File size: 29,417 Bytes
7bd2a58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
from typing import Dict, List, Any
import os
import torch
from transformers import AutoTokenizer, AutoModel
import pandas as pd
import time
import numpy as np
from transformers import GenerationConfig
from P3LIB.precious3_gpt_multi_modal import Custom_MPTForCausalLM


class EndpointHandler:
    def __init__(self, path="insilicomedicine/precious3-gpt", device='cuda:1'):

        self.device = device
        self.model = AutoModel.from_pretrained(path, trust_remote_code=True).to(self.device)
        self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
        self.model.config.pad_token_id = self.tokenizer.pad_token_id
        self.model.config.bos_token_id = self.tokenizer.bos_token_id
        self.model.config.eos_token_id = self.tokenizer.eos_token_id

        unique_entities_p3 = pd.read_csv(
            'https://huggingface.co/insilicomedicine/precious3-gpt/raw/main/all_entities_with_type.csv')
        self.unique_compounds_p3 = [i.strip() for i in
                                    unique_entities_p3[unique_entities_p3.type == 'compound'].entity.to_list()]
        self.unique_genes_p3 = [i.strip() for i in
                                unique_entities_p3[unique_entities_p3.type == 'gene'].entity.to_list()]

    def create_prompt(self, prompt_config):

        prompt = "[BOS]"

        multi_modal_prefix = ''

        for k, v in prompt_config.items():
            if k == 'instruction':
                prompt += f'<{v}>' if isinstance(v, str) else "".join([f'<{v_i}>' for v_i in v])
            elif k == 'up':
                if v:
                    prompt += f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v,
                                                                                   str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
            elif k == 'down':
                if v:
                    prompt += f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v,
                                                                                   str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
            elif k == 'age':
                if isinstance(v, int):
                    if prompt_config['species'].strip() == 'human':
                        prompt += f'<{k}_individ>{v} </{k}_individ>'
                    elif prompt_config['species'].strip() == 'macaque':
                        prompt += f'<{k}_individ>Macaca-{int(v / 20)} </{k}_individ>'
            else:
                if v:
                    prompt += f'<{k}>{v.strip()} </{k}>' if isinstance(v, str) else f'<{k}>{" ".join(v)} </{k}>'
                else:
                    prompt += f'<{k}></{k}>'
        return prompt

    def generate_with_generation_config(self, input_ids, generation_config, max_new_tokens, random_seed=138):
        torch.manual_seed(random_seed)

        with torch.no_grad():
            generation_output = self.model.generate(
                input_ids=input_ids,
                generation_config=generation_config,
                return_dict_in_generate=True,
                output_scores=True,
                max_new_tokens=max_new_tokens
            )
        return generation_output

    def get_gene_probabilities(self, prompt_config, top_k=300, list_type='up', random_seed=138):
        """

        Args:

            top_k: how many top probable tokens to take

            list_type: "up" / "down"

        """
        prompt = self.create_prompt(prompt_config)
        assert list_type in ["up", "down"]

        if list_type == 'up':
            prompt += "<up>"

        print(prompt)
        ### Generation config  https://huggingface.co/blog/how-to-generate
        generation_config = GenerationConfig(temperature=0.8, num_beams=1, do_sample=True, top_p=None, top_k=3550,
                                             pad_token_id=self.tokenizer.pad_token_id, num_return_sequences=1)
        inputs = self.tokenizer(prompt, return_tensors="pt")
        input_ids = inputs["input_ids"].to(self.device)
        assert 3 not in input_ids[0]
        max_new_tokens = self.model.config.max_seq_len - len(input_ids[0])

        generation_output = self.generate_with_generation_config(input_ids=input_ids,
                                                                 generation_config=generation_config,
                                                                 max_new_tokens=max_new_tokens,
                                                                 random_seed=random_seed)
        #  print(generation_output)
        id_4_gene_token = list(generation_output.sequences[0][len(input_ids[0]) - 1:]).index(
            self.tokenizer.convert_tokens_to_ids([f'<{list_type}>'])[0])
        id_4_gene_token += 1
        print('This is token index where gene should be predicted: ', id_4_gene_token)

