Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
%%%% MACROS FOR NOTATION %%%% | |
% Use these for any notation where there are multiple options. | |
%%% Notes and exercise sections | |
\makeatletter | |
\newcommand{\sectionNotes}{\phantomsection\section*{Notes}\addcontentsline{toc}{section}{Notes}\markright{\textsc{\@chapapp{} \thechapter{} Notes}}} | |
\newcommand{\sectionExercises}[1]{\ifdef{\OPTexerciseperpage}{\newpage}{}\phantomsection\section*{Exercises}\addcontentsline{toc}{section}{Exercises}\markright{\textsc{\@chapapp{} \thechapter{} Exercises}}} | |
\makeatother | |
%%% Definitional equality (used infix) %%% | |
\newcommand{\jdeq}{\equiv} % An equality judgment | |
\let\judgeq\jdeq | |
%\newcommand{\defeq}{\coloneqq} % An equality currently being defined | |
\newcommand{\defeq}{\vcentcolon\equiv} % A judgmental equality currently being defined | |
%%% Term being defined | |
\newcommand{\define}[1]{\textbf{#1}} | |
%%% Vec (for example) | |
\newcommand{\Vect}{\ensuremath{\mathsf{Vec}}} | |
\newcommand{\Fin}{\ensuremath{\mathsf{Fin}}} | |
\newcommand{\fmax}{\ensuremath{\mathsf{fmax}}} | |
\newcommand{\seq}[1]{\langle #1\rangle} | |
%%% Dependent products %%% | |
\def\prdsym{\textstyle\prod} | |
%% Call the macro like \prd{x,y:A}{p:x=y} with any number of | |
%% arguments. Make sure that whatever comes *after* the call doesn't | |
%% begin with an open-brace, or it will be parsed as another argument. | |
\makeatletter | |
% Currently the macro is configured to produce | |
% {\textstyle\prod}(x:A) \; {\textstyle\prod}(y:B),{\ } | |
% in display-math mode, and | |
% \prod_{(x:A)} \prod_{y:B} | |
% in text-math mode. | |
% \def\prd#1{\@ifnextchar\bgroup{\prd@parens{#1}}{% | |
% \@ifnextchar\sm{\prd@parens{#1}\@eatsm}{% | |
% \prd@noparens{#1}}}} | |
\def\prd#1{\@ifnextchar\bgroup{\prd@parens{#1}}{% | |
\@ifnextchar\sm{\prd@parens{#1}\@eatsm}{% | |
\@ifnextchar\prd{\prd@parens{#1}\@eatprd}{% | |
\@ifnextchar\;{\prd@parens{#1}\@eatsemicolonspace}{% | |
\@ifnextchar\\{\prd@parens{#1}\@eatlinebreak}{% | |
\@ifnextchar\narrowbreak{\prd@parens{#1}\@eatnarrowbreak}{% | |
\prd@noparens{#1}}}}}}}} | |
\def\prd@parens#1{\@ifnextchar\bgroup% | |
{\mathchoice{\@dprd{#1}}{\@tprd{#1}}{\@tprd{#1}}{\@tprd{#1}}\prd@parens}% | |
{\@ifnextchar\sm% | |
{\mathchoice{\@dprd{#1}}{\@tprd{#1}}{\@tprd{#1}}{\@tprd{#1}}\@eatsm}% | |
{\mathchoice{\@dprd{#1}}{\@tprd{#1}}{\@tprd{#1}}{\@tprd{#1}}}}} | |
\def\@eatsm\sm{\sm@parens} | |
\def\prd@noparens#1{\mathchoice{\@dprd@noparens{#1}}{\@tprd{#1}}{\@tprd{#1}}{\@tprd{#1}}} | |
% Helper macros for three styles | |
\def\lprd#1{\@ifnextchar\bgroup{\@lprd{#1}\lprd}{\@@lprd{#1}}} | |
\def\@lprd#1{\mathchoice{{\textstyle\prod}}{\prod}{\prod}{\prod}({\textstyle #1})\;} | |
\def\@@lprd#1{\mathchoice{{\textstyle\prod}}{\prod}{\prod}{\prod}({\textstyle #1}),\ } | |
\def\tprd#1{\@tprd{#1}\@ifnextchar\bgroup{\tprd}{}} | |
\def\@tprd#1{\mathchoice{{\textstyle\prod_{(#1)}}}{\prod_{(#1)}}{\prod_{(#1)}}{\prod_{(#1)}}} | |
\def\dprd#1{\@dprd{#1}\@ifnextchar\bgroup{\dprd}{}} | |
\def\@dprd#1{\prod_{(#1)}\,} | |
\def\@dprd@noparens#1{\prod_{#1}\,} | |
% Look through spaces and linebreaks | |
\def\@eatnarrowbreak\narrowbreak{% | |
\@ifnextchar\prd{\narrowbreak\@eatprd}{% | |
\@ifnextchar\sm{\narrowbreak\@eatsm}{% | |
\narrowbreak}}} | |
\def\@eatlinebreak\\{% | |
\@ifnextchar\prd{\\\@eatprd}{% | |
\@ifnextchar\sm{\\\@eatsm}{% | |
\\}}} | |
\def\@eatsemicolonspace\;{% | |
\@ifnextchar\prd{\;\@eatprd}{% | |
\@ifnextchar\sm{\;\@eatsm}{% | |
\;}}} | |
%%% Lambda abstractions. | |
% Each variable being abstracted over is a separate argument. If | |
% there is more than one such argument, they *must* be enclosed in | |
% braces. Arguments can be untyped, as in \lam{x}{y}, or typed with a | |
% colon, as in \lam{x:A}{y:B}. In the latter case, the colons are | |
% automatically noticed and (with current implementation) the space | |
% around the colon is reduced. You can even give more than one variable | |
% the same type, as in \lam{x,y:A}. | |
\def\lam#1{{\lambda}\@lamarg#1:\@endlamarg\@ifnextchar\bgroup{.\,\lam}{.\,}} | |
\def\@lamarg#1:#2\@endlamarg{\if\relax\detokenize{#2}\relax #1\else\@lamvar{\@lameatcolon#2},#1\@endlamvar\fi} | |
\def\@lamvar#1,#2\@endlamvar{(#2\,{:}\,#1)} | |
% \def\@lamvar#1,#2{{#2}^{#1}\@ifnextchar,{.\,{\lambda}\@lamvar{#1}}{\let\@endlamvar\relax}} | |
\def\@lameatcolon#1:{#1} | |
\let\lamt\lam | |
% This version silently eats any typing annotation. | |
\def\lamu#1{{\lambda}\@lamuarg#1:\@endlamuarg\@ifnextchar\bgroup{.\,\lamu}{.\,}} | |
\def\@lamuarg#1:#2\@endlamuarg{#1} | |
%%% Dependent products written with \forall, in the same style | |
\def\fall#1{\forall (#1)\@ifnextchar\bgroup{.\,\fall}{.\,}} | |
%%% Existential quantifier %%% | |
\def\exis#1{\exists (#1)\@ifnextchar\bgroup{.\,\exis}{.\,}} | |
%%% Dependent sums %%% | |
\def\smsym{\textstyle\sum} | |
% Use in the same way as \prd | |
\def\sm#1{\@ifnextchar\bgroup{\sm@parens{#1}}{% | |
\@ifnextchar\prd{\sm@parens{#1}\@eatprd}{% | |
\@ifnextchar\sm{\sm@parens{#1}\@eatsm}{% | |
\@ifnextchar\;{\sm@parens{#1}\@eatsemicolonspace}{% | |
\@ifnextchar\\{\sm@parens{#1}\@eatlinebreak}{% | |
\@ifnextchar\narrowbreak{\sm@parens{#1}\@eatnarrowbreak}{% | |
\sm@noparens{#1}}}}}}}} | |
\def\sm@parens#1{\@ifnextchar\bgroup% | |
{\mathchoice{\@dsm{#1}}{\@tsm{#1}}{\@tsm{#1}}{\@tsm{#1}}\sm@parens}% | |
{\@ifnextchar\prd% | |
{\mathchoice{\@dsm{#1}}{\@tsm{#1}}{\@tsm{#1}}{\@tsm{#1}}\@eatprd}% | |
{\mathchoice{\@dsm{#1}}{\@tsm{#1}}{\@tsm{#1}}{\@tsm{#1}}}}} | |
\def\@eatprd\prd{\prd@parens} | |
\def\sm@noparens#1{\mathchoice{\@dsm@noparens{#1}}{\@tsm{#1}}{\@tsm{#1}}{\@tsm{#1}}} | |
\def\lsm#1{\@ifnextchar\bgroup{\@lsm{#1}\lsm}{\@@lsm{#1}}} | |
\def\@lsm#1{\mathchoice{{\textstyle\sum}}{\sum}{\sum}{\sum}({\textstyle #1})\;} | |
\def\@@lsm#1{\mathchoice{{\textstyle\sum}}{\sum}{\sum}{\sum}({\textstyle #1}),\ } | |
\def\tsm#1{\@tsm{#1}\@ifnextchar\bgroup{\tsm}{}} | |
\def\@tsm#1{\mathchoice{{\textstyle\sum_{(#1)}}}{\sum_{(#1)}}{\sum_{(#1)}}{\sum_{(#1)}}} | |
\def\dsm#1{\@dsm{#1}\@ifnextchar\bgroup{\dsm}{}} | |
\def\@dsm#1{\sum_{(#1)}\,} | |
\def\@dsm@noparens#1{\sum_{#1}\,} | |
%%% W-types | |
\def\wtypesym{{\mathsf{W}}} | |
\def\wtype#1{\@ifnextchar\bgroup% | |
{\mathchoice{\@twtype{#1}}{\@twtype{#1}}{\@twtype{#1}}{\@twtype{#1}}\wtype}% | |
{\mathchoice{\@twtype{#1}}{\@twtype{#1}}{\@twtype{#1}}{\@twtype{#1}}}} | |
\def\lwtype#1{\@ifnextchar\bgroup{\@lwtype{#1}\lwtype}{\@@lwtype{#1}}} | |
\def\@lwtype#1{\mathchoice{{\textstyle\mathsf{W}}}{\mathsf{W}}{\mathsf{W}}{\mathsf{W}}({\textstyle #1})\;} | |
\def\@@lwtype#1{\mathchoice{{\textstyle\mathsf{W}}}{\mathsf{W}}{\mathsf{W}}{\mathsf{W}}({\textstyle #1}),\ } | |
\def\twtype#1{\@twtype{#1}\@ifnextchar\bgroup{\twtype}{}} | |
\def\@twtype#1{\mathchoice{{\textstyle\mathsf{W}_{(#1)}}}{\mathsf{W}_{(#1)}}{\mathsf{W}_{(#1)}}{\mathsf{W}_{(#1)}}} | |
\def\dwtype#1{\@dwtype{#1}\@ifnextchar\bgroup{\dwtype}{}} | |
\def\@dwtype#1{\mathsf{W}_{(#1)}\,} | |
\newcommand{\suppsym}{{\mathsf{sup}}} | |
\newcommand{\supp}{\ensuremath\suppsym\xspace} | |
\def\wtypeh#1{\@ifnextchar\bgroup% | |
{\mathchoice{\@lwtypeh{#1}}{\@twtypeh{#1}}{\@twtypeh{#1}}{\@twtypeh{#1}}\wtypeh}% | |
{\mathchoice{\@@lwtypeh{#1}}{\@twtypeh{#1}}{\@twtypeh{#1}}{\@twtypeh{#1}}}} | |
\def\lwtypeh#1{\@ifnextchar\bgroup{\@lwtypeh{#1}\lwtypeh}{\@@lwtypeh{#1}}} | |
\def\@lwtypeh#1{\mathchoice{{\textstyle\mathsf{W}^h}}{\mathsf{W}^h}{\mathsf{W}^h}{\mathsf{W}^h}({\textstyle #1})\;} | |
\def\@@lwtypeh#1{\mathchoice{{\textstyle\mathsf{W}^h}}{\mathsf{W}^h}{\mathsf{W}^h}{\mathsf{W}^h}({\textstyle #1}),\ } | |
\def\twtypeh#1{\@twtypeh{#1}\@ifnextchar\bgroup{\twtypeh}{}} | |
\def\@twtypeh#1{\mathchoice{{\textstyle\mathsf{W}^h_{(#1)}}}{\mathsf{W}^h_{(#1)}}{\mathsf{W}^h_{(#1)}}{\mathsf{W}^h_{(#1)}}} | |
\def\dwtypeh#1{\@dwtypeh{#1}\@ifnextchar\bgroup{\dwtypeh}{}} | |
\def\@dwtypeh#1{\mathsf{W}^h_{(#1)}\,} | |
\makeatother | |
% Other notations related to dependent sums | |
\let\setof\Set % from package 'braket', write \setof{ x:A | P(x) }. | |
\newcommand{\pair}{\ensuremath{\mathsf{pair}}\xspace} | |
\newcommand{\tup}[2]{(#1,#2)} | |
\newcommand{\proj}[1]{\ensuremath{\mathsf{pr}_{#1}}\xspace} | |
\newcommand{\fst}{\ensuremath{\proj1}\xspace} | |
\newcommand{\snd}{\ensuremath{\proj2}\xspace} | |
\newcommand{\ac}{\ensuremath{\mathsf{ac}}\xspace} % not needed in symbol index | |
%%% recursor and induction | |
\newcommand{\rec}[1]{\mathsf{rec}_{#1}} | |
\newcommand{\ind}[1]{\mathsf{ind}_{#1}} | |
\newcommand{\indid}[1]{\ind{=_{#1}}} % (Martin-Lof) path induction principle for identity types | |
\newcommand{\indidb}[1]{\ind{=_{#1}}'} % (Paulin-Mohring) based path induction principle for identity types | |
