Datasets:

Modalities:
Image
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
adamnarozniak commited on
Commit
3ec6286
·
verified ·
1 Parent(s): 17c5d3e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +107 -0
README.md CHANGED
@@ -119,4 +119,111 @@ configs:
119
  data_files:
120
  - split: train
121
  path: data/train-*
 
 
 
 
 
122
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
  data_files:
120
  - split: train
121
  path: data/train-*
122
+ license: unknown
123
+ task_categories:
124
+ - image-classification
125
+ size_categories:
126
+ - 1K<n<10K
127
  ---
128
+ # Dataset Card for Caltech 101
129
+
130
+ This dataset contains images of objects from 101 distinct categories, with each category comprising approximately 40 to 800 images. The majority of categories include around 50 images each. The images were collected in September 2003 by Fei-Fei Li, Marco Andreetto, and Marc’Aurelio Ranzato. Each image has an approximate resolution of 300 x 200 pixels.
131
+
132
+ ### Dataset Sources
133
+
134
+ - **Website:** https://data.caltech.edu/records/mzrjq-6wc02
135
+
136
+ ## Use in FL
137
+
138
+ In order to prepare the dataset for the FL settings, we recommend using [Flower Dataset](https://flower.ai/docs/datasets/) (flwr-datasets) for the dataset download and partitioning and [Flower](https://flower.ai/docs/framework/) (flwr) for conducting FL experiments.
139
+
140
+ To partition the dataset, do the following.
141
+ 1. Install the package.
142
+ ```bash
143
+ pip install flwr-datasets[vision]
144
+ ```
145
+ 2. Use the HF Dataset under the hood in Flower Datasets.
146
+ ```python
147
+ from flwr_datasets import FederatedDataset
148
+ from flwr_datasets.partitioner import IidPartitioner
149
+
150
+ fds = FederatedDataset(
151
+ dataset="flwrlabs/caltech101",
152
+ partitioners={"train": IidPartitioner(num_partitions=10)}
153
+ )
154
+ partition = fds.load_partition(partition_id=0)
155
+ ```
156
+
157
+ ## Dataset Structure
158
+
159
+ ### Data Instances
160
+
161
+ The first instance of the train split is presented below:
162
+ ```
163
+ {
164
+ 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=397x150>,
165
+ 'label': 1
166
+ }
167
+ ```
168
+ ### Data Split
169
+
170
+ ```
171
+ DatasetDict({
172
+ train: Dataset({
173
+ features: ['image', 'label'],
174
+ num_rows: 8677
175
+ })
176
+ })
177
+ ```
178
+
179
+ ## Implementation details
180
+
181
+ Note that in this implementation, the string labels are first transformed into lowercase and then sorted alphabetically before providing the integer mapping. This methodology can vary across implementations.
182
+
183
+ ## Citation
184
+
185
+ When working with the Office-Home dataset, please cite the original paper.
186
+ If you're using this dataset with Flower Datasets and Flower, cite Flower.
187
+
188
+ **BibTeX:**
189
+
190
+ Dataset Bibtex:
191
+
192
+ ```
193
+ @misc{li2022caltech,
194
+ title = {Caltech 101},
195
+ author = {Li, Fei-Fei and Andreeto, Marco and Ranzato, Marc'Aurelio and Perona, Pietro},
196
+ year = {2022},
197
+ month = {Apr},
198
+ publisher = {CaltechDATA},
199
+ doi = {10.22002/D1.20086},
200
+ abstract = {Pictures of objects belonging to 101 categories. About 40 to 800 images per category. Most categories have about 50 images. Collected in September 2003 by Fei-Fei Li, Marco Andreetto, and Marc'Aurelio Ranzato. The size of each image is roughly 300 x 200 pixels. We have carefully clicked outlines of each object in these pictures, these are included under the 'Annotations.tar'. There is also a MATLAB script to view the annotations, 'show_annotations.m'.}
201
+ }
202
+ ````
203
+
204
+ Flower:
205
+
206
+ ```
207
+ @article{DBLP:journals/corr/abs-2007-14390,
208
+ author = {Daniel J. Beutel and
209
+ Taner Topal and
210
+ Akhil Mathur and
211
+ Xinchi Qiu and
212
+ Titouan Parcollet and
213
+ Nicholas D. Lane},
214
+ title = {Flower: {A} Friendly Federated Learning Research Framework},
215
+ journal = {CoRR},
216
+ volume = {abs/2007.14390},
217
+ year = {2020},
218
+ url = {https://arxiv.org/abs/2007.14390},
219
+ eprinttype = {arXiv},
220
+ eprint = {2007.14390},
221
+ timestamp = {Mon, 03 Aug 2020 14:32:13 +0200},
222
+ biburl = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
223
+ bibsource = {dblp computer science bibliography, https://dblp.org}
224
+ }
225
+ ```
226
+
227
+ ## Dataset Card Contact
228
+
229
+ If you have any questions about the dataset preprocessing and preparation, please contact [Flower Labs](https://flower.ai/).