Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
% This is the exercise solution document for the homotopy type theory book. | |
% This file supports two book sizes: | |
% - Letter size (8.5" x 11") | |
% - US Trade size (6" x 9") | |
% | |
% To activate one or the other, uncomment the appropriate font size in | |
% the documentclass below, and then one of the two page geometry incantations | |
% | |
% NOTE: The 6" x 9" format is only experimental. It will break the | |
% title page, for example. | |
\PassOptionsToPackage{table}{xcolor} | |
% DOCUMENT CLASS | |
\documentclass[ | |
% | |
%10pt % for US Trade 6" x 9" book | |
% | |
11pt % for Letter size book | |
]{article} | |
\usepackage{etex} % We're running out of registers and dimensions, or some such | |
\newcounter{chapter} % So that macros.tex doesn't choke | |
% PAGE GEOMETRY | |
% | |
% Uncomment one of these | |
% We make the page 40pt taller than the standard LaTeX book. | |
% OPTION 1: Letter | |
\usepackage[papersize={8.5in,11in}, | |
twoside, | |
includehead, | |
top=1in, | |
bottom=1in, | |
inner=0.75in, | |
outer=1.0in, | |
bindingoffset=0.35in]{geometry} | |
% OPTION 2: US Trade | |
% \usepackage[papersize={6in,9in}, | |
% twoside, | |
% includehead, | |
% top=0.75in, | |
% bottom=0.75in, | |
% inner=0.5in, | |
% outer=0.75in, | |
% bindingoffset=0.35in]{geometry} | |
% HYPERLINKING AND PDF METADATA | |
\usepackage[pagebackref, | |
colorlinks, | |
citecolor=darkgreen, | |
linkcolor=darkgreen, | |
unicode, | |
pdfauthor={Univalent Foundations Program}, | |
pdftitle={Homotopy Type Theory: Univalent Foundations of Mathematics}, | |
pdfsubject={Mathematics}, | |
pdfkeywords={type theory, homotopy theory, univalence axiom}]{hyperref} | |
% OTHER PACKAGES | |
% Use this package and stick \layout somewhere in the text to see | |
% page margins, text size and width etc. Useful for debugging page format. | |
%\usepackage{layout} | |
%%% Because Germans have umlauts and Slavs have even stranger ways of mangling letters | |
\usepackage[utf8]{inputenc} | |
%%% For table {tab:theorems} | |
\usepackage{pifont} | |
%%% Multi-Columns for long lists of names | |
\usepackage{multicol} | |
%%% Set the fonts | |
\usepackage{mathpazo} | |
\usepackage[scaled=0.95]{helvet} | |
\usepackage{courier} | |
\linespread{1.05} % Palatino looks better with this | |
\usepackage{graphicx} | |
\DeclareGraphicsExtensions{.png} | |
\input{bmpsize-hack} % for bounding boxes in dvi mode | |
\usepackage{comment} | |
\usepackage{wallpaper} % For the background image on the cover page | |
\usepackage{fancyhdr} % To set headers and footers | |
\usepackage{nextpage} % So we can jump to odd-numbered pages | |
\usepackage{amssymb,amsmath,amsthm,stmaryrd,mathrsfs,wasysym} | |
\usepackage{enumitem,mathtools,xspace} | |
\usepackage{xcolor} % For colored cells in tables we need \cellcolor | |
\usepackage{booktabs} % For nice tables | |
\usepackage{array} % For nice tables | |
\usepackage{supertabular} % For index of symbols | |
\definecolor{darkgreen}{rgb}{0,0.45,0} | |
\usepackage{aliascnt} | |
\usepackage[capitalize]{cleveref} | |
\usepackage[all,2cell]{xy} | |
\UseAllTwocells | |
\usepackage{braket} % used for \setof{ ... } macro | |
\usepackage{tikz} | |
\usetikzlibrary{decorations.pathmorphing} | |
\usepackage{etoolbox} % hacking commands for TOC | |
\usepackage{mathpartir} % for formal.tex appendix, section 3 | |
\usepackage[numbered]{bookmark} % add chapter/section numbers to the toc in the pdf metadata | |
\input{macros} | |
%%%% Indexing | |
\usepackage{makeidx} | |
\makeindex | |
%%%% Header and footers | |
\pagestyle{fancyplain} | |
\setlength{\headheight}{15pt} | |
\renewcommand{\sectionmark}[1]{\markright{\textsc{\thesection\ #1}}} | |
\newcommand{\transfun}[3]{\mathcal{I}_{#1}(#2, #3)} | |
\newcommand{\nathom}[2]{\mathsf{nat}_{#1}(#2)} | |
\newcommand{\Tgh}[2]{\mathcal{T}_1(#1,#2)} | |
\newcommand{\T}[2]{\mathcal{T}_2(#1,#2)} | |
\newcommand{\TT}[2]{\mathcal{T}_3(#1,#2)} | |
\newcommand{\I}{\mathcal{I}_1} | |
\newcommand{\II}{\mathcal{I}_2} | |
\newcommand{\hapfuneq}{\mathsf{happly}\mbox{-}\mathsf{funext}\mbox{-}\mathsf{inv}} | |
\lhead[\fancyplain{}{{\thepage}}]% | |
{\fancyplain{}{\nouppercase{\rightmark}}} | |
\rhead[\fancyplain{}{\nouppercase{\leftmark}}]% | |
{\fancyplain{}{\thepage}} | |
\cfoot{\textsc{\scriptsize \textcolor{gray}{[Draft of \today]}}} | |
\lfoot[]{} | |
\rfoot[]{} | |
%%%% Chapter & part style | |
\usepackage{titlesec} | |
\titleformat{\part}[display]{\fontsize{40}{40}\fontseries{m}\fontshape{sc}\selectfont}{\hfil\partname\ \Roman{part}}{20pt}{\fontsize{60}{60}\fontseries{b}\fontshape{sc}\selectfont\hfil} | |
\titleformat{\chapter}[display]{\fontsize{23}{25}\fontseries{m}\fontshape{it}\selectfont}{\chaptertitlename\ \thechapter}{20pt}{\fontsize{35}{35}\fontseries{b}\fontshape{n}\selectfont} | |
\input{main.labels} | |
\title{Solutions to selected exercises} | |
\begin{document} | |
\maketitle | |
\section*{Exercises from \cref{cha:typetheory}} | |
\subsection*{Solution to \cref{ex:composition}} | |
We of course know what composition of functions $f : A \to B$ and $g : B \to C$ should be, but let us see how we might derive it by considering available forms of construction. We want a term | |
\[ g \circ f \defeq (\Box : A \to C), \] | |
where $\Box : A \to C$ indicates that in place of $\Box$ we would like to put something of type $A \to C$. | |
Since we are defining a function whose domain is $A$, we expect it to be of the form | |
\[ g \circ f \defeq \lam{x:A} (\Box : C), \] | |
so now we are looking for something of type $C$, with $x$, $f$ and $g$ available. Of these $g$ looks most promising as it lands in $C$: | |
\[ g \circ f \defeq \lam{x:A} g (\Box : B). \] | |
Now we repeat the same trick with $f$ to get | |
\[ g \circ f \defeq \lam{x:A} g(f(\Box : A)). \] | |
Inside the abstraction $x$ is available and has the type we need, so we define | |
\begin{equation} | |
\label{eq:composdef} | |
g \circ f \defeq \lam{x:A} g(f(x)) : C | |
\end{equation} | |
% | |
This baby example demonstrates how one often works with a proof assistant: look at what | |
you need and what is available, and try to make some progress. | |
Now, suppose given also $h : C \to D$. We have, according to \cref{eq:composdef}, | |
% | |
\begin{align*} | |
h \circ (g \circ f) &\jdeq \lamu{x:A} h ((\lam{y:A} g(f(y))) x)\\ | |
&\jdeq \lamu{x:A} h(g(f(x))), | |
\end{align*} | |
% | |
and | |
% | |
\begin{align*} | |
(h \circ g) \circ f & \jdeq \lamu{x:A} (\lam{y:A} h(g(y))) (f(x))\\ | |
& \jdeq \lamu{x:A} h(g(f(x))). | |
\end{align*} | |
% | |
They are equal, which establishes associativity of composition. | |
\subsection*{Solution to \cref{ex:pr-to-rec}} | |
If we suppose given only $\fst : A \times B \to A$ and $\snd : A \times B \to B$ satisfying $\fst(\tup{a}{b}) \jdeq a$ and $\snd(\tup{a}{b})\jdeq b$, we can define $\rec{A\times B}'$ by | |
\[ \rec{A\times B}'(C,g,x) \defeq g (\fst x) (\snd x). \] | |
We can now verify, given $C:\UU$, $g:A\to B \to C$ and $(a,b):A\times B$, | |
\begin{align*} | |
\rec{A\times B}'(C,g,(a,b)) &\jdeq g (\fst (a,b)) (\snd (a,b))\\ | |
&\jdeq g (a) (b). | |
\end{align*} | |
% | |
For $\Sigma$-types we replace $A \times B$ above with $\sm{a:A} B(a)$, but otherwise | |
everything else stays the same: | |
\[ \rec{\sm{x:A} B(x)}'(C,g,x) \defeq g (\fst x) (\snd x). \] | |
\subsection*{Solution to \cref{ex:pr-to-ind}} | |
Quite naturally, we form | |
\[ \ind{A\times B}''(C,g,x) \defeq g (\fst x) (\snd x),\] | |
of type | |
\[ \prd{C:A\times B \to \UU}\Parens{\prd{y:A}\prd{z:B} C(\tup yz)} \to | |
\prd{x : A \times B} C (\tup{\fst x}{\snd x}). \] | |
This is not quite what we need because $\ind{A\times B}$ has the type | |
\[ \prd{C:A\times B \to \UU}\Parens{\prd{y:A}\prd{z:B} C(\tup{y}{z})} \to | |
\prd{x : A \times B} C (x). \] | |
% | |
Recall that we have the propositional uniqueness principle | |
% | |
\[ \uniq{A\times B}: \prd{x : A \times B} (\id[A\times B]{\tup{\fst x}{\snd x}}{x}), \] | |
% | |
satisfying $\id{\uniq{A\times B}(\tup{a}{b})}{\refl{(a,b)}}$. | |
We can transport along $\uniq{A\times B}(x)$ to get from $C(\tup{\fst x}{\snd x})$ to $C(x)$: | |
% | |
\[ \ind{A\times B}'(C,g,x) \defeq | |
\transfib{C}{\uniq{A\times B}(x)}{\ind{A \times B}''(C, g, x)}. | |
\] | |
% | |
It remains to verify that $\ind{A \times B}'(C, g, x)$ behaves as expected: | |
% | |
\begin{align*} | |
\ind{A \times B}'(C,g,(a,b)) | |
&\jdeq \transfib{C}{\uniq{A\times B}(\tup{a}{b})}{g(\fst \tup{a}{b})(\snd\tup{a}{b})} \\ | |
&\jdeq \transfib{C}{\uniq{A\times B}(\tup{a}{b})}{g(a)(b)} \\ | |
&\jdeq \transfib{C}{\refl{\tup ab}}{g(a)(b)} \\ | |
&\jdeq g(a)(b). | |
\end{align*} | |
% | |
Now for $\Sigma$-types the exact same expressions work as well, except that the types change. | |
\section*{Exercises from \cref{cha:logic}} | |
\subsection*{Solution to \cref{ex:decidable-choice}} | |
The hypotheses imply that | |
\[ \Parens{\sm{n:\nat}P(n)} \to \sm{n:\nat}\Parens{P(n) \times \prd{m:\nat} \big((m<n) \to \neg P(m)\big)}. \] | |
In words, given $n$ such that $P(n)$, we can find the least such $n$: we test every $m<n$ in turn, using decidability to do a case analysis, until we find the first one that satisfies $P(m)$. | |
However, the right-hand side of the above implication is a mere proposition: if both $n$ and $n'$ are least numbers satisfying~$P$ then they must be equal. | |
Therefore, we also have | |
\[ \Brck{\sm{n:\nat}P(n)} \to \sm{n:\nat}\Parens{P(n) \times \prd{m:\nat} \big((m<n) \to \neg P(m)\big)} \] | |
from which the claim follows. | |
\section*{Exercises from \cref{cha:equivalences}} | |
\subsection*{Solution to \cref{ex:symmetric-equiv}} | |
First note that for any type $A$ we have $\eqv{\iscontr(A)}{A\times \iscontr(A)}$. | |
Thus | |
\begin{align*} | |
\prd{a:A} \iscontr\Parens{\sm{b:B} R(a,b)} | |
&\eqvsym \prd{a:A} \Parens{\sm{b:B} R(a,b)} \times \iscontr\Parens{\sm{b:B} R(a,b)}\\ | |
&\eqvsym \Parens{\prd{a:A}\sm{b:B} R(a,b)} \times \Parens{\prd{a:A}\iscontr\Parens{\sm{b:B} R(a,b)}}\\ | |
&\eqvsym \Parens{\sm{f:A\to B} \prd{a:A} R(a,f(a))} \times \Parens{\prd{a:A}\iscontr\Parens{\sm{b:B} R(a,b)}} | |
\end{align*} | |
using \cref{thm:ttac} at the last step. | |
So the type given in the exercise is equivalent to | |
\begin{equation*} | |
\sm{f:A\to B}{R:A\to B\to \type} | |
\Parens{\prd{a:A} R(a,f(a))}\times | |
\Parens{\prd{a:A} \iscontr\Parens{\sm{b:B} R(a,b)}} \times | |
\Parens{\prd{b:B} \iscontr\Parens{\sm{a:A} R(a,b)}}. | |
\end{equation*} | |
It will therefore suffice to show that for any $f:A\to B$, the type | |
\begin{equation}\label{eq:symmetric-isequiv} | |
\sm{R:A\to B\to \type} | |
\Parens{\prd{a:A} R(a,f(a))}\times | |
\Parens{\prd{a:A} \iscontr\Parens{\sm{b:B} R(a,b)}} \times | |
\Parens{\prd{b:B} \iscontr\Parens{\sm{a:A} R(a,b)}}. | |
\end{equation} | |
is equivalent to $\isequiv(f)$, or equivalently that it satisfies the three desiderata of $\isequiv(f)$. | |
Firstly, suppose $f$ has a quasi-inverse $g$, and define $R(a,b) \defeq (f(a)=b)$. | |
For any $a$ we have $\iscontr(\sm{b:B} R(a,b))$ by \cref{thm:contr-paths}, and in particular we have $R(a,f(a))$. | |
On the other hand, by \cref{thm:paths-respects-equiv} we have $\eqv{R(a,b)}{(gf(a) = g(b))}$, which is equivalent to $a = g(b)$, so \cref{thm:contr-paths} also implies that $\iscontr(\sm{a:A} R(a,b))$ for any $b:B$. | |
Secondly, suppose~\eqref{eq:symmetric-isequiv} is inhabited, i.e.\ we have $R:A\to B\to \type$ and witnesses $r:\prd{a:A} R(a,f(a))$ and $c:\prd{a:A} \iscontr(\sm{b:B} R(a,b))$ and $d:\prd{b:B} \iscontr(\sm{a:A} R(a,b))$. | |
Let $g(b) \defeq \proj1 (\proj1(d(b)))$, yielding $g:B\to A$; thus we have $R(g(b),b)$ for any $b:B$. | |
Then for any $a_0:A$ we have $R(a_0,f(a_0))$ and $R(g(f(a_0)),f(a_0))$; but $\sm{a:A} R(a,f(a_0))$ is contractible, so $a_0 = g(f(a_0))$. | |
Similarly, $b_0 = f(g(b_0))$ for any $b_0:B$, so $g$ is a quasi-inverse to $f$. | |
Finally, we must show that~\eqref{eq:symmetric-isequiv} is a mere proposition. | |
Since $\prd{b:B} \iscontr\Parens{\sm{a:A} R(a,b)}$ is a mere proposition by \cref{thm:isprop-forall,thm:isprop-iscontr}, by \cref{thm:path-subset} we may ignore it and consider only the remainder: | |
\begin{equation*} | |
\sm{R:A\to B\to \type} | |
\Parens{\prd{a:A} R(a,f(a))}\times | |
\Parens{\prd{a:A} \iscontr\Parens{\sm{b:B} R(a,b)}}. | |
\end{equation*} | |
Using \cref{thm:ttac} again, this is equivalent to | |
\begin{equation*} | |
\prd{a:A}\sm{R:B\to \type} R(fa)\times \iscontr\Parens{\sm{b:B} R(b)}. | |
\end{equation*} | |
Thus it will suffice to show that for any $b_0:B$, the type | |
\[ \sm{R:B\to \type} R(b_0)\times \iscontr\Parens{\sm{b:B} R(b)} \] | |
is a mere proposition. | |
But in fact, this type is contractible; its center of contraction consists of $\lam{b}(b_0=b)$ and $\refl{b_0}$ and \cref{thm:contr-paths}, and the contracting homotopy arises from \cref{thm:identity-systems}\ref{item:identity-systems4}$\Rightarrow$\ref{item:identity-systems3} (together with univalence and function extensionality). | |
\subsection*{Solution to \cref{ex:embedding-cancellable}} | |
An embedding clearly has properties~\ref{item:ex:ec1} and~\ref{item:ex:ec2}. | |
Conversely, suppose $f$ has properties~\ref{item:ex:ec1} and~\ref{item:ex:ec2} and let $x,y:A$; we must show that $\apfunc f: (x=y) \to (f(x)=f(y))$ is an equivalence. | |
By \cref{thm:equiv-inhabcod}, we are free to assume that $f(x)=f(y)$. | |
Thus, by~\ref{item:ex:ec1}, we have some $p:x=y$. | |
Now the following square commutes by \cref{lem:ap-functor}: | |
\begin{equation*} | |
\vcenter{\xymatrix@C=4pc{ | |
\Omega(A,y)\ar[r]^-{p\ct\blank}\ar[d]_{\apfunc{f}} & | |
(x=y)\ar[d]^{\apfunc{f}}\\ | |
\Omega(B,f(y))\ar[r]_-{\ap f p \ct \blank} & | |
(f(x)=f(y)). | |
}} | |
\end{equation*} | |
Both horizontal maps are equivalences by \cref{ex:equiv-concat}, while the left-hand vertical map is an equivalence by~\ref{item:ex:ec2}. | |
Thus, by \cref{thm:two-out-of-three}, so is the right-hand vertical map, as desired. | |
As for examples, the unique map $\bool\to\unit$ satisfies~\ref{item:ex:ec2} but not~\ref{item:ex:ec1}, while the map $\lam{x}\bool:\unit\to\UU$ satisfies~\ref{item:ex:ec1} but not~\ref{item:ex:ec2}. | |
\section*{Exercises from \cref{cha:hits}} | |
\subsection*{Solution to \cref{ex:torus}} | |
The torus $T^2$ is a higher inductive type generated by a point $b : T^2$, two paths $p : b = b$, $q : b = b$, and a 2-path $t : p \ct q = q \ct p$. The recursion principle thus says that given $C : \type$, for a function $f : T^2 \to C$ we require | |
\begin{itemize} | |
\item a point $b':C$, | |
\item a path $p' : b' = b'$, | |
\item a path $q' : b' = b'$, and | |
\item a 2-path $t' : p' \ct q' = q' \ct p'$. | |
\end{itemize} | |
The recursor $f : T^2 \to C$ then has the property that $f(b) \jdeq b'$. Furthermore, there exist terms $\beta : \ap{f}{p} = p'$ and $\gamma : \ap{f}{q} = q'$ such that the following diagram commutes: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (Nc) at (1.5,0) {=}; | |
\node (N0) at (0,1.5) {$\ap{f}{p\ct q}$}; | |
\node (N1) at (3,1.5) {$\ap{f}{q\ct p}$}; | |
\node (N2) at (0,0) {$\ap{f}{p}\ct\ap{f}{q}$}; | |
\node (N3) at (3,0) {$\ap{f}{q}\ct\ap{f}{p}$}; | |
\node (N4) at (0,-1.5) {$p' \ct q'$}; | |
\node (N5) at (3,-1.5) {$q' \ct p'$}; | |
\draw[-] (N0) -- node[above]{\footnotesize $\mapfunc{\mapfunc{f}}(t)$} (N1); | |
\draw[-] (N0) -- node[left]{} (N2); | |
\draw[-] (N1) -- node[above]{} (N3); | |
\draw[-] (N2) -- node[left]{\footnotesize via $\beta$, $\gamma$} (N4); | |
\draw[-] (N3) -- node[right]{\footnotesize via $\beta$, $\gamma$} (N5); | |
\draw[-] (N4) -- node[below]{\footnotesize $t'$} (N5); | |
\end{tikzpicture} | |
\end{center} | |
The induction principle is more complicated; it says that given a family $P : T^2 \to \type$, for a section $f : \prd{x:T^2} P(x)$ we require | |
\begin{itemize} | |
\item a point $b':P(b)$, | |
\item a path $p' : \trans{p}{b'} = b'$, | |
\item a path $q' : \trans{q}{b'} = b'$, and | |
\item a 2-path $t'$ witnessing the equality of the following two paths from $\trans{(q\ct p)}{b'}$ to $b'$: | |
\begin{align*} | |
& \opp{\big(\mapfunc{\alpha \mapsto \trans{\alpha}{b'}}(t)\big)} \ct \big(\happly_{\transfun{P}{p}{q}}(b') \ct \mapfunc{\transf{q}}(p') \ct q' \big)\\ | |
& \happly_{\transfun{P}{q}{p}}(b') \ct \mapfunc{\transf{p}}(q') \ct p' | |
\end{align*} | |
where for any type family $B : A \to \type$ and paths $\alpha: x =_A y$ and $\alpha' : y =_A z$, the path \[\transfun{E}{\alpha}{\alpha'} : \transf{(\alpha \ct \alpha')} = \lam{u:B(x)} \trans{\alpha'}{\trans{\alpha}{u}}\] is obtained by a path induction on $\alpha$ and $\alpha'$. | |
\end{itemize} | |
The inductor $f : \prd{x:T^2} P(x)$ then has the property that $f(b) \jdeq b'$. Furthermore, there exist terms $\beta : \mapdep{f}{p} = p'$ and $\gamma : \mapdep{f}{q} = q'$ such that the 2-path | |
\[ \mapdep{\mapdepfunc{f}}{t} : \transfib{\alpha \mapsto \trans{\alpha}{b'} = b'}{t}{\mapdepfunc{f}{(p\ct q)}} = \mapdepfunc{f}{(q \ct p)} \] | |
is equal to the 2-path | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N0) at (0,7.5) {$\transfib{\alpha \mapsto \trans{\alpha}{b'} = b'}{t}{\mapdepfunc{f}{(p\ct q)}}$}; | |
\node (N1) at (0,6) {$\opp{\big(\mapfunc{\alpha \mapsto \trans{\alpha}{b'}}(t)\big)} \ct \mapdepfunc{f}{(p\ct q)}$}; | |
\node (N2) at (0,4.5) {$\opp{\big(\mapfunc{\alpha \mapsto \trans{\alpha}{b'}}(t)\big)} \ct \big(\happly_{\transfun{P}{p}{q}}(b') \ct \mapfunc{\transf{q}}(\mapdep{f}{p}) \ct \mapdep{f}{q}\big)$}; | |
\node (N3) at (0,3) {$\opp{\big(\mapfunc{\alpha \mapsto \trans{\alpha}{b'}}(t)\big)} \ct \big(\happly_{\transfun{P}{p}{q}}(b') \ct \mapfunc{\transf{q}}(p') \ct q'\big)$}; | |
\node (N4) at (0,1.5) {$\happly_{\transfun{P}{q}{p}}(b') \ct \mapfunc{\transf{p}}(q') \ct p'$}; | |
\node (N5) at (0,0) {$\happly_{\transfun{P}{q}{p}}(b') \ct \mapfunc{\transf{p}}(\mapdep{f}{q}) \ct \mapdep{f}{p}$}; | |
\node (N6) at (0,-1.5) {$\mapdep{f}{q\ct p}$}; | |
\draw[-] (N0) -- node[right]{\footnotesize $\mathcal{T}^{b'}_{\alpha \mapsto \trans{\alpha}{b'}}(t,\mapdepfunc{f}{(p\ct q)})$} (N1); | |
\draw[-] (N1) -- node[right]{\footnotesize via $\mathcal{D}_f(p,q)$} (N2); | |
\draw[-] (N2) -- node[right]{\footnotesize via $\beta$, $\gamma$} (N3); | |
\draw[-] (N3) -- node[right]{\footnotesize $t'$} (N4); | |
\draw[-] (N4) -- node[right]{\footnotesize via $\opp{\beta}$, $\opp{\gamma}$} (N5); | |
\draw[-] (N5) -- node[right]{\footnotesize $\opp{\mathcal{D}_f(q,p)}$} (N6); | |
\end{tikzpicture} | |
\end{center} | |
where for any $g : A \to B$, $c : B$, $\alpha : a =_A a'$ and $u : g(a) =_B c$, the path \[\mathcal{T}_g^c(\alpha,u) : \transfib{x \to g(x) = c}{\alpha}{u} = \opp{\ap{g}{\alpha}} \ct u\] | |
is obtained by a straightforward path induction on $\alpha$. Similarly, for any $g : \prd{x : A}B(x)$ and paths $\alpha: x =_A y$, $\alpha' : y =_A z$, the path | |
\[ \mathcal{D}_g(\alpha,\alpha') : \mapdep{g}{\alpha \ct \alpha'} = \happly_{\transfun{B}{\alpha}{\alpha'}}(g(x)) \ct \mapfunc{\transf{\alpha'}}(\mapdep{g}{\alpha}) \ct \mapdep{g}{\alpha'}\] | |
is obtained by a path induction on $\alpha$ and $\alpha'$. | |
\subsection*{Solution to \cref{ex:torus-s1-times-s1}} | |
\subsubsection*{Logical equivalence between $\Sn^1 \times \Sn^1$ and $T^2$} | |
We define a function $f : \Sn^1 \to T^2$ by circle recursion, mapping $\base \mapsto b$ and $\lloop \mapsto p$. We define a function $F^\to : \Sn^1 \to \Sn^1 \to T^2$ again by circle recursion, mapping $\base \mapsto f$ and $\lloop \mapsto \funext(H)$, where $H : \prd{x:\Sn^1} f(x) = f(x)$ is defined by circle induction as follows. We map $\base$ to $q$ and $\lloop$ to the path | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N0) at (0,3) {$\transfib{z \mapsto f(z) = f(z)}{\lloop}{q}$}; | |
\node (N1) at (0,1.5) {$\opp{\ap{f}{\lloop}} \ct (q \ct \ap{f}{\lloop})$}; | |
\node (N2) at (0,0) {$q$}; | |
\draw[-] (N0) -- node[right]{\footnotesize $\Tgh{\lloop}{q}$} (N1); | |
\draw[-] (N1) -- node[right]{\footnotesize $\I(\delta)$} (N2); | |
\end{tikzpicture} | |
\end{center} | |
where for any $\alpha : x =_{\Sn^1} y$, and $u : f(x) = f(x)$, the path \[\Tgh{\alpha}{u} : \transfib{z \mapsto f(z) = f(z)}{\alpha}{u} = \opp{\ap{f}{\alpha}} \ct u \ct \ap{f}{\alpha} \] | |
is obtained by a straightforward path induction on $\alpha$. For any $u : a =_A b$, $v : b =_A d$, $w : a =_A c$, $z : c =_A d$, we have functions | |
\begin{align*} | |
\I & : (u \ct v = w \ct z) \to (\opp{u} \ct w \ct z = v)\\ | |
\I^{-1} & : (\opp{u} \ct w \ct z = v) \to (u \ct v = w \ct z) | |
\end{align*} | |
defined by path induction on $u$ and $z$, which form a quasi-equivalence. Finally, $\delta$ is the path | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N0) at (0,4.5) {$\ap{f}{\lloop} \ct q$}; | |
\node (N1) at (0,3) {$p \ct q$}; | |
\node (N2) at (0,1.5) {$q \ct p$}; | |
\node (N3) at (0,0) {$q \ct \ap{f}{\lloop}$}; | |
\draw[-] (N0) -- node[right]{\footnotesize via $\beta_f$} (N1); | |
\draw[-] (N1) -- node[right]{\footnotesize $t$} (N2); | |
\draw[-] (N2) -- node[right]{\footnotesize via $\beta_f$} (N3); | |
\end{tikzpicture} | |
\end{center} | |
where $\beta_f : \ap{f}{\lloop} = p$ witnesses the second computation rule for the circle. | |
Having defined a function $F^\to : \Sn^1 \to \Sn^1 \to T^2$, it is now straightforward to define a function $F^\times : \Sn^1 \times \Sn^1 \to T^2$. For the other direction, we define $G : T^2 \to \Sn^1 \times \Sn^1$ by torus recursion as follows. We map $b \mapsto (\base,\base)$, $p \mapsto \pairpath(\refl{\base},\lloop)$, $q \mapsto \pairpath(\lloop, \refl{\base})$, and $t \mapsto \Phi_{\lloop,\lloop}$, where for $\alpha : x =_A x'$ and $\alpha' : y =_A y'$, | |
\[ \Phi_{\alpha,\alpha'} : \Big(\pairpath(\refl{x},\alpha') \ct \pairpath(\alpha, \refl{y'})\Big) = \Big(\pairpath(\alpha, \refl{y}) \ct \pairpath(\refl{x'},\alpha')\Big) \] | |
is defined by induction on $\alpha'$. | |
This completes the definition of a logical equivalence between $\Sn^1 \times \Sn^1$ and $T^2$. Before we proceed to show that it is in fact a quasi-equivalence, we note a few key properties of the functions $H$, $F^\times$, $G$ constructed above. | |
The 1-path computation rule for $F^\to$ gives us a term | |
\[ \beta_{F^\to} : \ap{F^\to}{\lloop} = \funext(H) \] | |
The 1-path computation rules for $G$ give us terms | |
\begin{align*} | |
& \beta_G : \ap{G}{p} = \pairpath(\refl{\base},\lloop)\\ | |
& \gamma_G : \ap{G}{q} =\pairpath(\lloop, \refl{\base}) | |
\end{align*} | |
The 2-path computation rule for $G$ gives us the following commuting diagram: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (Nc) at (4.5,0) {$(1)$}; | |
\node (N0) at (0,1.5) {$\ap{G}{p\ct q}$}; | |
\node (N1) at (9,1.5) {$\ap{G}{q\ct p}$}; | |
\node (N2) at (0,0) {$\ap{G}{p}\ct\ap{G}{q}$}; | |
\node (N3) at (9,0) {$\ap{G}{q}\ct\ap{G}{p}$}; | |
\node (N4) at (0,-1.5) {$\pairpath(\refl{},\lloop) \ct \pairpath(\lloop, \refl{})$}; | |
\node (N5) at (9,-1.5) {$\pairpath(\lloop, \refl{}) \ct \pairpath(\refl{},\lloop)$}; | |
\draw[-] (N0) -- node[above]{\footnotesize via $t$} (N1); | |
\draw[-] (N0) -- node[left]{} (N2); | |
\draw[-] (N1) -- node[above]{} (N3); | |
\draw[-] (N2) -- node[left]{\footnotesize via $\beta_G$, $\gamma_G$} (N4); | |
\draw[-] (N3) -- node[right]{\footnotesize via $\beta_G$, $\gamma_G$} (N5); | |
\draw[-] (N4) -- node[below]{\footnotesize $\Phi_{\lloop,\lloop}$} (N5); | |
\end{tikzpicture} | |
\end{center} | |
For any $\alpha : x =_{T^2} x'$ and $\alpha' : y =_{T^2} y'$, we have path families | |
\begin{align*} | |
& \mu(\alpha') : \ap{F^\times}{\pairpath(\refl{x},\alpha')} = \ap{F^\to(x)}{\alpha'}\\ | |
& \nu(\alpha) : \ap{F^\times}{\pairpath(\alpha,\refl{y})} = \happly_{\ap{F^\to}{\alpha}}(y) | |
\end{align*} | |
defined by path induction on $\alpha$ and $\alpha'$. | |
The function $H$ is a homotopy between $f$ and $f$. As such, for any path $\alpha : x =_{\Sn^1} y$, there exists a 2-path \[\nathom{H}{\alpha} : \ap{f}{\alpha} \ct H(y) = H(x) \ct \ap{f}{\alpha}\] defined by induction on $\alpha$. In the case when $\alpha \defeq \lloop$, we can show that the following diagram commutes: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (Na) at (2,1) {$(2)$}; | |
\node (N0) at (0,2) {$\ap{f}{\lloop} \ct q$}; | |
\node (N1) at (4,2) {$p \ct q$}; | |
\node (N2) at (0,0) {$q \ct \ap{f}{\lloop}$}; | |
\node (N3) at (4,0) {$q \ct p$}; | |
\draw[-] (N0) -- node[above]{\footnotesize via $\beta_f$} (N1); | |
\draw[-] (N1) -- node[right]{\footnotesize $t$} (N3); | |
\draw[-] (N0) -- node[left]{\footnotesize $\nathom{H}{\lloop}$} (N2); | |
\draw[-] (N2) -- node[below]{\footnotesize via $\beta_f$} (N3); | |
\end{tikzpicture} | |
\end{center} | |
To show this, we note that for any $\alpha : x =_{\Sn^1} y$, applying $\I^{-1}$ to the path | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N0) at (0,3) {$\opp{\ap{f}{\alpha}} \ct H(x) \ct \ap{f}{\alpha}$}; | |
\node (N1) at (0,1.5) {$\transfib{z \mapsto f(z) = f(z)}{\alpha}{H(x)}$}; | |
\node (N2) at (0,0) {$H(y)$}; | |
\draw[-] (N0) -- node[right]{\footnotesize $\opp{\Tgh{\alpha}{H(x)}}$} (N1); | |
\draw[-] (N1) -- node[right]{\footnotesize $\mapdep{H}{\alpha}$} (N2); | |
\end{tikzpicture} | |
\end{center} | |
yields precisely $\nathom{H}{\alpha}$ (by a simple path induction on $\alpha$). The second computation rule for $H$ tells us that $\mapdep{H}{\lloop} = \Tgh{\lloop}{q} \ct \I(\delta)$. Thus | |
\[\nathom{H}{\lloop} = \I^{-1}\big(\opp{\Tgh{\lloop}{q}} \ct \mapdep{H}{\lloop}\big) = \delta \] | |
which proves the commutativity of $(2)$. | |
\subsubsection*{Equivalence between $\Sn^1 \times \Sn^1$ and $T^2$} | |
\paragraph*{Left-to-right} | |
We need to show that for any $x,y : \Sn^1$ we have $G(F^\times(x,y)) = (x,y)$. To use the circle induction, we first define a path family $\epsilon : \prd{y:\Sn^1} G(f(y)) = (\base,y)$. The definition of $\epsilon$ itself proceeds by circle induction: we map $\base$ to the path $\refl{(\base,\base)}$ and $\lloop$ to the path | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N0) at (0,6) {$\transfib{z \mapsto G(f(z)) = (\base,z)}{\lloop}{\refl{}}$}; | |
\node (N1) at (0,4.5) {$\opp{\ap{G}{\ap{f}{\lloop}}} \ct \refl{} \ct \pairpath(\refl{},\lloop)$}; | |
\node (N2) at (0,3) {$\refl{}$}; | |
\draw[-] (N0) -- node[right]{\footnotesize $\T{\lloop}{\refl{}}$} (N1); | |
\draw[-] (N1) -- node[right]{\footnotesize $\I(\kappa)$} (N2); | |
\end{tikzpicture} | |
\end{center} | |
where for any $\alpha : x =_{\Sn^1} y$ and $u : G(f(x)) = (\base,x)$, the path \[\T{\alpha}{u} : \transfib{z \mapsto G(f(z)) = (\base,z)}{\alpha}{u} = \opp{\ap{G}{\ap{f}{\alpha}}} \ct u \ct \pairpath(\refl{},\alpha) \] | |
is defined by path induction on $\alpha$. Finally, $\kappa$ is the path | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N0) at (0,6) {$\ap{G}{\ap{f}{\lloop}} \ct \refl{}$}; | |
\node (N1) at (0,4.5) {$\ap{G}{\ap{f}{\lloop}}$}; | |
\node (N2) at (0,3) {$\pairpath(\refl{},\lloop)$}; | |
\node (N3) at (0,1.5) {$\refl{} \ct \pairpath(\refl{},\lloop)$}; | |
\draw[-] (N0) -- node[right]{} (N1); | |
\draw[-] (N1) -- node[right]{\footnotesize via $\beta_f$, $\beta_G$} (N2); | |
\draw[-] (N2) -- node[right]{} (N3); | |
\end{tikzpicture} | |
\end{center} | |
This finishes the definition of $\epsilon$. As before, for any $\alpha : x =_{\Sn^1} y$ we have a 2-path \[\nathom{\epsilon}{\alpha} : \ap{G}{\ap{f}{\alpha}} \ct \epsilon(y) = \epsilon(x) \ct \pairpath(\refl{},\alpha)\] defined by induction on $\alpha$. In the case $\alpha \defeq \lloop$, the following diagram commutes: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (Na) at (2,1) {$(3)$}; | |
\node (N0) at (0,2) {$\ap{G}{\ap{f}{\lloop}} \ct \refl{}$}; | |
\node (N1) at (4,2) {$\ap{G}{\ap{f}{\lloop}}$}; | |
\node (N2) at (0,0) {$\refl{} \ct \pairpath(\refl{},\lloop)$}; | |
\node (N3) at (4,0) {$\pairpath(\refl{},\lloop)$}; | |
\draw[-] (N0) -- node[above]{\footnotesize} (N1); | |
\draw[-] (N1) -- node[right]{\footnotesize via $\beta_f$, $\beta_G$} (N3); | |
\draw[-] (N0) -- node[left]{\footnotesize $\nathom{\epsilon}{\lloop}$} (N2); | |
\draw[-] (N2) -- node[below]{\footnotesize} (N3); | |
\end{tikzpicture} | |
\end{center} | |
To show this, we note that for any $\alpha : x =_{\Sn^1} y$, applying $\I^{-1}$ to the path | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N0) at (0,3) {$\opp{\ap{G}{\ap{f}{\alpha}}} \ct \epsilon(x) \ct \pairpath(\refl{},\alpha)$}; | |
\node (N1) at (0,1.5) {$\transfib{z \mapsto G(f(z)) = (\base,z)}{\alpha}{\epsilon(x)}$}; | |
\node (N2) at (0,0) {$\epsilon(y)$}; | |
\draw[-] (N0) -- node[right]{\footnotesize $\opp{\T{\alpha}{\epsilon(x)}}$} (N1); | |
\draw[-] (N1) -- node[right]{\footnotesize $\mapdep{\epsilon}{\alpha}$} (N2); | |
\end{tikzpicture} | |
\end{center} | |
yields precisely $\nathom{\epsilon}{\alpha}$ (by a simple path induction on $\alpha$). The second computation rule for $\epsilon$ tells us that $\mapdep{\epsilon}{\lloop} = \T{\lloop}{\refl{}} \ct \I(\kappa)$. Thus | |
\[\nathom{\epsilon}{\lloop} = \I^{-1}\big(\opp{\T{\lloop}{\refl{}}} \ct \mapdep{\epsilon}{\lloop}\big) = \kappa \] | |
which proves the commutativity of $(3)$. | |
All that remains now is to prove that \[\transfib{x \mapsto \prd{y:\Sn^1} G(F^\times(x,y)) = (x,y)}{\lloop}{\epsilon} = \epsilon\] The left endpoint can be expressed explicitly as the function | |
\[ y \mapsto \opp{\ap{G}{\happly_{\ap{F^\to}{\lloop}}(y)}} \ct \epsilon(y) \ct \pairpath(\lloop,\refl{})\] | |
as a generalization of $\lloop$ to an arbitrary $\alpha$ and a subsequent path induction on $\alpha$ shows. By function extensionality it thus suffices to show that for any $y : \Sn^1$, we have | |
\[ \opp{\ap{G}{\happly_{\ap{F^\to}{\lloop}}(y)}} \ct \epsilon(y) \ct \pairpath(\lloop,\refl{}) = \epsilon(y) \] | |
The left endpoint can be simplified using $\beta_{F^\to}$ and the fact that $\happly$ and $\funext$ form a quasi-inverse: | |
\[ \opp{\ap{G}{H(y)}} \ct \epsilon(y) \ct \pairpath(\lloop,\refl{}) = \epsilon(y) \] | |
Showing the above is the same as showing | |
\[ \ap{G}{H(y)} \ct \epsilon(y) = \epsilon(y) \ct \pairpath(\lloop,\refl{}) \] | |
for any $y :\Sn^1$. We proceed yet again by circle induction. We map $\base$ to the path $\eta$ below: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N0) at (0,3) {$\ap{G}{q} \ct \refl{}$}; | |
\node (N1) at (0,1.5) {$\ap{G}{q}$}; | |
\node (N2) at (0,0) {$\pairpath(\lloop,\refl{})$}; | |
\node (N3) at (0,-1.5) {$\refl{} \ct \pairpath(\lloop,\refl{})$}; | |
\draw[-] (N0) -- node[right]{\footnotesize} (N1); | |
\draw[-] (N1) -- node[right]{\footnotesize $\gamma_G$} (N2); | |
\draw[-] (N2) -- node[right]{\footnotesize} (N3); | |
\end{tikzpicture} | |
\end{center} | |
Now it remains to show that | |
\[ \transfib{z \mapsto \ap{G}{H(z)} \ct \epsilon(z) = \epsilon(z) \ct \pairpath(\lloop,\refl{})}{\lloop}{\eta} = \eta \] | |
For any $u : a =_A b$, $v : b =_A d$, $w : a =_A c$, $z : c =_A d$, we have functions | |
\begin{align*} | |
\II & : (u \ct v = w \ct z) \to (v \ct \opp{z} = \opp{u} \ct w) \\ | |
\II^{-1} & : (v \ct \opp{z} = \opp{u} \ct w) \to (u \ct v = w \ct z) | |
\end{align*} | |
defined by induction on $u$ and $z$, which form a quasi-equivalence. | |
For any $\alpha : x =_{\Sn^1} y$, let $\delta^\star(\alpha)$ be the path | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N0) at (0,3) {$\ap{G}{\ap{f}{\alpha}} \ct \ap{G}{H_y}$}; | |
\node (N1) at (0,1.5) {$\ap{G}{\ap{f}{\alpha} \ct H_y}$}; | |
\node (N2) at (0,0) {$\ap{G}{H_x \ct \ap{f}{\alpha}}$}; | |
\node (N3) at (0,-1.5) {$\ap{G}{H_x} \ct \ap{G}{\ap{f}{\alpha}}$}; | |
\draw[-] (N0) -- node[right]{\footnotesize} (N1); | |
\draw[-] (N1) -- node[right]{\footnotesize via $\nathom{H}{\alpha}$} (N2); | |
\draw[-] (N2) -- node[right]{\footnotesize} (N3); | |
\end{tikzpicture} | |
\end{center} | |
Given any $\alpha : x =_{\Sn^1} y$ and $\eta' : G(H(x)) \ct \eta(x) = \eta(x) \ct \pairpath(\lloop,\refl{})$, we can now express the path $\transfib{z \mapsto \ap{G}{H(z)} \ct \epsilon(z) = \epsilon(z) \ct \pairpath(\lloop,\refl{})}{\alpha}{\eta'}$ explicitly as the following path: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N0) at (0,19.8) {$\ap{G}{H_y} \ct \epsilon_y$}; | |
\node (N1) at (0,18.15){$\ap{G}{H_y} \ct \Big(\opp{\ap{G}{\ap{f}{\alpha}}} \ct \ap{G}{\ap{f}{\alpha}}\Big) \ct \epsilon_y$}; | |
\node (N2) at (0,16.5) {$\Big(\ap{G}{H_y} \ct \opp{\ap{G}{\ap{f}{\alpha}}}\Big) \ct \Big(\ap{G}{\ap{f}{\alpha}} \ct \epsilon_y\Big)$}; | |
\node (N3) at (0,14.85){$\Big(\opp{\ap{G}{\ap{f}{\alpha}}} \ct \ap{G}{H_x}\Big) \ct \Big(\ap{G}{\ap{f}{\alpha}} \ct \epsilon_y\Big)$}; | |
\node (N4) at (0,13.2){$\Big(\opp{\ap{G}{\ap{f}{\alpha}}}\ct \ap{G}{H_x}\Big) \ct \Big(\epsilon_x \ct \pairpath(\refl{},\alpha)\Big)$}; | |
\node (N5) at (0,11.55){$\opp{\ap{G}{\ap{f}{\alpha}}}\ct\Big(\ap{G}{H_x}\ct \epsilon_x\Big) \ct \pairpath(\refl{},\alpha)$}; | |
\node (N6) at (0,9.9){$\opp{\ap{G}{\ap{f}{\alpha}}}\ct\Big(\epsilon_x\ct\pairpath(\lloop,\refl{})\Big) \ct \pairpath(\refl{},\alpha)$}; | |
\node (N7) at (0,8.25){$\Big(\opp{\ap{G}{\ap{f}{\alpha}}}\ct\epsilon_x\Big)\ct\Big(\pairpath(\lloop,\refl{})\ct \pairpath(\refl{},\alpha)\Big)$}; | |
\node (N8) at (0,6.6){$\Big(\opp{\ap{G}{\ap{f}{\alpha}}}\ct\epsilon_x\Big)\ct\Big(\pairpath(\refl{},\alpha)\ct \pairpath(\lloop,\refl{})\Big)$}; | |
\node (N9) at (0,4.95){$\opp{\ap{G}{\ap{f}{\alpha}}}\ct\Big(\epsilon_x\ct\pairpath(\refl{},\alpha)\Big)\ct\pairpath(\lloop,\refl{})$}; | |
\node (N10) at (0,3.3){$\opp{\ap{G}{\ap{f}{\alpha}}}\ct\Big(\ap{G}{\ap{f}{\alpha}}\ct\epsilon_y\Big)\ct\pairpath(\lloop,\refl{})$}; | |
\node (N11) at (0,1.65){$\Big(\opp{\ap{G}{\ap{f}{\alpha}}}\ct\ap{G}{\ap{f}{\alpha}}\Big)\ct\Big(\epsilon_y\ct\pairpath(\lloop,\refl{})\Big)$}; | |
\node (N12) at (0,0){$\epsilon_y\ct\pairpath(\lloop,\refl{})$}; | |
\draw[-] (N0) -- node[right]{\footnotesize} (N1); | |
\draw[-] (N1) -- node[right]{\footnotesize} (N2); | |
\draw[-] (N2) -- node[right]{\footnotesize via $\II(\delta^\star(\alpha))$} (N3); | |
\draw[-] (N3) -- node[right]{\footnotesize via $\nathom{\epsilon}{\alpha}$} (N4); | |
\draw[-] (N4) -- node[right]{\footnotesize} (N5); | |
\draw[-] (N5) -- node[right]{\footnotesize via $\eta'$} (N6); | |
\draw[-] (N6) -- node[right]{\footnotesize} (N7); | |
\draw[-] (N7) -- node[right]{\footnotesize via $\Phi^{-1}_{\lloop,\alpha}$} (N8); | |
\draw[-] (N8) -- node[right]{\footnotesize} (N9); | |
\draw[-] (N9) -- node[right]{\footnotesize via $\opp{\nathom{\epsilon}{\alpha}}$} (N10); | |
\draw[-] (N10) -- node[right]{\footnotesize} (N11); | |
\draw[-] (N11) -- node[right]{\footnotesize} (N12); | |
\end{tikzpicture} | |
\end{center} | |
In the case $\alpha \defeq \lloop$ and $\eta' \defeq \eta$ we thus have: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N0) at (0,19.8) {$\ap{G}{q} \ct \refl{}$}; | |
\node (N1) at (0,18.15){$\ap{G}{q} \ct \Big(\opp{\ap{G}{\ap{f}{\lloop}}} \ct \ap{G}{\ap{f}{\lloop}}\Big) \ct \refl{}$}; | |
\node (N2) at (0,16.5) {$\Big(\ap{G}{q} \ct \opp{\ap{G}{\ap{f}{\lloop}}}\Big) \ct \Big(\ap{G}{\ap{f}{\lloop}} \ct \refl{}\Big)$}; | |
\node (N3) at (0,14.85){$\Big(\opp{\ap{G}{\ap{f}{\lloop}}} \ct \ap{G}{q}\Big) \ct \Big(\ap{G}{\ap{f}{\lloop}} \ct \refl{}\Big)$};85 | |
\node (N4) at (0,13.2){$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct \ap{G}{q}\Big) \ct \Big(\refl{} \ct \pairpath(\refl{},\lloop)\Big)$}; | |
\node (N5) at (0,11.55){$\opp{\ap{G}{\ap{f}{\lloop}}}\ct\Big(\ap{G}{q}\ct \refl{}\Big) \ct \pairpath(\refl{},\lloop)$}; | |
\node (N6) at (0,9.8){$\opp{\ap{G}{\ap{f}{\lloop}}}\ct\Big(\refl{}\ct\pairpath(\lloop,\refl{})\Big) \ct \pairpath(\refl{},\lloop)$}; | |
\node (N7) at (0,8.25){$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct\refl{}\Big)\ct\Big(\pairpath(\lloop,\refl{})\ct \pairpath(\refl{},\lloop)\Big)$}; | |
\node (N8) at (0,6.6){$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct\refl{}\Big)\ct\Big(\pairpath(\refl{},\lloop)\ct \pairpath(\lloop,\refl{})\Big)$}; | |
\node (N9) at (0,4.95){$\opp{\ap{G}{\ap{f}{\lloop}}}\ct\Big(\refl{}\ct\pairpath(\refl{},\lloop)\Big)\ct\pairpath(\lloop,\refl{})$}; | |
\node (N10) at (0,3.3){$\opp{\ap{G}{\ap{f}{\lloop}}}\ct\Big(\ap{G}{\ap{f}{\lloop}}\ct\refl{}\Big)\ct\pairpath(\lloop,\refl{})$}; | |
\node (N11) at (0,1.65){$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct\ap{G}{\ap{f}{\lloop}}\Big)\ct\Big(\refl{}\ct\pairpath(\lloop,\refl{})\Big)$}; | |
\node (N12) at (0,0){$\refl{}\ct\pairpath(\lloop,\refl{})$}; | |
\draw[-] (N0) -- node[right]{\footnotesize} (N1); | |
\draw[-] (N1) -- node[right]{\footnotesize} (N2); | |
\draw[-] (N2) -- node[right]{\footnotesize via $\II(\delta^\star(\lloop))$} (N3); | |
\draw[-] (N3) -- node[right]{\footnotesize via $\nathom{\epsilon}{\lloop}$} (N4); | |
\draw[-] (N4) -- node[right]{\footnotesize} (N5); | |
\draw[-] (N5) -- node[right]{\footnotesize via $\eta$} (N6); | |
\draw[-] (N6) -- node[right]{\footnotesize} (N7); | |
\draw[-] (N7) -- node[right]{\footnotesize via $\Phi^{-1}_{\lloop,\lloop}$} (N8); | |
\draw[-] (N8) -- node[right]{\footnotesize} (N9); | |
\draw[-] (N9) -- node[right]{\footnotesize via $\opp{\nathom{\epsilon}{\lloop}}$} (N10); | |
\draw[-] (N10) -- node[right]{\footnotesize} (N11); | |
\draw[-] (N11) -- node[right]{\footnotesize} (N12); | |
\end{tikzpicture} | |
\end{center} | |
We can now use the commutativity of $(3)$ and get rid of the extraneous identity paths to obtain: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N0) at (0,19.8) {$\ap{G}{q} \ct \refl{}$}; | |
\node (N1) at (0,18.15) {$\ap{G}{q}$}; | |
\node (N2) at (0,16.5) {$\ap{G}{q} \ct \Big(\opp{\ap{G}{\ap{f}{\lloop}}} \ct \ap{G}{\ap{f}{\lloop}}\Big)$}; | |
\node (N3) at (0,14.85) {$\Big(\ap{G}{q} \ct \opp{\ap{G}{\ap{f}{\lloop}}}\Big) \ct \ap{G}{\ap{f}{\lloop}}$}; | |
\node (N4) at (0,13.2) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}} \ct \ap{G}{q}\Big) \ct \ap{G}{\ap{f}{\lloop}}$}; | |
\node (N5) at (0,11.55) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct \ap{G}{q}\Big) \ct \pairpath(\refl{},\lloop)$}; | |
\node (N6) at (0,9.8) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct\pairpath(\lloop,\refl{})\Big) \ct \pairpath(\refl{},\lloop)$}; | |
\node (N7) at (0,8.25) {$\opp{\ap{G}{\ap{f}{\lloop}}}\ct\Big(\pairpath(\lloop,\refl{})\ct \pairpath(\refl{},\lloop)\Big)$}; | |
\node (N8) at (0,6.6) {$\opp{\ap{G}{\ap{f}{\lloop}}}\ct\Big(\pairpath(\refl{},\lloop)\ct \pairpath(\lloop,\refl{})\Big)$}; | |
\node (N9) at (0,4.95) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct\pairpath(\refl{},\lloop)\Big)\ct\pairpath(\lloop,\refl{})$}; | |
\node (N10) at (0,3.3) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct\ap{G}{\ap{f}{\lloop}}\Big)\ct\pairpath(\lloop,\refl{})$}; | |
\node (N11) at (0,1.65) {$\pairpath(\lloop,\refl{})$}; | |
\node (N12) at (0,0) {$\refl{}\ct\pairpath(\lloop,\refl{})$}; | |
\draw[-] (N0) -- node[right]{\footnotesize} (N1); | |
\draw[-] (N1) -- node[right]{\footnotesize} (N2); | |
\draw[-] (N2) -- node[right]{\footnotesize} (N3); | |
\draw[-] (N3) -- node[right]{\footnotesize via $\II(\delta^\star(\lloop))$} (N4); | |
\draw[-] (N4) -- node[right]{\footnotesize via $\beta_f$, $\beta_G$} (N5); | |
\draw[-] (N5) -- node[right]{\footnotesize via $\gamma_G$} (N6); | |
\draw[-] (N6) -- node[right]{\footnotesize} (N7); | |
\draw[-] (N7) -- node[right]{\footnotesize via $\Phi^{-1}_{\lloop,\lloop}$} (N8); | |
\draw[-] (N8) -- node[right]{\footnotesize} (N9); | |
\draw[-] (N9) -- node[right]{\footnotesize via $\beta^{-1}_G$, $\beta^{-1}_f$} (N10); | |
\draw[-] (N10) -- node[right]{\footnotesize} (N11); | |
\draw[-] (N11) -- node[right]{\footnotesize} (N12); | |
\end{tikzpicture} | |
\end{center} | |
or equivalently: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N0) at (0,19.8) {$\ap{G}{q} \ct \refl{}$}; | |
\node (N1) at (0,18.15) {$\ap{G}{q}$}; | |
\node (N2) at (0,16.5) {$\ap{G}{q} \ct \Big(\opp{\ap{G}{\ap{f}{\lloop}}} \ct \ap{G}{\ap{f}{\lloop}}\Big)$}; | |
\node (N3) at (0,14.85) {$\Big(\ap{G}{q} \ct \opp{\ap{G}{\ap{f}{\lloop}}}\Big) \ct \ap{G}{\ap{f}{\lloop}}$}; | |
\node (N4) at (0,13.2) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}} \ct \ap{G}{q}\Big) \ct \ap{G}{\ap{f}{\lloop}}$}; | |
\node (N5) at (0,11.55) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct \ap{G}{q}\Big) \ct \pairpath(\refl{},\lloop)$}; | |
\node (N6) at (0,9.8) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct\pairpath(\lloop,\refl{})\Big) \ct \pairpath(\refl{},\lloop)$}; | |
\node (N7) at (0,8.25) {$\opp{\ap{G}{\ap{f}{\lloop}}}\ct\Big(\pairpath(\lloop,\refl{})\ct \pairpath(\refl{},\lloop)\Big)$}; | |
\node (N8) at (0,6.6) {$\opp{\ap{G}{\ap{f}{\lloop}}}\ct\Big(\pairpath(\refl{},\lloop)\ct \pairpath(\lloop,\refl{})\Big)$}; | |
\node (N9) at (0,4.95) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct\pairpath(\refl{},\lloop)\Big)\ct\pairpath(\lloop,\refl{})$}; | |
\node[red] (N10) at (0,3.3) {$\Big(\opp{\pairpath(\refl{},\lloop)}\ct\pairpath(\refl{},\lloop)\Big)\ct\pairpath(\lloop,\refl{})$}; | |
\node (N11) at (0,1.65) {$\pairpath(\lloop,\refl{})$}; | |
\node (N12) at (0,0) {$\refl{}\ct\pairpath(\lloop,\refl{})$}; | |
\draw[-] (N0) -- node[right]{\footnotesize} (N1); | |
\draw[-] (N1) -- node[right]{\footnotesize} (N2); | |
\draw[-] (N2) -- node[right]{\footnotesize} (N3); | |
\draw[-] (N3) -- node[right]{\footnotesize via $\II(\delta^\star(\lloop))$} (N4); | |
\draw[-] (N4) -- node[right]{\footnotesize via $\beta_f$, $\beta_G$} (N5); | |
\draw[-] (N5) -- node[right]{\footnotesize via $\gamma_G$} (N6); | |
\draw[-] (N6) -- node[right]{\footnotesize} (N7); | |
\draw[-] (N7) -- node[right]{\footnotesize via $\Phi^{-1}_{\lloop,\lloop}$} (N8); | |
\draw[-] (N8) -- node[right]{\footnotesize} (N9); | |
\draw[red,-] (N9) -- node[right]{\footnotesize via $\beta_f$, $\beta_G$} (N10); | |
\draw[red,-] (N10) -- node[right]{\footnotesize} (N11); | |
\draw[-] (N11) -- node[right]{\footnotesize} (N12); | |
\end{tikzpicture} | |
\end{center} | |
After some rearranging we get: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N0) at (0,19.8) {$\ap{G}{q} \ct \refl{}$}; | |
\node (N1) at (0,18.15) {$\ap{G}{q}$}; | |
\node (N2) at (0,16.5) {$\ap{G}{q} \ct \Big(\opp{\ap{G}{\ap{f}{\lloop}}} \ct \ap{G}{\ap{f}{\lloop}}\Big)$}; | |
\node (N3) at (0,14.85) {$\Big(\ap{G}{q} \ct \opp{\ap{G}{\ap{f}{\lloop}}}\Big) \ct \ap{G}{\ap{f}{\lloop}}$}; | |
\node[red] (N4) at (0,13.2) {$\Big(\ap{G}{q} \ct \opp{\ap{G}{\ap{f}{\lloop}}}\Big) \ct \pairpath(\refl{},\lloop)$}; | |
