Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 1,978 Bytes
18b1f9d f293502 18b1f9d f293502 18b1f9d f293502 18b1f9d f293502 18b1f9d f293502 18b1f9d f293502 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import os
import sys
import json
from pathlib import Path
from fetch_mathoverflow import batch_loader
import random
from utils import make_archive
ARCHIVE_URL = "https://people.eecs.berkeley.edu/~hendrycks/MATH.tar"
SAVE_PATH = "math-dataset"
def main():
VAL_RATE=5e-2
Path(SAVE_PATH).mkdir(exist_ok=True)
Path(os.path.join(SAVE_PATH, "train")).mkdir(exist_ok=True)
Path(os.path.join(SAVE_PATH, "val")).mkdir(exist_ok=True)
archive_path = os.path.join(SAVE_PATH, "archive.tar")
os.system("wget -O " + archive_path + " " + ARCHIVE_URL)
os.system("tar -xf " + archive_path + " -C " + SAVE_PATH)
cat_dir = os.path.join(SAVE_PATH, "MATH/train")
for cat_name in os.listdir(cat_dir):
cat_path = os.path.join(cat_dir, cat_name)
if os.path.isdir(cat_path):
cat_texts = []
for f in os.listdir(cat_path):
f_path = os.path.join(cat_path, f)
with open(f_path) as fle:
prob_json = json.load(fle)
text = "{\\bf Problem.} " + prob_json["problem"] + "\n" +\
"{\\bf Level.} " + prob_json["level"] + "\n" +\
"{\\bf Type.} " + prob_json["type"] + "\n" +\
"{\\bf Solution.} " + prob_json["solution"]
cat_texts.append(text)
for i, text in enumerate(cat_texts):
if random.random()>VAL_RATE:
with open(os.path.join(SAVE_PATH, "train", f"{cat_name}_{i}.txt"), "w") as fle:
fle.write(text.strip())
else:
with open(os.path.join(SAVE_PATH, "val", f"{cat_name}_{i}.txt"), "w") as fle:
fle.write(text.strip())
os.system("rm -r " + os.path.join(SAVE_PATH, "MATH"))
os.remove(archive_path)
if __name__=="__main__":
main()
make_archive("math-dataset/train")
make_archive("math-dataset/val")
|