adamnarozniak
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,114 +1,275 @@
|
|
1 |
-
---
|
2 |
-
license: other
|
3 |
-
license_name: celeba-dataset-release-agreement
|
4 |
-
license_link: LICENSE
|
5 |
-
dataset_info:
|
6 |
-
config_name: img_align+identity+attr
|
7 |
-
features:
|
8 |
-
- name: image
|
9 |
-
dtype: image
|
10 |
-
- name: celeb_id
|
11 |
-
dtype: int64
|
12 |
-
- name: 5_o_Clock_Shadow
|
13 |
-
dtype: bool
|
14 |
-
- name: Arched_Eyebrows
|
15 |
-
dtype: bool
|
16 |
-
- name: Attractive
|
17 |
-
dtype: bool
|
18 |
-
- name: Bags_Under_Eyes
|
19 |
-
dtype: bool
|
20 |
-
- name: Bald
|
21 |
-
dtype: bool
|
22 |
-
- name: Bangs
|
23 |
-
dtype: bool
|
24 |
-
- name: Big_Lips
|
25 |
-
dtype: bool
|
26 |
-
- name: Big_Nose
|
27 |
-
dtype: bool
|
28 |
-
- name: Black_Hair
|
29 |
-
dtype: bool
|
30 |
-
- name: Blond_Hair
|
31 |
-
dtype: bool
|
32 |
-
- name: Blurry
|
33 |
-
dtype: bool
|
34 |
-
- name: Brown_Hair
|
35 |
-
dtype: bool
|
36 |
-
- name: Bushy_Eyebrows
|
37 |
-
dtype: bool
|
38 |
-
- name: Chubby
|
39 |
-
dtype: bool
|
40 |
-
- name: Double_Chin
|
41 |
-
dtype: bool
|
42 |
-
- name: Eyeglasses
|
43 |
-
dtype: bool
|
44 |
-
- name: Goatee
|
45 |
-
dtype: bool
|
46 |
-
- name: Gray_Hair
|
47 |
-
dtype: bool
|
48 |
-
- name: Heavy_Makeup
|
49 |
-
dtype: bool
|
50 |
-
- name: High_Cheekbones
|
51 |
-
dtype: bool
|
52 |
-
- name: Male
|
53 |
-
dtype: bool
|
54 |
-
- name: Mouth_Slightly_Open
|
55 |
-
dtype: bool
|
56 |
-
- name: Mustache
|
57 |
-
dtype: bool
|
58 |
-
- name: Narrow_Eyes
|
59 |
-
dtype: bool
|
60 |
-
- name: No_Beard
|
61 |
-
dtype: bool
|
62 |
-
- name: Oval_Face
|
63 |
-
dtype: bool
|
64 |
-
- name: Pale_Skin
|
65 |
-
dtype: bool
|
66 |
-
- name: Pointy_Nose
|
67 |
-
dtype: bool
|
68 |
-
- name: Receding_Hairline
|
69 |
-
dtype: bool
|
70 |
-
- name: Rosy_Cheeks
|
71 |
-
dtype: bool
|
72 |
-
- name: Sideburns
|
73 |
-
dtype: bool
|
74 |
-
- name: Smiling
|
75 |
-
dtype: bool
|
76 |
-
- name: Straight_Hair
|
77 |
-
dtype: bool
|
78 |
-
- name: Wavy_Hair
|
79 |
-
dtype: bool
|
80 |
-
- name: Wearing_Earrings
|
81 |
-
dtype: bool
|
82 |
-
- name: Wearing_Hat
|
83 |
-
dtype: bool
|
84 |
-
- name: Wearing_Lipstick
|
85 |
-
dtype: bool
|
86 |
-
- name: Wearing_Necklace
|
87 |
-
dtype: bool
|
88 |
-
- name: Wearing_Necktie
|
89 |
-
dtype: bool
|
90 |
-
- name: Young
|
91 |
-
dtype: bool
|
92 |
-
splits:
|
93 |
-
- name: train
|
94 |
-
num_bytes: 9333552813.19
|
95 |
-
num_examples: 162770
|
96 |
-
- name: valid
|
97 |
-
num_bytes: 1138445362.203
|
98 |
-
num_examples: 19867
|
99 |
-
- name: test
|
100 |
-
num_bytes: 1204311503.112
|
101 |
-
num_examples: 19962
|
102 |
-
download_size: 11734694689
|
103 |
-
dataset_size: 11676309678.505001
|
104 |
-
configs:
|
105 |
-