\node (N5) at (0,11.55) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct \ap{G}{q}\Big) \ct \pairpath(\refl{},\lloop)$}; | |
\node (N6) at (0,9.8) {$\Big(\opp{\ap{G}{\ap{f}{\lloop}}}\ct\pairpath(\lloop,\refl{})\Big) \ct \pairpath(\refl{},\lloop)$}; | |
\node[red] (N7) at (0,8.25) {$\Big(\opp{\pairpath(\refl{},\lloop)}\ct\pairpath(\lloop,\refl{})\Big)\ct \pairpath(\refl{},\lloop)$}; | |
\node[red] (N8) at (0,6.6) {$\opp{\pairpath(\refl{},\lloop)}\ct\Big(\pairpath(\lloop,\refl{})\ct \pairpath(\refl{},\lloop)\Big)$}; | |
\node[red] (N9) at (0,4.95) {$\opp{\pairpath(\refl{},\lloop)}\ct\Big(\pairpath(\refl{},\lloop)\ct\pairpath(\lloop,\refl{})\Big)$}; | |
\node (N10) at (0,3.3) {$\Big(\opp{\pairpath(\refl{},\lloop)}\ct\pairpath(\refl{},\lloop)\Big)\ct\pairpath(\lloop,\refl{})$}; | |
\node (N11) at (0,1.65) {$\pairpath(\lloop,\refl{})$}; | |
\node (N12) at (0,0) {$\refl{}\ct\pairpath(\lloop,\refl{})$}; | |
\draw[-] (N0) -- node[right]{\footnotesize} (N1); | |
\draw[-] (N1) -- node[right]{\footnotesize} (N2); | |
\draw[-] (N2) -- node[right]{\footnotesize} (N3); | |
\draw[red,-] (N3) -- node[right]{\footnotesize via $\beta_f$, $\beta_G$} (N4); | |
\draw[red,-] (N4) -- node[right]{\footnotesize via $\II(\delta^\star(\lloop))$} (N5); | |
\draw[-] (N5) -- node[right]{\footnotesize via $\gamma_G$} (N6); | |
\draw[red,-] (N6) -- node[right]{\footnotesize via $\beta_f$, $\beta_G$} (N7); | |
\draw[red,-] (N7) -- node[right]{\footnotesize} (N8); | |
\draw[red,-] (N8) -- node[right]{\footnotesize via $\Phi^{-1}_{\lloop,\lloop}$} (N9); | |
\draw[red,-] (N9) -- node[right]{\footnotesize} (N10); | |
\draw[-] (N10) -- node[right]{\footnotesize} (N11); | |
\draw[-] (N11) -- node[right]{\footnotesize} (N12); | |
\end{tikzpicture} | |
\end{center} | |
We now observe the following: | |
\begin{itemize} | |
\item For any paths $\alpha_u : u_1 =_{a =_A b} u_2$, $\alpha_v : v_1 =_{b =_A d} v_2$, $\alpha_w : w_1 =_{a =_A c} w_2$, $\alpha_z : z_1 =_{c =_A d} z_2$ and $\phi : u_1 \ct v_1 = w_1 \ct z_1$, $\phi' : u_2 \ct v_2 = w_2 \ct z_2$, we have | |
\begin{center} | |
\begin{tikzpicture} | |
\node (Na) at (2.5,1) {$=$}; | |
\node (N0) at (0,2) {$u_1 \ct v_1$}; | |
\node (N1) at (2.5,2) {$u_1 \ct v_2$}; | |
\node (N2) at (5,2) {$u_2 \ct v_2$}; | |
\node (N3) at (0,0) {$w_1 \ct z_1$}; | |
\node (N4) at (2.5,0) {$w_1 \ct z_2$}; | |
\node (N5) at (5,0) {$w_2 \ct z_2$}; | |
\draw[-] (N0) -- node[above]{\footnotesize via $\alpha_v$} (N1); | |
\draw[-] (N1) -- node[above]{\footnotesize via $\alpha_u$} (N2); | |
\draw[-] (N0) -- node[left]{\footnotesize $\phi$} (N3); | |
\draw[-] (N3) -- node[below]{\footnotesize via $\alpha_z$} (N4); | |
\draw[-] (N4) -- node[below]{\footnotesize via $\alpha_w$} (N5); | |
\draw[-] (N2) -- node[right]{\footnotesize $\phi'$} (N5); | |
\end{tikzpicture} | |
\end{center} | |
if and only if | |
\begin{center} | |
\begin{tikzpicture} | |
\node (Na) at (2.5,1) {$=$}; | |
\node (N0) at (0,2) {$v_1 \ct z^{-1}_1$}; | |
\node (N1) at (2.5,2) {$v_1 \ct z^{-1}_2$}; | |
\node (N2) at (5,2) {$v_2 \ct z^{-1}_2$}; | |
\node (N3) at (0,0) {$u^{-1}_1 \ct w_1$}; | |
\node (N4) at (2.5,0) {$u^{-1}_1 \ct w_2$}; | |
\node (N5) at (5,0) {$u^{-1}_2 \ct w_2$}; | |
\draw[-] (N0) -- node[above]{\footnotesize via $\alpha_z$} (N1); | |
\draw[-] (N1) -- node[above]{\footnotesize via $\alpha_v$} (N2); | |
\draw[-] (N0) -- node[left]{\footnotesize $\II(\phi)$} (N3); | |
\draw[-] (N3) -- node[below]{\footnotesize via $\alpha_w$} (N4); | |
\draw[-] (N4) -- node[below]{\footnotesize via $\alpha_u$} (N5); | |
\draw[-] (N2) -- node[right]{\footnotesize $\II(\phi')$} (N5); | |
\end{tikzpicture} | |
\end{center} | |
This follows at once by path induction on $\alpha_u, \alpha_v, \alpha_w, \alpha_z$ and the fact that $\II$ is an equivalence. | |
\end{itemize} | |
Next we want to show that the following diagram commutes: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (Na) at (4.5,1) {$(4)$}; | |
\node (N0) at (0,2) {$\ap{G}{\ap{f}{\lloop}} \ct \ap{G}{q}$}; | |
\node (N1) at (0,0) {$\ap{G}{q} \ct \ap{G}{\ap{f}{\lloop}}$}; | |
\node (N2) at (9,2) {$\pairpath(\refl{},\lloop) \ct \pairpath(\lloop,\refl{})$}; | |
\node (N3) at (9,0) {$\pairpath(\lloop,\refl{}) \ct \pairpath(\refl{},\lloop)$}; | |
\draw[-] (N0) -- node[left]{\footnotesize $\delta^\star(\lloop)$} (N1); | |
\draw[-] (N0) -- node[above]{\footnotesize via $\beta_f$, $\beta_G$, $\gamma_G$} (N2); | |
\draw[-] (N2) -- node[right]{\footnotesize $\Phi_{\lloop,\lloop}$} (N3); | |
\draw[-] (N1) -- node[below]{\footnotesize via $\beta_f$, $\beta_G$, $\gamma_G$} (N3); | |
\end{tikzpicture} | |
\end{center} | |
This is the same as saying that the outer rectangle in the diagram below commutes: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (Na) at (2.5,4.125) {A}; | |
\node (Nb) at (2.5,2.375) {B}; | |
\node (Nc) at (2.5,0.725) {C}; | |
\node (Nd) at (8,2.475) {D}; | |
\node (N0) at (0,4.95) {$\ap{G}{\ap{f}{\lloop}} \ct \ap{G}{q}$}; | |
\node (N2) at (5,4.95) {$\ap{G}{p} \ct \ap{G}{q}$}; | |
\node (N4) at (11,4.95) {$\pairpath(\refl{},\lloop) \ct \pairpath(\lloop,\refl{})$}; | |
\node (N1) at (0,3.3) {$\ap{G}{\ap{f}{\lloop}\ct q}$}; | |
\node (N1c) at (0,1.65) {$\ap{G}{q\ct \ap{f}{\lloop}}$}; | |
\node (N3) at (0,0) {$\ap{G}{q}\ct\ap{G}{\ap{f}{\lloop}}$}; | |
\node (N5) at (5,0) {$\ap{G}{q} \ct \ap{G}{p}$}; | |
\node (N7) at (11,0) {$\pairpath(\lloop,\refl{}) \ct \pairpath(\refl{},\lloop)$}; | |
\node (N6) at (5,3.3) {$\ap{G}{p\ct q}$}; | |
\node (N6a) at (5,1.65) {$\ap{G}{q\ct p}$}; | |
\draw[-] (N0) -- node[above]{\footnotesize via $\beta_f$} (N2); | |
\draw[-] (N2) -- node[above]{\footnotesize via $\beta_G$, $\gamma_G$} (N4); | |
\draw[-] (N0) -- node[left]{\footnotesize} (N1); | |
\draw[-] (N1c) -- node[left]{\footnotesize} (N3); | |
\draw[-] (N3) -- node[below]{\footnotesize via $\beta_f$} (N5); | |
\draw[-] (N5) -- node[below]{\footnotesize via $\beta_G$, $\gamma_G$} (N7); | |
\draw[-] (N4) -- node[right]{\footnotesize $\Phi_{\lloop,\lloop}$} (N7); | |
\draw[-] (N1) -- node[below]{\footnotesize via $\beta_f$} (N6); | |
\draw[-] (N6) -- node[right]{\footnotesize via $t$} (N6a); | |
\draw[-] (N1c) -- node[below]{\footnotesize via $\beta_f$} (N6a); | |
\draw[-] (N2) -- node[above]{\footnotesize} (N6); | |
\draw[-] (N1) -- node[left]{\footnotesize $\nathom{H}{\lloop}$} (N1c); | |
\draw[-] (N6a) -- node[below]{\footnotesize} (N5); | |
\end{tikzpicture} | |
\end{center} | |
But this is clear: A and C obviously commute, B is precisely the diagram $(2)$, and D is the diagram $(1)$. | |
Since $(4)$ commutes, by our earlier observation the following diagram commutes: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N0) at (0,2) {$\ap{G}{q} \ct \opp{\ap{G}{\ap{f}{\lloop}}}$}; | |
\node (N1) at (0,0) {$\opp{\ap{G}{\ap{f}{\lloop}}} \ct \ap{G}{q}$}; | |
\node (N2) at (9,2) {$\pairpath(\lloop,\refl{}) \ct \opp{\pairpath(\refl{},\lloop)}$}; | |
\node (N3) at (9,0) {$\opp{\pairpath(\refl{},\lloop)} \ct \pairpath(\lloop,\refl{})$}; | |
\draw[-] (N0) -- node[left]{\footnotesize $\II(\delta^\star(\lloop))$} (N1); | |
\draw[-] (N0) -- node[above]{\footnotesize via $\beta_f$, $\beta_G$, $\gamma_G$} (N2); | |
\draw[-] (N2) -- node[right]{\footnotesize $\II(\Phi_{\lloop,\lloop})$} (N3); | |
\draw[-] (N1) -- node[below]{\footnotesize via $\gamma_G$, $\beta_f$, $\beta_G$} (N3); | |
\end{tikzpicture} | |
\end{center} | |
Our path can now be equivalently stated as: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N0) at (0,19.8) {$\ap{G}{q} \ct \refl{}$}; | |
\node (N1) at (0,18.15) {$\ap{G}{q}$}; | |
\node (N2) at (0,16.5) {$\ap{G}{q} \ct \Big(\opp{\ap{G}{\ap{f}{\lloop}}} \ct \ap{G}{\ap{f}{\lloop}}\Big)$}; | |
\node (N3) at (0,14.85) {$\Big(\ap{G}{q} \ct \opp{\ap{G}{\ap{f}{\lloop}}}\Big) \ct \ap{G}{\ap{f}{\lloop}}$}; | |
\node (N4) at (0,13.2) {$\Big(\ap{G}{q} \ct \opp{\ap{G}{\ap{f}{\lloop}}}\Big) \ct \pairpath(\refl{},\lloop)$}; | |
\node[red] (N5) at (0,11.55) {$\Big(\ap{G}{q} \ct \pairpath(\refl{},\lloop)\Big) \ct \pairpath(\refl{},\lloop)$}; | |
\node[red] (N6) at (0,9.8) {$\Big(\pairpath(\lloop,\refl{}) \ct \pairpath(\refl{},\lloop)\Big) \ct \pairpath(\refl{},\lloop)$}; | |
\node (N7) at (0,8.25) {$\Big(\opp{\pairpath(\refl{},\lloop)}\ct\pairpath(\lloop,\refl{})\Big)\ct \pairpath(\refl{},\lloop)$}; | |
\node (N8) at (0,6.6) {$\opp{\pairpath(\refl{},\lloop)}\ct\Big(\pairpath(\lloop,\refl{})\ct \pairpath(\refl{},\lloop)\Big)$}; | |
\node (N9) at (0,4.95) {$\opp{\pairpath(\refl{},\lloop)}\ct\Big(\pairpath(\refl{},\lloop)\ct\pairpath(\lloop,\refl{})\Big)$}; | |
\node (N10) at (0,3.3) {$\Big(\opp{\pairpath(\refl{},\lloop)}\ct\pairpath(\refl{},\lloop)\Big)\ct\pairpath(\lloop,\refl{})$}; | |
\node (N11) at (0,1.65) {$\pairpath(\lloop,\refl{})$}; | |
\node (N12) at (0,0) {$\refl{}\ct\pairpath(\lloop,\refl{})$}; | |
\draw[-] (N0) -- node[right]{\footnotesize} (N1); | |
\draw[-] (N1) -- node[right]{\footnotesize} (N2); | |
\draw[-] (N2) -- node[right]{\footnotesize} (N3); | |
\draw[-] (N3) -- node[right]{\footnotesize via $\beta_f$, $\beta_G$} (N4); | |
\draw[red,-] (N4) -- node[right]{\footnotesize via $\beta_f$, $\beta_G$} (N5); | |
\draw[red,-] (N5) -- node[right]{\footnotesize via $\gamma_G$} (N6); | |
\draw[red,-] (N6) -- node[right]{\footnotesize via $\II(\Phi_{\lloop,\lloop})$} (N7); | |
\draw[-] (N7) -- node[right]{\footnotesize} (N8); | |
\draw[-] (N8) -- node[right]{\footnotesize via $\Phi^{-1}_{\lloop,\lloop}$} (N9); | |
\draw[-] (N9) -- node[right]{\footnotesize} (N10); | |
\draw[-] (N10) -- node[right]{\footnotesize} (N11); | |
\draw[-] (N11) -- node[right]{\footnotesize} (N12); | |
\end{tikzpicture} | |
\end{center} | |
which is equal to: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N1) at (0,18.15) {$\ap{G}{q} \ct \refl{}$}; | |
\node (N2) at (0,16.5) {$\ap{G}{q}$}; | |
\node[red] (N3) at (0,14.85) {$\pairpath(\lloop,\refl{})$}; | |
\node[red] (N4) at (0,13.2) {$\pairpath(\lloop,\refl{}) \ct \Big(\opp{\pairpath(\refl{},\lloop)} \ct \pairpath(\refl{},\lloop)\Big)$}; | |
\node (N5) at (0,11.5) {$\Big(\pairpath(\lloop,\refl{}) \ct \opp{\pairpath(\refl{},\lloop)}\Big) \ct \pairpath(\refl{},\lloop)$}; | |
\node (N6) at (0,9.8) {$\Big(\opp{\pairpath(\refl{},\lloop)}\ct\pairpath(\lloop,\refl{})\Big) \ct \pairpath(\refl{},\lloop)$}; | |
\node (N8) at (0,8.25) {$\opp{\pairpath(\refl{},\lloop)}\ct\Big(\pairpath(\lloop,\refl{})\ct \pairpath(\refl{},\lloop)\Big)$}; | |
\node (N9) at (0,6.6) {$\opp{\pairpath(\refl{},\lloop)}\ct\Big(\pairpath(\refl{},\lloop)\ct\pairpath(\lloop,\refl{})\Big)$}; | |
\node (N10) at (0,4.95) {$\Big(\opp{\pairpath(\refl{},\lloop)}\ct\pairpath(\refl{},\lloop)\Big)\ct\pairpath(\lloop,\refl{})$}; | |
\node (N11) at (0,3.3) {$\pairpath(\lloop,\refl{})$}; | |
\node (N12) at (0,1.65) {$\refl{}\ct\pairpath(\lloop,\refl{})$}; | |
\draw[-] (N1) -- node[right]{\footnotesize} (N2); | |
\draw[red,-] (N2) -- node[right]{\footnotesize via $\gamma_G$} (N3); | |
\draw[red,-] (N3) -- node[right]{\footnotesize} (N4); | |
\draw[red,-] (N4) -- node[right]{\footnotesize} (N5); | |
\draw[-] (N5) -- node[right]{\footnotesize via $\II(\Phi_{\lloop,\lloop})$} (N6); | |
\draw[-] (N6) -- node[right]{\footnotesize} (N8); | |
\draw[-] (N8) -- node[right]{\footnotesize via $\Phi^{-1}_{\lloop,\lloop}$} (N9); | |
\draw[-] (N9) -- node[right]{\footnotesize} (N10); | |
\draw[-] (N10) -- node[right]{\footnotesize} (N11); | |
\draw[-] (N11) -- node[right]{\footnotesize} (N12); | |
\end{tikzpicture} | |
\end{center} | |
We now make the following observation: | |
\begin{itemize} | |
\item For any paths $u :a =_A b$, $v: b =_A d$, $w: a =_A c$, $z: c =_A d$ and $\phi : u \ct v = w \ct z$, the path | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N0) at (0,9) {$v$}; | |
\node (N1) at (0,7.5) {$v \ct (\opp{z}\ct z)$}; | |
\node (N2) at (0,6) {$(v \ct \opp{z})\ct z$}; | |
\node (N3) at (0,4.5) {$(\opp{u}\ct w) \ct z$}; | |
\node (N4) at (0,3) {$\opp{u}\ct(w \ct z)$}; | |
\node (N5) at (0,1.5) {$\opp{u}\ct(u \ct v)$}; | |
\node (N6) at (0,0) {$(\opp{u}\ct u) \ct v$}; | |
\node (N7) at (0,-1.5) {$v$}; | |
\draw[-] (N0) -- node[right]{\footnotesize} (N1); | |
\draw[-] (N1) -- node[right]{\footnotesize} (N2); | |
\draw[-] (N2) -- node[right]{\footnotesize via $\II(\phi)$} (N3); | |
\draw[-] (N3) -- node[right]{\footnotesize} (N4); | |
\draw[-] (N4) -- node[right]{\footnotesize $\opp{\phi}$} (N5); | |
\draw[-] (N5) -- node[right]{\footnotesize} (N6); | |
\draw[-] (N6) -- node[right]{\footnotesize} (N7); | |
\end{tikzpicture} | |
\end{center} | |
is equal to the identity path at $v$. This follows by path induction on $u$ and $z$. | |
\end{itemize} | |
Using the above observation, we can express our path simply as | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N1) at (0,18.15) {$\ap{G}{q} \ct \refl{}$}; | |
\node (N2) at (0,16.5) {$\ap{G}{q}$}; | |
\node (N3) at (0,14.85) {$\pairpath(\lloop,\refl{})$}; | |
\node (N12) at (0,13.2) {$\refl{}\ct\pairpath(\lloop,\refl{})$}; | |
\draw[-] (N1) -- node[right]{\footnotesize} (N2); | |
\draw[-] (N2) -- node[right]{\footnotesize via $\gamma_G$} (N3); | |
\draw[-] (N3) -- node[right]{\footnotesize} (N12); | |
\end{tikzpicture} | |
\end{center} | |
which is precisely $\eta$. | |
\paragraph*{Right-to-left} | |
We need to show that for any $x:T^2$ we have $F^\times(G(t)) = t$. We use torus induction, with $b' \defeq \refl{b}$. We let $p'$ be the path | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N1) at (0,9.9) {$\transfib{z \mapsto F^\times(G(z))=z}{p}{\refl{}}$}; | |
\node (N2) at (0,8.25) {$\opp{\ap{F^\times}{\ap{G}{p}}} \ct \refl{} \ct p$}; | |
\node (N3) at (0,6.6) {$\refl{}$}; | |
\draw[-] (N1) -- node[right]{\footnotesize $\TT{p}{\refl{}}$} (N2); | |
\draw[-] (N2) -- node[right]{\footnotesize $\zeta_p$} (N3); | |
\end{tikzpicture} | |
\end{center} | |
where for any $\alpha : x =_{T^2} y$ and $u : F^\times(G(x))=x$, the path \[\TT{\alpha}{u} : \transfib{z \mapsto F^\times(G(z))=z}{\alpha}{u} = \opp{\ap{F^\times}{\ap{G}{\alpha}}} \ct u \ct \alpha \] | |
is defined by path induction on $\alpha$ and $\zeta_p$ is the path | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N2) at (0,8.25) {$\opp{\ap{F^\times}{\ap{G}{p}}} \ct \refl{} \ct p$}; | |