%%% Uniqueness principles | |
\newcommand{\uniq}[1]{\mathsf{uniq}_{#1}} | |
% Paths in pairs | |
\newcommand{\pairpath}{\ensuremath{\mathsf{pair}^{\mathord{=}}}\xspace} | |
% \newcommand{\projpath}[1]{\proj{#1}^{\mathord{=}}} | |
\newcommand{\projpath}[1]{\ensuremath{\apfunc{\proj{#1}}}\xspace} | |
\newcommand{\pairct}{\ensuremath{\mathsf{pair}^{\mathord{\ct}}}\xspace} | |
%%% For quotients %%% | |
%\newcommand{\pairr}[1]{{\langle #1\rangle}} | |
\newcommand{\pairr}[1]{{\mathopen{}(#1)\mathclose{}}} | |
\newcommand{\Pairr}[1]{{\mathopen{}\left(#1\right)\mathclose{}}} | |
% \newcommand{\type}{\ensuremath{\mathsf{Type}}} % this command is overridden below, so it's commented out | |
\newcommand{\im}{\ensuremath{\mathsf{im}}} % the image | |
%%% 2D path operations | |
\newcommand{\leftwhisker}{\mathbin{{\ct}_{\mathsf{l}}}} % was \ell | |
\newcommand{\rightwhisker}{\mathbin{{\ct}_{\mathsf{r}}}} % was r | |
\newcommand{\hct}{\star} | |
%%% modalities %%% | |
\newcommand{\modal}{\ensuremath{\ocircle}} | |
\let\reflect\modal | |
\newcommand{\modaltype}{\ensuremath{\type_\modal}} | |
% \newcommand{\ism}[1]{\ensuremath{\mathsf{is}_{#1}}} | |
% \newcommand{\ismodal}{\ism{\modal}} | |
% \newcommand{\existsmodal}{\ensuremath{{\exists}_{\modal}}} | |
% \newcommand{\existsmodalunique}{\ensuremath{{\exists!}_{\modal}}} | |
% \newcommand{\modalfunc}{\textsf{\modal-fun}} | |
% \newcommand{\Ecirc}{\ensuremath{\mathsf{E}_\modal}} | |
% \newcommand{\Mcirc}{\ensuremath{\mathsf{M}_\modal}} | |
\newcommand{\mreturn}{\ensuremath{\eta}} | |
\let\project\mreturn | |
%\newcommand{\mbind}[1]{\ensuremath{\hat{#1}}} | |
\newcommand{\ext}{\mathsf{ext}} | |
%\newcommand{\mmap}[1]{\ensuremath{\bar{#1}}} | |
%\newcommand{\mjoin}{\ensuremath{\mreturn^{-1}}} | |
% Subuniverse | |
\renewcommand{\P}{\ensuremath{\type_{P}}\xspace} | |
%%% Localizations | |
% \newcommand{\islocal}[1]{\ensuremath{\mathsf{islocal}_{#1}}\xspace} | |
% \newcommand{\loc}[1]{\ensuremath{\mathcal{L}_{#1}}\xspace} | |
%%% Identity types %%% | |
\newcommand{\idsym}{{=}} | |
\newcommand{\id}[3][]{\ensuremath{#2 =_{#1} #3}\xspace} | |
\newcommand{\idtype}[3][]{\ensuremath{\mathsf{Id}_{#1}(#2,#3)}\xspace} | |
\newcommand{\idtypevar}[1]{\ensuremath{\mathsf{Id}_{#1}}\xspace} | |
% A propositional equality currently being defined | |
\newcommand{\defid}{\coloneqq} | |
%%% Dependent paths | |
\newcommand{\dpath}[4]{#3 =^{#1}_{#2} #4} | |
%%% singleton | |
% \newcommand{\sgl}{\ensuremath{\mathsf{sgl}}\xspace} | |
% \newcommand{\sctr}{\ensuremath{\mathsf{sctr}}\xspace} | |
%%% Reflexivity terms %%% | |
% \newcommand{\reflsym}{{\mathsf{refl}}} | |
\newcommand{\refl}[1]{\ensuremath{\mathsf{refl}_{#1}}\xspace} | |
%%% Path concatenation (used infix, in diagrammatic order) %%% | |
\newcommand{\ct}{% | |
\mathchoice{\mathbin{\raisebox{0.5ex}{$\displaystyle\centerdot$}}}% | |
{\mathbin{\raisebox{0.5ex}{$\centerdot$}}}% | |
{\mathbin{\raisebox{0.25ex}{$\scriptstyle\,\centerdot\,$}}}% | |
{\mathbin{\raisebox{0.1ex}{$\scriptscriptstyle\,\centerdot\,$}}} | |
} | |
%%% Path reversal %%% | |
\newcommand{\opp}[1]{\mathord{{#1}^{-1}}} | |
\let\rev\opp | |
%%% Coherence paths %%% | |
\newcommand{\ctassoc}{\mathsf{assoc}} % associativity law | |
%%% Transport (covariant) %%% | |
\newcommand{\trans}[2]{\ensuremath{{#1}_{*}\mathopen{}\left({#2}\right)\mathclose{}}\xspace} | |
\let\Trans\trans | |
%\newcommand{\Trans}[2]{\ensuremath{{#1}_{*}\left({#2}\right)}\xspace} | |
\newcommand{\transf}[1]{\ensuremath{{#1}_{*}}\xspace} % Without argument | |
%\newcommand{\transport}[2]{\ensuremath{\mathsf{transport}_{*} \: {#2}\xspace}} | |
\newcommand{\transfib}[3]{\ensuremath{\mathsf{transport}^{#1}(#2,#3)\xspace}} | |
\newcommand{\Transfib}[3]{\ensuremath{\mathsf{transport}^{#1}\Big(#2,\, #3\Big)\xspace}} | |
\newcommand{\transfibf}[1]{\ensuremath{\mathsf{transport}^{#1}\xspace}} | |
%%% 2D transport | |
\newcommand{\transtwo}[2]{\ensuremath{\mathsf{transport}^2\mathopen{}\left({#1},{#2}\right)\mathclose{}}\xspace} | |
%%% Constant transport | |
\newcommand{\transconst}[3]{\ensuremath{\mathsf{transportconst}}^{#1}_{#2}(#3)\xspace} | |
\newcommand{\transconstf}{\ensuremath{\mathsf{transportconst}}\xspace} | |
%%% Map on paths %%% | |
\newcommand{\mapfunc}[1]{\ensuremath{\mathsf{ap}_{#1}}\xspace} % Without argument | |
