from typing import Dict, List, Any import os import torch from transformers import AutoTokenizer, AutoModel import pandas as pd import time import numpy as np from transformers import GenerationConfig from P3LIB.precious3_gpt_multi_modal import Custom_MPTForCausalLM class EndpointHandler: def __init__(self, path="insilicomedicine/precious3-gpt", device='cuda:1'): self.device = device self.model = AutoModel.from_pretrained(path, trust_remote_code=True).to(self.device) self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True) self.model.config.pad_token_id = self.tokenizer.pad_token_id self.model.config.bos_token_id = self.tokenizer.bos_token_id self.model.config.eos_token_id = self.tokenizer.eos_token_id unique_entities_p3 = pd.read_csv( 'https://huggingface.co/insilicomedicine/precious3-gpt/raw/main/all_entities_with_type.csv') self.unique_compounds_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type == 'compound'].entity.to_list()] self.unique_genes_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type == 'gene'].entity.to_list()] def create_prompt(self, prompt_config): prompt = "[BOS]" multi_modal_prefix = '' for k, v in prompt_config.items(): if k == 'instruction': prompt += f'<{v}>' if isinstance(v, str) else "".join([f'<{v_i}>' for v_i in v]) elif k == 'up': if v: prompt += f'{multi_modal_prefix}<{k}>{v} ' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} ' elif k == 'down': if v: prompt += f'{multi_modal_prefix}<{k}>{v} ' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} ' elif k == 'age': if isinstance(v, int): if prompt_config['species'].strip() == 'human': prompt += f'<{k}_individ>{v} ' elif prompt_config['species'].strip() == 'macaque': prompt += f'<{k}_individ>Macaca-{int(v / 20)} ' else: if v: prompt += f'<{k}>{v.strip()} ' if isinstance(v, str) else f'<{k}>{" ".join(v)} ' else: prompt += f'<{k}>' return prompt def generate_with_generation_config(self, input_ids, generation_config, max_new_tokens, random_seed=138): torch.manual_seed(random_seed) with torch.no_grad(): generation_output = self.model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens ) return generation_output def get_gene_probabilities(self, prompt_config, top_k=300, list_type='up', random_seed=138): """ Args: top_k: how many top probable tokens to take list_type: "up" / "down" """ prompt = self.create_prompt(prompt_config) assert list_type in ["up", "down"] if list_type == 'up': prompt += "" print(prompt) ### Generation config https://huggingface.co/blog/how-to-generate generation_config = GenerationConfig(temperature=0.8, num_beams=1, do_sample=True, top_p=None, top_k=3550, pad_token_id=self.tokenizer.pad_token_id, num_return_sequences=1) inputs = self.tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(self.device) assert 3 not in input_ids[0] max_new_tokens = self.model.config.max_seq_len - len(input_ids[0]) generation_output = self.generate_with_generation_config(input_ids=input_ids, generation_config=generation_config, max_new_tokens=max_new_tokens, random_seed=random_seed) #  print(generation_output) id_4_gene_token = list(generation_output.sequences[0][len(input_ids[0]) - 1:]).index( self.tokenizer.convert_tokens_to_ids([f'<{list_type}>'])[0]) id_4_gene_token += 1 print('This is token index where gene should be predicted: ', id_4_gene_token) values, indices = torch.topk(generation_output["scores"][id_4_gene_token - 1].view(-1), k=top_k) indices_decoded = self.tokenizer.decode(indices, skip_special_tokens=True) indices_decoded_list = indices_decoded.split(' ') generated_genes = sorted(set(indices_decoded_list) & set(self.unique_genes_p3), key=indices_decoded_list.index) return generated_genes class HFEndpointHandler: def __init__(self, path="insilicomedicine/precious3-gpt", device='cuda:1'): self.device = device self.model = AutoModel.from_pretrained(path, trust_remote_code=True).to(self.device) self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True) self.model.config.pad_token_id = self.tokenizer.pad_token_id self.model.config.bos_token_id = self.tokenizer.bos_token_id