- config_name: img_align+identity+attr
|
106 |
-
data_files:
|
107 |
-
- split: train
|
108 |
-
path: img_align+identity+attr/train-*
|
109 |
-
- split: valid
|
110 |
-
path: img_align+identity+attr/valid-*
|
111 |
-
- split: test
|
112 |
-
path: img_align+identity+attr/test-*
|
113 |
-
default: true
|
114 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: celeba-dataset-release-agreement
|
4 |
+
license_link: LICENSE
|
5 |
+
dataset_info:
|
6 |
+
config_name: img_align+identity+attr
|
7 |
+
features:
|
8 |
+
- name: image
|
9 |
+
dtype: image
|
10 |
+
- name: celeb_id
|
11 |
+
dtype: int64
|
12 |
+
- name: 5_o_Clock_Shadow
|
13 |
+
dtype: bool
|
14 |
+
- name: Arched_Eyebrows
|
15 |
+
dtype: bool
|
16 |
+
- name: Attractive
|
17 |
+
dtype: bool
|
18 |
+
- name: Bags_Under_Eyes
|
19 |
+
dtype: bool
|
20 |
+
- name: Bald
|
21 |
+
dtype: bool
|
22 |
+
- name: Bangs
|
23 |
+
dtype: bool
|
24 |
+
- name: Big_Lips
|
25 |
+
dtype: bool
|
26 |
+
- name: Big_Nose
|
27 |
+
dtype: bool
|
28 |
+
- name: Black_Hair
|
29 |
+
dtype: bool
|
30 |
+
- name: Blond_Hair
|
31 |
+
dtype: bool
|
32 |
+
- name: Blurry
|
33 |
+
dtype: bool
|
34 |
+
- name: Brown_Hair
|
35 |
+
dtype: bool
|
36 |
+
- name: Bushy_Eyebrows
|
37 |
+
dtype: bool
|
38 |
+
- name: Chubby
|
39 |
+
dtype: bool
|
40 |
+
- name: Double_Chin
|
41 |
+
dtype: bool
|
42 |
+
- name: Eyeglasses
|
43 |
+
dtype: bool
|
44 |
+
- name: Goatee
|
45 |
+
dtype: bool
|
46 |
+
- name: Gray_Hair
|
47 |
+
dtype: bool
|
48 |
+
- name: Heavy_Makeup
|
49 |
+
dtype: bool
|
50 |
+
- name: High_Cheekbones
|
51 |
+
dtype: bool
|
52 |
+
- name: Male
|
53 |
+
dtype: bool
|
54 |
+
- name: Mouth_Slightly_Open
|
55 |
+
dtype: bool
|
56 |
+
- name: Mustache
|
57 |
+
dtype: bool
|
58 |
+
- name: Narrow_Eyes
|
59 |
+
dtype: bool
|
60 |
+
- name: No_Beard
|
61 |
+
dtype: bool
|
62 |
+
- name: Oval_Face
|
63 |
+
dtype: bool
|
64 |
+
- name: Pale_Skin
|
65 |
+
dtype: bool
|
66 |
+
- name: Pointy_Nose
|
67 |
+
dtype: bool
|
68 |
+
- name: Receding_Hairline
|
69 |
+
dtype: bool
|
70 |
+
- name: Rosy_Cheeks
|
71 |
+
dtype: bool
|
72 |
+
- name: Sideburns
|
73 |
+
dtype: bool
|
74 |
+
- name: Smiling
|
75 |
+
dtype: bool
|
76 |
+
- name: Straight_Hair
|
77 |
+
dtype: bool
|
78 |
+
- name: Wavy_Hair
|
79 |
+
dtype: bool
|
80 |
+
- name: Wearing_Earrings
|
81 |
+
dtype: bool
|
82 |
+
- name: Wearing_Hat
|
83 |
+
dtype: bool
|
84 |
+
- name: Wearing_Lipstick
|
85 |
+
dtype: bool
|
86 |
+
- name: Wearing_Necklace
|
87 |
+
dtype: bool
|
88 |
+
- name: Wearing_Necktie
|
89 |
+
dtype: bool
|
90 |
+
- name: Young
|
91 |
+
dtype: bool
|
92 |
+
splits:
|
93 |
+
- name: train
|
94 |
+
num_bytes: 9333552813.19
|
95 |
+
num_examples: 162770
|
96 |
+
- name: valid
|
97 |
+
num_bytes: 1138445362.203
|
98 |
+
num_examples: 19867
|
99 |
+