\newcommand{\map}[2]{\ensuremath{{#1}\mathopen{}\left({#2}\right)\mathclose{}}\xspace} | |
\let\Ap\map | |
%\newcommand{\Ap}[2]{\ensuremath{{#1}\left({#2}\right)}\xspace} | |
\newcommand{\mapdepfunc}[1]{\ensuremath{\mathsf{apd}_{#1}}\xspace} % Without argument | |
% \newcommand{\mapdep}[2]{\ensuremath{{#1}\llparenthesis{#2}\rrparenthesis}\xspace} | |
\newcommand{\mapdep}[2]{\ensuremath{\mapdepfunc{#1}\mathopen{}\left(#2\right)\mathclose{}}\xspace} | |
\let\apfunc\mapfunc | |
\let\ap\map | |
\let\apdfunc\mapdepfunc | |
\let\apd\mapdep | |
%%% 2D map on paths | |
\newcommand{\aptwofunc}[1]{\ensuremath{\mathsf{ap}^2_{#1}}\xspace} | |
\newcommand{\aptwo}[2]{\ensuremath{\aptwofunc{#1}\mathopen{}\left({#2}\right)\mathclose{}}\xspace} | |
\newcommand{\apdtwofunc}[1]{\ensuremath{\mathsf{apd}^2_{#1}}\xspace} | |
\newcommand{\apdtwo}[2]{\ensuremath{\apdtwofunc{#1}\mathopen{}\left(#2\right)\mathclose{}}\xspace} | |
%%% Identity functions %%% | |
\newcommand{\idfunc}[1][]{\ensuremath{\mathsf{id}_{#1}}\xspace} | |
%%% Homotopies (written infix) %%% | |
\newcommand{\htpy}{\sim} | |
%%% Other meanings of \sim | |
\newcommand{\bisim}{\sim} % bisimulation | |
\newcommand{\eqr}{\sim} % an equivalence relation | |
%%% Equivalence types %%% | |
\newcommand{\eqv}[2]{\ensuremath{#1 \simeq #2}\xspace} | |
\newcommand{\eqvspaced}[2]{\ensuremath{#1 \;\simeq\; #2}\xspace} | |
\newcommand{\eqvsym}{\simeq} % infix symbol | |
\newcommand{\texteqv}[2]{\ensuremath{\mathsf{Equiv}(#1,#2)}\xspace} | |
\newcommand{\isequiv}{\ensuremath{\mathsf{isequiv}}} | |
\newcommand{\qinv}{\ensuremath{\mathsf{qinv}}} | |
\newcommand{\ishae}{\ensuremath{\mathsf{ishae}}} | |
\newcommand{\linv}{\ensuremath{\mathsf{linv}}} | |
\newcommand{\rinv}{\ensuremath{\mathsf{rinv}}} | |
\newcommand{\biinv}{\ensuremath{\mathsf{biinv}}} | |
\newcommand{\lcoh}[3]{\mathsf{lcoh}_{#1}(#2,#3)} | |
\newcommand{\rcoh}[3]{\mathsf{rcoh}_{#1}(#2,#3)} | |
\newcommand{\hfib}[2]{{\mathsf{fib}}_{#1}(#2)} | |
%%% Map on total spaces %%% | |
\newcommand{\total}[1]{\ensuremath{\mathsf{total}(#1)}} | |
%%% Universe types %%% | |
%\newcommand{\type}{\ensuremath{\mathsf{Type}}\xspace} | |
\newcommand{\UU}{\ensuremath{\mathcal{U}}\xspace} | |
\let\bbU\UU | |
\let\type\UU | |
% Universes of truncated types | |
\newcommand{\typele}[1]{\ensuremath{{#1}\text-\mathsf{Type}}\xspace} | |
\newcommand{\typeleU}[1]{\ensuremath{{#1}\text-\mathsf{Type}_\UU}\xspace} | |
\newcommand{\typelep}[1]{\ensuremath{{(#1)}\text-\mathsf{Type}}\xspace} | |
\newcommand{\typelepU}[1]{\ensuremath{{(#1)}\text-\mathsf{Type}_\UU}\xspace} | |
\let\ntype\typele | |
\let\ntypeU\typeleU | |
\let\ntypep\typelep | |
\let\ntypepU\typelepU | |
\renewcommand{\set}{\ensuremath{\mathsf{Set}}\xspace} | |
\newcommand{\setU}{\ensuremath{\mathsf{Set}_\UU}\xspace} | |
\newcommand{\prop}{\ensuremath{\mathsf{Prop}}\xspace} | |
\newcommand{\propU}{\ensuremath{\mathsf{Prop}_\UU}\xspace} | |
%Pointed types | |
\newcommand{\pointed}[1]{\ensuremath{#1_\bullet}} | |
%%% Ordinals and cardinals | |
\newcommand{\card}{\ensuremath{\mathsf{Card}}\xspace} | |
\newcommand{\ord}{\ensuremath{\mathsf{Ord}}\xspace} | |
\newcommand{\ordsl}[2]{{#1}_{/#2}} | |
%%% Univalence | |
\newcommand{\ua}{\ensuremath{\mathsf{ua}}\xspace} % the inverse of idtoeqv | |
\newcommand{\idtoeqv}{\ensuremath{\mathsf{idtoeqv}}\xspace} | |
\newcommand{\univalence}{\ensuremath{\mathsf{univalence}}\xspace} % the full axiom | |
%%% Truncation levels | |
\newcommand{\iscontr}{\ensuremath{\mathsf{isContr}}} | |
\newcommand{\contr}{\ensuremath{\mathsf{contr}}} % The path to the center of contraction | |
\newcommand{\isset}{\ensuremath{\mathsf{isSet}}} | |
\newcommand{\isprop}{\ensuremath{\mathsf{isProp}}} | |
% h-propositions | |
% \newcommand{\anhprop}{a mere proposition\xspace} | |
% \newcommand{\hprops}{mere propositions\xspace} | |
%%% Homotopy fibers %%% | |
%\newcommand{\hfiber}[2]{\ensuremath{\mathsf{hFiber}(#1,#2)}\xspace} | |
\let\hfiber\hfib | |
%%% Bracket/squash/truncation types %%% | |
% \newcommand{\brck}[1]{\textsf{mere}(#1)} | |
% \newcommand{\Brck}[1]{\textsf{mere}\Big(#1\Big)} | |
% \newcommand{\trunc}[2]{\tau_{#1}(#2)} | |
% \newcommand{\Trunc}[2]{\tau_{#1}\Big(#2\Big)} | |
% \newcommand{\truncf}[1]{\tau_{#1}} | |
%\newcommand{\trunc}[2]{\Vert #2\Vert_{#1}} | |
\newcommand{\trunc}[2]{\mathopen{}\left\Vert #2\right\Vert_{#1}\mathclose{}} | |
