File size: 22,667 Bytes
d851abd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import pandas as pd
import pickle
from typing import List, Dict, Optional
from copy import copy as cp
import json

class TCMEntity():
    empty_override = True
    desc = ''
    cid = -1
    entity = 'superclass'

    def __init__(self,
                 pref_name: str, desc: str = '',
                 synonyms: Optional[List[str]] = None,
                 **kwargs):
        self.pref_name = pref_name
        self.desc = desc
        self.synonyms = [] if synonyms is None else [x for x in synonyms if str(x).strip() != 'NA']

        self.targets = {"known": dict(), "predicted": dict()}

        self.formulas = []
        self.herbs = []
        self.ingrs = []

        for k, v in kwargs.items():
            self.__dict__[k] = v

    def serialize(self):
        init_dict = dict(
            cid=self.cid,
            targets_known=self.targets['known'],
            targets_pred=self.targets['predicted'],
            pref_name=self.pref_name, desc=self.desc,
            synonyms=cp(self.synonyms),
            entity=self.entity
        )
        link_dict = self._get_link_dict()
        out_dict = {"init": init_dict, "links": link_dict}
        return out_dict

    @classmethod
    def load(cls,
             db: 'TCMDB', ser_dict: dict,
             skip_links = True):
        init_args = ser_dict['init']

        if skip_links:
            init_args.update({"empty_override":True})
        else:
            init_args.update({"empty_override": False})

        new_entity = cls(**init_args)
        if not skip_links:
            links = ser_dict['links']
            new_entity._set_links(db, links)
        return (new_entity)

    def _get_link_dict(self):
        return dict(
            ingrs=[x.cid for x in self.ingrs],
            herbs=[x.pref_name for x in self.herbs],
            formulas=[x.pref_name for x in self.formulas]
        )

    def _set_links(self, db: 'TCMDB', links: dict):
        for ent_type in links:
            self.__dict__[ent_type] = [db.__dict__[ent_type].get(x) for x in links[ent_type]]
            self.__dict__[ent_type] = [x for x in self.__dict__[ent_type] if x is not None]


class Ingredient(TCMEntity):
    entity: str = 'ingredient'

    def __init__(self, cid: int,
                 targets_pred: Optional[Dict] = None,
                 targets_known: Optional[Dict] = None,
                 synonyms: Optional[List[str]] = None,
                 pref_name: str = '', desc: str = '',
                 empty_override: bool = True, **kwargs):

        if not empty_override:
            assert targets_known is not None or targets_pred is not None, \
                f"Cant submit a compound with no targets at all (CID:{cid})"

        super().__init__(pref_name, synonyms, desc, **kwargs)

        self.cid = cid
        self.targets = {
            'known': targets_known if targets_known is not None else {"symbols": [], 'entrez_ids': []},
            'predicted': targets_pred if targets_pred is not None else {"symbols": [], 'entrez_ids': []}
        }


class Herb(TCMEntity):
    entity: str = 'herb'

    def __init__(self, pref_name: str,
                 ingrs: Optional[List[Ingredient]] = None,
                 synonyms: Optional[List[str]] = None,
                 desc: str = '',
                 empty_override: bool = True, **kwargs):

        if ingrs is None:
            ingrs = []

        if not ingrs and not empty_override:
            raise ValueError(f"No ingredients provided for {pref_name}")

        super().__init__(pref_name, synonyms, desc, **kwargs)

        self.ingrs = ingrs

    def is_same(self, other: 'Herb') -> bool:
        if len(self.ingrs) != len(other.ingrs):
            return False
        this_ingrs = set(x.cid for x in self.ingrs)
        other_ingrs = set(x.cid for x in other.ingrs)
        return this_ingrs == other_ingrs


class Formula(TCMEntity):
    entity: str = 'formula'

    def __init__(self, pref_name: str,
                 herbs: Optional[List[Herb]] = None,
                 synonyms: Optional[List[str]] = None,
                 desc: str = '',
                 empty_override: bool = False, **kwargs):

        if herbs is None:
            herbs = []

        if not herbs and not empty_override:
            raise ValueError(f"No herbs provided for {pref_name}")

        super().__init__(pref_name, synonyms, desc, **kwargs)
        self.herbs = herbs

    def is_same(self, other: 'Formula') -> bool:
        if len(self.herbs) != len(other.herbs):
            return False
        this_herbs = set(x.pref_name for x in self.herbs)
        other_herbs = set(x.pref_name for x in other.herbs)
        return this_herbs == other_herbs


class TCMDB:
    hf_repo: str = "f-galkin/batman2"
    hf_subsets: Dict[str, str] = {'formulas': 'batman_formulas',
                                  'herbs': 'batman_herbs',
                                  'ingredients': 'batman_ingredients'}

    def __init__(self, p_batman: str):
        p_batman = p_batman.removesuffix("/") + "/"

        self.batman_files = dict(p_formulas='formula_browse.txt',
                                 p_herbs='herb_browse.txt',
                                 p_pred_by_tg='predicted_browse_by_targets.txt',
                                 p_known_by_tg='known_browse_by_targets.txt',
                                 p_pred_by_ingr='predicted_browse_by_ingredinets.txt',
                                 p_known_by_ingr='known_browse_by_ingredients.txt')

        self.batman_files = {x: p_batman + y for x, y in self.batman_files.items()}

        self.ingrs = None
        self.herbs = None
        self.formulas = None

    @classmethod
    def make_new_db(cls, p_batman: str):
        new_db = cls(p_batman)

        new_db.parse_ingredients()
        new_db.parse_herbs()
        new_db.parse_formulas()

        return (new_db)

    def parse_ingredients(self):

        pred_tgs = pd.read_csv(self.batman_files['p_pred_by_tg'],
                               sep='\t', index_col=None, header=0,
                               na_filter=False)
        known_tgs = pd.read_csv(self.batman_files['p_known_by_tg'],
                                sep='\t', index_col=None, header=0,
                                na_filter=False)
        entrez_to_symb = {int(pred_tgs.loc[x, 'entrez_gene_id']): pred_tgs.loc[x, 'entrez_gene_symbol'] for x in
                          pred_tgs.index}
        # 9927 gene targets
        entrez_to_symb.update({int(known_tgs.loc[x, 'entrez_gene_id']): \
                                   known_tgs.loc[x, 'entrez_gene_symbol'] for x in known_tgs.index})

        known_ingreds = pd.read_csv(self.batman_files['p_known_by_ingr'],
                                    index_col=0, header=0, sep='\t',
                                    na_filter=False)
        # this BATMAN table is badly formatted
        # you cant just read it
        # df_pred = pd.read_csv(p_pred, index_col=0, header=0, sep='\t')
        pred_ingreds = dict()
        with open(self.batman_files['p_pred_by_ingr'], 'r') as f:
            # skip header
            f.readline()
            newline = f.readline()
            while newline != '':
                cid, other_line = newline.split(' ', 1)
                name, entrez_ids = other_line.rsplit(' ', 1)
                entrez_ids = [int(x.split("(")[0]) for x in entrez_ids.split("|") if not x == "\n"]
                pred_ingreds[int(cid)] = {"targets": entrez_ids, 'name': name}
                newline = f.readline()

        all_BATMAN_CIDs = list(set(pred_ingreds.keys()) | set(known_ingreds.index))
        all_BATMAN_CIDs = [int(x) for x in all_BATMAN_CIDs if str(x).strip() != 'NA']

        # get targets for selected cpds
        ingredients = dict()
        for cid in all_BATMAN_CIDs:
            known_name, pred_name, synonyms = None, None, []
            if cid in known_ingreds.index:
                known_name = known_ingreds.loc[cid, 'IUPAC_name']
                known_symbs = known_ingreds.loc[cid, 'known_target_proteins'].split("|")
            else:
                known_symbs = []

            pred_ids = pred_ingreds.get(cid, [])
            if pred_ids:
                pred_name = pred_ids.get('name')
                if known_name is None:
                    cpd_name = pred_name
                elif known_name != pred_name:
                    cpd_name = min([known_name, pred_name], key=lambda x: sum([x.count(y) for y in "'()-[]1234567890"]))
                    synonyms = [x for x in [known_name, pred_name] if x != cpd_name]

                pred_ids = pred_ids.get('targets', [])

            ingredients[cid] = dict(pref_name=cpd_name,
                                    synonyms=synonyms,
                                    targets_known={"symbols": known_symbs,
                                                   "entrez_ids": [int(x) for x, y in entrez_to_symb.items() if
                                                                  y in known_symbs]},
                                    targets_pred={"symbols": [entrez_to_symb.get(x) for x in pred_ids],
                                                  "entrez_ids": pred_ids})
        ingredients_objs = {x: Ingredient(cid=x, **y) for x, y in ingredients.items()}
        self.ingrs = ingredients_objs

    def parse_herbs(self):
        if self.ingrs is None:
            raise ValueError("Herbs cannot be added before the ingredients")
        # load the herbs file
        name_cols = ['Pinyin.Name', 'Chinese.Name', 'English.Name', 'Latin.Name']
        herbs_df = pd.read_csv(self.batman_files['p_herbs'],
                               index_col=None, header=0, sep='\t',
                               na_filter=False)
        for i in herbs_df.index:

            herb_name = herbs_df.loc[i, 'Pinyin.Name'].strip()
            if herb_name == 'NA':
                herb_name = [x.strip() for x in herbs_df.loc[i, name_cols].tolist() if not x == 'NA']
                herb_name = [x for x in herb_name if x != '']
                if not herb_name:
                    raise ValueError(f"LINE {i}: provided a herb with no names")
                else:
                    herb_name = herb_name[-1]

            herb_cids = herbs_df.loc[i, 'Ingredients'].split("|")

            herb_cids = [x.split("(")[-1].removesuffix(")").strip() for x in herb_cids]
            herb_cids = [int(x) for x in herb_cids if x.isnumeric()]

            missed_ingrs = [x for x in herb_cids if self.ingrs.get(x) is None]
            for cid in missed_ingrs:
                self.add_ingredient(cid=int(cid), pref_name='',
                                    empty_override=True)
            herb_ingrs = [self.ingrs[int(x)] for x in herb_cids]

            self.add_herb(pref_name=herb_name,
                          ingrs=herb_ingrs,
                          synonyms=[x for x in herbs_df.loc[i, name_cols].tolist() if not x == "NA"],
                          empty_override=True)

    def parse_formulas(self):
        if self.herbs is None:
            raise ValueError("Formulas cannot be added before the herbs")
        formulas_df = pd.read_csv(self.batman_files['p_formulas'], index_col=None, header=0,
                                  sep='\t', na_filter=False)
        for i in formulas_df.index:

            composition = formulas_df.loc[i, 'Pinyin.composition'].split(",")
            composition = [x.strip() for x in composition if not x.strip() == 'NA']
            if not composition:
                continue

            missed_herbs = [x.strip() for x in composition if self.herbs.get(x) is None]
            for herb in missed_herbs:
                self.add_herb(pref_name=herb,
                              desc='Missing in the original herb catalog, but present among formula components',
                              ingrs=[], empty_override=True)

            formula_herbs = [self.herbs[x] for x in composition]
            self.add_formula(pref_name=formulas_df.loc[i, 'Pinyin.Name'].strip(),
                             synonyms=[formulas_df.loc[i, 'Chinese.Name']],
                             herbs=formula_herbs)

    def add_ingredient(self, **kwargs):
        if self.ingrs is None:
            self.ingrs = dict()

        new_ingr = Ingredient(**kwargs)
        if not new_ingr.cid in self.ingrs:
            self.ingrs.update({new_ingr.cid: new_ingr})

    def add_herb(self, **kwargs):
        if self.herbs is None:
            self.herbs = dict()

        new_herb = Herb(**kwargs)
        old_herb = self.herbs.get(new_herb.pref_name)
        if not old_herb is None:
            if_same = new_herb.is_same(old_herb)
            if if_same:
                return

            same_name = new_herb.pref_name
            all_dupes = [self.herbs[x] for x in self.herbs if x.split('~')[0] == same_name] + [new_herb]
            new_names = [same_name + f"~{x + 1}" for x in range(len(all_dupes))]
            for i, duped in enumerate(all_dupes):
                duped.pref_name = new_names[i]
            self.herbs.pop(same_name)
            self.herbs.update({x.pref_name: x for x in all_dupes})
        else:
            self.herbs.update({new_herb.pref_name: new_herb})

        for cpd in new_herb.ingrs:
            cpd_herbs = [x.pref_name for x in cpd.herbs]
            if not new_herb.pref_name in cpd_herbs:
                cpd.herbs.append(new_herb)