self.model.config.eos_token_id = self.tokenizer.eos_token_id unique_entities_p3 = pd.read_csv('https://huggingface.co/insilicomedicine/precious3-gpt/raw/main/all_entities_with_type.csv') self.unique_compounds_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='compound'].entity.to_list()] self.unique_genes_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='gene'].entity.to_list()] def create_prompt(self, prompt_config): prompt = "[BOS]" multi_modal_prefix = '' for k, v in prompt_config.items(): if k=='instruction': prompt+=f'<{v}>' if isinstance(v, str) else "".join([f'<{v_i}>' for v_i in v]) elif k=='up': if v: prompt+=f'{multi_modal_prefix}<{k}>{v} ' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} ' elif k=='down': if v: prompt+=f'{multi_modal_prefix}<{k}>{v} ' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} ' elif k=='age': if isinstance(v, int): if prompt_config['species'].strip() == 'human': prompt+=f'<{k}_individ>{v} ' elif prompt_config['species'].strip() == 'macaque': prompt+=f'<{k}_individ>Macaca-{int(v/20)} ' else: if v: prompt+=f'<{k}>{v.strip()} ' if isinstance(v, str) else f'<{k}>{" ".join(v)} ' else: prompt+=f'<{k}>' return prompt def custom_generate(self, input_ids, device, max_new_tokens, mode, temperature=0.8, top_p=0.2, top_k=3550, n_next_tokens=30, num_return_sequences=1, random_seed=138): torch.manual_seed(random_seed) # Set parameters # temperature - Higher value for more randomness, lower for more control # top_p - Probability threshold for nucleus sampling (aka top-p sampling) # top_k - Ignore logits below the top-k value to reduce randomness (if non-zero) # n_next_tokens - Number of top next tokens when predicting compounds # Generate sequences outputs = [] next_token_compounds = [] next_token_up_genes = [] next_token_down_genes = [] for _ in range(num_return_sequences): start_time = time.time() generated_sequence = [] current_token = input_ids.clone() for _ in range(max_new_tokens): # Maximum length of generated sequence # Forward pass through the model logits = self.model.forward( input_ids=current_token )[0] # Apply temperature to logits if temperature != 1.0: logits = logits / temperature # Apply top-p sampling (nucleus sampling) sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cumulative_probs > top_p if top_k > 0: sorted_indices_to_remove[..., top_k:] = 1 # Set the logit values of the removed indices to a very small negative value inf_tensor = torch.tensor(float("-inf")).type(torch.bfloat16).to(logits.device) logits = logits.where(sorted_indices_to_remove, inf_tensor) # Sample the next token if current_token[0][-1] == self.tokenizer.encode('')[0] and len(next_token_compounds)==0: next_token_compounds.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices) # Sample the next token for UP genes if current_token[0][-1] == self.tokenizer.encode('')[0] and len(next_token_up_genes)==0: next_token_up_genes.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices) # Sample the next token for DOWN genes if current_token[0][-1] == self.tokenizer.encode('')[0] and len(next_token_down_genes)==0: next_token_down_genes.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices) next_token = torch.multinomial(torch.softmax(logits, dim=-1)[0], num_samples=1)[len(current_token[0])-1, :].unsqueeze(0) # Append the sampled token to the generated sequence generated_sequence.append(next_token.item()) # Stop generation if an end token is generated if next_token == self.tokenizer.eos_token_id: break # Prepare input for the next iteration current_token = torch.cat((current_token, next_token), dim=-1) print(time.time()-start_time) outputs.append(generated_sequence) # Process generated up/down lists processed_outputs = {"up": [], "down": []} if mode in ['meta2diff', 'meta2diff2compound']: predicted_up_genes_tokens = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_up_genes] predicted_up_genes = [] for j in predicted_up_genes_tokens: generated_up_sample = [i.strip() for i in j] predicted_up_genes.append(sorted(set(generated_up_sample) & set(self.unique_genes_p3), key = generated_up_sample.index)) processed_outputs['up'] = predicted_up_genes predicted_down_genes_tokens = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_down_genes] predicted_down_genes = [] for j in predicted_down_genes_tokens: generated_down_sample = [i.strip() for i in j] predicted_down_genes.append(sorted(set(generated_down_sample) & set(self.unique_genes_p3), key = generated_down_sample.index)) processed_outputs['down'] = predicted_down_genes else: processed_outputs = outputs predicted_compounds_ids = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_compounds] predicted_compounds = [] for j in predicted_compounds_ids: predicted_compounds.append([i.strip() for i in j]) return processed_outputs, predicted_compounds, random_seed def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: """ Args: data (:dict:): The payload with the text prompt and generation parameters. """ data = data.copy() parameters = data.pop("parameters", None) config_data = data.pop("inputs", None) mode = data.pop('mode', 'Not specified') prompt = self.create_prompt(config_data) if mode != "diff2compound": prompt+="" inputs = self.tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(self.device) max_new_tokens = self.model.config.max_seq_len - len(input_ids[0]) try: generated_sequence, raw_next_token_generation, out_seed = self.custom_generate(input_ids = input_ids, max_new_tokens=max_new_tokens, mode=mode, device=self.device, **parameters) next_token_generation = [sorted(set(i) & set(self.unique_compounds_p3), key = i.index) for i in raw_next_token_generation] if mode == "meta2diff": outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']} out = {"output": outputs, "mode": mode, "message": "Done!", "input": prompt, 'random_seed': out_seed} elif mode == "meta2diff2compound": outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']} out = { "output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode, "message": "Done!", "input": prompt, 'random_seed': out_seed} elif mode == "diff2compound": outputs = generated_sequence out = { "output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode, "message": "Done!", "input": prompt, 'random_seed': out_seed} else: out = {"message": f"Specify one of the following modes: meta2diff, meta2diff2compound, diff2compound. Your mode is: {mode}"} except Exception as e: print(e) outputs, next_token_generation = [None], [None] out = {"output": outputs, "mode": mode, 'message': f"{e}", "input": prompt, 'random_seed': 138} return out class MMEndpointHandler: def __init__(self, path="insilicomedicine/precious3-gpt-multi-modal", device='cuda:3'): self.device = device self.path = path # load model and processor from path self.model = Custom_MPTForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16).to(self.device) self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True) self.model.config.pad_token_id = self.tokenizer.pad_token_id self.model.config.bos_token_id = self.tokenizer.bos_token_id self.model.config.eos_token_id = self.tokenizer.eos_token_id unique_entities_p3 = pd.read_csv('https://huggingface.co/insilicomedicine/precious3-gpt/raw/main/all_entities_with_type.csv') self.unique_compounds_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='compound'].entity.to_list()] self.unique_genes_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='gene'].entity.to_list()] self.emb_gpt_genes = pd.read_pickle('https://huggingface.co/insilicomedicine/precious3-gpt-multi-modal/resolve/main/multi-modal-data/emb_gpt_genes.pickle') self.emb_hgt_genes = pd.read_pickle('https://huggingface.co/insilicomedicine/precious3-gpt-multi-modal/resolve/main/multi-modal-data/emb_hgt_genes.pickle') def create_prompt(self, prompt_config): prompt = "[BOS]" multi_modal_prefix = ''*3 for k, v in prompt_config.items(): if k=='instruction': prompt+=f'<{v}>' if isinstance(v, str) else "".join([f'<{v_i}>' for v_i in v]) elif k=='up': if v: prompt+=f'{multi_modal_prefix}<{k}>{v} ' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} ' elif k=='down': if