import json import openai import google.generativeai as genai import time from collections import defaultdict from typing import Dict, List import os from tqdm import tqdm import argparse class PoetryEvaluator: def __init__(self, api_key: str, provider: str = "openai", model: str = "gpt-3.5-turbo", dry_run: bool = False, delay: float = 0.5, max_retries: int = 3, retry_delay: float = 1.0): """初始化评测器 Args: api_key: API密钥 provider: API提供商 ("openai" 或 "google") model: 模型名称 dry_run: 是否为演示模式 delay: API调用间隔时间(秒) max_retries: 最大重试次数 retry_delay: 重试等待时间(秒) """ self.api_key = api_key self.provider = provider self.model = model self.dry_run = dry_run self.delay = delay self.max_retries = max_retries self.retry_delay = retry_delay self.results = defaultdict(list) # 根据provider初始化API if provider == "google": genai.configure(api_key=api_key) self.generation_config = { "temperature": 0, "top_p": 0.95, "top_k": 64, "max_output_tokens": 8192, } self.google_model = genai.GenerativeModel( model_name=model, generation_config=self.generation_config ) def load_benchmark(self, jsonl_path: str) -> List[Dict]: """加载评测数据集""" questions = [] with open(jsonl_path, 'r', encoding='utf-8') as f: for line in f: if line.strip(): questions.append(json.loads(line)) return questions def generate_prompt(self, question: Dict) -> str: """根据题型生成提示词""" q_type = question['type'] author = question['metadata']['author'] content = question['content']['question'] prompts = { 'couplet': "请将下面的诗句补充完整。只需要回答括号()之内的内容,不需要进行解释。\n\n", 'hint_words': "请将以下包含星号的诗句补充完整。回答补充后的完整诗句,不需要进行解释。\n\n", 'find_poetry': "请从以下给出的多行诗句中,从每一行提取出一个字,组成一句有效的诗句。只需要回答找到的诗句,不需要进行解释。\n\n", 'blank_filling': "请将下面的诗句补充完整。只需要回答括号()之内的内容,不需要进行解释。\n\n", 'first_last_words': "请将以下包含星号的诗句补充完整。回答补充后的完整诗句,不需要进行解释。\n\n" } if author != None: return prompts[q_type] + f"{author}: {content}" else: return prompts[q_type] + content def normalize_answer(self, answer: str) -> str: """标准化答案格式""" return answer.strip().replace('。', '').replace(',', '') def evaluate_answer(self, prediction: str, ground_truth: str) -> bool: """评估答案是否正确 只要模型输出中包含正确答案就算对 """ pred = self.normalize_answer(prediction) truth = self.normalize_answer(ground_truth) # 如果答案中包含多个可能的正确答案(用/分隔) if '/' in truth: possible_answers = [ans.strip() for ans in truth.split('/')] return any(ans in pred for ans in possible_answers) # 否则检查输出中是否包含正确答案 return truth in pred def call_api_with_retry(self, prompt: str) -> str: """带重试机制的API调用 Args: prompt: 提示词 Returns: 模型回复文本 """ retries = 0 while True: try: if self.provider == "openai": client = openai.OpenAI( api_key=self.api_key, base_url=openai.api_base ) response = client.chat.completions.create( model=self.model, messages=[ {"role": "system", "content": "你是一个古诗词专家。"}, {"role": "user", "content": prompt} ], temperature=0 ) return response.choices[0].message.content elif self.provider == "google": chat = self.google_model.start_chat( history=[ {"role": "user", "parts": ["你是一个古诗词专家。"]} ] ) response = chat.send_message(prompt) return response.text except Exception as e: retries += 1 if retries > self.max_retries: raise e # 对于限流错误,使用指数退避策略 if "429" in str(e): wait_time = self.retry_delay * (2 ** (retries - 1)) print(f"\n遇到限流,等待 {wait_time} 秒后重试 ({retries}/{self.max_retries})...") time.sleep(wait_time) else: raise e def evaluate_single(self, question: Dict) -> Dict: """评估单个问题""" prompt = self.generate_prompt(question) try: if self.dry_run: prediction = f"[DRY RUN] 这是问题 {question['id']} 的模拟答案" else: prediction = self.call_api_with_retry(prompt) # 添加调用间隔 time.sleep(self.delay) is_correct = self.evaluate_answer(prediction, question['content']['answer']) return { 'id': question['id'], 'type': question['type'], 'difficulty': question['difficulty'], 'metadata': question['metadata'], 'prompt': prompt, 'prediction': prediction, 'ground_truth': question['content']['answer'], 'is_correct': is_correct } except Exception as e: print(f"Error evaluating question {question['id']}: {str(e)}") return None def evaluate_all(self, questions: List[Dict]): """评估所有问题""" # 初始化计数器 total = len(questions) correct = 0 # 创建进度条 pbar = tqdm(questions, desc="Evaluating") for question in pbar: result = self.evaluate_single(question) if