Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
\input{preamble} | |
% OK, start here. | |
% | |
\begin{document} | |
\title{The Cotangent Complex} | |
\maketitle | |
\phantomsection | |
\label{section-phantom} | |
\tableofcontents | |
\section{Introduction} | |
\label{section-introduction} | |
\noindent | |
The goal of this chapter is to construct the cotangent complex of a | |
ring map, of a morphism of schemes, and of a morphism of algebraic spaces. | |
Some references are the notes \cite{quillenhomology}, the paper | |
\cite{quillencohomology}, and the books | |
\cite{Andre} and \cite{cotangent}. | |
\section{Advice for the reader} | |
\label{section-advice-reader} | |
\noindent | |
In writing this chapter we have tried to minimize | |
the use of simplicial techniques. We view the choice of a {\it resolution} | |
$P_\bullet$ of a ring $B$ over a ring $A$ as a tool to calculating the | |
{\it homology} of abelian sheaves on the category $\mathcal{C}_{B/A}$, see | |
Remark \ref{remark-resolution}. This is similar to the role played | |
by a ``good cover'' to compute cohomology using the {\v C}ech complex. | |
To read a bit on homology on categories, please visit | |
Cohomology on Sites, Section \ref{sites-cohomology-section-homology}. | |
The derived lower shriek functor $L\pi_!$ is to homology what | |
$R\Gamma(\mathcal{C}_{B/A}, -)$ is to cohomology. The category | |
$\mathcal{C}_{B/A}$, studied in Section \ref{section-compute-L-pi-shriek}, | |
is the opposite of the category of factorizations $A \to P \to B$ where $P$ | |
is a polynomial algebra over $A$. This category comes with maps of sheaves | |
of rings | |
$$ | |
\underline{A} \longrightarrow \mathcal{O} \longrightarrow \underline{B} | |
$$ | |
where over the object $U = (P \to B)$ we have $\mathcal{O}(U) = P$. | |
It turns out that we obtain the cotangent complex of $B$ over $A$ as | |
$$ | |
L_{B/A} = | |
L\pi_!(\Omega_{\mathcal{O}/\underline{A}} \otimes_\mathcal{O} \underline{B}) | |
$$ | |
see Lemma \ref{lemma-compute-cotangent-complex}. We have consistently tried | |
to use this point of view to prove the basic properties of cotangent | |
complexes of ring maps. In particular, all of the results can be proven | |
without relying on the existence of standard resolutions, although we have | |
not done so. The theory is quite satisfactory, except that | |
perhaps the proof of the fundamental triangle | |
(Proposition \ref{proposition-triangle}) uses just a little | |
bit more theory on derived lower shriek functors. | |
To provide the reader with an alternative, | |
we give a rather complete sketch of an approach to this result | |
based on simple properties of standard resolutions in | |
Remarks \ref{remark-triangle} and \ref{remark-explicit-map}. | |
\medskip\noindent | |
Our approach to the cotangent complex for morphisms of ringed topoi, | |
morphisms of schemes, morphisms of algebraic spaces, etc | |
is to deduce as much as possible from the case of ``plain ring maps'' | |
discussed above. | |
\section{The cotangent complex of a ring map} | |
\label{section-cotangent-ring-map} | |
\noindent | |
Let $A$ be a ring. Let $\textit{Alg}_A$ be the category of $A$-algebras. | |
Consider the pair of adjoint functors $(U, V)$ where | |
$V : \textit{Alg}_A \to \textit{Sets}$ is the forgetful functor and | |
$U : \textit{Sets} \to \textit{Alg}_A$ assigns to a set $E$ the polynomial | |
algebra $A[E]$ on $E$ over $A$. Let $X_\bullet$ be the simplicial object of | |
$\text{Fun}(\textit{Alg}_A, \textit{Alg}_A)$ constructed in | |
Simplicial, Section \ref{simplicial-section-standard}. | |
\medskip\noindent | |