    def add_formula(self, **kwargs):

        if self.formulas is None:
            self.formulas = dict()

        new_formula = Formula(**kwargs)
        old_formula = self.formulas.get(new_formula.pref_name)
        if not old_formula is None:
            is_same = new_formula.is_same(old_formula)
            if is_same:
                return
            same_name = new_formula.pref_name
            all_dupes = [self.formulas[x] for x in self.formulas if x.split('~')[0] == same_name] + [new_formula]
            new_names = [same_name + f"~{x + 1}" for x in range(len(all_dupes))]
            for i, duped in enumerate(all_dupes):
                duped.pref_name = new_names[i]
            self.formulas.pop(same_name)
            self.formulas.update({x.pref_name: x for x in all_dupes})
        else:
            self.formulas.update({new_formula.pref_name: new_formula})

        for herb in new_formula.herbs:
            herb_formulas = [x.pref_name for x in herb.formulas]
            if not new_formula.pref_name in herb_formulas:
                herb.formulas.append(new_formula)

    def link_ingredients_n_formulas(self):
        for h in self.herbs.values():
            for i in h.ingrs:
                fla_names = set(x.pref_name for x in i.formulas)
                i.formulas += [x for x in h.formulas if not x.pref_name in fla_names]
            for f in h.formulas:
                ingr_cids = set(x.cid for x in f.ingrs)
                f.ingrs += [x for x in h.ingrs if not x.cid in ingr_cids]

    def serialize(self):
        out_dict = dict(
            ingredients={cid: ingr.serialize() for cid, ingr in self.ingrs.items()},
            herbs={name: herb.serialize() for name, herb in self.herbs.items()},
            formulas={name: formula.serialize() for name, formula in self.formulas.items()}
        )
        return (out_dict)

    def save_to_flat_json(self, p_out: str):
        ser_db = db.serialize()
        flat_db = dict()
        for ent_type in ser_db:
            for i, obj in ser_db[ent_type].items():
                flat_db[f"{ent_type}:{i}"] = obj
        with open(p_out, "w") as f:
            f.write(json.dumps(flat_db))

    def save_to_json(self, p_out: str):
        with open(p_out, "w") as f:
            json.dump(self.serialize(), f)

    @classmethod
    def load(cls, ser_dict: dict):
        db = cls(p_batman="")

        # make sure to create all entities before you link them together
        db.ingrs = {int(cid): Ingredient.load(db, ingr, skip_links=True) for cid, ingr in
                    ser_dict['ingredients'].items()}
        db.herbs = {name: Herb.load(db, herb, skip_links=True) for name, herb in ser_dict['herbs'].items()}
        db.formulas = {name: Formula.load(db, formula, skip_links=True) for name, formula in
                       ser_dict['formulas'].items()}

        # now set the links
        for i in db.ingrs.values():
            # NB: somehow gotta make it work w/out relying on str-int conversion
            i._set_links(db, ser_dict['ingredients'][str(i.cid)]['links'])
        for h in db.herbs.values():
            h._set_links(db, ser_dict['herbs'][h.pref_name]['links'])
        for f in db.formulas.values():
            f._set_links(db, ser_dict['formulas'][f.pref_name]['links'])
        return (db)

    @classmethod
    def read_from_json(cls, p_file: str):
        with open(p_file, "r") as f:
            json_db = json.load(f)
        db = cls.load(json_db)
        return (db)

    @classmethod
    def download_from_hf(cls):
        from datasets import load_dataset
        dsets = {x: load_dataset(cls.hf_repo, y) for x, y in cls.hf_subsets.items()}

        # speed this up somehow

        known_tgs = {str(x['cid']): [y.split("(") for y in eval(x['targets_known'])] for x in dsets['ingredients']['train']}
        known_tgs = {x:{'symbols':[z[0] for z in y], "entrez_ids":[int(z[1].strip(")")) for z in y]} for x,y in known_tgs.items()}
        pred_tgs = {str(x['cid']): [y.split("(") for y in eval(x['targets_pred'])] for x in dsets['ingredients']['train']}
        pred_tgs = {x:{'symbols':[z[0] for z in y], "entrez_ids":[int(z[1].strip(")")) for z in y]} for x,y in pred_tgs.items()}

        json_db = dict()
        json_db['ingredients'] = {str(x['cid']): {'init': dict(cid=int(x['cid']),
                                                               targets_known=known_tgs[str(x['cid'])],
                                                               targets_pred=pred_tgs[str(x['cid'])],
                                                               pref_name=x['pref_name'],
                                                               synonyms=eval(x['synonyms']),
                                                               desc=x['description']
                                                               ),