\node (N3) at (0,6.6) {$\opp{\ap{F^\times}{\ap{G}{p}}} \ct p$}; | |
\node (N4) at (0,4.95) {$\opp{\ap{F^\times}{\pairpath(\refl{},\lloop)}} \ct p$}; | |
\node (N5) at (0,3.3) {$\opp{\ap{f}{\lloop}} \ct p$}; | |
\node (N6) at (0,1.65) {$\opp{p} \ct p$}; | |
\node (N7) at (0,0) {$\refl{}$}; | |
\draw[-] (N2) -- node[right]{\footnotesize} (N3); | |
\draw[-] (N3) -- node[right]{\footnotesize via $\beta_G$} (N4); | |
\draw[-] (N4) -- node[right]{\footnotesize via $\mu(\lloop)$} (N5); | |
\draw[-] (N5) -- node[right]{\footnotesize via $\beta_f$} (N6); | |
\draw[-] (N6) -- node[right]{\footnotesize} (N7); | |
\end{tikzpicture} | |
\end{center} | |
Similarly, let $q'$ be the path | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N1) at (0,9.9) {$\transfib{z \mapsto F^\times(G(z))=z}{q}{\refl{}}$}; | |
\node (N2) at (0,8.25) {$\opp{\ap{F^\times}{\ap{G}{q}}} \ct \refl{} \ct q$}; | |
\node (N3) at (0,6.6) {$\refl{}$}; | |
\draw[-] (N1) -- node[right]{\footnotesize $\TT{q}{\refl{}}$} (N2); | |
\draw[-] (N2) -- node[right]{\footnotesize $\zeta_q$} (N3); | |
\end{tikzpicture} | |
\end{center} | |
where $\zeta_q$ is the path | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N2) at (0,8.25) {$\opp{\ap{F^\times}{\ap{G}{q}}} \ct \refl{} \ct q$}; | |
\node (N3) at (0,6.6) {$\opp{\ap{F^\times}{\ap{G}{q}}} \ct q$}; | |
\node (N4) at (0,4.95) {$\opp{\ap{F^\times}{\pairpath(\lloop,\refl{})}} \ct q$}; | |
\node (N5) at (0,3.3) {$\opp{\happly_{\ap{F^\to}{\lloop}}(\base)} \ct q$}; | |
\node (N6) at (0,1.65) {$\opp{\happly_{\funext(H)}(\base)} \ct q$}; | |
\node (N7) at (0,0) {$\opp{q} \ct q$}; | |
\node (N8) at (0,-1.65) {$\refl{}$}; | |
\draw[-] (N2) -- node[right]{\footnotesize} (N3); | |
\draw[-] (N3) -- node[right]{\footnotesize via $\gamma_G$} (N4); | |
\draw[-] (N4) -- node[right]{\footnotesize via $\nu(\lloop)$} (N5); | |
\draw[-] (N5) -- node[right]{\footnotesize via $\beta_{F^\to}$} (N6); | |
\draw[-] (N6) -- node[right]{\footnotesize via $\hapfuneq(H)$} (N7); | |
\draw[-] (N7) -- node[right]{\footnotesize} (N8); | |
\end{tikzpicture} | |
\end{center} | |
All that remains now is to show that the following diagram commutes: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N1) at (0,9.9) {\footnotesize $\transfib{z \mapsto F^\times(G(z))=z}{p \ct q}{\refl{}}$}; | |
\node (N2) at (0,8.25) {\footnotesize $\transfib{z \mapsto F^\times(G(z))=z}{q}{\transfib{z \mapsto F^\times(G(z))=z}{p}{\refl{}}}$\;\;\;\;\;}; | |
\node (N3) at (0,6.6) {\footnotesize $\transfib{z \mapsto F^\times(G(z))=z}{q}{\refl{}}$}; | |
\node (N4) at (4.5,4.95) {$\refl{}$}; | |
\node (N5) at (8,9.9) {\footnotesize $\transfib{z \mapsto F^\times(G(z))=z}{q \ct p}{\refl{}}$}; | |
\node (N6) at (8,8.25) {\footnotesize $\transfib{z \mapsto F^\times(G(z))=z}{p}{\transfib{z \mapsto F^\times(G(z))=z}{q}{\refl{}}}$}; | |
\node (N7) at (8,6.6) {\footnotesize $\transfib{z \mapsto F^\times(G(z))=z}{p}{\refl{}}$}; | |
\draw[-] (N1) -- node[above]{\footnotesize via $t$} (N5); | |
\draw[-] (N1) -- node[right]{\footnotesize} (N2); | |
\draw[-] (N2) -- node[right]{\footnotesize via $p'$} (N3); | |
\draw[-] (N3) -- node[below]{\footnotesize $q'$} (N4); | |
\draw[-] (N5) -- node[right]{\footnotesize} (N6); | |
\draw[-] (N6) -- node[right]{\footnotesize via $q'$} (N7); | |
\draw[-] (N7) -- node[below]{\footnotesize $p'$} (N4); | |
\end{tikzpicture} | |
\end{center} | |
We make the following observation: | |
\begin{itemize} | |
\item For any $\alpha : x =_{T^2} y$, $\alpha' : y =_{T^2} z$, $u_x : F^\times(G(x))=x$, $u_y : F^\times(G(y))=y$, $u_z : F^\times(G(z))=z$, and $\eta_y : \opp{\ap{F^\times}{\ap{G}{\alpha}}} \ct u_x \ct \alpha = u_y$, $\eta_z : \opp{\ap{F^\times}{\ap{G}{\alpha'}}} \ct u_y \ct \alpha' = u_z$, the path | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N1) at (0,9.9) {$\transfib{z \mapsto F^\times(G(z))=z}{\alpha \ct \alpha'}{u_x}$}; | |
\node (N2) at (0,8.25) {$\transfib{z \mapsto F^\times(G(z))=z}{\alpha'}{\transfib{z \mapsto F^\times(G(z))=z}{\alpha}{u_x}}$}; | |
\node (N3) at (0,6.6) {$\transfib{z \mapsto F^\times(G(z))=z}{\alpha'}{\opp{\ap{F^\times}{\ap{G}{\alpha}}} \ct u_x \ct \alpha}$}; | |
\node (N4) at (0,4.95) {$\transfib{z \mapsto F^\times(G(z))=z}{\alpha'}{u_y}$}; | |
\node (N5) at (0,3.3) {$\opp{\ap{F^\times}{\ap{G}{\alpha'}}} \ct u_y \ct \alpha'$}; | |
\node (N6) at (0,1.65) {$u_z$}; | |
\draw[-] (N1) -- node[right]{\footnotesize} (N2); | |
\draw[-] (N2) -- node[right]{\footnotesize via $\TT{\alpha}{u_x}$} (N3); | |
\draw[-] (N3) -- node[right]{\footnotesize via $\eta_y$} (N4); | |
\draw[-] (N4) -- node[right]{\footnotesize $\TT{\alpha'}{u_y}$} (N5); | |
\draw[-] (N5) -- node[right]{\footnotesize $\eta_z$} (N6); | |
\end{tikzpicture} | |
\end{center} | |
can be equivalently expressed as the path | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N1) at (0,9.9) {$\transfib{z \mapsto F^\times(G(z))=z}{\alpha \ct \alpha'}{u_x}$}; | |
\node (N2) at (0,8.25) {$\opp{\ap{F^\times}{\ap{G}{\alpha \ct \alpha'}}} \ct u_x \ct (\alpha \ct \alpha')$}; | |
\node (N3) at (0,6.6) {$\opp{\ap{F^\times}{\ap{G}{\alpha'}}} \ct \Big(\opp{\ap{F^\times}{\ap{G}{\alpha}}} \ct u_x \ct \alpha\Big) \ct \alpha'$}; | |
\node (N4) at (0,4.95) {$\opp{\ap{F^\times}{\ap{G}{\alpha'}}} \ct u_y \ct \alpha'$}; | |
\node (N5) at (0,3.3) {$u_z$}; | |
\draw[-] (N1) -- node[right]{\footnotesize $\TT{\alpha \ct \alpha'}{u_x}$} (N2); | |
\draw[-] (N2) -- node[right]{\footnotesize} (N3); | |
\draw[-] (N3) -- node[right]{\footnotesize via $\eta_y$} (N4); | |
\draw[-] (N4) -- node[right]{\footnotesize $\eta_z$} (N5); | |
\end{tikzpicture} | |
\end{center} | |
To prove this, it suffices to show that the outer rectangle in the diagram below commutes: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (Na) at (4.5,8.25) {A}; | |
\node (Nb) at (4.5,5.575) {B}; | |
\node (N1) at (0,9.9) {\scriptsize $\transfib{z \mapsto F^\times(G(z))=z}{\alpha \ct \alpha'}{u_x}$}; | |
\node (N2) at (0,8.25) {\scriptsize $\transfib{z \mapsto F^\times(G(z))=z}{\alpha'}{\transfib{z \mapsto F^\times(G(z))=z}{\alpha}{u_x}}$}; | |
\node (N3) at (0,6.6) {\scriptsize $\transfib{z \mapsto F^\times(G(z))=z}{\alpha'}{\opp{\ap{F^\times}{\ap{G}{\alpha}}} \ct u_x \ct \alpha}$}; | |
\node (N4) at (0,4.95) {\scriptsize $\transfib{z \mapsto F^\times(G(z))=z}{\alpha'}{u_y}$}; | |
\node (N5) at (9,4.95) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{\alpha'}}} \ct u_y \ct \alpha'$}; | |
\node (N7) at (9,9.9) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{\alpha \ct \alpha'}}} \ct u_x \ct (\alpha \ct \alpha')$}; | |
\node (N8) at (9,6.6) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{\alpha'}}} \ct \Big(\opp{\ap{F^\times}{\ap{G}{\alpha}}} \ct u_x \ct \alpha\Big) \ct \alpha'$}; | |
\draw[-] (N1) -- node[right]{\footnotesize} (N2); | |
\draw[-] (N2) -- node[right]{\scriptsize via $\TT{\alpha}{u_x}$} (N3); | |
\draw[-] (N3) -- node[right]{\footnotesize via $\eta_y$} (N4); | |
\draw[-] (N4) -- node[below]{\scriptsize $\TT{\alpha'}{u_y}$} (N5); | |
\draw[-] (N1) -- node[above]{\scriptsize $\TT{\alpha \ct \alpha'}{u_x}$} (N7); | |
\draw[-] (N7) -- node[right]{\footnotesize} (N8); | |
\draw[-] (N3) -- node[below]{\scriptsize $\TT{\alpha'}{\opp{\ap{F^\times}{\ap{G}{\alpha}}} \ct u_x \ct \alpha}$} (N8); | |
\draw[-] (N8) -- node[right]{\footnotesize via $\eta_y$} (N5); | |
\end{tikzpicture} | |
\end{center} | |
Both of the rectangles A and B are easily shown to commute by a suitable path induction. | |
\end{itemize} | |
Using the above observation, it suffices to show that the outer part of the following diagram commutes: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (Na) at (5,9.075) {A}; | |
\node (Nb) at (5,6.6) {B}; | |
\node (N1) at (0,9.9) {\scriptsize $\transfib{z \mapsto F^\times(G(z))=z}{p \ct q}{\refl{}}$}; | |
\node (N2) at (0,8.25) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{p \ct q}}} \ct \refl{} \ct (p \ct q)$}; | |
\node (N3) at (0,6.6) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{q}}} \ct \Big(\opp{\ap{F^\times}{\ap{G}{p}}} \ct \refl{} \ct p\Big) \ct q$}; | |
\node (N4) at (0,4.95) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{q}}} \ct \refl{} \ct q$}; | |
\node (N5) at (5,3.3) {\scriptsize $\refl{}$}; | |
\node (N6) at (10,9.9) {\scriptsize $\transfib{z \mapsto F^\times(G(z))=z}{q \ct p}{\refl{}}$}; | |
\node (N7) at (10,8.25) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{q \ct p}}} \ct \refl{} \ct (q \ct p)$}; | |
\node (N8) at (10,6.6) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{p}}} \ct \Big(\opp{\ap{F^\times}{\ap{G}{q}}} \ct \refl{} \ct q\Big) \ct p$}; | |
\node (N9) at (10,4.95) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{p}}} \ct \refl{} \ct q$}; | |
\node (N10) at (5,8.25) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{q \ct p}}} \ct \refl{} \ct (p \ct q)$}; | |
\draw[-] (N1) -- node[above]{\scriptsize via $t$} (N6); | |
\draw[-] (N1) -- node[right]{\scriptsize $\TT{p \ct q}{\refl{}}$} (N2); | |
\draw[-] (N2) -- node[right]{\scriptsize} (N3); | |
\draw[-] (N3) -- node[right]{\scriptsize via $\zeta_p$} (N4); | |
\draw[-] (N4) -- node[below]{\scriptsize $\zeta_q$} (N5); | |
\draw[-] (N6) -- node[right]{\scriptsize $\TT{q \ct p}{\refl{}}$} (N7); | |
\draw[-] (N7) -- node[below]{\footnotesize} (N8); | |
\draw[-] (N8) -- node[right]{\scriptsize via $\zeta_q$} (N9); | |
\draw[-] (N9) -- node[below]{\scriptsize $\zeta_p$} (N5); | |
\draw[-] (N2) -- node[below]{\scriptsize via $t$} (N10); | |
\draw[-] (N10) -- node[below]{\scriptsize via $t$} (N7); | |
\end{tikzpicture} | |
\end{center} | |
Since rectangle A clearly commutes, it suffices to prove that part B commutes. | |
We can equivalently express diagram B as | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N2) at (0,8.25) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{p \ct q}}} \ct \refl{} \ct (p \ct q)$}; | |
\node[red] (N2a) at (0,6.6) {\scriptsize $\opp{\Big(\ap{F^\times}{\ap{G}{p}} \ct \ap{F^\times}{\ap{G}{q}}\Big)} \ct \refl{} \ct (p \ct q)$}; | |
\node (N3) at (0,4.95) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{q}}} \ct \Big(\opp{\ap{F^\times}{\ap{G}{p}}} \ct \refl{} \ct p\Big) \ct q$}; | |
\node (N4) at (0,3.3) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{q}}} \ct \refl{} \ct q$}; | |
\node (N5) at (5,1.65) {\scriptsize $\refl{}$}; | |
\node (N7) at (10,8.25) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{q \ct p}}} \ct \refl{} \ct (q \ct p)$}; | |
\node[red] (N7a) at (10,6.6) {\scriptsize $\opp{\Big(\ap{F^\times}{\ap{G}{q}} \ct \ap{F^\times}{\ap{G}{p}}\Big)} \ct \refl{} \ct (q \ct p)$}; | |
\node (N8) at (10,4.95) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{p}}} \ct \Big(\opp{\ap{F^\times}{\ap{G}{q}}} \ct \refl{} \ct q\Big) \ct p$}; | |
\node (N9) at (10,3.3) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{p}}} \ct \refl{} \ct q$}; | |
\node (N10) at (5,8.25) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{q \ct p}}} \ct \refl{} \ct (p \ct q)$}; | |
\draw[red,-] (N2) -- node[right]{\scriptsize} (N2a); | |
\draw[red,-] (N2a) -- node[right]{\scriptsize} (N3); | |
\draw[-] (N3) -- node[right]{\scriptsize via $\zeta_p$} (N4); | |
\draw[-] (N4) -- node[below]{\scriptsize $\zeta_q$} (N5); | |
\draw[red,-] (N7) -- node[below]{\footnotesize} (N7a); | |
\draw[red,-] (N7a) -- node[below]{\footnotesize} (N8); | |
\draw[-] (N8) -- node[right]{\scriptsize via $\zeta_q$} (N9); | |
\draw[-] (N9) -- node[below]{\scriptsize $\zeta_p$} (N5); | |
\draw[-] (N2) -- node[below]{\scriptsize via $t$} (N10); | |
\draw[-] (N10) -- node[below]{\scriptsize via $t$} (N7); | |
\end{tikzpicture} | |
\end{center} | |
We make the following observation: | |
\begin{itemize} | |
\item For any $\alpha_u : u_1 =_{a =_A b} u_2$, $\alpha_v : v_1 =_{b =_A c} v_2$, the path | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N0) at (0,9) {$\opp{(u_1 \ct v_1)} \ct \refl{} \ct (u_2 \ct v_2)$}; | |
\node (N1) at (0,7.5) {$v^{-1}_1 \ct (u^{-1}_1 \ct \refl{} \ct u_2) \ct v_2$}; | |
\node (N2) at (0,6) {$v^{-1}_1 \ct (u^{-1}_1 \ct u_2) \ct v_2$}; | |
\node (N3) at (0,4.5) {$v^{-1}_1 \ct (u^{-1}_2 \ct u_2) \ct v_2$}; | |
\node (N4) at (0,3) {$v^{-1}_1 \ct \refl{} \ct v_2$}; | |
\node (N5) at (0,1.5) {$v^{-1}_1 \ct v_2$}; | |
\node (N6) at (0,0) {$v^{-1}_2 \ct v_2$}; | |
\node (N7) at (0,-1.5) {$\refl{}$}; | |
\draw[-] (N0) -- node[right]{} (N1); | |
\draw[-] (N1) -- node[right]{} (N2); | |
\draw[-] (N2) -- node[right]{\footnotesize via $\alpha_u$} (N3); | |
\draw[-] (N3) -- node[right]{} (N4); | |
\draw[-] (N4) -- node[right]{} (N5); | |
\draw[-] (N5) -- node[right]{\footnotesize via $\alpha_v$} (N6); | |
\draw[-] (N6) -- node[right]{} (N7); | |
\end{tikzpicture} | |
\end{center} | |
is equivalent to the path | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N0) at (0,9) {$\opp{(u_1 \ct v_1)} \ct \refl{} \ct (u_2 \ct v_2)$}; | |
\node (N1) at (0,7.5) {$\opp{(u_2 \ct v_1)} \ct \refl{} \ct (u_2 \ct v_2)$}; | |
\node (N2) at (0,6) {$\opp{(u_2 \ct v_2)} \ct \refl{} \ct (u_2 \ct v_2)$}; | |
\node (N3) at (0,4.5) {$\opp{(u_2 \ct v_2)} \ct (u_2 \ct v_2)$}; | |
\node (N4) at (0,3) {$\refl{}$}; | |
\draw[-] (N0) -- node[right]{\footnotesize via $\alpha_u$} (N1); | |
\draw[-] (N1) -- node[right]{\footnotesize via $\alpha_v$} (N2); | |
\draw[-] (N2) -- node[right]{} (N3); | |
\draw[-] (N3) -- node[right]{} (N4); | |
\end{tikzpicture} | |
\end{center} | |
This is clear by path induction. | |
\end{itemize} | |
Using this observation, it suffices to show that the outer part of the following diagram commutes: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (Na) at (5,7) {A}; | |
\node (Nb) at (5,1.65) {B}; | |
\node (N2) at (0,8.25) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{p \ct q}}} \ct \refl{} \ct (p \ct q)$}; | |
\node (N2a) at (0,6.6) {\scriptsize $\opp{\Big(\ap{F^\times}{\ap{G}{p}} \ct \ap{F^\times}{\ap{G}{q}}\Big)} \ct \refl{} \ct (p \ct q)$}; | |
\node[red] (N3) at (0,4.95) {\scriptsize $\opp{\Big(p \ct \ap{F^\times}{\ap{G}{q}}\Big)} \ct \refl{} \ct (p \ct q)$}; | |
\node[red] (N4) at (0,3.3) {\scriptsize $\opp{(p \ct q)} \ct \refl{} \ct (p \ct q)$}; | |
\node[red] (N5) at (0,1.65) {\scriptsize $\opp{(p \ct q)} \ct (p \ct q)$}; | |
