Datasets:
adamnarozniak
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,42 +1,158 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-4.0
|
3 |
-
dataset_info:
|
4 |
-
features:
|
5 |
-
- name: image
|
6 |
-
dtype: image
|
7 |
-
- name: label
|
8 |
-
dtype:
|
9 |
-
class_label:
|
10 |
-
names:
|
11 |
-
'0': airplane
|
12 |
-
'1': automobile
|
13 |
-
'2': bird
|
14 |
-
'3': cat
|
15 |
-
'4': deer
|
16 |
-
'5': dog
|
17 |
-
'6': frog
|
18 |
-
'7': horse
|
19 |
-
'8': ship
|
20 |
-
'9': truck
|
21 |
-
splits:
|
22 |
-
- name: train
|
23 |
-
num_bytes: 178662714
|
24 |
-
num_examples: 90000
|
25 |
-
- name: validation
|
26 |
-
num_bytes: 180126542
|
27 |
-
num_examples: 90000
|
28 |
-
- name: test
|
29 |
-
num_bytes: 178913694
|
30 |
-
num_examples: 90000
|
31 |
-
download_size: 771149160
|
32 |
-
dataset_size: 537702950
|
33 |
-
configs:
|
34 |
-
- config_name: default
|
35 |
-
data_files:
|
36 |
-
- split: train
|
37 |
-
path: data/train-*
|
38 |
-
- split: validation
|
39 |
-
path: data/validation-*
|
40 |
-
- split: test
|
41 |
-
path: data/test-*
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
dataset_info:
|
4 |
+
features:
|
5 |
+
- name: image
|
6 |
+
dtype: image
|
7 |
+
- name: label
|
8 |
+
dtype:
|
9 |
+
class_label:
|
10 |
+
names:
|
11 |
+
'0': airplane
|
12 |
+
'1': automobile
|
13 |
+
'2': bird
|
14 |
+
'3': cat
|
15 |
+
'4': deer
|
16 |
+
'5': dog
|
17 |
+
'6': frog
|
18 |
+
'7': horse
|
19 |
+
'8': ship
|
20 |
+
'9': truck
|
21 |
+
splits:
|
22 |
+
- name: train
|
23 |
+
num_bytes: 178662714
|
24 |
+
num_examples: 90000
|
25 |
+
- name: validation
|
26 |
+
num_bytes: 180126542
|
27 |
+
num_examples: 90000
|
28 |
+
- name: test
|
29 |
+
num_bytes: 178913694
|
30 |
+
num_examples: 90000
|
31 |
+
download_size: 771149160
|
32 |
+
dataset_size: 537702950
|
33 |
+
configs:
|
34 |
+
- config_name: default
|
35 |
+
data_files:
|
36 |
+
- split: train
|
37 |
+
path: data/train-*
|
38 |
+
- split: validation
|
39 |
+
path: data/validation-*
|
40 |
+
- split: test
|
41 |
+
path: data/test-*
|
42 |
+
task_categories:
|
43 |
+
- image-classification
|
44 |
+
size_categories:
|
45 |
+
- 100K<n<1M
|
46 |
+
---
|
47 |
+
# Dataset Card for CINIC-10
|
48 |
+
|
49 |
+
CINIC-10 has a total of 270,000 images equally split amongst three subsets: train, validate, and test. This means that CINIC-10 has 4.5 times as many samples than CIFAR-10.
|
50 |
+
|
51 |
+
## Dataset Details
|
52 |
+
|
53 |
+
In each subset (90,000 images), there are ten classes (identical to [CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html) classes). There are 9000 images per class per subset. Using the suggested data split (an equal three-way split), CINIC-10 has 1.8 times as many training samples as in CIFAR-10. CINIC-10 is designed to be directly swappable with CIFAR-10.
|
54 |
+
To understand the motivation behind the dataset creation please visit the [GitHub repository](https://github.com/BayesWatch/cinic-10 ).
|
55 |
+
|
56 |
+
### Dataset Sources
|
57 |
+
|
58 |
+
- **Repository:** https://github.com/BayesWatch/cinic-10
|
59 |
+
- **Paper:** https://arxiv.org/abs/1810.03505
|
60 |
+
- **Dataset:** http://dx.doi.org/10.7488/ds/2448
|
61 |
+
- **Benchmarking, Papers with code:** https://paperswithcode.com/sota/image-classification-on-cinic-10
|
62 |
+
|
63 |
+
## Use in FL
|
64 |
+
|
65 |
+
In order to prepare the dataset for the FL settings, we recommend using [Flower Dataset](https://flower.ai/docs/datasets/) (flwr-datasets) for the dataset download and partitioning and [Flower](https://flower.ai/docs/framework/) (flwr) for conducting FL experiments.
