|
import math
|
|
from typing import Dict, Optional
|
|
|
|
import torch
|
|
import torchvision.transforms.functional as FF
|
|
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import StableDiffusionPipeline
|
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
from diffusers.schedulers import KarrasDiffusionSchedulers
|
|
from diffusers.utils import USE_PEFT_BACKEND
|
|
|
|
|
|
try:
|
|
from compel import Compel
|
|
except ImportError:
|
|
Compel = None
|
|
|
|
KCOMM = "ADDCOMM"
|
|
KBRK = "BREAK"
|
|
|
|
|
|
class RegionalPromptingStableDiffusionPipeline(StableDiffusionPipeline):
|
|
r"""
|
|
Args for Regional Prompting Pipeline:
|
|
rp_args:dict
|
|
Required
|
|
rp_args["mode"]: cols, rows, prompt, prompt-ex
|
|
for cols, rows mode
|
|
rp_args["div"]: ex) 1;1;1(Divide into 3 regions)
|
|
for prompt, prompt-ex mode
|
|
rp_args["th"]: ex) 0.5,0.5,0.6 (threshold for prompt mode)
|
|
|
|
Optional
|
|
rp_args["save_mask"]: True/False (save masks in prompt mode)
|
|
|
|
Pipeline for text-to-image generation using Stable Diffusion.
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
|
|
Args:
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
text_encoder ([`CLIPTextModel`]):
|
|
Frozen text-encoder. Stable Diffusion uses the text portion of
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
tokenizer (`CLIPTokenizer`):
|
|
Tokenizer of class
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
|
scheduler ([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
|
Classification module that estimates whether generated images could be considered offensive or harmful.
|
|
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
|
feature_extractor ([`CLIPImageProcessor`]):
|
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
tokenizer: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
scheduler: KarrasDiffusionSchedulers,
|
|
safety_checker: StableDiffusionSafetyChecker,
|
|
feature_extractor: CLIPFeatureExtractor,
|
|
requires_safety_checker: bool = True,
|
|
):
|
|
super().__init__(
|
|
vae,
|
|
text_encoder,
|
|
tokenizer,
|
|
unet,
|
|
scheduler,
|
|
safety_checker,
|
|
feature_extractor,
|
|
requires_safety_checker,
|
|
)
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=safety_checker,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
prompt: str,
|
|
height: int = 512,
|
|
width: int = 512,
|
|
num_inference_steps: int = 50,
|
|
guidance_scale: float = 7.5,
|
|
negative_prompt: str = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[torch.Generator] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
rp_args: Dict[str, str] = None,
|
|
):
|
|
active = KBRK in prompt[0] if isinstance(prompt, list) else KBRK in prompt
|
|
if negative_prompt is None:
|
|
negative_prompt = "" if isinstance(prompt, str) else [""] * len(prompt)
|
|
|
|
device = self._execution_device
|
|
regions = 0
|
|
|
|
self.power = int(rp_args["power"]) if "power" in rp_args else 1
|
|
|
|
prompts = prompt if isinstance(prompt, list) else [prompt]
|
|
n_prompts = negative_prompt if isinstance(prompt, str) else [negative_prompt]
|
|
self.batch = batch = num_images_per_prompt * len(prompts)
|
|
all_prompts_cn, all_prompts_p = promptsmaker(prompts, num_images_per_prompt)
|
|
all_n_prompts_cn, _ = promptsmaker(n_prompts, num_images_per_prompt)
|
|
|
|
equal = len(all_prompts_cn) == len(all_n_prompts_cn)
|
|
|
|
if Compel:
|
|
compel = Compel(tokenizer=self.tokenizer, text_encoder=self.text_encoder)
|
|
|
|
def getcompelembs(prps):
|
|
embl = []
|
|
for prp in prps:
|
|
embl.append(compel.build_conditioning_tensor(prp))
|
|
return torch.cat(embl)
|
|
|
|
conds = getcompelembs(all_prompts_cn)
|
|
unconds = getcompelembs(all_n_prompts_cn)
|
|
embs = getcompelembs(prompts)
|
|
n_embs = getcompelembs(n_prompts)
|
|
prompt = negative_prompt = None
|
|
else:
|
|
conds = self.encode_prompt(prompts, device, 1, True)[0]
|
|
unconds = (
|
|
self.encode_prompt(n_prompts, device, 1, True)[0]
|
|
if equal
|
|
else self.encode_prompt(all_n_prompts_cn, device, 1, True)[0]
|
|
)
|
|
embs = n_embs = None
|
|
|
|
if not active:
|
|
pcallback = None
|
|
mode = None
|
|
else:
|
|
if any(x in rp_args["mode"].upper() for x in ["COL", "ROW"]):
|
|
mode = "COL" if "COL" in rp_args["mode"].upper() else "ROW"
|
|
ocells, icells, regions = make_cells(rp_args["div"])
|
|
|
|
elif "PRO" in rp_args["mode"].upper():
|
|
regions = len(all_prompts_p[0])
|
|
mode = "PROMPT"
|
|
reset_attnmaps(self)
|
|
self.ex = "EX" in rp_args["mode"].upper()
|
|
self.target_tokens = target_tokens = tokendealer(self, all_prompts_p)
|
|
thresholds = [float(x) for x in rp_args["th"].split(",")]
|
|
|
|
orig_hw = (height, width)
|
|
revers = True
|
|
|
|
def pcallback(s_self, step: int, timestep: int, latents: torch.FloatTensor, selfs=None):
|
|
if "PRO" in mode:
|
|
self.step = step
|
|
|
|
if len(self.attnmaps_sizes) > 3:
|
|
self.history[step] = self.attnmaps.copy()
|
|
for hw in self.attnmaps_sizes:
|
|
allmasks = []
|
|
basemasks = [None] * batch
|
|
for tt, th in zip(target_tokens, thresholds):
|
|
for b in range(batch):
|
|
key = f"{tt}-{b}"
|
|
_, mask, _ = makepmask(self, self.attnmaps[key], hw[0], hw[1], th, step)
|
|
mask = mask.unsqueeze(0).unsqueeze(-1)
|
|
if self.ex:
|
|
allmasks[b::batch] = [x - mask for x in allmasks[b::batch]]
|
|
allmasks[b::batch] = [torch.where(x > 0, 1, 0) for x in allmasks[b::batch]]
|
|
allmasks.append(mask)
|
|
basemasks[b] = mask if basemasks[b] is None else basemasks[b] + mask
|
|
basemasks = [1 - mask for mask in basemasks]
|
|
basemasks = [torch.where(x > 0, 1, 0) for x in basemasks]
|
|
allmasks = basemasks + allmasks
|
|
|
|
self.attnmasks[hw] = torch.cat(allmasks)
|
|
self.maskready = True
|
|
return latents
|
|
|
|
def hook_forward(module):
|
|
|
|
def forward(
|
|
hidden_states: torch.FloatTensor,
|
|
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
temb: Optional[torch.FloatTensor] = None,
|
|
scale: float = 1.0,
|
|
) -> torch.Tensor:
|
|
attn = module
|
|
xshape = hidden_states.shape
|
|
self.hw = (h, w) = split_dims(xshape[1], *orig_hw)
|
|
|
|
if revers:
|
|
nx, px = hidden_states.chunk(2)
|
|
else:
|
|
px, nx = hidden_states.chunk(2)
|
|
|
|
if equal:
|
|
hidden_states = torch.cat(
|
|
[px for i in range(regions)] + [nx for i in range(regions)],
|
|
0,
|
|
)
|
|
encoder_hidden_states = torch.cat([conds] + [unconds])
|
|
else:
|
|
hidden_states = torch.cat([px for i in range(regions)] + [nx], 0)
|
|
encoder_hidden_states = torch.cat([conds] + [unconds])
|
|
|
|
residual = hidden_states
|
|
|
|
args = () if USE_PEFT_BACKEND else (scale,)
|
|
|
|
if attn.spatial_norm is not None:
|
|
hidden_states = attn.spatial_norm(hidden_states, temb)
|
|
|
|
input_ndim = hidden_states.ndim
|
|
|
|
if input_ndim == 4:
|
|