v: prompt+=f'{multi_modal_prefix}<{k}>{v} ' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} ' elif k=='age': if isinstance(v, int): if prompt_config['species'].strip() == 'human': prompt+=f'<{k}_individ>{v} ' elif prompt_config['species'].strip() == 'macaque': prompt+=f'<{k}_individ>Macaca-{int(v/20)} ' else: if v: prompt+=f'<{k}>{v.strip()} ' if isinstance(v, str) else f'<{k}>{" ".join(v)} ' else: prompt+=f'<{k}>' return prompt def custom_generate(self, input_ids, acc_embs_up_kg_mean, acc_embs_down_kg_mean, acc_embs_up_txt_mean, acc_embs_down_txt_mean, device, max_new_tokens, mode, temperature=0.8, top_p=0.2, top_k=3550, n_next_tokens=50, num_return_sequences=1, random_seed=138): torch.manual_seed(random_seed) # Set parameters # temperature - Higher value for more randomness, lower for more control # top_p - Probability threshold for nucleus sampling (aka top-p sampling) # top_k - Ignore logits below the top-k value to reduce randomness (if non-zero) # n_next_tokens - Number of top next tokens when predicting compounds modality0_emb = torch.unsqueeze(torch.from_numpy(acc_embs_up_kg_mean), 0).to(device) if isinstance(acc_embs_up_kg_mean, np.ndarray) else None modality1_emb = torch.unsqueeze(torch.from_numpy(acc_embs_down_kg_mean), 0).to(device) if isinstance(acc_embs_down_kg_mean, np.ndarray) else None modality2_emb = torch.unsqueeze(torch.from_numpy(acc_embs_up_txt_mean), 0).to(device) if isinstance(acc_embs_up_txt_mean, np.ndarray) else None modality3_emb = torch.unsqueeze(torch.from_numpy(acc_embs_down_txt_mean), 0).to(device) if isinstance(acc_embs_down_txt_mean, np.ndarray) else None # Generate sequences outputs = [] next_token_compounds = [] next_token_up_genes = [] next_token_down_genes = [] for _ in range(num_return_sequences): start_time = time.time() generated_sequence = [] current_token = input_ids.clone() for _ in range(max_new_tokens): # Maximum length of generated sequence # Forward pass through the model logits = self.model.forward( input_ids=current_token, modality0_emb=modality0_emb, modality0_token_id=self.tokenizer.encode('')[0], # 62191, modality1_emb=modality1_emb, modality1_token_id=self.tokenizer.encode('')[0], # 62192, modality2_emb=modality2_emb, modality2_token_id=self.tokenizer.encode('')[0], # 62193, modality3_emb=modality3_emb, modality3_token_id=self.tokenizer.encode('')[0], # 62194 )[0] # Apply temperature to logits if temperature != 1.0: logits = logits / temperature # Apply top-p sampling (nucleus sampling) sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cumulative_probs > top_p if top_k > 0: sorted_indices_to_remove[..., top_k:] = 1 # Set the logit values of the removed indices to a very small negative value inf_tensor = torch.tensor(float("-inf")).type(torch.bfloat16).to(logits.device) logits = logits.where(sorted_indices_to_remove, inf_tensor) # Sample the next token if current_token[0][-1] == self.tokenizer.encode('')[0] and len(next_token_compounds)==0: next_token_compounds.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices) # Sample the next token for UP genes if current_token[0][-1] == self.tokenizer.encode('')[0] and len(next_token_up_genes)==0: next_token_up_genes.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices) # Sample the next token for DOWN genes if current_token[0][-1] == self.tokenizer.encode('')[0] and len(next_token_down_genes)==0: next_token_down_genes.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices) next_token = torch.multinomial(torch.softmax(logits, dim=-1)[0], num_samples=1)[len(current_token[0])-1, :].unsqueeze(0) # Append the sampled token to the generated sequence generated_sequence.append(next_token.item()) # Stop generation if an end token is generated if next_token == self.tokenizer.eos_token_id: break # Prepare input for the next iteration current_token = torch.cat((current_token, next_token), dim=-1) print(time.time()-start_time) outputs.append(generated_sequence) # Process generated up/down lists processed_outputs = {"up": [], "down": []} if mode in ['meta2diff', 'meta2diff2compound']: predicted_up_genes_tokens = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_up_genes] predicted_up_genes = [] for j in predicted_up_genes_tokens: generated_up_sample = [i.strip() for i in j] predicted_up_genes.append(sorted(set(generated_up_sample) & set(self.unique_genes_p3), key = generated_up_sample.index)) processed_outputs['up'] = predicted_up_genes predicted_down_genes_tokens = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_down_genes] predicted_down_genes = [] for j in predicted_down_genes_tokens: generated_down_sample = [i.strip() for i in j] predicted_down_genes.append(sorted(set(generated_down_sample) & set(self.unique_genes_p3), key = generated_down_sample.index)) processed_outputs['down'] = predicted_down_genes else: processed_outputs = outputs predicted_compounds_ids = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_compounds] predicted_compounds = [] for j in predicted_compounds_ids: predicted_compounds.append([i.strip() for i in j]) return processed_outputs, predicted_compounds, random_seed def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: """ Args: data (:dict:): The payload with the text prompt and generation parameters. """ data = data.copy() parameters = data.pop("parameters", None) config_data = data.pop("inputs", None) mode = data.pop('mode', 'Not specified') prompt = self.create_prompt(config_data) if mode != "diff2compound": prompt+="" inputs = self.tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(self.device) max_new_tokens = self.model.config.max_seq_len - len(input_ids[0]) try: if set(["up", "down"]) & set(config_data.keys()): acc_embs_up1 = [] acc_embs_up2 = [] for gs in config_data['up']: try: acc_embs_up1.append(self.emb_hgt_genes[self.emb_hgt_genes.gene_symbol==gs].embs.values[0]) acc_embs_up2.append(self.emb_gpt_genes[self.emb_gpt_genes.gene_symbol==gs].embs.values[0]) except Exception as e: pass acc_embs_up1_mean = np.array(acc_embs_up1).mean(0) if acc_embs_up1 else None acc_embs_up2_mean = np.array(acc_embs_up2).mean(0) if acc_embs_up2 else None acc_embs_down1 = [] acc_embs_down2 = [] for gs in config_data['down']: try: acc_embs_down1.append(self.emb_hgt_genes[self.emb_hgt_genes.gene_symbol==gs].embs.values[0]) acc_embs_down2.append(self.emb_gpt_genes[self.emb_gpt_genes.gene_symbol==gs].embs.values[0]) except Exception as e: pass acc_embs_down1_mean = np.array(acc_embs_down1).mean(0) if acc_embs_down1 else None acc_embs_down2_mean = np.array(acc_embs_down2).mean(0) if acc_embs_down2 else None else: acc_embs_up1_mean, acc_embs_up2_mean, acc_embs_down1_mean, acc_embs_down2_mean = None, None, None, None generated_sequence, raw_next_token_generation, out_seed = self.custom_generate(input_ids = input_ids, acc_embs_up_kg_mean=acc_embs_up1_mean, acc_embs_down_kg_mean=acc_embs_down1_mean, acc_embs_up_txt_mean=acc_embs_up2_mean, acc_embs_down_txt_mean=acc_embs_down2_mean, max_new_tokens=max_new_tokens, mode=mode, device=self.device, **parameters) next_token_generation = [sorted(set(i) & set(self.unique_compounds_p3), key = i.index) for i in raw_next_token_generation] if mode == "meta2diff": outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']} out = {"output": outputs, "mode": mode, "message": "Done!", "input": prompt, 'random_seed': out_seed} elif mode == "meta2diff2compound": outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']} out = { "output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode, "message": "Done!", "input": prompt, 'random_seed': out_seed} elif mode == "diff2compound": outputs = generated_sequence out = { "output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode, "message": "Done!", "input": prompt, 'random_seed': out_seed} else: out = {"message": f"Specify one of the following modes: meta2diff, meta2diff2compound, diff2compound. Your mode is: {mode}"} except Exception as e: print(e) outputs, next_token_generation = [None], [None] out = {"output": outputs, "mode": mode, 'message': f"{e}", "input": prompt, 'random_seed': 138} return out def main(): pass if __name__=="__main__": main()