\newcommand{\ttrunc}[2]{\bigl\Vert #2\bigr\Vert_{#1}} | |
\newcommand{\Trunc}[2]{\Bigl\Vert #2\Bigr\Vert_{#1}} | |
\newcommand{\truncf}[1]{\Vert \blank \Vert_{#1}} | |
\newcommand{\tproj}[3][]{\mathopen{}\left|#3\right|_{#2}^{#1}\mathclose{}} | |
\newcommand{\tprojf}[2][]{|\blank|_{#2}^{#1}} | |
\def\pizero{\trunc0} | |
%\newcommand{\brck}[1]{\trunc{-1}{#1}} | |
%\newcommand{\Brck}[1]{\Trunc{-1}{#1}} | |
%\newcommand{\bproj}[1]{\tproj{-1}{#1}} | |
%\newcommand{\bprojf}{\tprojf{-1}} | |
\newcommand{\brck}[1]{\trunc{}{#1}} | |
\newcommand{\bbrck}[1]{\ttrunc{}{#1}} | |
\newcommand{\Brck}[1]{\Trunc{}{#1}} | |
\newcommand{\bproj}[1]{\tproj{}{#1}} | |
\newcommand{\bprojf}{\tprojf{}} | |
% Big parentheses | |
\newcommand{\Parens}[1]{\Bigl(#1\Bigr)} | |
% Projection and extension for truncations | |
\let\extendsmb\ext | |
\newcommand{\extend}[1]{\extendsmb(#1)} | |
% | |
%%% The empty type | |
\newcommand{\emptyt}{\ensuremath{\mathbf{0}}\xspace} | |
%%% The unit type | |
\newcommand{\unit}{\ensuremath{\mathbf{1}}\xspace} | |
\newcommand{\ttt}{\ensuremath{\star}\xspace} | |
%%% The two-element type | |
\newcommand{\bool}{\ensuremath{\mathbf{2}}\xspace} | |
\newcommand{\btrue}{{1_{\bool}}} | |
\newcommand{\bfalse}{{0_{\bool}}} | |
%%% Injections into binary sums and pushouts | |
\newcommand{\inlsym}{{\mathsf{inl}}} | |
\newcommand{\inrsym}{{\mathsf{inr}}} | |
\newcommand{\inl}{\ensuremath\inlsym\xspace} | |
\newcommand{\inr}{\ensuremath\inrsym\xspace} | |
%%% The segment of the interval | |
\newcommand{\seg}{\ensuremath{\mathsf{seg}}\xspace} | |
%%% Free groups | |
\newcommand{\freegroup}[1]{F(#1)} | |
\newcommand{\freegroupx}[1]{F'(#1)} % the "other" free group | |
%%% Glue of a pushout | |
\newcommand{\glue}{\mathsf{glue}} | |
%%% Colimits | |
\newcommand{\colim}{\mathsf{colim}} | |
\newcommand{\inc}{\mathsf{inc}} | |
\newcommand{\cmp}{\mathsf{cmp}} | |
%%% Circles and spheres | |
\newcommand{\Sn}{\mathbb{S}} | |
\newcommand{\base}{\ensuremath{\mathsf{base}}\xspace} | |
\newcommand{\lloop}{\ensuremath{\mathsf{loop}}\xspace} | |
\newcommand{\surf}{\ensuremath{\mathsf{surf}}\xspace} | |
%%% Suspension | |
\newcommand{\susp}{\Sigma} | |
\newcommand{\north}{\mathsf{N}} | |
\newcommand{\south}{\mathsf{S}} | |
\newcommand{\merid}{\mathsf{merid}} | |
%%% Blanks (shorthand for lambda abstractions) | |
\newcommand{\blank}{\mathord{\hspace{1pt}\text{--}\hspace{1pt}}} | |
%%% Nameless objects | |
\newcommand{\nameless}{\mathord{\hspace{1pt}\underline{\hspace{1ex}}\hspace{1pt}}} | |
%%% Some decorations | |
%\newcommand{\bbU}{\ensuremath{\mathbb{U}}\xspace} | |
% \newcommand{\bbB}{\ensuremath{\mathbb{B}}\xspace} | |
\newcommand{\bbP}{\ensuremath{\mathbb{P}}\xspace} | |
%%% Some categories | |
\newcommand{\uset}{\ensuremath{\mathcal{S}et}\xspace} | |
\newcommand{\ucat}{\ensuremath{{\mathcal{C}at}}\xspace} | |
\newcommand{\urel}{\ensuremath{\mathcal{R}el}\xspace} | |
\newcommand{\uhilb}{\ensuremath{\mathcal{H}ilb}\xspace} | |
\newcommand{\utype}{\ensuremath{\mathcal{T}\!ype}\xspace} | |
% Pullback corner | |
\newbox\pbbox | |
\setbox\pbbox=\hbox{\xy \POS(65,0)\ar@{-} (0,0) \ar@{-} (65,65)\endxy} | |
\def\pb{\save[]+<3.5mm,-3.5mm>*{\copy\pbbox} \restore} | |
% Macros for the categories chapter | |
\newcommand{\inv}[1]{{#1}^{-1}} | |
\newcommand{\idtoiso}{\ensuremath{\mathsf{idtoiso}}\xspace} | |
\newcommand{\isotoid}{\ensuremath{\mathsf{isotoid}}\xspace} | |
\newcommand{\op}{^{\mathrm{op}}} | |
\newcommand{\y}{\ensuremath{\mathbf{y}}\xspace} | |
\newcommand{\dgr}[1]{{#1}^{\dagger}} | |
\newcommand{\unitaryiso}{\mathrel{\cong^\dagger}} | |
\newcommand{\cteqv}[2]{\ensuremath{#1 \simeq #2}\xspace} | |
\newcommand{\cteqvsym}{\simeq} % Symbol for equivalence of categories | |
%%% Natural numbers | |
\newcommand{\N}{\ensuremath{\mathbb{N}}\xspace} | |
%\newcommand{\N}{\textbf{N}} | |
\let\nat\N | |
\newcommand{\natp}{\ensuremath{\nat'}\xspace} % alternative nat in induction chapter | |
\newcommand{\zerop}{\ensuremath{0'}\xspace} % alternative zero in induction chapter | |
\newcommand{\suc}{\mathsf{succ}} | |
\newcommand{\sucp}{\ensuremath{\suc'}\xspace} % alternative suc in induction chapter | |
\newcommand{\add}{\mathsf{add}} | |
\newcommand{\ack}{\mathsf{ack}} | |
\newcommand{\ite}{\mathsf{iter}} | |
\newcommand{\assoc}{\mathsf{assoc}} | |