        values, indices = torch.topk(generation_output["scores"][id_4_gene_token - 1].view(-1), k=top_k)
        indices_decoded = self.tokenizer.decode(indices, skip_special_tokens=True)
        indices_decoded_list = indices_decoded.split('  ')

        generated_genes = sorted(set(indices_decoded_list) & set(self.unique_genes_p3), key=indices_decoded_list.index)
        return generated_genes


class HFEndpointHandler:
    def __init__(self, path="insilicomedicine/precious3-gpt", device='cuda:1'):
    
        self.device = device
        self.model = AutoModel.from_pretrained(path, trust_remote_code=True).to(self.device)
        self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
        self.model.config.pad_token_id = self.tokenizer.pad_token_id
        self.model.config.bos_token_id = self.tokenizer.bos_token_id
        self.model.config.eos_token_id = self.tokenizer.eos_token_id
        
        unique_entities_p3 = pd.read_csv('https://huggingface.co/insilicomedicine/precious3-gpt/raw/main/all_entities_with_type.csv')
        self.unique_compounds_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='compound'].entity.to_list()]
        self.unique_genes_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='gene'].entity.to_list()]


    def create_prompt(self, prompt_config):

        prompt = "[BOS]"

        multi_modal_prefix = ''

        for k, v in prompt_config.items():
            if k=='instruction':
                prompt+=f'<{v}>' if isinstance(v, str) else "".join([f'<{v_i}>' for v_i in v])
            elif k=='up':
                if v:
                    prompt+=f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
            elif k=='down':
                if v:
                    prompt+=f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
            elif k=='age':
                if isinstance(v, int):
                    if prompt_config['species'].strip() == 'human':
                        prompt+=f'<{k}_individ>{v} </{k}_individ>'
                    elif prompt_config['species'].strip() == 'macaque':
                        prompt+=f'<{k}_individ>Macaca-{int(v/20)} </{k}_individ>'
            else:
                if v:
                    prompt+=f'<{k}>{v.strip()} </{k}>' if isinstance(v, str) else f'<{k}>{" ".join(v)} </{k}>'
                else:
                    prompt+=f'<{k}></{k}>'
        return prompt

    def custom_generate(self,

                        input_ids, 

                        device, 

                        max_new_tokens,

                        mode, 

                        temperature=0.8, 

                        top_p=0.2, top_k=3550, 

                        n_next_tokens=30, num_return_sequences=1, random_seed=138):

        torch.manual_seed(random_seed)

        # Set parameters
        # temperature - Higher value for more randomness, lower for more control
        # top_p - Probability threshold for nucleus sampling (aka top-p sampling)
        # top_k - Ignore logits below the top-k value to reduce randomness (if non-zero)
        # n_next_tokens - Number of top next tokens when predicting compounds

        # Generate sequences
        outputs = []
        next_token_compounds = []
        next_token_up_genes = [] 
        next_token_down_genes = [] 
    
        for _ in range(num_return_sequences):
            start_time = time.time()
            generated_sequence = []
            current_token = input_ids.clone()

            for _ in range(max_new_tokens):  # Maximum length of generated sequence
                # Forward pass through the model
                logits = self.model.forward(
                    input_ids=current_token
                )[0]

                # Apply temperature to logits
                if temperature != 1.0:
                    logits = logits / temperature

                # Apply top-p sampling (nucleus sampling)
                sorted_logits, sorted_indices = torch.sort(logits, descending=True)
                cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
                sorted_indices_to_remove = cumulative_probs > top_p

                if top_k > 0:
                    sorted_indices_to_remove[..., top_k:] = 1

                # Set the logit values of the removed indices to a very small negative value
                inf_tensor = torch.tensor(float("-inf")).type(torch.bfloat16).to(logits.device)

                logits = logits.where(sorted_indices_to_remove, inf_tensor)
                