batch_size, channel, height, width = hidden_states.shape
|
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
|
|
|
batch_size, sequence_length, _ = (
|
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
|
|
|
if attn.group_norm is not None:
|
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
|
|
|
args = () if USE_PEFT_BACKEND else (scale,)
|
|
query = attn.to_q(hidden_states, *args)
|
|
|
|
if encoder_hidden_states is None:
|
|
encoder_hidden_states = hidden_states
|
|
elif attn.norm_cross:
|
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
|
|
|
key = attn.to_k(encoder_hidden_states, *args)
|
|
value = attn.to_v(encoder_hidden_states, *args)
|
|
|
|
inner_dim = key.shape[-1]
|
|
head_dim = inner_dim // attn.heads
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
|
|
|
|
hidden_states = scaled_dot_product_attention(
|
|
self,
|
|
query,
|
|
key,
|
|
value,
|
|
attn_mask=attention_mask,
|
|
dropout_p=0.0,
|
|
is_causal=False,
|
|
getattn="PRO" in mode,
|
|
)
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
hidden_states = hidden_states.to(query.dtype)
|
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states, *args)
|
|
|
|
hidden_states = attn.to_out[1](hidden_states)
|
|
|
|
if input_ndim == 4:
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
|
|
|
if attn.residual_connection:
|
|
hidden_states = hidden_states + residual
|
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor
|
|
|
|
|
|
if any(x in mode for x in ["COL", "ROW"]):
|
|
reshaped = hidden_states.reshape(hidden_states.size()[0], h, w, hidden_states.size()[2])
|
|
center = reshaped.shape[0] // 2
|
|
px = reshaped[0:center] if equal else reshaped[0:-batch]
|
|
nx = reshaped[center:] if equal else reshaped[-batch:]
|
|
outs = [px, nx] if equal else [px]
|
|
for out in outs:
|
|
c = 0
|
|
for i, ocell in enumerate(ocells):
|
|
for icell in icells[i]:
|
|
if "ROW" in mode:
|
|
out[
|
|
0:batch,
|
|
int(h * ocell[0]) : int(h * ocell[1]),
|
|
int(w * icell[0]) : int(w * icell[1]),
|
|
:,
|
|
] = out[
|
|
c * batch : (c + 1) * batch,
|
|
int(h * ocell[0]) : int(h * ocell[1]),
|
|
int(w * icell[0]) : int(w * icell[1]),
|
|
:,
|
|
]
|
|
else:
|
|
out[
|
|
0:batch,
|
|
int(h * icell[0]) : int(h * icell[1]),
|
|
int(w * ocell[0]) : int(w * ocell[1]),
|
|
:,
|
|
] = out[
|
|
c * batch : (c + 1) * batch,
|
|
int(h * icell[0]) : int(h * icell[1]),
|
|
int(w * ocell[0]) : int(w * ocell[1]),
|
|
:,
|
|
]
|
|
c += 1
|
|
px, nx = (px[0:batch], nx[0:batch]) if equal else (px[0:batch], nx)
|
|
hidden_states = torch.cat([nx, px], 0) if revers else torch.cat([px, nx], 0)
|
|
hidden_states = hidden_states.reshape(xshape)
|
|
|
|
|
|
elif "PRO" in mode:
|
|
px, nx = (
|
|
torch.chunk(hidden_states) if equal else hidden_states[0:-batch],
|
|
hidden_states[-batch:],
|
|
)
|
|
|
|
if (h, w) in self.attnmasks and self.maskready:
|
|
|
|
def mask(input):
|
|
out = torch.multiply(input, self.attnmasks[(h, w)])
|
|
for b in range(batch):
|
|
for r in range(1, regions):
|
|
out[b] = out[b] + out[r * batch + b]
|
|
return out
|
|
|
|
px, nx = (mask(px), mask(nx)) if equal else (mask(px), nx)
|
|
px, nx = (px[0:batch], nx[0:batch]) if equal else (px[0:batch], nx)
|
|
hidden_states = torch.cat([nx, px], 0) if revers else torch.cat([px, nx], 0)
|
|
return hidden_states
|
|
|
|
return forward
|
|
|
|
def hook_forwards(root_module: torch.nn.Module):
|
|