\newcommand{\dbl}{\ensuremath{\mathsf{double}}} | |
\newcommand{\dblp}{\ensuremath{\dbl'}\xspace} % alternative double in induction chapter | |
%%% Lists | |
\newcommand{\lst}[1]{\mathsf{List}(#1)} | |
\newcommand{\nil}{\mathsf{nil}} | |
\newcommand{\cons}{\mathsf{cons}} | |
\newcommand{\lost}[1]{\mathsf{Lost}(#1)} | |
%%% Vectors of given length, used in induction chapter | |
\newcommand{\vect}[2]{\ensuremath{\mathsf{Vec}_{#1}(#2)}\xspace} | |
%%% Integers | |
\newcommand{\Z}{\ensuremath{\mathbb{Z}}\xspace} | |
\newcommand{\Zsuc}{\mathsf{succ}} | |
\newcommand{\Zpred}{\mathsf{pred}} | |
%%% Rationals | |
\newcommand{\Q}{\ensuremath{\mathbb{Q}}\xspace} | |
%%% Function extensionality | |
\newcommand{\funext}{\mathsf{funext}} | |
\newcommand{\happly}{\mathsf{happly}} | |
%%% A naturality lemma | |
\newcommand{\com}[3]{\mathsf{swap}_{#1,#2}(#3)} | |
%%% Code/encode/decode | |
\newcommand{\code}{\ensuremath{\mathsf{code}}\xspace} | |
\newcommand{\encode}{\ensuremath{\mathsf{encode}}\xspace} | |
\newcommand{\decode}{\ensuremath{\mathsf{decode}}\xspace} | |
% Function definition with domain and codomain | |
\newcommand{\function}[4]{\left\{\begin{array}{rcl}#1 & | |
\longrightarrow & #2 \\ #3 & \longmapsto & #4 \end{array}\right.} | |
%%% Cones and cocones | |
\newcommand{\cone}[2]{\mathsf{cone}_{#1}(#2)} | |
\newcommand{\cocone}[2]{\mathsf{cocone}_{#1}(#2)} | |
% Apply a function to a cocone | |
\newcommand{\composecocone}[2]{#1\circ#2} | |
\newcommand{\composecone}[2]{#2\circ#1} | |
%%% Diagrams | |
\newcommand{\Ddiag}{\mathscr{D}} | |
%%% (pointed) mapping spaces | |
\newcommand{\Map}{\mathsf{Map}} | |
%%% The interval | |
\newcommand{\interval}{\ensuremath{I}\xspace} | |
\newcommand{\izero}{\ensuremath{0_{\interval}}\xspace} | |
\newcommand{\ione}{\ensuremath{1_{\interval}}\xspace} | |
%%% Arrows | |
\newcommand{\epi}{\ensuremath{\twoheadrightarrow}} | |
\newcommand{\mono}{\ensuremath{\rightarrowtail}} | |
%%% Sets | |
\newcommand{\bin}{\ensuremath{\mathrel{\widetilde{\in}}}} | |
%%% Semigroup structure | |
\newcommand{\semigroupstrsym}{\ensuremath{\mathsf{SemigroupStr}}} | |
\newcommand{\semigroupstr}[1]{\ensuremath{\mathsf{SemigroupStr}}(#1)} | |
\newcommand{\semigroup}[0]{\ensuremath{\mathsf{Semigroup}}} | |
%%% Macros for the formal type theory | |
\newcommand{\emptyctx}{\ensuremath{\cdot}} | |
\newcommand{\production}{\vcentcolon\vcentcolon=} | |
\newcommand{\conv}{\downarrow} | |
\newcommand{\ctx}{\ensuremath{\mathsf{ctx}}} | |
\newcommand{\wfctx}[1]{#1\ \ctx} | |
\newcommand{\oftp}[3]{#1 \vdash #2 : #3} | |
\newcommand{\jdeqtp}[4]{#1 \vdash #2 \jdeq #3 : #4} | |
\newcommand{\judg}[2]{#1 \vdash #2} | |
\newcommand{\tmtp}[2]{#1 \mathord{:} #2} | |
% rule names | |
\newcommand{\rform}{\textsc{form}} | |
\newcommand{\rintro}{\textsc{intro}} | |
\newcommand{\relim}{\textsc{elim}} | |
\newcommand{\rcomp}{\textsc{comp}} | |
\newcommand{\runiq}{\textsc{uniq}} | |
\newcommand{\Weak}{\mathsf{Wkg}} | |
\newcommand{\Vble}{\mathsf{Vble}} | |
\newcommand{\Exch}{\mathsf{Exch}} | |
\newcommand{\Subst}{\mathsf{Subst}} | |
%%% Macros for HITs | |
\newcommand{\cc}{\mathsf{c}} | |
\newcommand{\pp}{\mathsf{p}} | |
\newcommand{\cct}{\widetilde{\mathsf{c}}} | |
\newcommand{\ppt}{\widetilde{\mathsf{p}}} | |
\newcommand{\Wtil}{\ensuremath{\widetilde{W}}\xspace} | |
%%% Macros for n-types | |
\newcommand{\istype}[1]{\mathsf{is}\mbox{-}{#1}\mbox{-}\mathsf{type}} | |
\newcommand{\nplusone}{\ensuremath{(n+1)}} | |
\newcommand{\nminusone}{\ensuremath{(n-1)}} | |
\newcommand{\fact}{\mathsf{fact}} | |
%%% Macros for homotopy | |
\newcommand{\kbar}{\overline{k}} % Used in van Kampen's theorem | |
%%% Macros for induction | |
\newcommand{\natw}{\ensuremath{\mathbf{N^w}}\xspace} | |
\newcommand{\zerow}{\ensuremath{0^\mathbf{w}}\xspace} | |
\newcommand{\sucw}{\ensuremath{\mathsf{succ}^{\mathbf{w}}}\xspace} | |
\newcommand{\nalg}{\nat\mathsf{Alg}} | |
\newcommand{\nhom}{\nat\mathsf{Hom}} | |
\newcommand{\ishinitw}{\mathsf{isHinit}_{\mathsf{W}}} | |
\newcommand{\ishinitn}{\mathsf{isHinit}_\nat} | |
\newcommand{\w}{\mathsf{W}} | |
\newcommand{\walg}{\w\mathsf{Alg}} | |
\newcommand{\whom}{\w\mathsf{Hom}} | |
%%% Macros for real numbers | |
\newcommand{\RC}{\ensuremath{\mathbb{R}_\mathsf{c}}\xspace} % Cauchy | |
\newcommand{\RD}{\ensuremath{\mathbb{R}_\mathsf{d}}\xspace} % Dedekind | |
