File size: 5,760 Bytes
7f9fd64 33ef567 30647f4 4c878b0 30647f4 27da063 990b1ff d07feb9 ad608b1 27da063 789c325 27da063 b6e9a06 27da063 04162a9 27da063 04162a9 27da063 f318663 27da063 ad608b1 27da063 1ca9a0e 27da063 1ca9a0e 27da063 c662f95 27da063 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
---
license: gpl-2.0
configs:
- config_name: alfworld
data_files:
- split: test
path:
- data/alfworld/test.jsonl
- config_name: scienceworld
data_files:
- split: test
path:
- data/scienceworld/test.jsonl
- config_name: babyai
data_files:
- split: test
path:
- data/babyai/test.jsonl
- config_name: jericho
data_files:
- split: test
path:
- data/jericho/test.jsonl
- config_name: pddl
data_files:
- split: test
path:
- data/pddl/test.jsonl
- config_name: webarena
data_files:
- split: test
path:
- data/webarena/test.jsonl
- config_name: webshop
data_files:
- split: test
path:
- data/webshop/test.jsonl
- config_name: tool-query
data_files:
- split: test
path:
- data/tool-query/test.jsonl
- config_name: tool-operation
data_files:
- split: test
path:
- data/tool-operation/test.jsonl
language:
- en
tags:
- Embodied AI
- Game
- Web
- Tool
size_categories:
- 1K<n<10K
task_categories:
- text-generation
pretty_name: AgentBoard
---
<div align="center">
<img src="./assets/agentboard.png" style="width: 20%;height: 10%">
<h1> AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents </h1>
</div>
This is the official dataset repository of [AgentBoard](https://github.com/hkust-nlp/agentboard).
## 1. Data Overview
AgentBoard is composed of 9 diverse tasks which can be divided into 4 types, including **Embodied AI**, **Game**, **Web**, and **Tool**:
<table align="center">
<tbody>
<tr align="center" valign="bottom">
<td>
<b>Embodied AI</b>
</td>
<td>
<b>Game</b>
</td>
<td>
<b>Web</b>
</td>
<td>
<b>Tool</b>
</td>
</tr>
<tr valign="top">
<td>
- AlfWorld
- ScienceWorld
- BabyAI
</td>
<td>
- Jericho
- PDDL
</td>
<td>
- WebShop
- WebArena
</td>
<td>
- Tool-Query
- Tool-Operation
</td>
</tr>
</tbody>
</table>
And statistics of the evaluation data of 9 environments are as follows:
| | AlfWorld | ScienceWorld | BabyAI | Jericho | PDDL | WebShop | WebArena | Tool-Query | Tool-Operation |
|-------|----------|--------------|--------|---------|------|---------|----------|------------|----------------|
| **\#Environment** | 134 | 90 | 112 | 20 | 60 | 251 | 245 | 60 | 40 |
| **\#Turn** | 6 | 15 | 10 | 20 | 20 | 3 | 25 | 5 | 6 |
| **\#Action Space** | 13 | 21 | 8 | 150 | 8 | 2 | 12 | 15 | 16 |
| **\#Context Length** | 900 | 2800 | 1800 | 1500 | 2700 | 1200 | 15000 | 2100 | 4300 |
| **Progress Rate** | subgoal | subgoal | subgoal | subgoal | match | match | match | subgoal | subgoal/match |
| **\#Avg. Subgoals** | 3 | 5 | 4 | 6 | 6 | 4 | 6 | 5 | 5 |
| **Hard/Easy Cutoff** | 3 | 3 | 3 | 4 | 6 | 1 | 4 | 4 | 4 |
To help researchers quickly understand evaluation data of each task, we provide **Dataset Viewer** at Huggingface Dataset: [π€ AgentBoard](https://huggingface.co/datasets/hkust-nlp/agentboard/).
> Note: Please download the dataset from the link provided below for the reason that the data in Dataset Viewer is not complete.
## 2. Download Link
You can download the whole evaluation data by running the following command:
```shell
wget https://huggingface.co/datasets/hkust-nlp/agentboard/resolve/main/data.tar.gz
```
Please uncommpress the file and move the data to `AgentBoard/data`.
```shell
cd AgentBoard
mkdir data
tar -zxvf data.tar.gz
```
The file structure of evaluation data is as follows:
<details>
<summary>
Click to expand the file structure
</summary>
```
data
βββ alfworld
β βββ alfred.pddl # additional data for alfworld
β βββ alfred.twl2 # additional data for alfworld
β βββ json_2.1.1 # additional data for alfworld
β βββ test.jsonl
βββ babyai
β βββ test.jsonl
βββ jericho
β βββ test.jsonl
β βββ z-machine-games-master # additional data for jericho
βββ pddl
β βββ test.jsonl
βββ scienceworld
β βββ test.jsonl
βββ tool-operation
β βββ test.jsonl
βββ tool-query
β βββ academia # additional data for academia tool
β βββ test.jsonl
βββ webarena
β βββ test.jsonl
βββ webshop
βββ test.jsonl
```
</details>
## 3. Data Fields
We take an instance from the `ScienceWorld` task as an example to illustrate the data fields of evaluation data.
```json
{
"task": "scienceworld",
"id": 0,
"goal": "Your task is to find the animal with the longest life span. The animals are in the 'outside' location. Focus on the animal with the longest life span.",
"subgoals": ["You move to the outside.", "You focus on the crocodile egg."],
"difficulty": "easy",
"additional_info": {"var": 5, "env_name": "lifespan-longest-lived"}
}
```
Details of the data fields are as follows:
| Field Name | Description |
|------------|-------------|
| `task` | The task name of the example, e.g. `alfworld`, `babyai`, `jericho`, `pddl`, `scienceworld`, `tool-operation`, `tool-query`, `webarena`, `webshop`. |
| `id` | The id of the example. |
| `goal` | The goal of the example. |
| `subgoals` | The subgoals of the example. |
| `difficulty` | The difficulty of the example, e.g. `easy`, `hard`. |
| `additional_info` | The additional information of the example, each example has its own additional information. |
## 4. Citation
```bibtex
@misc{ma2024agentboard,
title={AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents},
author={Chang Ma and Junlei Zhang and Zhihao Zhu and Cheng Yang and Yujiu Yang and Yaohui Jin and Zhenzhong Lan and Lingpeng Kong and Junxian He},
year={2024},
eprint={2401.13178},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |