Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
\chapter{More properties of the discriminant} | |
I'll remind you that the discriminant of a number field $K$ is given by | |
\[ | |
\Delta_K \defeq \det | |
\begin{bmatrix} | |
\sigma_1(\alpha_1) & \dots & \sigma_n(\alpha_1) \\ | |
\vdots & \ddots & \vdots \\ | |
\sigma_1(\alpha_n) & \dots & \sigma_n(\alpha_n) \\ | |
\end{bmatrix}^2 | |
\] | |
where $\alpha_1$, \dots, $\alpha_n$ is a $\ZZ$-basis for $K$, | |
and the $\sigma_i$ are the $n$ embeddings of $K$ into $\CC$. | |
Several examples, properties, and equivalent definitions follow. | |
\section\problemhead | |
\begin{sproblem}[Discriminant of cyclotomic field] | |
\label{prob:discrim_cyclotomic_field} | |
Let $p$ be an odd rational prime and $\zeta_p$ a primitive $p$th root of unity. | |
Let $K = \QQ(\zeta_p)$. | |
Show that \[ \Delta_K = (-1)^{\frac{p-1}{2}} p^{p-2}. \] | |
\begin{hint} | |
Direct linear algebra computation. | |
\end{hint} | |
\end{sproblem} | |
\begin{sproblem}[Trace representation of $\Delta_K$] | |
\gim | |
Let $\alpha_1$, \dots, $\alpha_n$ be a basis for $\OO_K$. | |
Prove that | |
\[ \Delta_K | |
= | |
\det | |
\begin{bmatrix} | |
\TrK(\alpha_1^2) & \TrK(\alpha_1\alpha_2) & \dots & \TrK(\alpha_1\alpha_n) \\ | |
\TrK(\alpha_2\alpha_1) & \TrK(\alpha_2^2) & \dots & \TrK(\alpha_2\alpha_n) \\ | |
\qquad\vdots & \qquad\vdots & \ddots & \qquad\vdots \\ | |
\TrK(\alpha_n\alpha_1) & \TrK(\alpha_n\alpha_2) & \dots & \TrK(\alpha_n\alpha_n) \\ | |
\end{bmatrix}. | |
\] | |
In particular, $\Delta_K$ is an integer. | |
\label{prob:trace_discriminant} | |
\begin{hint} | |
Let $M$ be the ``embedding'' matrix. | |
Look at $M^\top M$, where $M^\top$ is the transpose matrix. | |
\end{hint} | |
\end{sproblem} | |
\begin{sproblem}[Root representation of $\Delta_K$] | |
The \vocab{discriminant} of a quadratic polynomial $Ax^2+Bx+C$ is defined as $B^2-4AC$. | |
More generally, the polynomial discriminant of a polynomial $f \in \ZZ[x]$ of degree $n$ is | |
\[ \Delta(f) \defeq c^{2n-2} \prod_{1 \le i < j \le n} \left( z_i - z_j \right)^2 \] | |
where $z_1, \dots, z_n$ are the roots of $f$, and $c$ is the leading coefficient of $f$. | |
Suppose $K$ is monogenic with $\OO_K = \ZZ[\theta]$. | |
Let $f$ denote the minimal polynomial of $\theta$ (hence monic). | |
Show that \[ \Delta_K = \Delta(f). \] | |
\label{prob:root_discriminant} | |
\begin{hint} | |
Vandermonde matrices. | |
\end{hint} | |
\end{sproblem} | |
\begin{problem} | |
Show that if $K \neq \QQ$ is a number field then $\left\lvert \Delta_K \right\rvert > 1$. | |
\begin{hint} | |
$M_K \ge 1$ must hold. Bash. | |
\end{hint} | |
\end{problem} | |
\begin{problem} | |
[Brill's theorem] | |
For a number field $K$ with signature $(r_1, r_2)$, show that | |
$\Delta_K > 0$ if and only if $r_2$ is even. | |
\end{problem} | |
\begin{problem} | |
[Stickelberger theorem] | |
\kurumi | |
Let $K$ be a number field. Prove that \[ \Delta_K \equiv 0 \text{ or } 1 \pmod 4. \] | |
% P N | |
\end{problem} | |