Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
adamnarozniak commited on
Commit
7e79606
·
verified ·
1 Parent(s): 2a08364

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -0
README.md CHANGED
@@ -86,3 +86,111 @@ configs:
86
  - split: train
87
  path: data/train-*
88
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
  - split: train
87
  path: data/train-*
88
  ---
89
+ # Dataset Card for Office-Home
90
+
91
+ The Office-Home dataset has been created to evaluate domain adaptation algorithms for object recognition using deep learning. It consists of images from 4 different domains: Artistic images, Clip Art, Product images and Real-World images. For each domain, the dataset contains images of 65 object categories found typically in Office and Home settings.
92
+
93
+ ## Dataset Details
94
+
95
+ The dataset information is based on the original dataset website: https://www.hemanthdv.org/officeHomeDataset.html. The implementation is based on the shared dataset and a CSV file.
96
+
97
+ ### Dataset Sources
98
+
99
+ - **Website:** https://www.hemanthdv.org/officeHomeDataset.html
100
+ - **Paper:** https://openaccess.thecvf.com/content_cvpr_2017/papers/Venkateswara_Deep_Hashing_Network_CVPR_2017_paper.pdf
101
+ - **Original Code:** https://github.com/hemanthdv/da-hash
102
+
103
+ ## Use in FL
104
+
105
+ In order to prepare the dataset for the FL settings, we recommend using [Flower Dataset](https://flower.ai/docs/datasets/) (flwr-datasets) for the dataset download and partitioning and [Flower](https://flower.ai/docs/framework/) (flwr) for conducting FL experiments.
106
+
107
+ To partition the dataset, do the following.
108
+ 1. Install the package.
109
+ ```bash
110
+ pip install flwr-datasets[vision]
111
+ ```
112
+ 2. Use the HF Dataset under the hood in Flower Datasets.
113
+ ```python
114
+ from flwr_datasets import FederatedDataset
115
+ from flwr_datasets.partitioner import IidPartitioner
116
+
117
+ fds = FederatedDataset(
118
+ dataset="flwrlabs/office-home",
119
+ partitioners={"train": IidPartitioner(num_partitions=10)}
120
+ )
121
+ partition = fds.load_partition(partition_id=0)
122
+ ```
123
+
124
+ ## Dataset Structure
125
+
126
+ ### Data Instances
127
+
128
+ The first instance of the train split is presented below:
129
+ ```
130
+ {
131
+ 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x640>,
132
+ 'domain': 'Real World',
133
+ 'label': 0
134
+ }
135
+ ```
136
+ ### Data Split
137
+
138
+ ```
139
+ DatasetDict({
140
+ train: Dataset({
141
+ features: ['image', 'domain', 'label'],
142
+ num_rows: 15588
143
+ })
144
+ })
145
+ ```
146
+
147
+ ## Implementation details
148
+ The CSV file from the original source contains paths to samples with a subfolder named "Clock";
149
+ however, such data does not exist. However, if counting this category, there would be 66 classes.
150
+ I believe this class was forgotten to be edited because there's a different class present in the
151
+ dataset named "Alarm-Clock". This state better reflects the number of samples specified in the paper.
152
+
153
+ ## Citation
154
+
155
+ When working with the Office-Home dataset, please cite the original paper.
156
+ If you're using this dataset with Flower Datasets and Flower, cite Flower.
157
+
158
+ **BibTeX:**
159
+
160
+ Original paper:
161
+ ```
162
+ @inproceedings{venkateswara2017deep,
163
+ title={Deep hashing network for unsupervised domain adaptation},
164
+ author={Venkateswara, Hemanth and Eusebio, Jose and Chakraborty, Shayok and Panchanathan, Sethuraman},
165
+ booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
166
+ pages={5018--5027},
167
+ year={2017}
168
+ }
169
+ ````
170
+
171
+ Flower:
172
+
173
+ ```
174
+ @article{DBLP:journals/corr/abs-2007-14390,
175
+ author = {Daniel J. Beutel and
176
+ Taner Topal and
177
+ Akhil Mathur and
178
+ Xinchi Qiu and
179
+ Titouan Parcollet and
180
+ Nicholas D. Lane},
181
+ title = {Flower: {A} Friendly Federated Learning Research Framework},
182
+ journal = {CoRR},
183
+ volume = {abs/2007.14390},
184
+ year = {2020},
185
+ url = {https://arxiv.org/abs/2007.14390},
186
+ eprinttype = {arXiv},
187
+ eprint = {2007.14390},
188
+ timestamp = {Mon, 03 Aug 2020 14:32:13 +0200},
189
+ biburl = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
190
+ bibsource = {dblp computer science bibliography, https://dblp.org}
191
+ }
192
+ ```
193
+
194
+ ## Dataset Card Contact
195
+
196
+ If you have any questions about the dataset preprocessing and preparation, please contact [Flower Labs](https://flower.ai/).