                # Sample the next token
                if current_token[0][-1] == self.tokenizer.encode('<drug>')[0] and len(next_token_compounds)==0:
                    next_token_compounds.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices)

                # Sample the next token for UP genes
                if current_token[0][-1] == self.tokenizer.encode('<up>')[0] and len(next_token_up_genes)==0:
                    next_token_up_genes.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices)
                    
                # Sample the next token for DOWN genes
                if current_token[0][-1] == self.tokenizer.encode('<down>')[0] and len(next_token_down_genes)==0:
                    next_token_down_genes.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices)

                next_token = torch.multinomial(torch.softmax(logits, dim=-1)[0], num_samples=1)[len(current_token[0])-1, :].unsqueeze(0)


                # Append the sampled token to the generated sequence
                generated_sequence.append(next_token.item())

                # Stop generation if an end token is generated
                if next_token == self.tokenizer.eos_token_id:
                    break

                # Prepare input for the next iteration
                current_token = torch.cat((current_token, next_token), dim=-1)
            print(time.time()-start_time)
            outputs.append(generated_sequence)
        
        # Process generated up/down lists
        processed_outputs = {"up": [], "down": []}
        if mode in ['meta2diff', 'meta2diff2compound']:
            
            
            predicted_up_genes_tokens = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_up_genes]
            predicted_up_genes = []
            for j in predicted_up_genes_tokens:
                generated_up_sample = [i.strip() for i in j]
                predicted_up_genes.append(sorted(set(generated_up_sample) & set(self.unique_genes_p3), key = generated_up_sample.index))
            processed_outputs['up'] = predicted_up_genes

            predicted_down_genes_tokens = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_down_genes]
            predicted_down_genes = []
            for j in predicted_down_genes_tokens:
                generated_down_sample = [i.strip() for i in j]
                predicted_down_genes.append(sorted(set(generated_down_sample) & set(self.unique_genes_p3), key = generated_down_sample.index))
            processed_outputs['down'] = predicted_down_genes
                
        else:
            processed_outputs = outputs
        
        predicted_compounds_ids = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_compounds]
        predicted_compounds = []
        for j in predicted_compounds_ids:
            predicted_compounds.append([i.strip() for i in j])
            
        return processed_outputs, predicted_compounds, random_seed


    def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
        """

        Args:

            data (:dict:):

                The payload with the text prompt and generation parameters.

        """
        
        data = data.copy()
        
        parameters = data.pop("parameters", None)
        config_data = data.pop("inputs", None)
        mode = data.pop('mode', 'Not specified')
        
        prompt = self.create_prompt(config_data)
        if mode != "diff2compound":
            prompt+="<up>"
        
        inputs = self.tokenizer(prompt, return_tensors="pt")
        input_ids = inputs["input_ids"].to(self.device)

        max_new_tokens = self.model.config.max_seq_len - len(input_ids[0]) 
        try:
        
            generated_sequence, raw_next_token_generation, out_seed = self.custom_generate(input_ids = input_ids, 
                                                                                           max_new_tokens=max_new_tokens, mode=mode,
                                                                                           device=self.device, **parameters)
            next_token_generation = [sorted(set(i) & set(self.unique_compounds_p3), key = i.index) for i in raw_next_token_generation]

            if mode == "meta2diff":
                outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']}
                out = {"output": outputs, "mode": mode, "message": "Done!", "input": prompt, 'random_seed': out_seed}
            elif mode == "meta2diff2compound":
                outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']}
                out = {
                "output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode, 
                    "message": "Done!", "input": prompt, 'random_seed': out_seed}
            elif mode == "diff2compound":
                outputs = generated_sequence
                out = {
                "output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode, 
                    "message": "Done!", "input": prompt, 'random_seed': out_seed}
            else:
                out = {"message": f"Specify one of the following modes: meta2diff, meta2diff2compound, diff2compound. Your mode is: {mode}"}

