Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
adamnarozniak commited on
Commit
9c6f80e
·
verified ·
1 Parent(s): 07df2de

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -0
README.md CHANGED
@@ -28,3 +28,106 @@ configs:
28
  - split: train
29
  path: data/train-*
30
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  - split: train
29
  path: data/train-*
30
  ---
31
+ # Dataset Card for PACS
32
+
33
+ PACS is an image dataset for domain generalization. It consists of four domains, namely Photo (1,670 images), Art Painting (2,048 images), Cartoon (2,344 images), and Sketch (3,929 images). Each domain contains seven categories (labels): Dog, Elephant, Giraffe, Guitar, Horse, and Person. The total number of sample is 9991.
34
+
35
+ ## Dataset Details
36
+
37
+ PACS DG dataset is created by intersecting the classes found in Caltech256 (Photo), Sketchy (Photo, Sketch), TU-Berlin (Sketch) and Google Images(Art painting, Cartoon, Photo).
38
+
39
+ ### Dataset Sources
40
+
41
+ - **Website:** https://sketchx.eecs.qmul.ac.uk/downloads/
42
+ - **Paper:** https://arxiv.org/pdf/1710.03077
43
+ - **Papers with code:** https://paperswithcode.com/dataset/pacs
44
+
45
+ ## Use in FL
46
+
47
+ In order to prepare the dataset for the FL settings, we recommend using [Flower Dataset](https://flower.ai/docs/datasets/) (flwr-datasets) for the dataset download and partitioning and [Flower](https://flower.ai/docs/framework/) (flwr) for conducting FL experiments.
48
+
49
+ To partition the dataset, do the following.
50
+ 1. Install the package.
51
+ ```bash
52
+ pip install flwr-datasets[vision]
53
+ ```
54
+ 2. Use the HF Dataset under the hood in Flower Datasets.
55
+ ```python
56
+ from flwr_datasets import FederatedDataset
57
+ from flwr_datasets.partitioner import IidPartitioner
58
+
59
+ fds = FederatedDataset(
60
+ dataset="flwrlabs/pacs",
61
+ partitioners={"train": IidPartitioner(num_partitions=10)}
62
+ )
63
+ partition = fds.load_partition(partition_id=0)
64
+ ```
65
+
66
+ ## Dataset Structure
67
+
68
+ ### Data Instances
69
+ The first instance of the train split is presented below:
70
+ ```
71
+ {
72
+ 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=227x227>,
73
+ 'domain': 'art_painting',
74
+ 'label': 0
75
+ }
76
+ ```
77
+ ### Data Split
78
+
79
+ ```
80
+ DatasetDict({
81
+ train: Dataset({
82
+ features: ['image', 'domain', 'label'],
83
+ num_rows: 9991
84
+ })
85
+ })
86
+ ```
87
+
88
+ ## Citation
89
+
90
+ When working with the PACS dataset, please cite the original paper.
91
+ If you're using this dataset with Flower Datasets and Flower, cite Flower.
92
+
93
+ **BibTeX:**
94
+
95
+ Original paper:
96
+ ```
97
+ @misc{li2017deeperbroaderartierdomain,
98
+ title={Deeper, Broader and Artier Domain Generalization},
99
+ author={Da Li and Yongxin Yang and Yi-Zhe Song and Timothy M. Hospedales},
100
+ year={2017},
101
+ eprint={1710.03077},
102
+ archivePrefix={arXiv},
103
+ primaryClass={cs.CV},
104
+ url={https://arxiv.org/abs/1710.03077},
105
+ }
106
+ ````
107
+
108
+ Flower:
109
+
110
+ ```
111
+ @article{DBLP:journals/corr/abs-2007-14390,
112
+ author = {Daniel J. Beutel and
113
+ Taner Topal and
114
+ Akhil Mathur and
115
+ Xinchi Qiu and
116
+ Titouan Parcollet and
117
+ Nicholas D. Lane},
118
+ title = {Flower: {A} Friendly Federated Learning Research Framework},
119
+ journal = {CoRR},
120
+ volume = {abs/2007.14390},
121
+ year = {2020},
122
+ url = {https://arxiv.org/abs/2007.14390},
123
+ eprinttype = {arXiv},
124
+ eprint = {2007.14390},
125
+ timestamp = {Mon, 03 Aug 2020 14:32:13 +0200},
126
+ biburl = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
127
+ bibsource = {dblp computer science bibliography, https://dblp.org}
128
+ }
129
+ ```
130
+
131
+ ## Dataset Card Contact
132
+
133
+ If you have any questions about the dataset preprocessing and preparation, please contact [Flower Labs](https://flower.ai/).