- name: test
|
100 |
+
num_bytes: 1204311503.112
|
101 |
+
num_examples: 19962
|
102 |
+
download_size: 11734694689
|
103 |
+
dataset_size: 11676309678.505001
|
104 |
+
configs:
|
105 |
+
- config_name: img_align+identity+attr
|
106 |
+
data_files:
|
107 |
+
- split: train
|
108 |
+
path: img_align+identity+attr/train-*
|
109 |
+
- split: valid
|
110 |
+
path: img_align+identity+attr/valid-*
|
111 |
+
- split: test
|
112 |
+
path: img_align+identity+attr/test-*
|
113 |
+
default: true
|
114 |
+
---
|
115 |
+
|
116 |
+
# Dataset Card for Dataset Name
|
117 |
+
|
118 |
+
CelebFaces Attributes Dataset (CelebA) is a large-scale face attributes dataset with more than 200K celebrity images, each with 40 attribute annotations.
|
119 |
+
The images in this dataset cover large pose variations and background clutter. CelebA has large diversities, large quantities, and rich annotations, including:
|
120 |
+
|
121 |
+
* 10,177 number of identities,
|
122 |
+
|
123 |
+
* 202,599 number of face images, and
|
124 |
+
|
125 |
+
* 5 landmark locations, 40 binary attributes annotations per image.
|
126 |
+
|
127 |
+
The dataset can be employed as the training and test sets for the following computer vision tasks: face attribute recognition, face recognition, face detection, landmark (or facial part) localization, and face editing & synthesis.
|
128 |
+
|
129 |
+
This dataset is used in Federated Learning research because of the possibility of dividing it according to the identities of the celebrities.
|
130 |
+
This repository enables us to use it in this context due to the existence of celebrity id (`celeb_id`) beside the images and attributes.
|
131 |
+
|
132 |
+
## Dataset Details
|
133 |
+
This dataset was created using the following data (all of which came from the original source of the dataset):
|
134 |
+
* aligned and cropped images (in PNG format),
|
135 |
+
* celebrities annotations,
|
136 |
+
* list attributes.
|
137 |
+
|
138 |
+
The dataset was divided according to the split specified by the authors (note the celebrities do not overlap between the splits).
|
139 |
+
|
140 |
+
|
141 |
+
### Dataset Sources
|
142 |
+
|
143 |
+
- **Website:** https://liuziwei7.github.io/projects/FaceAttributes.html and https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
|
144 |
+
- **Paper:** [Deep Learning Face Attributes in the Wild](https://arxiv.org/abs/1411.7766)
|
145 |
+
|
146 |
+
## Uses
|
147 |
+
|
148 |
+
In order to prepare the dataset for the FL settings, we recommend using [Flower Dataset](https://flower.ai/docs/datasets/) (flwr-datasets) for the dataset download and partitioning and [Flower](https://flower.ai/docs/framework/) (flwr) for conducting FL experiments.
|
149 |
+
|
150 |
+
To partition the dataset, do the following.
