""" modeled after the textual_inversion.py / train_dreambooth.py and the work of justinpinkney here: https://github.com/justinpinkney/stable-diffusion/blob/main/notebooks/imagic.ipynb """ import inspect import warnings from typing import List, Optional, Union import numpy as np import torch import torch.nn.functional as F import PIL from accelerate import Accelerator from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, logging # TODO: remove and import from diffusers.utils when the new version of diffusers is released from packaging import version from tqdm.auto import tqdm from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): PIL_INTERPOLATION = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: PIL_INTERPOLATION = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } # ------------------------------------------------------------------------------ logger = logging.get_logger(__name__) # pylint: disable=invalid-name def preprocess(image): w, h = image.size w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32 image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]) image = np.array(image).astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image) return 2.0 * image - 1.0 class ImagicStableDiffusionPipeline(DiffusionPipeline): r""" Pipeline for imagic image editing. See paper here: https://arxiv.org/pdf/2210.09276.pdf This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offsensive or harmful. Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. feature_extractor ([`CLIPFeatureExtractor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPFeatureExtractor, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): r""" Enable sliced attention computation. When this option is enabled, the attention module will split the input tensor in slices, to compute attention in several steps. This is useful to save some memory in exchange for a small speed decrease. Args: slice_size (`str` or `int`, *optional*, defaults to `"auto"`): When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` must be a multiple of `slice_size`. """ if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory slice_size = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(slice_size) def disable_attention_slicing(self): r""" Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go back to computing attention in one step. """ # set slice_size = `None` to disable `attention slicing` self.enable_attention_slicing(None) def train( self, prompt: Union[str, List[str]], image: Union[torch.FloatTensor, PIL.Image.Image], height: Optional[int] = 512, width: Optional[int] = 512, generator: Optional[torch.Generator] = None, embedding_learning_rate: float = 0.001, diffusion_model_learning_rate: float = 2e-6, text_embedding_optimization_steps: int = 500, model_fine_tuning_optimization_steps: int = 1000, **kwargs, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ message = "Please use `image` instead of `init_image`." init_image = deprecate("init_image", "0.12.0", message, take_from=kwargs) image = init_image or image accelerator = Accelerator( gradient_accumulation_steps=1, mixed_precision="fp16", ) if "torch_device" in kwargs: device = kwargs.pop("torch_device") warnings.warn( "`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0." " Consider using `pipe.to(torch_device)` instead." ) if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" self.to(device) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") # Freeze vae and unet self.vae.requires_grad_(False) self.unet.requires_grad_(False) self.text_encoder.requires_grad_(False) self.unet.eval() self.vae.eval() self.text_encoder.eval() if accelerator.is_main_process: accelerator.init_trackers( "imagic", config={ "embedding_learning_rate": embedding_learning_rate, "text_embedding_optimization_steps": text_embedding_optimization_steps, }, ) # get text embeddings for prompt text_input = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncaton=True, return_tensors="pt", ) text_embeddings = torch.nn.Parameter( self.text_encoder(text_input.input_ids.to(self.device))[0], requires_grad=True ) text_embeddings = text_embeddings.detach() text_embeddings.requires_grad_() text_embeddings_orig = text_embeddings.clone() # Initialize the optimizer optimizer = torch.optim.Adam( [text_embeddings], # only optimize the embeddings lr=embedding_learning_rate, ) if isinstance(image, PIL.Image.Image): image = preprocess(image) latents_dtype = text_embeddings.dtype image = image.to(device=self.device, dtype=latents_dtype) init_latent_image_dist = self.vae.encode(image).latent_dist image_latents = init_latent_image_dist.sample(generator=generator) image_latents = 0.18215 * image_latents progress_bar = tqdm(range(text_embedding_optimization_steps), disable=not accelerator.is_local_main_process) progress_bar.set_description("Steps") global_step = 0 logger.info("First optimizing the text embedding to better reconstruct the init image") for _ in range(text_embedding_optimization_steps): with accelerator.accumulate(text_embeddings): # Sample noise that we'll add to the latents noise = torch.randn(image_latents.shape).to(image_latents.device) timesteps = torch.randint(1000, (1,), device=image_latents.device) # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = self.scheduler.add_noise(image_latents, noise, timesteps) # Predict the noise residual noise_pred = self.unet(noisy_latents, timesteps, text_embeddings).sample loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() accelerator.backward(loss) optimizer.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 logs = {"loss": loss.detach().item()} # , "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) accelerator.wait_for_everyone() text_embeddings.requires_grad_(False) # Now we fine tune the unet to better reconstruct the image self.unet.requires_grad_(True) self.unet.train() optimizer = torch.optim.Adam( self.unet.parameters(), # only optimize unet lr=diffusion_model_learning_rate, ) progress_bar = tqdm(range(model_fine_tuning_optimization_steps), disable=not accelerator.is_local_main_process) logger.info("Next fine tuning the entire model to better reconstruct the init image") for _ in range(model_fine_tuning_optimization_steps): with accelerator.accumulate(self.unet.parameters()): # Sample noise that we'll add to the latents noise = torch.randn(image_latents.shape).to(image_latents.device) timesteps = torch.randint(1000, (1,), device=image_latents.device) # Add noise to the latents according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_latents = self.scheduler.add_noise(image_latents, noise, timesteps) # Predict the noise residual noise_pred = self.unet(noisy_latents, timesteps, text_embeddings).sample loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean() accelerator.backward(loss) optimizer.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 logs = {"loss": loss.detach().item()} # , "lr": lr_scheduler.get_last_lr()[0]} progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) accelerator.wait_for_everyone() self.text_embeddings_orig = text_embeddings_orig self.text_embeddings = text_embeddings @torch.no_grad() def __call__( self, alpha: float = 1.2, height: Optional[int] = 512, width: Optional[int] = 512, num_inference_steps: Optional[int] = 50, generator: Optional[torch.Generator] = None, output_type: Optional[str] = "pil", return_dict: bool = True, guidance_scale: float = 7.5, eta: float = 0.0, **kwargs, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if self.text_embeddings is None: raise ValueError("Please run the pipe.train() before trying to generate an image.") if self.text_embeddings_orig is None: raise ValueError("Please run the pipe.train() before trying to generate an image.") text_embeddings = alpha * self.text_embeddings_orig + (1 - alpha) * self.text_embeddings # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: uncond_tokens = [""] max_length = self.tokenizer.model_max_length uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = uncond_embeddings.shape[1] uncond_embeddings = uncond_embeddings.view(1, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. latents_shape = (1, self.unet.in_channels, height // 8, width // 8) latents_dtype = text_embeddings.dtype if self.device.type == "mps": # randn does not exist on mps latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to( self.device ) else: latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype) # set timesteps self.scheduler.set_timesteps(num_inference_steps) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand timesteps_tensor = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta for i, t in enumerate(self.progress_bar(timesteps_tensor)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample latents = 1 / 0.18215 * latents image = self.vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() if self.safety_checker is not None: safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to( self.device ) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype) ) else: has_nsfw_concept = None if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)