Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 1,701 Bytes
afd65d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import os
import random
import json
random.seed(20)
def _get_filepaths(path):
filepaths = []
for f in os.listdir(path):
f_path = os.path.join(path, f)
if os.path.isfile(f_path):
filepaths.append(os.path.normpath(f_path))
elif os.path.isdir(f_path):
filepaths += _get_filepaths(f_path)
return filepaths
def get_split(path, train_split: float, must_be_in_train):
filepaths = _get_filepaths(path)
random.shuffle(filepaths)
boundary = int(train_split * len(filepaths))
train_paths = filepaths[:boundary]
valid_paths = filepaths[boundary:]
print("TRAIN SPLIT (number in train, number in val): ", len(train_paths), len(valid_paths))
for path in must_be_in_train:
normed_path = os.path.normpath(path)
assert normed_path in train_paths or normed_path in valid_paths, f"{normed_path} not in paths"
if normed_path in valid_paths:
print(f"MOVING {path} to validation set")
valid_paths.remove(path)
train_paths.append(path)
return train_paths, valid_paths
def main():
train_rate = 0.95
splits = {}
args = [
("books", ["books/stein/stein.tex", "books/trench/TRENCH_REAL_ANALYSIS.tex"]),
("formal", ["formal/setmm/set.mm"]),
]
for subdir, must_be_in_train in args:
print(subdir, must_be_in_train)
train, valid = get_split(subdir, train_rate, must_be_in_train)
splits[subdir + "-train"] = train
splits[subdir + "-valid"] = valid
with open("splits.json", "w") as f:
f.write(json.dumps(splits, indent=4))
if __name__=="__main__":
main()
|