\node (N6) at (5,0) {\scriptsize $\refl{}$}; | |
\node (N7) at (10,8.25) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{q \ct p}}} \ct \refl{} \ct (q \ct p)$}; | |
\node (N7a) at (10,6.6) {\scriptsize $\opp{\Big(\ap{F^\times}{\ap{G}{q}} \ct \ap{F^\times}{\ap{G}{p}}\Big)} \ct \refl{} \ct (q \ct p)$}; | |
\node[red] (N8) at (10,4.95) {\scriptsize $\opp{\Big(q \ct \ap{F^\times}{\ap{G}{p}}\Big)} \ct \refl{} \ct (q \ct p)$}; | |
\node[red] (N9) at (10,3.3) {\scriptsize $\opp{(q \ct p)} \ct \refl{} \ct (q \ct p)$}; | |
\node[red] (N11) at (10,1.65) {\scriptsize $\opp{(q \ct p)} \ct (q \ct p)$}; | |
\node (N10) at (5,8.25) {\scriptsize $\opp{\ap{F^\times}{\ap{G}{q \ct p}}} \ct \refl{} \ct (p \ct q)$}; | |
\node[red] (N12) at (5,3.3) {\scriptsize $\opp{(q \ct p)} \ct \refl{} \ct (p \ct q)$}; | |
\draw[-] (N2) -- node[right]{\scriptsize} (N2a); | |
\draw[red,-] (N2a) -- node[right]{\scriptsize via $\beta_G$, $\mu(\lloop)$, $\beta_f$} (N3); | |
\draw[red,-] (N3) -- node[right]{\scriptsize via $\gamma_G$, $\nu(\lloop)$, $\beta_{F^\to}$, $\hapfuneq(H)$} (N4); | |
\draw[red,-] (N4) -- node[right]{\scriptsize} (N5); | |
\draw[red,-] (N5) -- node[below]{\scriptsize} (N6); | |
\draw[-] (N7) -- node[below]{\footnotesize} (N7a); | |
\draw[red,-] (N7a) -- node[left]{\scriptsize via $\gamma_G$, $\nu(\lloop)$, $\beta_{F^\to}$, $\hapfuneq(H)$} (N8); | |
\draw[red,-] (N8) -- node[left]{\scriptsize via $\beta_G$, $\mu(\lloop)$, $\beta_f$} (N9); | |
\draw[red,-] (N9) -- node[right]{\scriptsize} (N11); | |
\draw[red,-] (N11) -- node[below]{\scriptsize} (N6); | |
\draw[-] (N2) -- node[below]{\scriptsize via $t$} (N10); | |
\draw[-] (N10) -- node[below]{\scriptsize via $t$} (N7); | |
\draw[red,-] (N4) -- node[below]{\scriptsize via $t$} (N12); | |
\draw[red,-] (N12) -- node[below]{\scriptsize via $t$} (N9); | |
\end{tikzpicture} | |
\end{center} | |
Part B clearly commutes. This leaves us to show that part A commutes. We now make the following observation: | |
\begin{itemize} | |
\item For any 2-paths $\alpha^1_u : u_1 =_{a =_A b} u_2$, $\alpha_u^2 : u_1 =_{a =_A b} u_3$, $\alpha_u^3 : u_3 =_{a =_A b} u_4$, $\alpha_u^4 : u_2 =_{a =_A b} u_4$, $\alpha_v : v_1 =_{c =_A d} v_2$ and path $w : b=_A c$ such that | |
\begin{center} | |
\begin{tikzpicture} | |
\node (Na) at (1,0.75) {=}; | |
\node (N0) at (0,1.5) {$u_1$}; | |
\node (N1) at (0,0) {$u_2$}; | |
\node (N2) at (2,1.5) {$u_3$}; | |
\node (N3) at (2,0) {$u_4$}; | |
\draw[-] (N0) -- node[left]{\footnotesize $\alpha^1_u$} (N1); | |
\draw[-] (N0) -- node[above]{\footnotesize $\alpha^2_u$} (N2); | |
\draw[-] (N1) -- node[below]{\footnotesize $\alpha^4_u$} (N3); | |
\draw[-] (N2) -- node[right]{\footnotesize $\alpha^3_u$} (N3); | |
\end{tikzpicture} | |
\end{center} | |
the following diagram commutes: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N0) at (0,1.5) {$u^{-1}_1 \ct w \ct v_1$}; | |
\node (N1) at (0,0) {$u^{-1}_2 \ct w \ct v_1$}; | |
\node (N2) at (4,1.5) {$u^{-1}_3 \ct w \ct v_1$}; | |
\node (N3) at (4,0) {$u^{-1}_4 \ct w \ct v_1$}; | |
\node (N4) at (8,1.5) {$u^{-1}_3 \ct w \ct v_2$}; | |
\node (N5) at (8,0) {$u^{-1}_4 \ct w \ct v_2$}; | |
\draw[-] (N0) -- node[left]{\footnotesize via $\alpha^1_u$} (N1); | |
\draw[-] (N0) -- node[above]{\footnotesize via $\alpha^2_u$} (N2); | |
\draw[-] (N1) -- node[below]{\footnotesize via $\alpha^4_u$} (N3); | |
\draw[-] (N2) -- node[above]{\footnotesize via $\alpha_v$} (N4); | |
\draw[-] (N3) -- node[below]{\footnotesize via $\alpha_v$} (N5); | |
\draw[-] (N4) -- node[right]{\footnotesize via $\alpha^3_u$} (N5); | |
\end{tikzpicture} | |
\end{center} | |
This is clear by path induction on $\alpha_v$, $\alpha_u^2$, $\alpha_u^4$. | |
\end{itemize} | |
Using this observation, it suffices to show that the following diagram commutes: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N2) at (0,8.25) {$\ap{F^\times}{\ap{G}{p \ct q}}$}; | |
\node (N2a) at (0,6.6) {$\ap{F^\times}{\ap{G}{p}} \ct \ap{F^\times}{\ap{G}{q}}$}; | |
\node (N3) at (0,4.95) {$p \ct \ap{F^\times}{\ap{G}{q}}$}; | |
\node (N4) at (0,3.3) {$p \ct q$}; | |
\node (N7) at (10,8.25) {$\ap{F^\times}{\ap{G}{q \ct p}}$}; | |
\node (N7a) at (10,6.6) {$\ap{F^\times}{\ap{G}{q}} \ct \ap{F^\times}{\ap{G}{p}}$}; | |
\node (N8) at (10,4.95) {$q \ct \ap{F^\times}{\ap{G}{p}}$}; | |
\node (N9) at (10,3.3) {$q \ct p$}; | |
\draw[-] (N2) -- node[right]{\footnotesize} (N2a); | |
\draw[-] (N2a) -- node[right]{\footnotesize via $\beta_G$, $\mu(\lloop)$, $\beta_f$} (N3); | |
\draw[-] (N3) -- node[right]{\footnotesize via $\gamma_G$, $\nu(\lloop)$, $\beta_{F^\to}$, $\hapfuneq(H)$} (N4); | |
\draw[-] (N7) -- node[below]{\footnotesize} (N7a); | |
\draw[-] (N7a) -- node[left]{\footnotesize via $\gamma_G$, $\nu(\lloop)$, $\beta_{F^\to}$, $\hapfuneq(H)$} (N8); | |
\draw[-] (N8) -- node[left]{\footnotesize via $\beta_G$, $\mu(\lloop)$, $\beta_f$} (N9); | |
\draw[-] (N2) -- node[above]{\footnotesize via $t$} (N7); | |
\draw[-] (N4) -- node[below]{\footnotesize via $t$} (N9); | |
\end{tikzpicture} | |
\end{center} | |
After some rearranging we get: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N1) at (0,9.9) {\footnotesize $\ap{F^\times}{\ap{G}{p \ct q}}$}; | |
\node[red] (N2) at (0,8.25) {\footnotesize $\ap{F^\times}{\ap{G}{p} \ct \ap{G}{q}}$}; | |
\node[red] (N3) at (0,6.6) {\footnotesize $\ap{F^\times}{\ap{G}{p}} \ct \ap{F^\times}{\ap{G}{q}}$}; | |
\node[red] (N4) at (0,4.95) {\footnotesize $\ap{F^\times}{\pairpath(\refl{},\lloop)} \ct \ap{F^\times}{\pairpath(\lloop,\refl{})}$}; | |
\node[red] (N5) at (0,3.3) {\footnotesize $\ap{f}{\lloop} \ct \happly_{\ap{F^\to}{\lloop}}(\base)$}; | |
\node[red] (N6) at (0,1.65) {\footnotesize $\ap{f}{\lloop} \ct q$}; | |
\node (N7) at (0,0) {\footnotesize $p \ct q$}; | |
\node (N11) at (9,9.9) {\footnotesize $\ap{F^\times}{\ap{G}{q \ct p}}$}; | |
\node[red] (N12) at (9,8.25) {\footnotesize $\ap{F^\times}{\ap{G}{q} \ct \ap{G}{p}}$}; | |
\node[red] (N13) at (9,6.6) {\footnotesize $\ap{F^\times}{\ap{G}{q}} \ct \ap{F^\times}{\ap{G}{p}}$}; | |
\node[red] (N14) at (9,4.95) {\footnotesize $\ap{F^\times}{\pairpath(\lloop,\refl{})} \ct \ap{F^\times}{\pairpath(\refl{},\lloop)}$}; | |
\node[red] (N15) at (9,3.3) {\footnotesize $\happly_{\ap{F^\to}{\lloop}}(\base) \ct \ap{f}{\lloop}$}; | |
\node[red] (N16) at (9,1.65) {\footnotesize $q \ct \ap{f}{\lloop}$}; | |
\node (N17) at (9,0) {\footnotesize $q \ct p$}; | |
\draw[red,-] (N1) -- node[right]{\scriptsize} (N2); | |
\draw[red,-] (N2) -- node[right]{\scriptsize} (N3); | |
\draw[red,-] (N3) -- node[right]{\scriptsize via $\beta_G$, $\gamma_G$} (N4); | |
\draw[red,-] (N4) -- node[right]{\scriptsize via $\mu(\lloop)$, $\nu(\lloop)$} (N5); | |
\draw[red,-] (N5) -- node[right]{\scriptsize via $\beta_{F^\to}$, $\hapfuneq(H)$} (N6); | |
\draw[red,-] (N6) -- node[right]{\scriptsize via $\beta_f$} (N7); | |
\draw[red,-] (N11) -- node[right]{\scriptsize} (N12); | |
\draw[red,-] (N12) -- node[right]{\scriptsize} (N13); | |
\draw[red,-] (N13) -- node[right]{\scriptsize via $\beta_G$, $\gamma_G$} (N14); | |
\draw[red,-] (N14) -- node[right]{\scriptsize via $\mu(\lloop)$, $\nu(\lloop)$} (N15); | |
\draw[red,-] (N15) -- node[right]{\scriptsize via $\beta_{F^\to}$, $\hapfuneq(H)$} (N16); | |
\draw[red,-] (N16) -- node[right]{\scriptsize via $\beta_f$} (N17); | |
\draw[-] (N1) -- node[above]{\scriptsize via $t$} (N11); | |
\draw[-] (N7) -- node[below]{\scriptsize via $t$} (N17); | |
\end{tikzpicture} | |
\end{center} | |
or equivalently: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N1) at (0,9.9) {\footnotesize $\ap{F^\times}{\ap{G}{p \ct q}}$}; | |
\node (N2) at (0,8.25) {\footnotesize $\ap{F^\times}{\ap{G}{p} \ct \ap{G}{q}}$}; | |
\node[red] (N3) at (0,6.6) {\footnotesize $\ap{F^\times}{\pairpath(\refl{},\lloop) \ct \pairpath(\lloop,\refl{})}$}; | |
\node (N4) at (0,4.95) {\footnotesize $\ap{F^\times}{\pairpath(\refl{},\lloop)} \ct \ap{F^\times}{\pairpath(\lloop,\refl{})}$}; | |
\node (N5) at (0,3.3) {\footnotesize $\ap{f}{\lloop} \ct \happly_{\ap{F^\to}{\lloop}}(\base)$}; | |
\node (N6) at (0,1.65) {\footnotesize $\ap{f}{\lloop} \ct q$}; | |
\node (N7) at (0,0) {\footnotesize $p \ct q$}; | |
\node (N11) at (9,9.9) {\footnotesize $\ap{F^\times}{\ap{G}{q \ct p}}$}; | |
\node (N12) at (9,8.25) {\footnotesize $\ap{F^\times}{\ap{G}{q} \ct \ap{G}{p}}$}; | |
\node[red] (N13) at (9,6.6) {\footnotesize $\ap{F^\times}{\pairpath(\lloop,\refl{}) \ct \pairpath(\refl{},\lloop)}$}; | |
\node (N14) at (9,4.95) {\footnotesize $\ap{F^\times}{\pairpath(\lloop,\refl{})} \ct \ap{F^\times}{\pairpath(\refl{},\lloop)}$}; | |
\node (N15) at (9,3.3) {\footnotesize $\happly_{\ap{F^\to}{\lloop}}(\base) \ct \ap{f}{\lloop}$}; | |
\node (N16) at (9,1.65) {\footnotesize $q \ct \ap{f}{\lloop}$}; | |
\node (N17) at (9,0) {\footnotesize $q \ct p$}; | |
\draw[-] (N1) -- node[right]{\scriptsize} (N2); | |
\draw[red,-] (N2) -- node[right]{\scriptsize via $\beta_G$, $\gamma_G$} (N3); | |
\draw[red,-] (N3) -- node[right]{\scriptsize} (N4); | |
\draw[-] (N4) -- node[right]{\scriptsize via $\mu(\lloop)$, $\nu(\lloop)$} (N5); | |
\draw[-] (N5) -- node[right]{\scriptsize via $\beta_{F^\to}$, $\hapfuneq(H)$} (N6); | |
\draw[-] (N6) -- node[right]{\scriptsize via $\beta_f$} (N7); | |
\draw[-] (N11) -- node[right]{\scriptsize} (N12); | |
\draw[red,-] (N12) -- node[right]{\scriptsize via $\beta_G$, $\gamma_G$} (N13); | |
\draw[red,-] (N13) -- node[right]{\scriptsize} (N14); | |
\draw[-] (N14) -- node[right]{\scriptsize via $\mu(\lloop)$, $\nu(\lloop)$} (N15); | |
\draw[-] (N15) -- node[right]{\scriptsize via $\beta_{F^\to}$, $\hapfuneq(H)$} (N16); | |
\draw[-] (N16) -- node[right]{\scriptsize via $\beta_f$} (N17); | |
\draw[-] (N1) -- node[above]{\scriptsize via $t$} (N11); | |
\draw[-] (N7) -- node[below]{\scriptsize via $t$} (N17); | |
\end{tikzpicture} | |
\end{center} | |
Finally, this diagram can be viewed as follows: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (Na) at (4.5,8.25) {A}; | |
\node (Nb) at (4.5,4.95) {B}; | |
\node (Nc) at (4.5,2.475) {C}; | |
\node (Nd) at (4.5,0.76) {D}; | |
\node (N1) at (0,9.9) {\footnotesize $\ap{F^\times}{\ap{G}{p \ct q}}$}; | |
\node (N2) at (0,8.25) {\footnotesize $\ap{F^\times}{\ap{G}{p} \ct \ap{G}{q}}$}; | |
\node (N3) at (0,6.6) {\footnotesize $\ap{F^\times}{\pairpath(\refl{},\lloop) \ct \pairpath(\lloop,\refl{})}$}; | |
\node (N4) at (0,4.95) {\footnotesize $\ap{F^\times}{\pairpath(\refl{},\lloop)} \ct \ap{F^\times}{\pairpath(\lloop,\refl{})}$}; | |
\node (N5) at (0,3.3) {\footnotesize $\ap{f}{\lloop} \ct \happly_{\ap{F^\to}{\lloop}}(\base)$}; | |
\node (N6) at (0,1.65) {\footnotesize $\ap{f}{\lloop} \ct q$}; | |
\node (N7) at (0,0) {\footnotesize $p \ct q$}; | |
\node (N11) at (9,9.9) {\footnotesize $\ap{F^\times}{\ap{G}{q \ct p}}$}; | |
\node (N12) at (9,8.25) {\footnotesize $\ap{F^\times}{\ap{G}{q} \ct \ap{G}{p}}$}; | |
\node (N13) at (9,6.6) {\footnotesize $\ap{F^\times}{\pairpath(\lloop,\refl{}) \ct \pairpath(\refl{},\lloop)}$}; | |
\node (N14) at (9,4.95) {\footnotesize $\ap{F^\times}{\pairpath(\lloop,\refl{})} \ct \ap{F^\times}{\pairpath(\refl{},\lloop)}$}; | |
\node (N15) at (9,3.3) {\footnotesize $\happly_{\ap{F^\to}{\lloop}}(\base) \ct \ap{f}{\lloop}$}; | |
\node (N16) at (9,1.65) {\footnotesize $q \ct \ap{f}{\lloop}$}; | |
\node (N17) at (9,0) {\footnotesize $q \ct p$}; | |
\draw[-] (N1) -- node[right]{\scriptsize} (N2); | |
\draw[-] (N2) -- node[right]{\scriptsize via $\beta_G$, $\gamma_G$} (N3); | |
\draw[-] (N3) -- node[right]{\scriptsize} (N4); | |
\draw[-] (N4) -- node[right]{\scriptsize via $\mu(\lloop)$, $\nu(\lloop)$} (N5); | |
\draw[-] (N5) -- node[right]{\scriptsize via $\beta_{F^\to}$, $\hapfuneq(H)$} (N6); | |
\draw[-] (N6) -- node[right]{\scriptsize via $\beta_f$} (N7); | |
\draw[-] (N11) -- node[right]{\scriptsize} (N12); | |
\draw[-] (N12) -- node[right]{\scriptsize via $\beta_G$, $\gamma_G$} (N13); | |
\draw[-] (N13) -- node[right]{\scriptsize} (N14); | |
\draw[-] (N14) -- node[right]{\scriptsize via $\mu(\lloop)$, $\nu(\lloop)$} (N15); | |
\draw[-] (N15) -- node[right]{\scriptsize via $\beta_{F^\to}$, $\hapfuneq(H)$} (N16); | |
\draw[-] (N16) -- node[right]{\scriptsize via $\beta_f$} (N17); | |
\draw[-] (N1) -- node[above]{\scriptsize via $t$} (N11); | |
\draw[-] (N7) -- node[below]{\scriptsize via $t$} (N17); | |
\draw[-] (N3) -- node[above]{\scriptsize via $\Phi_{\lloop,\lloop}$} (N13); | |
\draw[-] (N5) -- node[above]{\scriptsize $\nathom{\happly_{\ap{F^\to}{\lloop}}}{\lloop}$} (N15); | |
\draw[-] (N6) -- node[below]{\scriptsize $\nathom{H}{\lloop}$} (N16); | |
\end{tikzpicture} | |
\end{center} | |
where for any $\alpha : x =_{\Sn^1} y$, the 2-path | |
\[ \nathom{\happly_{\ap{F^\to}{\lloop}}}{\alpha} : \ap{f}{\alpha} \ct \happly_{\ap{F^\to}{\lloop}}(y) = | |
\happly_{\ap{F^\to}{\lloop}}(x) \ct \ap{f}{\alpha} \] | |
is defined by induction on $\alpha$. | |
Now rectangles A and D commute by diagrams (1) and (2) respectively. Rectangles B and C commute by a suitable path induction. \qed | |
\subsection*{Solution to \cref{ex:trunc-bool-interval}} | |
Let's call the given homotopy $p:\prd{x:A}(f(x)=g(x))$. | |
Since $B$ may not be a mere proposition, we consider the contractible type $\sm{y:B}(f(x)=y)$. | |
For all $x:A$ we define a function ${q}_x:\bool\to{}\sm{y:B}(f(x)=y)$ by recursion on $\bool$, with: | |
\begin{align*} | |
{q}_x(\btrue) &\defeq \pairr{f(x),\refl{f(x)}},\\ | |
{q}_x(\bfalse) &\defeq \pairr{g(x),p(x)}. | |
\end{align*} | |
By induction on truncation, since $\sm{y:B}(f(x)=y)$ is a mere proposition, we get $\widetilde{p}_x:\brck \bool\to{}\sm{y:B}(f(x)=y)$ satisfying $\widetilde{p}_x (\bproj b) \equiv {q}_x(b)$ for all $b:B$. | |
Hence we can define $q:\brck \bool \to(A\to{}B)$ by | |
\[q(i)\defeq \lam{x} \proj1(\widetilde{p}_x(i))\] | |
Then we have $q(\bproj\btrue)(x)\jdeq f(x)$ for all $x:A$, and hence $q(\bproj\btrue) \jdeq f$. | |
Similarly, $q(\bproj\bfalse)\jdeq g$, and hence $\map{q} r : \id[(A\to{}B)]fg$, where $r: \bproj\btrue =_{\brck \bool} \bproj\bfalse$ exists since $\brck\bool$ is a mere proposition. | |
\section*{Exercises from \cref{cha:hlevels}} | |
\subsection*{Solution to \cref{ex:ntype-from-nconn-const}} | |