for name, module in root_module.named_modules():
|
|
if "attn2" in name and module.__class__.__name__ == "Attention":
|
|
module.forward = hook_forward(module)
|
|
|
|
hook_forwards(self.unet)
|
|
|
|
output = StableDiffusionPipeline(**self.components)(
|
|
prompt=prompt,
|
|
prompt_embeds=embs,
|
|
negative_prompt=negative_prompt,
|
|
negative_prompt_embeds=n_embs,
|
|
height=height,
|
|
width=width,
|
|
num_inference_steps=num_inference_steps,
|
|
guidance_scale=guidance_scale,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
eta=eta,
|
|
generator=generator,
|
|
latents=latents,
|
|
output_type=output_type,
|
|
return_dict=return_dict,
|
|
callback_on_step_end=pcallback,
|
|
)
|
|
|
|
if "save_mask" in rp_args:
|
|
save_mask = rp_args["save_mask"]
|
|
else:
|
|
save_mask = False
|
|
|
|
if mode == "PROMPT" and save_mask:
|
|
saveattnmaps(
|
|
self,
|
|
output,
|
|
height,
|
|
width,
|
|
thresholds,
|
|
num_inference_steps // 2,
|
|
regions,
|
|
)
|
|
|
|
return output
|
|
|
|
|
|
|
|
def promptsmaker(prompts, batch):
|
|
out_p = []
|
|
plen = len(prompts)
|
|
for prompt in prompts:
|
|
add = ""
|
|
if KCOMM in prompt:
|
|
add, prompt = prompt.split(KCOMM)
|
|
add = add + " "
|
|
prompts = prompt.split(KBRK)
|
|
out_p.append([add + p for p in prompts])
|
|
out = [None] * batch * len(out_p[0]) * len(out_p)
|
|
for p, prs in enumerate(out_p):
|
|
for r, pr in enumerate(prs):
|
|
start = (p + r * plen) * batch
|
|
out[start : start + batch] = [pr] * batch
|
|
return out, out_p
|
|
|
|
|
|
|
|
|
|
def make_cells(ratios):
|
|
if ";" not in ratios and "," in ratios:
|
|
ratios = ratios.replace(",", ";")
|
|
ratios = ratios.split(";")
|
|
ratios = [inratios.split(",") for inratios in ratios]
|
|
|
|
icells = []
|
|
ocells = []
|
|
|
|
def startend(cells, array):
|
|
current_start = 0
|
|
array = [float(x) for x in array]
|
|
for value in array:
|
|
end = current_start + (value / sum(array))
|
|
cells.append([current_start, end])
|
|
current_start = end
|
|
|
|
startend(ocells, [r[0] for r in ratios])
|
|
|
|
for inratios in ratios:
|
|
if 2 > len(inratios):
|
|
icells.append([[0, 1]])
|
|
else:
|
|
add = []
|
|
startend(add, inratios[1:])
|
|
icells.append(add)
|
|
|
|
return ocells, icells, sum(len(cell) for cell in icells)
|
|
|
|
|
|
def make_emblist(self, prompts):
|
|
with torch.no_grad():
|
|
tokens = self.tokenizer(
|
|
prompts,
|
|
max_length=self.tokenizer.model_max_length,
|
|
padding=True,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
).input_ids.to(self.device)
|
|
embs = self.text_encoder(tokens, output_hidden_states=True).last_hidden_state.to(self.device, dtype=self.dtype)
|
|
return embs
|
|
|
|
|
|
def split_dims(xs, height, width):
|
|
xs = xs
|
|
|
|
def repeat_div(x, y):
|
|
while y > 0:
|
|
x = math.ceil(x / 2)
|
|
y = y - 1
|
|
return x
|
|
|
|
scale = math.ceil(math.log2(math.sqrt(height * width / xs)))
|
|
dsh = repeat_div(height, scale)
|
|
dsw = repeat_div(width, scale)
|
|
return dsh, dsw
|
|
|
|
|
|
|
|
def get_attn_maps(self, attn):
|
|
height, width = self.hw
|
|
target_tokens = self.target_tokens
|
|
if (height, width) not in self.attnmaps_sizes:
|
|
self.attnmaps_sizes.append((height, width))
|
|
|
|
for b in range(self.batch):
|
|
for t in target_tokens:
|
|
power = self.power
|
|
add = attn[b, :, :, t[0] : t[0] + len(t)] ** (power) * (self.attnmaps_sizes.index((height, width)) + 1)
|
|
add = torch.sum(add, dim=2)