|
151 |
+
1. Install the package.
|
152 |
+
```bash
|
153 |
+
pip install flwr-datasets[vision]
|
154 |
+
```
|
155 |
+
2. Use the HF Dataset under the hood in Flower Datasets.
|
156 |
+
```python
|
157 |
+
from flwr_datasets import FederatedDataset
|
158 |
+
from flwr_datasets.partitioner import NaturalIdPartitioner
|
159 |
+
|
160 |
+
fds = FederatedDataset(
|
161 |
+
dataset="flwrlabs/celeba",
|
162 |
+
partitioners={"train": NaturalIdPartitioner(partition_by="celeb_id")}
|
163 |
+
)
|
164 |
+
partition = fds.load_partition(partition_id=0)
|
165 |
+
```
|
166 |
+
|
167 |
+
E.g., if you are following the LEAF paper, the target is the `Smiling` column.
|
168 |
+
|
169 |
+
|
170 |
+
## Dataset Structure
|
171 |
+
### Data Instances
|
172 |
+
The first instance of the train split is presented below:
|
173 |
+
```
|
174 |
+
{'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=178x218>,
|
175 |
+
'celeb_id': 1,
|
176 |
+
'5_o_Clock_Shadow': True,
|
177 |
+
'Arched_Eyebrows': False,
|
178 |
+
'Attractive': False,
|
179 |
+
'Bags_Under_Eyes': True,
|
180 |
+
'Bald': False,
|
181 |
+
'Bangs': False,
|
182 |
+
'Big_Lips': False,
|
183 |
+
'Big_Nose': False,
|
184 |
+
'Black_Hair': False,
|
185 |
+
'Blond_Hair': True,
|
186 |
+
'Blurry': False,
|
187 |
+
'Brown_Hair': True,
|
188 |
+
'Bushy_Eyebrows': False,
|
189 |
+
'Chubby': False,
|
190 |
+
'Double_Chin': False,
|
191 |
+
'Eyeglasses': False,
|
192 |
+
'Goatee': False,
|
193 |
+
'Gray_Hair': False,
|
194 |
+
'Heavy_Makeup': False,
|
195 |
+
'High_Cheekbones': True,
|
196 |
+
'Male': True,
|
197 |
+
'Mouth_Slightly_Open': True,
|
198 |
+
'Mustache': False,
|
199 |
+
'Narrow_Eyes': True,
|
200 |
+
'No_Beard': True,
|
201 |
+
'Oval_Face': False,
|
202 |
+
'Pale_Skin': False,
|
203 |
+
'Pointy_Nose': True,
|
204 |
+
'Receding_Hairline': False,
|
205 |
+
'Rosy_Cheeks': False,
|
206 |
+
'Sideburns': False,
|
207 |
+
'Smiling': True,
|
208 |
+
'Straight_Hair': False,
|
209 |
+
'Wavy_Hair': False,
|
210 |
+
'Wearing_Earrings': False,
|
211 |
+
'Wearing_Hat': False,
|
212 |
+
'Wearing_Lipstick': False,
|
213 |
+
'Wearing_Necklace': False,
|
214 |
+
'Wearing_Necktie': False,
|
215 |
+
'Young': False}
|
216 |
+
```
|
217 |
+
|
218 |
+
### Data Splits
|
219 |
+
|
220 |
+
```DatasetDict({
|
221 |
+
train: Dataset({
|
222 |
+
features: ['image', 'celeb_id', '5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive', 'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose', 'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair', 'Bushy_Eyebrows', 'Chubby', 'Double_Chin', 'Eyeglasses', 'Goatee', 'Gray_Hair', 'Heavy_Makeup', 'High_Cheekbones', 'Male', 'Mouth_Slightly_Open', 'Mustache', 'Narrow_Eyes', 'No_Beard', 'Oval_Face', 'Pale_Skin', 'Pointy_Nose', 'Receding_Hairline', 'Rosy_Cheeks', 'Sideburns', 'Smiling', 'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings', 'Wearing_Hat', 'Wearing_Lipstick', 'Wearing_Necklace', 'Wearing_Necktie', 'Young'],
|
223 |
+
num_rows: 162770
|
224 |
+
})
|
225 |
+
valid: Dataset({
|
226 |
+