        except Exception as e:
            print(e)
            outputs, next_token_generation = [None], [None]
            out = {"output": outputs, "mode": mode, 'message': f"{e}", "input": prompt, 'random_seed': 138}

        return out

class MMEndpointHandler:
    def __init__(self, path="insilicomedicine/precious3-gpt-multi-modal", device='cuda:3'):

        self.device = device
        self.path = path
        # load model and processor from path
        self.model = Custom_MPTForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16).to(self.device)
        self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
        self.model.config.pad_token_id = self.tokenizer.pad_token_id
        self.model.config.bos_token_id = self.tokenizer.bos_token_id
        self.model.config.eos_token_id = self.tokenizer.eos_token_id
        unique_entities_p3 = pd.read_csv('https://huggingface.co/insilicomedicine/precious3-gpt/raw/main/all_entities_with_type.csv')
        self.unique_compounds_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='compound'].entity.to_list()]
        self.unique_genes_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='gene'].entity.to_list()]
        
        self.emb_gpt_genes = pd.read_pickle('https://huggingface.co/insilicomedicine/precious3-gpt-multi-modal/resolve/main/multi-modal-data/emb_gpt_genes.pickle')
        self.emb_hgt_genes = pd.read_pickle('https://huggingface.co/insilicomedicine/precious3-gpt-multi-modal/resolve/main/multi-modal-data/emb_hgt_genes.pickle')


    def create_prompt(self, prompt_config):

        prompt = "[BOS]"

        multi_modal_prefix = '<modality0><modality1><modality2><modality3>'*3

        for k, v in prompt_config.items():
            if k=='instruction':
                prompt+=f'<{v}>' if isinstance(v, str) else "".join([f'<{v_i}>' for v_i in v])
            elif k=='up':
                if v:
                    prompt+=f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
            elif k=='down':
                if v:
                    prompt+=f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
            elif k=='age':
                if isinstance(v, int):
                    if prompt_config['species'].strip() == 'human':
                        prompt+=f'<{k}_individ>{v} </{k}_individ>'
                    elif prompt_config['species'].strip() == 'macaque':
                        prompt+=f'<{k}_individ>Macaca-{int(v/20)} </{k}_individ>'
            else:
                if v:
                    prompt+=f'<{k}>{v.strip()} </{k}>' if isinstance(v, str) else f'<{k}>{" ".join(v)} </{k}>'
                else:
                    prompt+=f'<{k}></{k}>'
        return prompt

    def custom_generate(self,

                        input_ids, 

                        acc_embs_up_kg_mean, 

                        acc_embs_down_kg_mean, 

                        acc_embs_up_txt_mean, 

                        acc_embs_down_txt_mean,

                        device, 

                        max_new_tokens,

                        mode, 

                        temperature=0.8, 

                        top_p=0.2, top_k=3550, 

                        n_next_tokens=50, num_return_sequences=1, random_seed=138):

        torch.manual_seed(random_seed)

        # Set parameters
        # temperature - Higher value for more randomness, lower for more control
        # top_p - Probability threshold for nucleus sampling (aka top-p sampling)
        # top_k - Ignore logits below the top-k value to reduce randomness (if non-zero)
        # n_next_tokens - Number of top next tokens when predicting compounds

        modality0_emb = torch.unsqueeze(torch.from_numpy(acc_embs_up_kg_mean), 0).to(device) if isinstance(acc_embs_up_kg_mean, np.ndarray) else None
        modality1_emb = torch.unsqueeze(torch.from_numpy(acc_embs_down_kg_mean), 0).to(device) if isinstance(acc_embs_down_kg_mean, np.ndarray) else None
        modality2_emb = torch.unsqueeze(torch.from_numpy(acc_embs_up_txt_mean), 0).to(device) if isinstance(acc_embs_up_txt_mean, np.ndarray) else None
        modality3_emb = torch.unsqueeze(torch.from_numpy(acc_embs_down_txt_mean), 0).to(device) if isinstance(acc_embs_down_txt_mean, np.ndarray) else None