|
66 |
+
|
67 |
+
To partition the dataset, do the following.
|
68 |
+
1. Install the package.
|
69 |
+
```bash
|
70 |
+
pip install flwr-datasets[vision]
|
71 |
+
```
|
72 |
+
2. Use the HF Dataset under the hood in Flower Datasets.
|
73 |
+
```python
|
74 |
+
from flwr_datasets import FederatedDataset
|
75 |
+
from flwr_datasets.partitioner import IidPartitioner
|
76 |
+
|
77 |
+
fds = FederatedDataset(
|
78 |
+
dataset="flwrlabs/cinic10",
|
79 |
+
partitioners={"train": IidPartitioner(num_partitions=10)}
|
80 |
+
)
|
81 |
+
partition = fds.load_partition(partition_id=0)
|
82 |
+
```
|
83 |
+
|
84 |
+
## Dataset Structure
|
85 |
+
|
86 |
+
### Data Instances
|
87 |
+
The first instance of the train split is presented below:
|
88 |
+
```
|
89 |
+
{
|
90 |
+
'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=32x32>,
|
91 |
+
'label': 0
|
92 |
+
}
|
93 |
+
```
|
94 |
+
### Data Split
|
95 |
+
|
96 |
+
```
|
97 |
+
DatasetDict({
|
98 |
+
train: Dataset({
|
99 |
+
features: ['image', 'label'],
|
100 |
+
num_rows: 90000
|
101 |
+
})
|
102 |
+
validation: Dataset({
|
103 |
+
features: ['image', 'label'],
|
104 |
+
num_rows: 90000
|
105 |
+
})
|
106 |
+
test: Dataset({
|
107 |
+
features: ['image', 'label'],
|
108 |
+
num_rows: 90000
|
109 |
+
})
|
110 |
+
})
|
111 |
+
```
|
112 |
+
|
113 |
+
## Citation
|
114 |
+
|
115 |
+
When working with the CINIC-10 dataset, please cite the original paper.
|
116 |
+
If you're using this dataset with Flower Datasets and Flower, cite Flower.
|
117 |
+
|
118 |
+
**BibTeX:**
|
119 |
+
|
120 |
+
Original paper:
|
121 |
+
```
|
122 |
+
@misc{darlow2018cinic10imagenetcifar10,
|
123 |
+
title={CINIC-10 is not ImageNet or CIFAR-10},
|
124 |
+
author={Luke N. Darlow and Elliot J. Crowley and Antreas Antoniou and Amos J. Storkey},
|
125 |
+
year={2018},
|
126 |
+
eprint={1810.03505},
|
127 |
+
archivePrefix={arXiv},
|
128 |
+
primaryClass={cs.CV},
|
129 |
+
url={https://arxiv.org/abs/1810.03505},
|
130 |
+
}
|
131 |
+
````
|
132 |
+
|
133 |
+
Flower:
|
134 |
+
|
135 |
+
```
|
136 |
+
@article{DBLP:journals/corr/abs-2007-14390,
|
137 |
+
author = {Daniel J. Beutel and
|
138 |
+
Taner Topal and
|
139 |
+
Akhil Mathur and
|
140 |
+
Xinchi Qiu and
|
141 |
+
Titouan Parcollet and
|
142 |
+
Nicholas D. Lane},
|
143 |
+
title = {Flower: {A} Friendly Federated Learning Research Framework},
|
144 |
+
journal = {CoRR},
|
145 |
+
volume = {abs/2007.14390},
|
146 |
+
year = {2020},
|
147 |
+
url = {https://arxiv.org/abs/2007.14390},
|
148 |
+
eprinttype = {arXiv},
|
149 |
+
eprint = {2007.14390},
|
150 |
+
timestamp = {Mon, 03 Aug 2020 14:32:13 +0200},
|
151 |
+
biburl = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
|
152 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
153 |
+
}
|
154 |
+
```
|
155 |
+
|
156 |
+
## Dataset Card Contact
|
157 |
+
|
158 |
+
If you have any questions about the dataset preprocessing and preparation, please contact [Flower Labs](https://flower.ai/).
|