Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 3,564 Bytes
7a35ee7
 
5fa5fcc
 
 
 
 
 
081b833
5fa5fcc
 
 
 
 
 
 
 
 
 
 
 
081b833
 
 
 
7a35ee7
081b833
 
 
 
b4a96f3
 
 
 
081b833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
license: bsd-2-clause
dataset_info:
  features:
  - name: device_id
    dtype: string
  - name: x
    sequence: float64
  - name: 'y'
    dtype: int64
  splits:
  - name: train
    num_bytes: 53656756
    num_examples: 107553
  download_size: 64693258
  dataset_size: 53656756
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
task_categories:
- tabular-classification
size_categories:
- 100K<n<1M
---

# Dataset Card for SYNTHETIC

The SYNTHETIC dataset is a part of the [LEAF](https://leaf.cmu.edu/) benchmark. 
This version corresponds to the dataset generated with default parameters that give a dataset with:
* input (`x`) of length 60;
* 5 unique labels (`y`)
* 1000 unique devices (`device_id`). 

## Dataset Details

### Dataset Description


- **Curated by:** [LEAF](https://leaf.cmu.edu/)
- **License:** BSD 2-Clause License

## Uses

This dataset is intended to be used in Federated Learning settings. 

### Direct Use

We recommend using [Flower Dataset](https://flower.ai/docs/datasets/) (flwr-datasets) and [Flower](https://flower.ai/docs/framework/) (flwr).

To partition the dataset, do the following. 
1. Install the package.
```bash
pip install flwr-datasets
```
2. Use the HF Dataset under the hood in Flower Datasets.
```python
from flwr_datasets import FederatedDataset
from flwr_datasets.partitioner import NaturalIdPartitioner

fds = FederatedDataset(
    dataset="flwrlabs/synthetic",
    partitioners={"train": NaturalIdPartitioner(partition_by="device_id")}
)
partition = fds.load_partition(partition_id=0)
```


## Dataset Structure

The whole dataset is kept in the train split. If you want to leave out some part of the dataset for centralized evaluation, use Resplitter. (The full example is coming soon here).

## Citation

When working on the LEAF benchmark, please cite the original paper. If you're using this dataset with Flower Datasets, you can cite Flower.

**BibTeX:**
```
@article{DBLP:journals/corr/abs-1812-01097,
  author       = {Sebastian Caldas and
                  Peter Wu and
                  Tian Li and
                  Jakub Kone{\v{c}}n{\'y} and
                  H. Brendan McMahan and
                  Virginia Smith and
                  Ameet Talwalkar},
  title        = {{LEAF:} {A} Benchmark for Federated Settings},
  journal      = {CoRR},
  volume       = {abs/1812.01097},
  year         = {2018},
  url          = {http://arxiv.org/abs/1812.01097},
  eprinttype    = {arXiv},
  eprint       = {1812.01097},
  timestamp    = {Wed, 23 Dec 2020 09:35:18 +0100},
  biburl       = {https://dblp.org/rec/journals/corr/abs-1812-01097.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
```
```
@article{DBLP:journals/corr/abs-2007-14390,
  author       = {Daniel J. Beutel and
                  Taner Topal and
                  Akhil Mathur and
                  Xinchi Qiu and
                  Titouan Parcollet and
                  Nicholas D. Lane},
  title        = {Flower: {A} Friendly Federated Learning Research Framework},
  journal      = {CoRR},
  volume       = {abs/2007.14390},
  year         = {2020},
  url          = {https://arxiv.org/abs/2007.14390},
  eprinttype    = {arXiv},
  eprint       = {2007.14390},
  timestamp    = {Mon, 03 Aug 2020 14:32:13 +0200},
  biburl       = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
```

## Dataset Card Contact

In case of any doubts, please contact [Flower Labs](https://flower.ai/).