\newcommand{\R}{\ensuremath{\mathbb{R}}\xspace} % Either | |
\newcommand{\barRD}{\ensuremath{\bar{\mathbb{R}}_\mathsf{d}}\xspace} % Dedekind completion of Dedekind | |
\newcommand{\close}[1]{\sim_{#1}} % Relation of closeness | |
\newcommand{\closesym}{\mathord\sim} | |
\newcommand{\rclim}{\mathsf{lim}} % HIT constructor for Cauchy reals | |
\newcommand{\rcrat}{\mathsf{rat}} % Embedding of rationals into Cauchy reals | |
\newcommand{\rceq}{\mathsf{eq}_{\RC}} % HIT path constructor | |
\newcommand{\CAP}{\mathcal{C}} % The type of Cauchy approximations | |
\newcommand{\Qp}{\Q_{+}} | |
\newcommand{\apart}{\mathrel{\#}} % apartness | |
\newcommand{\dcut}{\mathsf{isCut}} % Dedekind cut | |
\newcommand{\cover}{\triangleleft} % inductive cover | |
\newcommand{\intfam}[3]{(#2, \lam{#1} #3)} % family of rational intervals | |
% Macros for the Cauchy reals construction | |
\newcommand{\bsim}{\frown} | |
\newcommand{\bbsim}{\smile} | |
\newcommand{\hapx}{\diamondsuit\approx} | |
\newcommand{\hapname}{\diamondsuit} | |
\newcommand{\hapxb}{\heartsuit\approx} | |
\newcommand{\hapbname}{\heartsuit} | |
\newcommand{\tap}[1]{\bullet\approx_{#1}\triangle} | |
\newcommand{\tapname}{\triangle} | |
\newcommand{\tapb}[1]{\bullet\approx_{#1}\square} | |
\newcommand{\tapbname}{\square} | |
%%% Macros for surreals | |
\newcommand{\NO}{\ensuremath{\mathsf{No}}\xspace} | |
\newcommand{\surr}[2]{\{\,#1\,\big|\,#2\,\}} | |
\newcommand{\LL}{\mathcal{L}} | |
\newcommand{\RR}{\mathcal{R}} | |
\newcommand{\noeq}{\mathsf{eq}_{\NO}} % HIT path constructor | |
\newcommand{\ble}{\trianglelefteqslant} | |
\newcommand{\blt}{\vartriangleleft} | |
\newcommand{\bble}{\sqsubseteq} | |
\newcommand{\bblt}{\sqsubset} | |
\newcommand{\hle}{\diamondsuit\preceq} | |
\newcommand{\hlt}{\diamondsuit\prec} | |
\newcommand{\hlname}{\diamondsuit} | |
\newcommand{\hleb}{\heartsuit\preceq} | |
\newcommand{\hltb}{\heartsuit\prec} | |
\newcommand{\hlbname}{\heartsuit} | |
% \newcommand{\tle}{(\bullet\preceq\triangle)} | |
% \newcommand{\tlt}{(\bullet\prec\triangle)} | |
\newcommand{\tle}{\triangle\preceq} | |
\newcommand{\tlt}{\triangle\prec} | |
\newcommand{\tlname}{\triangle} | |
% \newcommand{\tleb}{(\bullet\preceq\square)} | |
% \newcommand{\tltb}{(\bullet\prec\square)} | |
\newcommand{\tleb}{\square\preceq} | |
\newcommand{\tltb}{\square\prec} | |
\newcommand{\tlbname}{\square} | |
%%% Macros for set theory | |
\newcommand{\vset}{\mathsf{set}} % point constructor for cummulative hierarchy V | |
\def\cd{\tproj0} | |
\newcommand{\inj}{\ensuremath{\mathsf{inj}}} % type of injections | |
\newcommand{\acc}{\ensuremath{\mathsf{acc}}} % accessibility | |
\newcommand{\atMostOne}{\mathsf{atMostOne}} | |
\newcommand{\power}[1]{\mathcal{P}(#1)} % power set | |
\newcommand{\powerp}[1]{\mathcal{P}_+(#1)} % inhabited power set | |
%%%% THEOREM ENVIRONMENTS %%%% | |
% The cleveref package provides \cref{...} which is like \ref{...} | |
% except that it automatically inserts the type of the thing you're | |
% referring to, e.g. it produces "Theorem 3.8" instead of just "3.8" | |
% (and hyperref makes the whole thing a hyperlink). This saves a slight amount | |
% of typing, but more importantly it means that if you decide later on | |
% that 3.8 should be a Lemma or a Definition instead of a Theorem, you | |
% don't have to change the name in all the places you referred to it. | |
% The following hack improves on this by using the same counter for | |
% all theorem-type environments, so that after Theorem 1.1 comes | |
% Corollary 1.2 rather than Corollary 1.1. This makes it much easier | |
% for the reader to find a particular theorem when flipping through | |
% the document. | |
\makeatletter | |
\def\defthm#1#2#3{% | |
%% Ensure all theorem types are numbered with the same counter | |
\newaliascnt{#1}{thm} | |
\newtheorem{#1}[#1]{#2} | |
\aliascntresetthe{#1} | |
%% This command tells cleveref's \cref what to call things | |
\crefname{#1}{#2}{#3}% following brace must be on separate line to support poorman cleveref sed file | |
} | |
% Now define a bunch of theorem-type environments. | |
\newtheorem{thm}{Theorem}[section] | |
\crefname{thm}{Theorem}{Theorems} | |
%\defthm{prop}{Proposition} % Probably we shouldn't use "Proposition" in this way | |
\defthm{cor}{Corollary}{Corollaries} | |
\defthm{lem}{Lemma}{Lemmas} | |