features: ['image', 'celeb_id', '5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive', 'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose', 'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair', 'Bushy_Eyebrows', 'Chubby', 'Double_Chin', 'Eyeglasses', 'Goatee', 'Gray_Hair', 'Heavy_Makeup', 'High_Cheekbones', 'Male', 'Mouth_Slightly_Open', 'Mustache', 'Narrow_Eyes', 'No_Beard', 'Oval_Face', 'Pale_Skin', 'Pointy_Nose', 'Receding_Hairline', 'Rosy_Cheeks', 'Sideburns', 'Smiling', 'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings', 'Wearing_Hat', 'Wearing_Lipstick', 'Wearing_Necklace', 'Wearing_Necktie', 'Young'],
|
227 |
+
num_rows: 19867
|
228 |
+
})
|
229 |
+
test: Dataset({
|
230 |
+
features: ['image', 'celeb_id', '5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive', 'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose', 'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair', 'Bushy_Eyebrows', 'Chubby', 'Double_Chin', 'Eyeglasses', 'Goatee', 'Gray_Hair', 'Heavy_Makeup', 'High_Cheekbones', 'Male', 'Mouth_Slightly_Open', 'Mustache', 'Narrow_Eyes', 'No_Beard', 'Oval_Face', 'Pale_Skin', 'Pointy_Nose', 'Receding_Hairline', 'Rosy_Cheeks', 'Sideburns', 'Smiling', 'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings', 'Wearing_Hat', 'Wearing_Lipstick', 'Wearing_Necklace', 'Wearing_Necktie', 'Young'],
|
231 |
+
num_rows: 19962
|
232 |
+
})
|
233 |
+
})
|
234 |
+
```
|
235 |
+
|
236 |
+
## Citation
|
237 |
+
When working with the CelebA dataset, please cite the original paper.
|
238 |
+
If you're using this dataset with Flower Datasets and Flower, you can cite Flower.
|
239 |
+
|
240 |
+
**BibTeX:**
|
241 |
+
```
|
242 |
+
@inproceedings{liu2015faceattributes,
|
243 |
+
title = {Deep Learning Face Attributes in the Wild},
|
244 |
+
author = {Liu, Ziwei and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou},
|
245 |
+
booktitle = {Proceedings of International Conference on Computer Vision (ICCV)},
|
246 |
+
month = {December},
|
247 |
+
year = {2015}
|
248 |
+
}
|
249 |
+
```
|
250 |
+
```
|
251 |
+
@article{DBLP:journals/corr/abs-2007-14390,
|
252 |
+
author = {Daniel J. Beutel and
|
253 |
+
Taner Topal and
|
254 |
+
Akhil Mathur and
|
255 |
+
Xinchi Qiu and
|
256 |
+
Titouan Parcollet and
|
257 |
+
Nicholas D. Lane},
|
258 |
+
title = {Flower: {A} Friendly Federated Learning Research Framework},
|
259 |
+
journal = {CoRR},
|
260 |
+
volume = {abs/2007.14390},
|
261 |
+
year = {2020},
|
262 |
+
url = {https://arxiv.org/abs/2007.14390},
|
263 |
+
eprinttype = {arXiv},
|
264 |
+
eprint = {2007.14390},
|
265 |
+
timestamp = {Mon, 03 Aug 2020 14:32:13 +0200},
|
266 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
|
267 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
268 |
+
}
|
269 |
+
```
|
270 |
+
|
271 |
+
|
272 |
+
## Dataset Card Contact
|
273 |
+
|
274 |
+
For questions about the dataset, please contact Ziwei Liu and Ping Luo.
|
275 |
+
In case of any doubts about the dataset preparation, please contact [Flower Labs](https://flower.ai/).
|