Let $\modal$ be a modality; it remains to show that if all maps into $B$ out of a $\modal$-connected type are constant, then $B$ is $\modal$-modal. | |
We show under that hypothesis that $\eta:B\to \modal B$ is an equivalence, by showing that its fibers are contractible. | |
Since $\eta$ is always $\modal$-connected, its fibers are $\modal$-connected, and thus the inclusion of $\hfib{\eta}{z}$ into $B$ is constant. | |
Thus, there is an $a:B$ such that for any $b:B$ and $p:\eta b=z$ we have $q(b,p):a=b$. | |
Then $\apfunc{\eta}(q(b,p))\ct p : \eta a=z$ for any $(b,p):\hfib\eta z$, so we have a map $\hfib\eta z \to (\eta a=z)$. | |
But $\modal B$ is $\modal$-modal, hence so is $\eta a = z$. | |
Thus, by \cref{thm:nconn-to-ntype-const}, this map is constant; hence we have $r:\eta a=z$ such that $\apfunc{\eta}(q(b,p))\ct p = r$ for all $(b,p)$. | |
But using the characterization of paths in fibers, this means exactly that $(b,p)=(a,r)$ for all $(b,p)$; hence $\hfib\eta z$ is contractible with center $(a,r)$. | |
\subsection*{Solution to \cref{ex:connectivity-inductively}} | |
If $A$ is $n$-connected, then since $\trunc{-1}A = \trunc{-1}{\trunc{n}A}$, also $A$ is $(-1)$-connected. | |
And since $\trunc{n-1}{\id[A]ab} = (\id[\trunc n A]{\tproj na}{\tproj nb})$ by \cref{thm:path-truncation} and the path spaces of a contractible type are contractible, each $\id[A]ab$ is $(n-1)$-connected. | |
Conversely, suppose $A$ is $(-1)$-connected and all its path spaces are $(n-1)$-connected. | |
Firstly, we claim $\trunc nA$ is a mere proposition, i.e.\ that for all $x,y:\trunc nA$, the type $x=y$ is contractible. | |
Since contractibility of $x=y$ is a mere proposition, it suffices to assume that $x$ and $y$ are of the form $\tproj na$ and $\tproj nb$ respectively. | |
But $\id[\trunc n A]{\tproj na}{\tproj nb}$ is contractible by \cref{thm:path-truncation} and the assumption. | |
Thus, $\trunc nA$ is a mere proposition. | |
Since it is also $(-1)$-connected by assumption, it is therefore contractible, so $A$ is $n$-connected. | |
\subsection*{Solution to \cref{ex:lemnm}} | |
Evidently $\mathsf{LEM}$ is the same as $\mathsf{LEM}_{-1,-1}$, so for the first part it suffices to assume $\mathsf{LEM}$ and prove $\mathsf{LEM}_{n,-1}$ and $\mathsf{LEM}_{-1,m}$ for all $n,m$. | |
For the latter, note that if $A$ is a mere proposition, then by \cref{ex:lem-mereprop} so is $A+\neg A$, and thus $\trunc m{A+\neg A}= A+\neg A$ for any $m\ge -1$. | |
For the former, note that assuming LEM, by \cref{ex:lem-brck} we have $\trunc{-1}{B} = \neg\neg B$ for any $B$, while $\neg\neg(A+\neg A)$ is always true for any type $A$ (\cref{ex:not-not-lem}). | |
For the second part, it suffices to derive a contradiction from $\mathsf{LEM}_{0,0}$; but the proof of \cref{thm:not-lem} already uses an $A$ that is a set (namely $\bool$). | |
\subsection*{Solution to \cref{ex:acconn}} | |
Suppose the $(-1)$-connected AC, and by induction suppose also the $n$-connected AC. | |
Let $X$ be a set and $Y:X\to \type$ a family of $(n+1)$-connected types. | |
By \cref{ex:connectivity-inductively}, to show that $\prd{x:X} Y(x)$ is $(n+1)$-connected, it suffices to show that it is $(-1)$-connected and that all its path-types are $n$-connected. | |
But also by \cref{ex:connectivity-inductively}, each $Y(x)$ is $(-1)$-connected and all its path types are $n$-connected. | |
Applying function extensionality to characterize the path types of $\prd{x:X} Y(x)$, the claim follows from the $(-1)$-connected and $n$-connected axioms of choice. | |
\subsection*{Solution to \cref{ex:is-conn-trunc-functor}} | |
We distinguish the cases $k \le n$ and $k \ge n$. If $k \le n$, we know | |
by \cref{lem:connected-map-equiv-truncation} that $\trunc nf : \trunc nA \to \trunc nB$ is an | |
equivalence. We can now prove that $\trunc kf$ is also an equivalence. This follows from the fact | |
that $\trunc kf$ is homotopic to $\trunc k{\trunc nf}$, under the equivalence given | |
by \cref{lem:truncation-le}. This homotopy is easily proven by truncation induction. Now since | |
$\trunc kf$ is an equivalence, it's clearly $n$-connected. | |
If $k \ge n$ we apply \cref{prop:nconnected_tested_by_lv_n_dependent types}. It is sufficient to | |
show that the map $\lam{s} s\circ \trunc kf : \Parens{\prd{b:\trunc kB} | |
P(b)}\to\Parens{\prd{a:\trunc kA}P(\trunc kf(a))}$ has a section, for all $P : \trunc | |
kB\to\type$. We know that the map $\lam{s} s\circ f :\Parens{\prd{b:B} | |
Q(b)}\to\Parens{\prd{a:A}Q(f(a))}$ has a section $g$, for $Q:B\to\type$ defined by $Q(b)\defeq | |
P(\tproj kb)$. We define $h : \Parens{\prd{a:\trunc kA}P(\trunc kf(a))}\to\Parens{\prd{b:\trunc kB} | |
P(b)}$ by $h(t,\tproj kb):\equiv g(t \circ \tprojf k, b)$. The function $h$ is indeed a section, | |
which means that we need to show that for $t : \prd{a:\trunc kA}P(\trunc kf(a))$ we have | |
$h(t)\circ \trunc kf = t$. By function extensionality and truncation induction, it is sufficient to | |
show that the functions have the same value when applied to $\tproj ka$, for $a : A$. This follows | |
from the following computation | |
\begin{align*} | |
(h(t)\circ \trunc kf)(\tproj ka) & \equiv h(t, \tproj k{f(a)})\\ | |
& \equiv g(t \circ \tprojf k, f(a)) \\ | |
&= (t \circ \tprojf k)(a) \tag{since $g$ is a section of $\lam{s} s\circ f$}\\ | |
& \equiv t(\tproj ka). | |
\end{align*} | |
\subsection*{Solution to \cref{ex:categorical-connectedness}} | |
Let us denote by $\mathsf{isConn}(A)$ the proposition that a type $A$ is connected. It is known that | |
\begin{displaymath} | |
\eqv{\mathsf{isConn}(A)}{\brck A \times \prd{x,y:A} \brck {\id[A]xy}} | |
\end{displaymath} | |
(see \cref{ex:connectivity-inductively}). | |
\begin{enumerate} | |
\item Suppose a type $A$ is connected. The goal $\prd{B,C:\type} \isequiv(e_{A,B,C})$ is a mere proposition, so we can assume $a:A$ and $\prd{x,y:A} \brck {x = y}$. | |
Let $B,C$ be types. | |
We want to construct $h:(A\to B+C) \to (A\to B)+(A\to C)$ such that | |
$h \circ e_{A,B,C} = \idfunc[(A \to B) + (A \to C)]$ and | |
$e_{A,B,C} \circ h = \idfunc[A \to B + C]$. | |
Let $f:A \to B+C$ be an arbitrary function. | |
Let us define $h(f):(A \to B) + (A \to C)$ | |
by case analysis on $f(a):B + C$: | |
\begin{itemize} | |
\item if $f(a) \jdeq \inl(u)$ for some $u:B$: | |
Let us define $k_1:B+C\to B$ by | |
\begin{align*} | |
k_1(\inl(b)) &\defeq b;\\ | |
k_1(\inr(c)) &\defeq u, | |
\end{align*} | |
and let $h(f)$ be $\inl(k_1 \circ f)$. | |
\item if $f(a) \jdeq \inr(u)$ for some $u:C$: | |
Let us define $k_2:B+C\to C$ by | |
\begin{align*} | |
k_2(\inl(b)) &\defeq u;\\ | |
k_2(\inr(c)) &\defeq c, | |
\end{align*} | |
and let $h(f)$ be $\inr(k_2 \circ f)$. | |
\end{itemize} | |
Let us prove that this $h$ is indeed an inverse of $e_{A,B,C}$. | |
First we prove $e_{A,B,C}(h(f)) = f$ for every $f:A \to B + C$ | |
by case analysis on $f(a)$: | |
\begin{enumerate}[label=(\alph*)] | |
\item \label{enum:categorical-connectedness-inl} | |
if $f(a) \jdeq \inl(u)$ for some $u:B$: | |
We have $\inl(k_1(f(x))) = f(x)$ for every $x:A$ | |
by case analysis on $f(x)$: | |
\begin{itemize} | |
\item if $f(x) \jdeq \inl(v)$ for some $v:B$: | |
$\inl(k_1(f(x))) = \inl(k_1(\inl(v))) = \inl(v) = f(x)$, | |
\item if $f(x) \jdeq \inr(v)$ for some $v:C$: | |
we have $f(a) \neq f(x)$, | |
which contradicts $\brck {\id[A]{a}{x}}$. | |
\end{itemize} | |
Then we have | |
\begin{displaymath} | |
e_{A,B,C}(h(f)) = e_{A,B,C}(\inl(k_1 \circ f)) | |
= \lam{x} \inl(k_1(f(x))) = f. | |
\end{displaymath} | |
\item if $f(a) \jdeq \inr(u)$ for some $u:C$: | |
Similar to \ref{enum:categorical-connectedness-inl}. | |
\end{enumerate} | |
Next we prove $h(e_{A,B,C}(f)) = f$ for every $f:(A \to B) + (A \to C)$ | |
by case analysis on $f$: | |
\begin{enumerate}[label=(\alph*)] | |
\item if $f \jdeq \inl(g)$ for some $g: A \to B$: | |
\begin{displaymath} | |
h(e_{A,B,C}(f)) = h(e_{A,B,C}(\inl(g))) = h(\lam{x} \inl(g(x))) | |
= \inl(\lam{x} g(x)) = f, | |
\end{displaymath} | |
\item if $f \jdeq \inr(g)$ for some $g: A \to C$: | |
\begin{displaymath} | |
h(e_{A,B,C}(f)) = h(e_{A,B,C}(\inr(g))) = h(\lam{x} \inr(g(x))) | |
= \inr(\lam{x} g(x)) = f. | |
\end{displaymath} | |
\end{enumerate} | |
Therefore we have $\isequiv(e_{A,B,C})$. | |
\item (Categorical connectedness to $\mathsf{isConn}$ implies $\LEM{}$): | |
Assume for every type $A$, | |
\begin{displaymath} | |
\Parens{\prd{B,C:\type}\isequiv(e_{A,B,C})} \to \mathsf{isConn}(A). | |
\end{displaymath} | |
Assuming $\neg \neg P$ for a mere proposition $P$, we want to prove $P$. | |
Let us define $A \defeq \susp P$. | |
Since $P \eqvsym (\id[\susp P]{\north}{\south}) \eqvsym \brck {\id[\susp P]{\north}{\south}}$ (by \cref{prop:trunc_of_prop_is_set} | |
and since $P$ is a mere proposition) and $\mathsf{isConn}(\susp P)$ implies $\brck {\id[\susp P]{\north}{\south}}$ (by \cref{ex:connectivity-inductively}), | |
it suffices to prove $\prd{B,C:\type}\isequiv(e_{\susp P,B,C})$. | |
Before proving this, we prove that | |
\begin{equation} | |
\label{lem:cat-conn-neg-neg-eq-xy} | |
\prd{x, y:\susp P} \neg \neg (x =_{\susp P} y) | |
\end{equation} | |
by case analysis on $x$ and $y$: | |
\begin{enumerate}[label=(\alph*)] | |
\item if $x \jdeq \north$: | |
\begin{itemize} | |
\item if $y \jdeq \north$: $\lam{k} k(\refl{\north})$ has type | |
$\neg \neg (\north = \north)$. | |
\item if $y \jdeq \south$: | |
$\neg \neg (\north = \south)$ is equivalent to | |
$\neg \neg P$, so it is inhabited. | |
\item if $y$ varies on $\merid(p)$ for some $p: P$: Since | |
$\neg \neg (\north =_{\susp P} y)$ is a mere proposition | |
for every $y$ (see \cref{thm:isprop-forall}), | |
we do not need to consider this case. | |
\end{itemize} | |
\label{enum:categorical-connectedness-north} | |
\item if $x \jdeq \south$: | |
Similar to \ref{enum:categorical-connectedness-north}. | |
\item if $x$ varies on $\merid(p)$ for some $p: P$: | |
Since $\prd{y:\susp P} \neg \neg (x =_{\susp P} y)$ | |
is a mere proposition for every $x$, | |
we do not need to consider this case. | |
\end{enumerate} | |
Let us prove $\prd{B,C:\type}\isequiv(e_{\susp P,B,C})$. | |
Let $B, C$ be types. | |
We want to construct | |
$h:(\susp P\to B+C) \to (\susp P \to B)+(\susp P\to C)$ such that | |
$h \circ e_{\susp P,B,C} = \idfunc[(\susp P\to B) + (\susp P\to C)]$ and | |
$e_{\susp P,B,C} \circ h = \idfunc[\susp P\to B + C]$. | |
Let $f:\susp P\to B+C$ be an arbitrary function. | |
Let us define $h(f):(\susp P\to B) + (\susp P\to C)$ | |
by case analysis on $(f(\north), f(\south)):(B + C) \times (B + C)$: | |
\begin{itemize} | |
\item if $(f(\north), f(\south)) \jdeq (\inl(u_1), \inl(u_2))$ | |
for some $u_1, u_2:B$: | |
Let us define $k_1:B+C\to B$ by | |
\begin{align*} | |
k_1(\inl(b)) &\defeq b;\\ | |
k_1(\inr(c)) &\defeq u_1, | |
\end{align*} | |
and let $h(f)$ be $\inl(k_1 \circ f)$. | |
\item if $(f(\north), f(\south)) \jdeq (\inr(u_1), \inr(u_2))$ | |
for some $u_1, u_2:C$: | |
Let us define $k_2:B+C\to C$ by | |
\begin{align*} | |
k_2(\inl(b)) &\defeq u_1;\\ | |
k_2(\inr(c)) &\defeq c, | |
\end{align*} | |
and let $h(f)$ be $\inl(k_2 \circ f)$. | |
\item if $(f(\north), f(\south)) \jdeq (\inl(u), \inr(v))$ | |
for some $u: B, v:C$: This case is impossible. | |
$f(\north) \neq f(\south)$ implies $\north \neq \south$, | |
which contradicts \eqref{lem:cat-conn-neg-neg-eq-xy}. | |
\item if $(f(\north), f(\south)) \jdeq (\inr(u), \inl(v))$ | |
for some $u: C, v:B$: This case is also impossible. | |
\end{itemize} | |
Let us prove that this $h$ is indeed an inverse of $e_{\susp P,B,C}$. | |
First we prove $e_{\susp P,B,C}(h(f)) = f$ for every $f:\susp P\to B+C$. | |
It is done by case analysis on | |
$(f(\north), f(\south)):(B + C) \times (B + C)$: | |
\begin{enumerate}[label=(\alph*)] | |
\item if $(f(\north), f(\south)) \jdeq (\inl(u_1), \inl(u_2))$ | |
for some $u_1, u_2:B$: | |
We have $\inl(k_1(f(x))) = f(x)$ for every $x:\susp P$ | |
by case analysis on $f(x)$: | |
\begin{itemize} | |
\item if $f(x) \jdeq \inl(v)$ for some $v:B$: | |
$\inl(k_1(f(x))) = \inl(k_1(\inl(v))) = \inl(v) = f(x)$, | |
\item if $f(x) \jdeq \inr(v)$ for some $v:C$: | |
we have $f(\north) \neq f(x)$ and hence $\north \neq x$, | |
which contradicts \eqref{lem:cat-conn-neg-neg-eq-xy}. | |
\end{itemize} | |
Then we have | |
\begin{displaymath} | |
e_{\susp P,B,C}(h(f)) = e_{\susp P,B,C}(\inl(k_1 \circ f)) | |
= \lam{x} \inl(k_1(f(x))) = f. | |
\end{displaymath} | |
\label{enum:inl-inl} | |
\item if $(f(\north), f(\south)) \jdeq (\inr(u_1), \inr(u_2))$ | |
for some $u_1, u_2:C$: Similar to \ref{enum:inl-inl}. | |
\end{enumerate} | |
Next we prove $h(e_{\susp P,B,C}(f)) = f$ | |
for every $f:(\susp P\to B) + (\susp P\to C)$ | |
by case analysis on $f$: | |
\begin{enumerate} | |
\item if $f \jdeq \inl(g)$ for some $g: \susp P\to B$: | |
\begin{displaymath} | |
h(e_{\susp P,B,C}(f)) = h(e_{\susp P,B,C}(\inl(g))) | |
= h(\lam{x} \inl(g(x))) | |
= \inl(\lam{x} g(x)) = f, | |
\end{displaymath} | |
\item if $f \jdeq \inr(g)$ for some $g: \susp P\to C$: | |
\begin{displaymath} | |
h(e_{\susp P,B,C}(f)) = h(e_{\susp P,B,C}(\inr(g))) | |
= h(\lam{x} \inr(g(x))) | |
= \inr(\lam{x} g(x)) = f. | |
\end{displaymath} | |
\end{enumerate} | |
Therefore we have $\isequiv(e_{\susp P,B,C})$. | |
($\LEM{}$ implies categorical connectedness to $\mathsf{isConn}$): | |
Assume $\LEM{}$, $A:\type$ and | |
\begin{displaymath} | |
\prd{B,C:\type} \isequiv(e_{A,B,C}). | |
\end{displaymath} | |
We need to prove $\mathsf{isConn}(A)$. | |
By $\LEM{}$ we have $\brck A$, because if $\neg \brck A$ we have $\eqv{A}{\emptyt}$ and $\eqv{\unit + \unit}{\unit}$, which is not the case. | |
Also by $\LEM{}$, for every $x,y:A$ we have $\brck {x = y} + \neg \brck {x = y}$. So if we fix $x:A$ we have a function $f_x:A \to \unit + \unit$ such that | |
\begin{displaymath} | |
f_x(y) \defeq \begin{cases} | |
\inl(\ttt) & \mbox{if } \brck {x = y} \\ | |
\inr(\ttt) & \mbox{if } \neg \brck {x = y} | |
\end{cases} | |
\end{displaymath} | |
Applying the assumption to $f_x$, we obtain | |
\begin{displaymath} | |
\inv{e_{A,\unit,\unit}}(f_x): (A \to \unit) + (A \to \unit) | |
\end{displaymath} | |