\defthm{axiom}{Axiom}{Axioms} | |
% Since definitions and theorems in type theory are synonymous, should | |
% we actually use the same theoremstyle for them? | |
\theoremstyle{definition} | |
\defthm{defn}{Definition}{Definitions} | |
\theoremstyle{remark} | |
\defthm{rmk}{Remark}{Remarks} | |
\defthm{eg}{Example}{Examples} | |
\defthm{egs}{Examples}{Examples} | |
\defthm{notes}{Notes}{Notes} | |
% Number exercises within chapters, with their own counter. | |
\newtheorem{ex}{Exercise}[chapter] | |
\crefname{ex}{Exercise}{Exercises} | |
% Display format for sections | |
\crefformat{section}{\S#2#1#3} | |
\Crefformat{section}{Section~#2#1#3} | |
\crefrangeformat{section}{\S\S#3#1#4--#5#2#6} | |
\Crefrangeformat{section}{Sections~#3#1#4--#5#2#6} | |
\crefmultiformat{section}{\S\S#2#1#3}{ and~#2#1#3}{, #2#1#3}{ and~#2#1#3} | |
\Crefmultiformat{section}{Sections~#2#1#3}{ and~#2#1#3}{, #2#1#3}{ and~#2#1#3} | |
\crefrangemultiformat{section}{\S\S#3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}{, #3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6} | |
\Crefrangemultiformat{section}{Sections~#3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}{, #3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6} | |
% Display format for appendices | |
\crefformat{appendix}{Appendix~#2#1#3} | |
\Crefformat{appendix}{Appendix~#2#1#3} | |
\crefrangeformat{appendix}{Appendices~#3#1#4--#5#2#6} | |
\Crefrangeformat{appendix}{Appendices~#3#1#4--#5#2#6} | |
\crefmultiformat{appendix}{Appendices~#2#1#3}{ and~#2#1#3}{, #2#1#3}{ and~#2#1#3} | |
\Crefmultiformat{appendix}{Appendices~#2#1#3}{ and~#2#1#3}{, #2#1#3}{ and~#2#1#3} | |
\crefrangemultiformat{appendix}{Appendices~#3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}{, #3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6} | |
\Crefrangemultiformat{appendix}{Appendices~#3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6}{, #3#1#4--#5#2#6}{ and~#3#1#4--#5#2#6} | |
\crefname{part}{Part}{Parts} | |
% Number subsubsections | |
\setcounter{secnumdepth}{5} | |
% Display format for figures | |
\crefname{figure}{Figure}{Figures} | |
%%%% EQUATION NUMBERING %%%% | |
% The following hack uses the single theorem counter to number | |
% equations as well, so that we don't have both Theorem 1.1 and | |
% equation (1.1). | |
\let\c@equation\c@thm | |
\numberwithin{equation}{section} | |
%%%% ENUMERATE NUMBERING %%%% | |
% Number the first level of enumerates as (i), (ii), ... | |
\renewcommand{\theenumi}{(\roman{enumi})} | |
\renewcommand{\labelenumi}{\theenumi} | |
%%%% MARGINS %%%% | |
% This is a matter of personal preference, but I think the left | |
% margins on enumerates and itemizes are too wide. | |
\setitemize[1]{leftmargin=2em} | |
\setenumerate[1]{leftmargin=*} | |
% Likewise that they are too spaced out. | |
\setitemize[1]{itemsep=-0.2em} | |
\setenumerate[1]{itemsep=-0.2em} | |
%%% Notes %%% | |
\def\noteson{% | |
\gdef\note##1{\mbox{}\marginpar{\color{blue}\textasteriskcentered\ ##1}}} | |
\gdef\notesoff{\gdef\note##1{\null}} | |
\noteson | |
\newcommand{\Coq}{\textsc{Coq}\xspace} | |
\newcommand{\Agda}{\textsc{Agda}\xspace} | |
\newcommand{\NuPRL}{\textsc{NuPRL}\xspace} | |
%%%% CITATIONS %%%% | |
% \let \cite \citep | |
%%%% INDEX %%%% | |
\newcommand{\footstyle}[1]{{\hyperpage{#1}}n} % If you index something that is in a footnote | |
\newcommand{\defstyle}[1]{\textbf{\hyperpage{#1}}} % Style for pageref to a definition | |
\newcommand{\indexdef}[1]{\index{#1|defstyle}} % Index a definition | |
\newcommand{\indexfoot}[1]{\index{#1|footstyle}} % Index a term in a footnote | |
\newcommand{\indexsee}[2]{\index{#1|see{#2}}} % Index "see also" | |
%%%% Standard phrasing or spelling of common phrases %%%% | |
\newcommand{\ZF}{Zermelo--Fraenkel} | |
\newcommand{\CZF}{Constructive \ZF{} Set Theory} | |
\newcommand{\LEM}[1]{\ensuremath{\mathsf{LEM}_{#1}}\xspace} | |
\newcommand{\choice}[1]{\ensuremath{\mathsf{AC}_{#1}}\xspace} | |
%%%% MISC %%%% | |
\newcommand{\mentalpause}{\medskip} % Use for "mental" pause, instead of \smallskip or \medskip | |
%% Use \symlabel instead of \label to mark a pageref that you need in the index of symbols | |
\newcounter{symindex} | |
\newcommand{\symlabel}[1]{\refstepcounter{symindex}\label{#1}} | |
% Local Variables: | |
% mode: latex | |
% TeX-master: "hott-online" | |
% End: | |