File size: 6,768 Bytes
76f5acf 1098eed 76f5acf 1098eed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
---
dataset_info:
features:
- name: image
dtype: image
- name: video_id
dtype: string
- name: clip_id
dtype: string
- name: frame
dtype: int64
- name: label
dtype:
class_label:
names:
'0': ApplyEyeMakeup
'1': ApplyLipstick
'2': Archery
'3': BabyCrawling
'4': BalanceBeam
'5': BandMarching
'6': BaseballPitch
'7': Basketball
'8': BasketballDunk
'9': BenchPress
'10': Biking
'11': Billiards
'12': BlowDryHair
'13': BlowingCandles
'14': BodyWeightSquats
'15': Bowling
'16': BoxingPunchingBag
'17': BoxingSpeedBag
'18': BreastStroke
'19': BrushingTeeth
'20': CleanAndJerk
'21': CliffDiving
'22': CricketBowling
'23': CricketShot
'24': CuttingInKitchen
'25': Diving
'26': Drumming
'27': Fencing
'28': FieldHockeyPenalty
'29': FloorGymnastics
'30': FrisbeeCatch
'31': FrontCrawl
'32': GolfSwing
'33': Haircut
'34': HammerThrow
'35': Hammering
'36': HandstandPushups
'37': HandstandWalking
'38': HeadMassage
'39': HighJump
'40': HorseRace
'41': HorseRiding
'42': HulaHoop
'43': IceDancing
'44': JavelinThrow
'45': JugglingBalls
'46': JumpRope
'47': JumpingJack
'48': Kayaking
'49': Knitting
'50': LongJump
'51': Lunges
'52': MilitaryParade
'53': Mixing
'54': MoppingFloor
'55': Nunchucks
'56': ParallelBars
'57': PizzaTossing
'58': PlayingCello
'59': PlayingDaf
'60': PlayingDhol
'61': PlayingFlute
'62': PlayingGuitar
'63': PlayingPiano
'64': PlayingSitar
'65': PlayingTabla
'66': PlayingViolin
'67': PoleVault
'68': PommelHorse
'69': PullUps
'70': Punch
'71': PushUps
'72': Rafting
'73': RockClimbingIndoor
'74': RopeClimbing
'75': Rowing
'76': SalsaSpin
'77': ShavingBeard
'78': Shotput
'79': SkateBoarding
'80': Skiing
'81': Skijet
'82': SkyDiving
'83': SoccerJuggling
'84': SoccerPenalty
'85': StillRings
'86': SumoWrestling
'87': Surfing
'88': Swing
'89': TableTennisShot
'90': TaiChi
'91': TennisSwing
'92': ThrowDiscus
'93': TrampolineJumping
'94': Typing
'95': UnevenBars
'96': VolleyballSpiking
'97': WalkingWithDog
'98': WallPushups
'99': WritingOnBoard
'100': YoYo
splits:
- name: train
num_bytes: 31974277609.664
num_examples: 1786096
- name: test
num_bytes: 14764935697.708
num_examples: 697222
download_size: 54505499695
dataset_size: 46739213307.372
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
license: unknown
---
# Dataset Card for UCF101
UCF101 is an action recognition data set of realistic action videos collected from YouTube, having 101 action categories. This version of the dataset does not contain images but images saved frame by frame. Train and test splits are generated based on the authors' first version train/test list.
## Dataset Details
The UCF101 includes 13320 videos from 101 action categories. For more details, visit the website and the publication specified below.
### Dataset Sources
- **Paper:** https://arxiv.org/abs/1212.0402
- **Website** https://www.crcv.ucf.edu/data/UCF101.php
## Uses
In order to prepare the dataset for the FL settings, we recommend using [Flower Dataset](https://flower.ai/docs/datasets/) (flwr-datasets) for the dataset download and partitioning and [Flower](https://flower.ai/docs/framework/) (flwr) for conducting FL experiments.
To partition the dataset, do the following.
1. Install the package.
```bash
pip install flwr-datasets[vision]
```
2. Use the HF Dataset under the hood in Flower Datasets.
```python
from flwr_datasets import FederatedDataset
from flwr_datasets.partitioner import NaturalIdPartitioner
fds = FederatedDataset(
dataset="flwrlabs/ucf101",
partitioners={"train": NaturalIdPartitioner(partition_by="video_id")}
)
partition = fds.load_partition(partition_id=0)
```
## Dataset Structure
### Data Instances
The first instance of the train split is presented below:
```
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=320x240>,
'video_id': 'v_ApplyEyeMakeup_g08',
'clip_id': 'v_ApplyEyeMakeup_g08_c01',
'frame': 1,
'label': 0}
```
### Data Split
```
DatasetDict({
train: Dataset({
features: ['image', 'video_id', 'clip_id', 'frame', 'label'],
num_rows: 1786096
})
test: Dataset({
features: ['image', 'video_id', 'clip_id', 'frame', 'label'],
num_rows: 697222
})
})
```
## Citation
When working with the Ambient Acoustic Context dataset, please cite the original paper.
If you're using this dataset with Flower Datasets and Flower, cite Flower.
**BibTeX:**
Original paper:
```
@misc{soomro2012ucf101dataset101human,
title={UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild},
author={Khurram Soomro and Amir Roshan Zamir and Mubarak Shah},
year={2012},
eprint={1212.0402},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/1212.0402},
}
````
Flower:
```
@article{DBLP:journals/corr/abs-2007-14390,
author = {Daniel J. Beutel and
Taner Topal and
Akhil Mathur and
Xinchi Qiu and
Titouan Parcollet and
Nicholas D. Lane},
title = {Flower: {A} Friendly Federated Learning Research Framework},
journal = {CoRR},
volume = {abs/2007.14390},
year = {2020},
url = {https://arxiv.org/abs/2007.14390},
eprinttype = {arXiv},
eprint = {2007.14390},
timestamp = {Mon, 03 Aug 2020 14:32:13 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
## Dataset Card Contact
In case of any doubts about the dataset preprocessing and preparation, please contact [Flower Labs](https://flower.ai/). |