum(dim=0, keepdims=True) |
|
noise_pred_text = (noise_preds[mask] * pos_weights).sum(dim=0, keepdims=True) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
if isinstance(self.scheduler, LMSDiscreteScheduler): |
|
latents = self.scheduler.step(noise_pred, i, latents, **extra_step_kwargs).prev_sample |
|
else: |
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
latents = 1 / 0.18215 * latents |
|
image = self.vae.decode(latents).sample |
|
|
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).numpy() |
|
|
|
|
|
safety_cheker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device) |
|
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_cheker_input.pixel_values) |
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|