Consider an $A$-algebra $B$. Denote $P_\bullet = X_\bullet(B)$ the resulting | |
simplicial $A$-algebra. Recall that $P_0 = A[B]$, $P_1 = A[A[B]]$, and so on. | |
In particular each term $P_n$ is a polynomial $A$-algebra. | |
Recall also that there is an augmentation | |
$$ | |
\epsilon : P_\bullet \longrightarrow B | |
$$ | |
where we view $B$ as a constant simplicial $A$-algebra. | |
\begin{definition} | |
\label{definition-standard-resolution} | |
Let $A \to B$ be a ring map. The {\it standard resolution of $B$ over $A$} | |
is the augmentation $\epsilon : P_\bullet \to B$ with terms | |
$$ | |
P_0 = A[B],\quad P_1 = A[A[B]],\quad \ldots | |
$$ | |
and maps as constructed above. | |
\end{definition} | |
\noindent | |
It will turn out that we can use the standard resolution | |
to compute left derived functors in certain settings. | |
\begin{definition} | |
\label{definition-cotangent-complex-ring-map} | |
The {\it cotangent complex} $L_{B/A}$ of a ring map $A \to B$ | |
is the complex of $B$-modules associated to the simplicial $B$-module | |
$$ | |
\Omega_{P_\bullet/A} \otimes_{P_\bullet, \epsilon} B | |
$$ | |
where $\epsilon : P_\bullet \to B$ is the standard resolution | |
of $B$ over $A$. | |
\end{definition} | |
\noindent | |
In Simplicial, Section \ref{simplicial-section-complexes} we associate a | |
chain complex to a simplicial module, but here we work with cochain complexes. | |
Thus the term $L_{B/A}^{-n}$ in degree $-n$ is the $B$-module | |
$\Omega_{P_n/A} \otimes_{P_n, \epsilon_n} B$ and $L_{B/A}^m = 0$ | |
for $m > 0$. | |
\begin{remark} | |
\label{remark-variant-cotangent-complex} | |
Let $A \to B$ be a ring map. Let $\mathcal{A}$ be the category of | |
arrows $\psi : C \to B$ of $A$-algebras and let $\mathcal{S}$ be | |
the category of maps $E \to B$ where $E$ is a set. There are adjoint | |
functors $V : \mathcal{A} \to \mathcal{S}$ (the forgetful functor) | |
and $U : \mathcal{S} \to \mathcal{A}$ which sends $E \to B$ to | |
$A[E] \to B$. Let $X_\bullet$ be the simplicial object of | |
$\text{Fun}(\mathcal{A}, \mathcal{A})$ constructed in | |
Simplicial, Section \ref{simplicial-section-standard}. | |
The diagram | |
$$ | |
\xymatrix{ | |
\mathcal{A} \ar[d] \ar[r] & \mathcal{S} \ar@<1ex>[l] \ar[d] \\ | |
\textit{Alg}_A \ar[r] & \textit{Sets} \ar@<1ex>[l] | |
} | |
$$ | |
commutes. It follows that $X_\bullet(\text{id}_B : B \to B)$ | |
is equal to the standard resolution of $B$ over $A$. | |
\end{remark} | |
\begin{lemma} | |
\label{lemma-colimit-cotangent-complex} | |
Let $A_i \to B_i$ be a system of ring maps over a directed index | |
set $I$. Then $\colim L_{B_i/A_i} = L_{\colim B_i/\colim A_i}$. | |
\end{lemma} | |
\begin{proof} | |
This is true because the forgetful functor | |
$V : A\textit{-Alg} \to \textit{Sets}$ and its adjoint | |
$U : \textit{Sets} \to A\textit{-Alg}$ commute with filtered colimits. | |
Moreover, the functor $B/A \mapsto \Omega_{B/A}$ does as well | |
(Algebra, Lemma \ref{algebra-lemma-colimit-differentials}). | |
\end{proof} | |
\section{Simplicial resolutions and derived lower shriek} | |
\label{section-compute-L-pi-shriek} | |
\noindent | |
Let $A \to B$ be a ring map. Consider the category whose objects are | |
$A$-algebra maps $\alpha : P \to B$ where $P$ is a polynomial algebra over $A$ | |
(in some set\footnote{It suffices to consider sets of cardinality | |
at most the cardinality of $B$.} of variables) and whose | |
morphisms $s : (\alpha : P \to B) \to (\alpha' : P' \to B)$ are | |
$A$-algebra homomorphisms $s : P \to P'$ with $\alpha' \circ s = \alpha$. | |
Let $\mathcal{C} = \mathcal{C}_{B/A}$ denote the {\bf opposite} | |