but by definition of $e$ and because $f_x(x) = \inl(\ttt)$, | |
it must be equal to $\inl(\lam{y} \ttt): (A \to \unit) + (A \to \unit)$, | |
which means we have $\prd{y:A} \brck {x = y}$. | |
\end{enumerate} | |
\section*{Exercises from \cref{cha:homotopy}} | |
\subsection*{Solution to \cref{ex:homotopy-groups-resp-prod}} | |
Remember that the fundamental group of a pointed space is defined as the | |
$0$-truncation of the loop space of that space. | |
If we prove the equivalence without applying $\trunc 0{\blank}$ to both sides | |
we are done. We use induction on the natural numbers, with base case $1$. | |
Suppose we have two pointed types $(A,a)$ and $(B,b)$. | |
For the base case, we have $\eqv{\Omega(A \times B)}{\Omega(A) \times \Omega(B)}$ | |
because it is, by definition, the equivalence of pointed types: | |
\[\eqv{ \Parens{(a,b)=(a,b), \refl{(a,b)}} }{\Parens{(a=a \times b=b), (\refl{a}, \refl{b})}}.\] | |
By the characterization of \cref{thm:path-sigma} we see | |
that it suffices to give a: | |
\[p:\eqv{\Parens{(a,b)=(a,b)}}{\Parens{(a=a)\times (b=b)}}\] | |
And to show that transporting $\refl{(a,b)}$ along $p$ is equal to | |
$(\refl{a}, \refl{b})$. To construct $p$ just use \cref{thm:path-prod}. To | |
show that transport respects the equality we use | |
the definition | |
of our function $p$, that is just an application of the projections and | |
functoriality (see \cref{eq:path-prod}). | |
For the inductive step we use the inductive hypothesis to get an equivalence: | |
$\eqv{\Omega^n(A \times B)}{\Omega^n(A) \times \Omega^n(B)}$. | |
Then we apply $\Omega(\blank)$ on both sides and use exactly the same | |
propositions we used in the base | |
case. This settles the inductive case, because of the inductive definition of | |
$\Omega^{\suc(n)}(\blank)$. | |
\subsection*{Solution to \cref{ex:contr-infinity-sphere-colim}} | |
To solve this exercise we must first define the spheres as a type family | |
$\Sn^{\blank} : \nat \to \UU$. | |
Then we must define the inclusions that appear the in the diagram: | |
\[ \Sn^0 \to \Sn^1 \to \Sn^2 \to\cdots \] | |
Then we will be able to define the colimit as | |
a higher inductive type. | |
So, by induction on the natural numbers, we define $\Sn^{\blank} : \nat \to \UU$ | |
with the base case being the two point type $\bool$, and the inductive case | |
being the iterated application of the suspension. | |
Now we define the inclusions $i_n : \Sn^n \to \Sn^{n+1}$. | |
For the base case we have to give a function $i_0 : \bool \to \susp \bool$. | |
This is easy: send one point to $\north$ and the other to $\south$. | |
For the inductive case we notice that the domain of the function $i_n$ that | |
we have to define is the suspension $\susp \Sn^{n-1}$. So we can use the | |
induction of $\susp \Sn^{n-1}$. The codomain is also a suspension, so we can | |
use any of the constructors: | |
\begin{align*} | |
\north_{n+1} &: \Sn^{n+1}\\ | |
\south_{n+1} &: \Sn^{n+1}\\ | |
\merid_{n+1} &:\Sn^n \to \north_{n+1} = \south_{n+1} | |
\end{align*} | |
to define our function. | |
We send $\north_n \mapsto \north_{n+1}$ and $\south_n \mapsto \south_{n+1}$. | |
Now we must give a $\susp \Sn^{n-1}$-indexed family of equalities between | |
$\north_{n+1}$ and $\south_{n+1}$. By inductive hypothesis we have | |
$i_{n-1} : \Sn^{n-1} \to \Sn^n$, so we can use: | |
\[ \merid_{n+1} \circ i_{n-1} \] | |
It is also interesting to note that this construction works in a more general | |
setting: any function $f : A \to B$ induces a function $\susp f : \susp A \to \susp B$. | |
Now is a good time to make a drawing to convince oneself that this is the | |
right way to define the inclusions between consecutive spheres, and that this | |
is the diagram intended in the exercise. | |
Let's define the type $\Sn^{\infty}$ as the colimit of the diagram we just | |
constructed. The constructors are: | |
\begin{align*} | |
j_{\blank} &: \prd{n : \nat} \Sn^n \to \Sn^{\infty}\\ | |
\glue_{\blank} &: \prd{n : \nat}{x: \Sn^n} j_n(x) = j_{n+1}(i_n (x)) | |
\end{align*} | |
And the induction: | |
\[ | |
\ind{\Sn^{\infty}} : \prd{C:\Sn^\infty \to \UU}{J_{\blank} : \prd{n : \nat}{x : \Sn^n} C(j_n(x))} | |
\Parens{\prd{n:\nat}{x:\Sn^n} \dpath C {\glue_n(x)} {J_n(x)} {J_{n+1} (i_n (x))}} | |
\to \prd{e:\Sn^{\infty}} C(e) | |
\] | |
We also have the usual computational rules. | |
Now, we can interpret the proof that we are going to give as follows. | |
Each sphere is a meridian of the next one, as it passes | |
through the $\north$ and $\south$ of the bigger sphere. | |
The intuitive idea is that we can retract to a point a circle that is the equator of a sphere. | |
Just as we can retract to a point two points that are the equator of a circle. | |
This idea extends to all $n$-spheres. If we have all the spheres at the same time | |
we can retract them all. But we have to be careful: the homotopies | |
must be coherent for the total homotopy to be well defined. This can be done in | |
classical homotopy theory using the fact that a CW complex is the colimit of | |
the inclusions between its skeletons. In our case we constructed the colimit. | |
So, if we define a homotopy for each sphere, and prove that this functions | |
coincide in the glued parts (respect the equalities given by $\glue$), by | |
induction on the colimit we get a homotopy defined in the colimit. | |
The outline of the argument is as follows. It suffices to show that every point in | |
$\Sn^{\infty}$ is equal to $j_0(\north_0)$, we prove it in two steps. | |
The first step is to prove it only for the points of the form $j_n(\north_n)$. | |
For the second step we will take an arbitrary $x:\Sn^{\infty}$ | |
and, by induction, we will assume it comes from a $y : \Sn^n$ for some $n$, | |
that is $x \defeq j_n(y)$. | |
Then we note that using the commutative diagram given by $\glue_n(x)$: | |
\begin{center} | |
\begin{tikzpicture} | |
\node (N0) at (0,2) {$\Sn^{n}$}; | |
\node (N1) at (2,2) {$\Sn^{n+1}$}; | |
\node (N2) at (2,0) {$\Sn^{\infty}$}; | |
\node (N3) at (1.1,1.1) {}; | |
\node (N4) at (1.5,1.5) {}; | |
\draw[->] (N0) -- node[above]{\footnotesize $i_n$} (N1); | |
\draw[->] (N0) -- node[left]{\footnotesize $j_n$} (N2); | |
\draw[->] (N1) -- node[right]{\footnotesize $j_{n+1}$} (N2); | |
\draw[double, double equal sign distance] (N3) -- node[left,above]{\footnotesize $glue_n$} (N4); | |
\end{tikzpicture} | |
\end{center} | |
we get a path $x \defeq j_n(y) = j_{n+1} (i_n(y))$. | |
But, as we will show, the inclusion $i_n$ of $\Sn^n$ in $\Sn^{n+1}$ is nullhomotopic, | |
every point in the image is equal to $\north_{n+1}$. Thus, we are able to show that | |
$j_{n+1}(i_n(y)) = j_{n+1}(\north_{n+1})$. Composing the proof of the first step | |
with the proof of the second step we conclude the exercise. | |
To construct a $D_{\blank} : \prd{n:\nat} j_n(\north_n) = j_0(\north_0)$ we | |
proceed by induction on $n$. For the base case we can | |
use $\refl{j_0(\north_0)}$. For the inductive case, we have by inductive | |
hypothesis $j_n(\north_n) = j_0(\north_0)$. By our definition of $i_{\blank}$, | |
we have that $\north_{n+1} \equiv i_n(\north_n)$. So $j_{n+1} (\north_{n+1})$ | |
equals $j_{n+1}(i_n(\north_n))$. By concatenation with $\glue_n(\north_n)$, | |
we reduce our goal to the inductive hypothesis. | |
Let's now show that the inclusion of $\Sn^n$ in $\Sn^{n+1}$ can be | |
continuously retracted to $\north_{n+1}$. | |
That is, let's construct a homotopy: | |
\[ H_{\blank} : \prd{n:\nat}{x:\Sn^n} i_n(x) = \north_{n+1} \] | |
For the case $n\equiv 0$ we know that $i_0(\btrue) \equiv \north_1$ and | |
$i_0(\bfalse) \equiv \south_1$. This is because we constructed the inclusion | |
that way. So we can prove the equalities | |
using $\refl{\north_1}$ and $\merid_1(\btrue) : \north_1 = \south_1$. | |
For the inductive case we defined, previously, $i_n(\north_n) \equiv \north_{n+1}$ | |
and $i_n(\south_{n}) \equiv \south_{n+1}$. So we can prove the equalities using | |
$\refl{\north_{n+1}}$ and $(\merid_{n+1}(\north_n))^{-1}$. | |
Then we have to prove that the function respects $\merid_n$: | |
\[ \prd{x:\Sn^{n-1}} \dpath {x\mapsto (i_n(x) = \north_{n+1})} {\merid_n(x)} {\refl{\north_{n+1}}} {(\merid_{n+1}(\north_n))^{-1}} \] | |
By \cref{thm:transport-path} (and some straightforward computation) this reduces to: | |
\[ i_n(\merid_n(x)) = \merid_{n+1}(\north_{n}) \] | |
But, by our definition of $i_{\blank}$, and the computation rule of the | |
suspension induction $i_n(\merid_n(x))$ equals $\merid_{n+1} (i_{n-1}(x))$. | |
And, by inductive hypothesis, $i_{n-1}(x) = \north_n$, which gives us the | |
desired result. | |
Composing the two proofs we just gave we get a function: | |
\[ J_n(x) \defeq \glue_n(x)\ct \apfunc{j_{n+1}}{H_n(x)}\ct D_{n+1} | |
: \prd{n:\nat}{x:\Sn^n} j_n(x) = j_0(\north_0). \] | |
We use this function and induction on $\Sn^{\infty}$ to derive | |
the contractibility of the space. | |
Now it remains to show that our function respects the gluing: | |
\[ \prd{n:\nat}{x:\Sn^n} \dpath {x\mapsto (x = j_0(\north_0))} | |
{\glue_n(x)} {J_n(x)} {J_{n+1}(i_n (x))} \] | |
By definition this is: | |
\[ \prd{n:\nat}{x:\Sn^n} | |
\transfib{x\mapsto (x = j_0(\north_0))}{\glue_n(x)}{J_n(x)} | |
= {J_{n+1}(i_n (x))} \] | |
The LHS is equal to $\glue_{n}(x)^{-1}\ct J_n(x)$, which, by definition of | |
$J_n(x)$, is: | |
\[ \glue_n(x)^{-1}\ct\glue_n(x)\ct\apfunc{j_{n+1}}{H_n(x)}\ct D_{n+1} \] | |
Cancelling we get: | |
\[ \apfunc{j_{n+1}}{H_n(x)}\ct D_{n+1} \] | |
We also use the definition of $J_{\blank}$ in the RHS, and then the computation | |
rule of $D_{\blank}$, giving us the equalities: | |
\begin{align*} | |
& J_{n+1}(i_n(x))\\ | |
&= \glue_{n+1}(i_n(x))\ct\apfunc{j_{n+2}}{H_{n+1}(i_n(x))}\ct D_{n+2}\\ | |
&= \glue_{n+1}(i_n(x))\ct\apfunc{j_{n+2}}{H_{n+1}(i_n(x))}\ct | |
\glue_{n+1}(\north_{n+1})^{-1}\ct D_{n+1}. | |
\end{align*} | |
So it suffices to show: | |
\[ \apfunc{j_{n+1}}{H_n(x)} = \glue_{n+1}(i_n(x))\ct\apfunc{j_{n+2}}{H_{n+1}(i_n(x))} | |
\ct\glue_{n+1}(\north_{n+1})^{-1} \] | |
Or equivalently: | |
\[ \apfunc{j_{n+1}}{H_n(x)} \ct\glue_{n+1}(\north_{n+1}) = | |
\glue_{n+1}(i_n(x))\ct\apfunc{j_{n+2}}{H_{n+1}(i_n(x))} \] | |
But we remember that we have the homotopy | |
$\glue_{n+1} : j_{n+1} = j_{n+2}\circ i_{n+1}$, so, by a simple application | |
of \cref{lem:htpy-natural} and the functoriality of $\apfunc{}{}$, we get | |
a proof of the equality: | |
\[ \apfunc{j_{n+1}}{H_n(x)} \ct\glue_{n+1}(\north_{n+1}) = | |
\glue_{n+1}(i_n(x))\ct\apfunc{j_{n+2}}{\apfunc{i_{n+1}}{H_n(x)}} \] | |
So we reduced the goal to showing: | |
\[ \apfunc{i_{n+1}}{H_n(x)} = H_{n+1}(i_n(x)) \] | |
This can be done easily by induction in $\Sn^n$ using the definition of $H_{\blank}$. | |
\subsection*{Solution to \cref{ex:contr-infinity-sphere-susp}} | |
First we write down the type of the induction principle explicitly: | |
\[ \ind{\Sn^\infty} : \prd{C:\Sn^\infty \to \UU}{n:C(\north)}{s:C(\south)} | |
\Parens{\prd{x:\Sn^\infty} C(x) \to \dpath C {\merid(x)} {n}{s}} \to \prd{x:\Sn^\infty} C(x) . \] | |
We take $\north$ as center of contraction. So we have to prove | |
$\prd{x:\Sn^\infty} \north = x$. For this we use induction on $\Sn^\infty$ taking: | |
\[C \defeq (\lambda x. \north = x) : \Sn^\infty \to \UU .\] | |
When $x$ is $\north$ we just use $\refl{\north} : \north = \north$. When $x$ | |
is $\south$ we use $\merid(\north) : \north = \south$. | |
When $x$ varies along $\merid$ we have to give a function of type: | |
\[\prd{x:\Sn^\infty} \Parens{\north = x} \to \Parens{\dpath C {\merid(x)} {\refl{\north}}{\merid(\north)}}. \] | |
So, given $x : \Sn^\infty$ and $p : \north = x$, we have to prove: | |
\[\transfib{x \mapsto (\north = x)}{\merid(x)}{\refl{\north}} = \merid(\north).\] | |
By \cref{cor:transport-path-prepost} it suffices to show | |
$\refl{\north}\ct \merid(x) = \merid(\north)$. Canceling $\refl{\north}$ and | |
applying $\merid$ to $p$ gets us the desired result. | |
\subsection*{Solution to \cref{ex:unique-fiber}} | |
We know that every two points $y_1,y_2 : Y$ are merely equal, because $Y$ is | |
is connected. That is, we have a function | |
$c : \prd{y_1,y_2:Y}\trunc {} {y_1 = y_2}$. To prove this we can use the remark | |
after \cref{thm:connected-pointed}. If we want to show that any pair of | |
points $y_1,y_2 : Y$ are merely equal we can use the first point $y_1$ to get | |
a pointed space $(Y,y_1)$, and then use the remark. | |
We note that it suffices to show that for any $y_1,y_2:Y$ we have | |
$\trunc {} {\hfib{f}{y_1} = \hfib{f}{y_2}}$ because | |
$\hfib{f}{y_1} = \hfib{f}{y_2}$ implies (using $\idtoeqv$) | |
$\hfib{f}{y_1}\simeq \hfib{f}{y_2}$ | |
and thus, by recursion on the truncation of $\hfib{f}{y_1} = \hfib{f}{y_2}$, | |
we get that $\trunc {} {\hfib{f}{y_1} = \hfib{f}{y_2}}$ implies | |
$\trunc {} {\hfib{f}{y_1} \simeq \hfib{f}{y_2}}$. | |
The type of $c(y_1,y_2)$ is a truncation, so we can use its recursion to | |
prove the desired result. | |
By recursion we can assume that $y_1 = y_2$, and in that case we obviously have | |
$\trunc {} {\hfib{f}{y_1} = \hfib{f}{y_2}}$. We also have to show that | |
the proposition we want to prove is $-1$-truncated, but that is straightforward | |
because it is a $-1$-truncation. | |
\section*{Exercises from \cref{cha:category-theory}} | |
\subsection*{Solution to \cref{ex:stack}} | |
Define $K$ to be the precategory with $K_0 \defeq Y$ and $\hom_K(y_1,y_2) \defeq (p(y_1)=p(y_2))$. | |
Then $\mathrm{Desc}(A,p)\defeq A^K$ is a good definition. | |
Moreover, the obvious functor $K\to X$ (where $X$ denotes the discrete category on itself) is a weak equivalence, so \cref{ct:esofull-precomp-ff,ct:cat-weq-eq} yield the second and third parts. | |
Finally, $K$ is a strict category, so if it is a stack, then $p$ has a section, while conversely if $p$ has a section then $K\to X$ is a (strong) equivalence. | |
\section*{Exercises from \cref{cha:set-math}} | |
\subsection*{Solution to \cref{ex:prop-ord}} | |
Define $A<B$ iff $B \land \neg A$. | |
\subsection*{Solution to \cref{ex:ninf-ord}} | |
Define $a<b$ iff $\exis{n:\nat} (b_n < a_n)$. | |
\end{document} | |