                                                  'links': dict(
                                                      herbs=eval(x['herbs']),
                                                      formulas=eval(x['formulas'])
                                                  )
                                                  }
                                  for x in dsets['ingredients']['train']}

        json_db['herbs'] = {x['pref_name']: {'init': dict(pref_name=x['pref_name'],
                                                          synonyms=eval(x['synonyms']),
                                                          desc=x['description']),
                                             'links': dict(ingrs=eval(x['ingredients']),
                                                           formulas=eval(x['formulas']))} for x in
                            dsets['herbs']['train']}

        json_db['formulas'] = {x['pref_name']: {'init': dict(pref_name=x['pref_name'],
                                                             synonyms=eval(x['synonyms']),
                                                             desc=x['description']),
                                                'links': dict(ingrs=eval(x['ingredients']),
                                                              herbs=eval(x['herbs']))} for x in
                               dsets['formulas']['train']}

        db = cls.load(json_db)
        return (db)

    def drop_isolated(self, how='any'):
        match how:
            case 'any':
                self.herbs = {x: y for x, y in self.herbs.items() if (y.ingrs and y.formulas)}
                self.formulas = {x: y for x, y in self.formulas.items() if (y.ingrs and y.herbs)}
                self.ingrs = {x: y for x, y in self.ingrs.items() if (y.formulas and y.herbs)}
            case 'all':
                self.herbs = {x: y for x, y in self.herbs.items() if (y.ingrs or y.formulas)}
                self.formulas = {x: y for x, y in self.formulas.items() if (y.ingrs or y.herbs)}
                self.ingrs = {x: y for x, y in self.ingrs.items() if (y.formulas or y.herbs)}
            case _:
                raise ValueError(f'Unknown how parameter: {how}. Known parameters are "any" and "all"')

    def select_formula_by_cpd(self, cids: List):
        cids = set(x for x in cids if x in self.ingrs)
        if not cids:
            return
        cpd_counts = {x: len(set([z.cid for z in y.ingrs]) & cids) for x, y in self.formulas.items()}
        n_max = max(cpd_counts.values())
        if n_max == 0:
            return (n_max, [])
        selected = [x for x, y in cpd_counts.items() if y == n_max]
        return (n_max, selected)

    def pick_formula_by_cpd(self, cids: List):
        cids = [x for x in cids if x in self.ingrs]
        if not cids:
            return
        raise NotImplementedError()

    def select_formula_by_herb(self, herbs: List):
        raise NotImplementedError()

    def pick_formula_by_herb(self, herbs: List):
        raise NotImplementedError()


def main(ab_initio=False,
         p_BATMAN="./BATMAN/",
         fname='BATMAN_DB.json'):
    p_BATMAN = p_BATMAN.removesuffix("/") + "/"
    # Use in case you want to recreate the TCMDB database of Chinese medicine from BATMAN files
    if ab_initio:
        db = TCMDB.make_new_db(p_BATMAN)
        db.link_ingredients_n_formulas()
        db.save_to_json(p_BATMAN + fname)
        # db.save_to_json('../TCM screening/BATMAN_DB.json')

    else:
        db = TCMDB.read_from_json('../TCM screening/BATMAN_DB.json')
        # db = TCMDB.read_from_json(p_BATMAN + fname)

        cids = [969516,  # curcumin
                445154,  # resveratrol
                5280343,  # quercetin
                6167,  # colchicine
                5280443,  # apigening
                65064,  # EGCG3
                5757,  # estradiol
                5994,  # progesterone
                5280863,  # kaempferol
                107985,  # triptolide
                14985,  # alpha-tocopherol
                1548943,  # Capsaicin
                64982,  # Baicalin
                6013,  # Testosterone
                ]

        p3_formula = db.select_formula_by_cpd(cids)
        # somehow save file if needed ↓
        ser_db = db.serialize()


###

if __name__ == '__main__':
    main(ab_initio=True, p_BATMAN="./BATMAN/", fname='BATMAN_DB.json')