        # Generate sequences
        outputs = []
        next_token_compounds = []
        next_token_up_genes = [] 
        next_token_down_genes = []

        for _ in range(num_return_sequences):
            start_time = time.time()
            generated_sequence = []
            current_token = input_ids.clone()

            for _ in range(max_new_tokens):  # Maximum length of generated sequence
                # Forward pass through the model
                logits = self.model.forward(
                    input_ids=current_token, 
                    modality0_emb=modality0_emb,
                    modality0_token_id=self.tokenizer.encode('<modality0>')[0], # 62191, 
                    modality1_emb=modality1_emb,
                    modality1_token_id=self.tokenizer.encode('<modality1>')[0], # 62192,
                    modality2_emb=modality2_emb,
                    modality2_token_id=self.tokenizer.encode('<modality2>')[0], # 62193, 
                    modality3_emb=modality3_emb,
                    modality3_token_id=self.tokenizer.encode('<modality3>')[0], # 62194
                )[0]

                # Apply temperature to logits
                if temperature != 1.0:
                    logits = logits / temperature

                # Apply top-p sampling (nucleus sampling)
                sorted_logits, sorted_indices = torch.sort(logits, descending=True)
                cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
                sorted_indices_to_remove = cumulative_probs > top_p

                if top_k > 0:
                    sorted_indices_to_remove[..., top_k:] = 1

                # Set the logit values of the removed indices to a very small negative value
                inf_tensor = torch.tensor(float("-inf")).type(torch.bfloat16).to(logits.device)

                logits = logits.where(sorted_indices_to_remove, inf_tensor)


                # Sample the next token
                if current_token[0][-1] == self.tokenizer.encode('<drug>')[0] and len(next_token_compounds)==0:
                    next_token_compounds.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices)

                # Sample the next token for UP genes
                if current_token[0][-1] == self.tokenizer.encode('<up>')[0] and len(next_token_up_genes)==0:
                    next_token_up_genes.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices)
                    
                # Sample the next token for DOWN genes
                if current_token[0][-1] == self.tokenizer.encode('<down>')[0] and len(next_token_down_genes)==0:
                    next_token_down_genes.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices)

                next_token = torch.multinomial(torch.softmax(logits, dim=-1)[0], num_samples=1)[len(current_token[0])-1, :].unsqueeze(0)


                # Append the sampled token to the generated sequence
                generated_sequence.append(next_token.item())

                # Stop generation if an end token is generated
                if next_token == self.tokenizer.eos_token_id:
                    break

                # Prepare input for the next iteration
                current_token = torch.cat((current_token, next_token), dim=-1)
            print(time.time()-start_time)
            outputs.append(generated_sequence)
        
        # Process generated up/down lists
        processed_outputs = {"up": [], "down": []}
        if mode in ['meta2diff', 'meta2diff2compound']:
            predicted_up_genes_tokens = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_up_genes]
            predicted_up_genes = []
            for j in predicted_up_genes_tokens:
                generated_up_sample = [i.strip() for i in j]
                predicted_up_genes.append(sorted(set(generated_up_sample) & set(self.unique_genes_p3), key = generated_up_sample.index))
            processed_outputs['up'] = predicted_up_genes

            predicted_down_genes_tokens = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_down_genes]
            predicted_down_genes = []
            for j in predicted_down_genes_tokens:
                generated_down_sample = [i.strip() for i in j]
                predicted_down_genes.append(sorted(set(generated_down_sample) & set(self.unique_genes_p3), key = generated_down_sample.index))
            processed_outputs['down'] = predicted_down_genes
                
        else:
            processed_outputs = outputs
        
        predicted_compounds_ids = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_compounds]
        predicted_compounds = []
        for j in predicted_compounds_ids:
            predicted_compounds.append([i.strip() for i in j])
            
        return processed_outputs, predicted_compounds, random_seed


    def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
        """

        Args:

            data (:dict:):

                The payload with the text prompt and generation parameters.

