Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / books /napkin /discriminant.tex
zhangir-azerbayev
added books
afd65d6
raw
history blame
2.74 kB
\chapter{More properties of the discriminant}
I'll remind you that the discriminant of a number field $K$ is given by
\[
\Delta_K \defeq \det
\begin{bmatrix}
\sigma_1(\alpha_1) & \dots & \sigma_n(\alpha_1) \\
\vdots & \ddots & \vdots \\
\sigma_1(\alpha_n) & \dots & \sigma_n(\alpha_n) \\
\end{bmatrix}^2
\]
where $\alpha_1$, \dots, $\alpha_n$ is a $\ZZ$-basis for $K$,
and the $\sigma_i$ are the $n$ embeddings of $K$ into $\CC$.
Several examples, properties, and equivalent definitions follow.
\section\problemhead
\begin{sproblem}[Discriminant of cyclotomic field]
\label{prob:discrim_cyclotomic_field}
Let $p$ be an odd rational prime and $\zeta_p$ a primitive $p$th root of unity.
Let $K = \QQ(\zeta_p)$.
Show that \[ \Delta_K = (-1)^{\frac{p-1}{2}} p^{p-2}. \]
\begin{hint}
Direct linear algebra computation.
\end{hint}
\end{sproblem}
\begin{sproblem}[Trace representation of $\Delta_K$]
\gim
Let $\alpha_1$, \dots, $\alpha_n$ be a basis for $\OO_K$.
Prove that
\[ \Delta_K
=
\det
\begin{bmatrix}
\TrK(\alpha_1^2) & \TrK(\alpha_1\alpha_2) & \dots & \TrK(\alpha_1\alpha_n) \\
\TrK(\alpha_2\alpha_1) & \TrK(\alpha_2^2) & \dots & \TrK(\alpha_2\alpha_n) \\
\qquad\vdots & \qquad\vdots & \ddots & \qquad\vdots \\
\TrK(\alpha_n\alpha_1) & \TrK(\alpha_n\alpha_2) & \dots & \TrK(\alpha_n\alpha_n) \\
\end{bmatrix}.
\]
In particular, $\Delta_K$ is an integer.
\label{prob:trace_discriminant}
\begin{hint}
Let $M$ be the ``embedding'' matrix.
Look at $M^\top M$, where $M^\top$ is the transpose matrix.
\end{hint}
\end{sproblem}
\begin{sproblem}[Root representation of $\Delta_K$]
The \vocab{discriminant} of a quadratic polynomial $Ax^2+Bx+C$ is defined as $B^2-4AC$.
More generally, the polynomial discriminant of a polynomial $f \in \ZZ[x]$ of degree $n$ is
\[ \Delta(f) \defeq c^{2n-2} \prod_{1 \le i < j \le n} \left( z_i - z_j \right)^2 \]
where $z_1, \dots, z_n$ are the roots of $f$, and $c$ is the leading coefficient of $f$.
Suppose $K$ is monogenic with $\OO_K = \ZZ[\theta]$.
Let $f$ denote the minimal polynomial of $\theta$ (hence monic).
Show that \[ \Delta_K = \Delta(f). \]
\label{prob:root_discriminant}
\begin{hint}
Vandermonde matrices.
\end{hint}
\end{sproblem}
\begin{problem}
Show that if $K \neq \QQ$ is a number field then $\left\lvert \Delta_K \right\rvert > 1$.
\begin{hint}
$M_K \ge 1$ must hold. Bash.
\end{hint}
\end{problem}
\begin{problem}
[Brill's theorem]
For a number field $K$ with signature $(r_1, r_2)$, show that
$\Delta_K > 0$ if and only if $r_2$ is even.
\end{problem}
\begin{problem}
[Stickelberger theorem]
\kurumi
Let $K$ be a number field. Prove that \[ \Delta_K \equiv 0 \text{ or } 1 \pmod 4. \]
% P N
\end{problem}