result: self.results['all'].append(result) self.results[result['type']].append(result) self.results[result['difficulty']].append(result) if result['metadata']['dynasty']: self.results[result['metadata']['dynasty']].append(result) # 更新计数 if result['is_correct']: correct += 1 # 更新进度条描述 accuracy = correct / len(self.results['all']) * 100 pbar.set_description( f"Accuracy: {accuracy:.2f}% ({correct}/{len(self.results['all'])})" ) # 打印详细信息 print(f"\n问题 {result['id']} ({result['type']}, {result['difficulty']}):") print(f"提示: {result['prompt']}") print(f"预测: {result['prediction']}") print(f"答案: {result['ground_truth']}") print(f"结果: {'✓' if result['is_correct'] else '✗'}\n") # 每次评测后更新总体准确率 print(f"当前总体准确率: {accuracy:.2f}%") print("-" * 80) def generate_report(self) -> Dict: """生成评测报告""" report = { 'overall': self._calculate_metrics(self.results['all']), 'by_type': {}, 'by_difficulty': {}, 'by_dynasty': {} } # 按题型统计 for q_type in ['couplet', 'hint_words', 'find_poetry', 'blank_filling', 'first_last_words']: if self.results[q_type]: report['by_type'][q_type] = self._calculate_metrics(self.results[q_type]) # 按难度统计 for difficulty in ['easy', 'medium', 'hard']: if self.results[difficulty]: report['by_difficulty'][difficulty] = self._calculate_metrics(self.results[difficulty]) # 按朝代统计 for dynasty in set(r['metadata']['dynasty'] for r in self.results['all'] if r['metadata']['dynasty']): report['by_dynasty'][dynasty] = self._calculate_metrics(self.results[dynasty]) return report def _calculate_metrics(self, results: List[Dict]) -> Dict: """计算评测指标""" total = len(results) correct = sum(1 for r in results if r['is_correct']) return { 'total': total, 'correct': correct, 'accuracy': correct / total if total > 0 else 0 } def save_results(self, output_dir: str): """保存评测结果""" os.makedirs(output_dir, exist_ok=True) # 保存详细结果 with open(os.path.join(output_dir, 'detailed_results.jsonl'), 'w', encoding='utf-8') as f: for result in self.results['all']: f.write(json.dumps(result, ensure_ascii=False) + '\n') # 保存原始输入输出 with open(os.path.join(output_dir, 'raw_io.jsonl'), 'w', encoding='utf-8') as f: for result in self.results['all']: raw_io = { 'id': result['id'], 'type': result['type'], 'prompt': result['prompt'], 'completion': result['prediction'], 'ground_truth': result['ground_truth'] } f.write(json.dumps(raw_io, ensure_ascii=False) + '\n') # 保存评测报告 report = self.generate_report() with open(os.path.join(output_dir, 'evaluation_report.json'), 'w', encoding='utf-8') as f: json.dump(report, ensure_ascii=False, indent=2, fp=f) if __name__ == '__main__': parser = argparse.ArgumentParser(description='评测大语言模型的古诗词能力') parser.add_argument('--api-key', type=str, required=True, help='API密钥') parser.add_argument('--provider', type=str, choices=['openai', 'google'], default='openai', help='API提供商 (openai 或 google)') parser.add_argument('--model', type=str, help='要评测的模型名称') parser.add_argument('--api-base', type=str, help='API基础URL (例如: https://api.openai.com/v1)') parser.add_argument('--output-dir', type=str, default='evaluation_results', help='评测结果保存目录 (默认: evaluation_results)') parser.add_argument('--benchmark-file', type=str, default='poetry_benchmark.jsonl', help='评测数据集文件路径 (默认: poetry_benchmark.jsonl)') parser.add_argument('--dry-run', action='store_true', help='演示模式,不实际调用API') parser.add_argument('--delay', type=float, default=0.5, help='API调用间隔时间(秒) (默认: 0.5)') parser.add_argument('--max-retries', type=int, default=5, help='API调用最大重试次数 (默认: 5)') parser.add_argument('--retry-delay', type=float, default=10, help='重试等待时间(秒) (默认: 10)') args = parser.parse_args() # 设置API基础URL (仅OpenAI需要) if not args.dry_run and args.provider == "openai": openai.api_base = args.api_base # 初始化评测器 evaluator = PoetryEvaluator( api_key=args.api_key, provider=args.provider, model=args.model, dry_run=args.dry_run, delay=args.delay, max_retries=args.max_retries, retry_delay=args.retry_delay ) # 加载数据 questions = evaluator.load_benchmark(args.benchmark_file) # 运行评测 evaluator.evaluate_all(questions) # 生成报告 report = evaluator.generate_report() print(json.dumps(report, ensure_ascii=False, indent=2)) # 保存结果 evaluator.save_results(args.output_dir)