        """
        data = data.copy()
        parameters = data.pop("parameters", None)
        config_data = data.pop("inputs", None)
        mode = data.pop('mode', 'Not specified')
        
        prompt = self.create_prompt(config_data)
        if mode != "diff2compound":
            prompt+="<up>"
        
        inputs = self.tokenizer(prompt, return_tensors="pt")
        input_ids = inputs["input_ids"].to(self.device)

        max_new_tokens = self.model.config.max_seq_len - len(input_ids[0]) 
        try:
            if set(["up", "down"]) & set(config_data.keys()):
                acc_embs_up1 = []
                acc_embs_up2 = []
                for gs in config_data['up']: 
                    try:
                        acc_embs_up1.append(self.emb_hgt_genes[self.emb_hgt_genes.gene_symbol==gs].embs.values[0])
                        acc_embs_up2.append(self.emb_gpt_genes[self.emb_gpt_genes.gene_symbol==gs].embs.values[0])
                    except Exception as e: 
                        pass
                acc_embs_up1_mean = np.array(acc_embs_up1).mean(0) if acc_embs_up1 else None
                acc_embs_up2_mean = np.array(acc_embs_up2).mean(0) if acc_embs_up2 else None

                acc_embs_down1 = []
                acc_embs_down2 = []
                for gs in config_data['down']:
                    try:
                        acc_embs_down1.append(self.emb_hgt_genes[self.emb_hgt_genes.gene_symbol==gs].embs.values[0])
                        acc_embs_down2.append(self.emb_gpt_genes[self.emb_gpt_genes.gene_symbol==gs].embs.values[0])
                    except Exception as e: 
                        pass
                acc_embs_down1_mean = np.array(acc_embs_down1).mean(0) if acc_embs_down1 else None
                acc_embs_down2_mean = np.array(acc_embs_down2).mean(0) if acc_embs_down2 else None
            else:
                acc_embs_up1_mean, acc_embs_up2_mean, acc_embs_down1_mean, acc_embs_down2_mean = None, None, None, None

            generated_sequence, raw_next_token_generation, out_seed = self.custom_generate(input_ids = input_ids, 
                                                             acc_embs_up_kg_mean=acc_embs_up1_mean,
                                                             acc_embs_down_kg_mean=acc_embs_down1_mean, 
                                                             acc_embs_up_txt_mean=acc_embs_up2_mean,
                                                             acc_embs_down_txt_mean=acc_embs_down2_mean, max_new_tokens=max_new_tokens, mode=mode,
                                                             device=self.device, **parameters)
            next_token_generation = [sorted(set(i) & set(self.unique_compounds_p3), key = i.index) for i in raw_next_token_generation]

            if mode == "meta2diff":
                outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']}
                out = {"output": outputs, "mode": mode, "message": "Done!", "input": prompt, 'random_seed': out_seed}
            elif mode == "meta2diff2compound":
                outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']}
                out = {
                "output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode, 
                    "message": "Done!", "input": prompt, 'random_seed': out_seed}
            elif mode == "diff2compound":
                outputs = generated_sequence
                out = {
                "output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode, 
                    "message": "Done!", "input": prompt, 'random_seed': out_seed}
            else:
                out = {"message": f"Specify one of the following modes: meta2diff, meta2diff2compound, diff2compound. Your mode is: {mode}"}

        except Exception as e:
            print(e)
            outputs, next_token_generation = [None], [None]
            out = {"output": outputs, "mode": mode, 'message': f"{e}", "input": prompt, 'random_seed': 138}

        return out

def main():
    pass

if __name__=="__main__":
    main()