|
|
key = f"{t}-{b}"
|
|
if key not in self.attnmaps:
|
|
self.attnmaps[key] = add
|
|
else:
|
|
if self.attnmaps[key].shape[1] != add.shape[1]:
|
|
add = add.view(8, height, width)
|
|
add = FF.resize(add, self.attnmaps_sizes[0], antialias=None)
|
|
add = add.reshape_as(self.attnmaps[key])
|
|
|
|
self.attnmaps[key] = self.attnmaps[key] + add
|
|
|
|
|
|
def reset_attnmaps(self):
|
|
self.step = 0
|
|
self.attnmaps = {}
|
|
self.attnmaps_sizes = []
|
|
self.attnmasks = {}
|
|
self.maskready = False
|
|
self.history = {}
|
|
|
|
|
|
def saveattnmaps(self, output, h, w, th, step, regions):
|
|
masks = []
|
|
for i, mask in enumerate(self.history[step].values()):
|
|
img, _, mask = makepmask(self, mask, h, w, th[i % len(th)], step)
|
|
if self.ex:
|
|
masks = [x - mask for x in masks]
|
|
masks.append(mask)
|
|
if len(masks) == regions - 1:
|
|
output.images.extend([FF.to_pil_image(mask) for mask in masks])
|
|
masks = []
|
|
else:
|
|
output.images.append(img)
|
|
|
|
|
|
def makepmask(
|
|
self, mask, h, w, th, step
|
|
):
|
|
th = th - step * 0.005
|
|
if 0.05 >= th:
|
|
th = 0.05
|
|
mask = torch.mean(mask, dim=0)
|
|
mask = mask / mask.max().item()
|
|
mask = torch.where(mask > th, 1, 0)
|
|
mask = mask.float()
|
|
mask = mask.view(1, *self.attnmaps_sizes[0])
|
|
img = FF.to_pil_image(mask)
|
|
img = img.resize((w, h))
|
|
mask = FF.resize(mask, (h, w), interpolation=FF.InterpolationMode.NEAREST, antialias=None)
|
|
lmask = mask
|
|
mask = mask.reshape(h * w)
|
|
mask = torch.where(mask > 0.1, 1, 0)
|
|
return img, mask, lmask
|
|
|
|
|
|
def tokendealer(self, all_prompts):
|
|
for prompts in all_prompts:
|
|
targets = [p.split(",")[-1] for p in prompts[1:]]
|
|
tt = []
|
|
|
|
for target in targets:
|
|
ptokens = (
|
|
self.tokenizer(
|
|
prompts,
|
|
max_length=self.tokenizer.model_max_length,
|
|
padding=True,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
).input_ids
|
|
)[0]
|
|
ttokens = (
|
|
self.tokenizer(
|
|
target,
|
|
max_length=self.tokenizer.model_max_length,
|
|
padding=True,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
).input_ids
|
|
)[0]
|
|
|
|
tlist = []
|
|
|
|
for t in range(ttokens.shape[0] - 2):
|
|
for p in range(ptokens.shape[0]):
|
|
if ttokens[t + 1] == ptokens[p]:
|
|
tlist.append(p)
|
|
if tlist != []:
|
|
tt.append(tlist)
|
|
|
|
return tt
|
|
|
|
|
|
def scaled_dot_product_attention(
|
|
self,
|
|
query,
|
|
key,
|
|
value,
|
|
attn_mask=None,
|
|
dropout_p=0.0,
|
|
is_causal=False,
|
|
scale=None,
|
|
getattn=False,
|
|
) -> torch.Tensor:
|
|
|
|
L, S = query.size(-2), key.size(-2)
|
|
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
|
|
attn_bias = torch.zeros(L, S, dtype=query.dtype, device=self.device)
|
|
if is_causal:
|
|
assert attn_mask is None
|
|
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
|
|
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
|
|
attn_bias.to(query.dtype)
|
|
|
|
if attn_mask is not None:
|
|
if attn_mask.dtype == torch.bool:
|
|
attn_mask.masked_fill_(attn_mask.logical_not(), float("-inf"))
|
|
else:
|
|
attn_bias += attn_mask
|
|
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
|
attn_weight += attn_bias
|
|
attn_weight = torch.softmax(attn_weight, dim=-1)
|
|
if getattn:
|
|
get_attn_maps(self, attn_weight)
|
|
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
|
|
return attn_weight @ value
|
|
|