of this category. The reason for | |
taking the opposite is that we want to think of objects | |
$(P, \alpha)$ as corresponding to the diagram of affine schemes | |
$$ | |
\xymatrix{ | |
\Spec(B) \ar[d] \ar[r] & \Spec(P) \ar[ld] \\ | |
\Spec(A) | |
} | |
$$ | |
We endow $\mathcal{C}$ with the chaotic topology | |
(Sites, Example \ref{sites-example-indiscrete}), i.e., we endow | |
$\mathcal{C}$ with the structure of a site where coverings are given by | |
identities so that all presheaves are sheaves. | |
Moreover, we endow $\mathcal{C}$ with two sheaves of rings. The first | |
is the sheaf $\mathcal{O}$ which sends to object $(P, \alpha)$ to $P$. | |
Then second is the constant sheaf $B$, which we will denote | |
$\underline{B}$. We obtain the following diagram of morphisms of | |
ringed topoi | |
\begin{equation} | |
\label{equation-pi} | |
\vcenter{ | |
\xymatrix{ | |
(\Sh(\mathcal{C}), \underline{B}) \ar[r]_i \ar[d]_\pi & | |
(\Sh(\mathcal{C}), \mathcal{O}) \\ | |
(\Sh(*), B) | |
} | |
} | |
\end{equation} | |
The morphism $i$ is the identity on underlying topoi and | |
$i^\sharp : \mathcal{O} \to \underline{B}$ is the obvious map. | |
The map $\pi$ is as in Cohomology on Sites, Example | |
\ref{sites-cohomology-example-category-to-point}. | |
An important role will be played in the following | |
by the derived functors | |
$ | |
Li^* : D(\mathcal{O}) \longrightarrow D(\underline{B}) | |
$ | |
left adjoint to $Ri_* = i_* : D(\underline{B}) \to D(\mathcal{O})$ and | |
$ | |
L\pi_! : D(\underline{B}) \longrightarrow D(B) | |
$ | |
left adjoint to $\pi^* = \pi^{-1} : D(B) \to D(\underline{B})$. | |
\begin{lemma} | |
\label{lemma-identify-pi-shriek} | |
With notation as above let $P_\bullet$ be a simplicial $A$-algebra | |
endowed with an augmentation $\epsilon : P_\bullet \to B$. | |
Assume each $P_n$ is a polynomial algebra over $A$ and $\epsilon$ | |
is a trivial Kan fibration on underlying simplicial sets. Then | |
$$ | |
L\pi_!(\mathcal{F}) = \mathcal{F}(P_\bullet, \epsilon) | |
$$ | |
in $D(\textit{Ab})$, resp.\ $D(B)$ functorially in $\mathcal{F}$ in | |
$\textit{Ab}(\mathcal{C})$, resp.\ $\textit{Mod}(\underline{B})$. | |
\end{lemma} | |
\begin{proof} | |
We will use the criterion of Cohomology on Sites, Lemma | |
\ref{sites-cohomology-lemma-compute-by-cosimplicial-resolution} to prove this. | |
Given an object $U = (Q, \beta)$ of $\mathcal{C}$ we have to show that | |
$$ | |
S_\bullet = \Mor_\mathcal{C}((Q, \beta), (P_\bullet, \epsilon)) | |
$$ | |
is homotopy equivalent to a singleton. | |
Write $Q = A[E]$ for some set $E$ (this is possible by our choice of | |
the category $\mathcal{C}$). We see that | |
$$ | |
S_\bullet = \Mor_{\textit{Sets}}((E, \beta|_E), (P_\bullet, \epsilon)) | |
$$ | |
Let $*$ be the constant simplicial set on a singleton. For $b \in B$ | |
let $F_{b, \bullet}$ be the simplicial set defined by the cartesian | |
diagram | |
$$ | |
\xymatrix{ | |
F_{b, \bullet} \ar[r] \ar[d] & P_\bullet \ar[d]_\epsilon \\ | |
{*} \ar[r]^b & B | |
} | |
$$ | |
With this notation $S_\bullet = \prod_{e \in E} F_{\beta(e), \bullet}$. | |
Since we assumed $\epsilon$ is a trivial Kan fibration we see that | |
$F_{b, \bullet} \to *$ is a trivial Kan fibration | |
(Simplicial, Lemma \ref{simplicial-lemma-trivial-kan-base-change}). | |
Thus $S_\bullet \to *$ is a trivial Kan fibration | |
(Simplicial, Lemma \ref{simplicial-lemma-product-trivial-kan}). | |
Therefore $S_\bullet$ is homotopy equivalent to $*$ | |
(Simplicial, Lemma \ref{simplicial-lemma-trivial-kan-homotopy}). | |
\end{proof} | |
\noindent | |
In particular, we can use the standard resolution of $B$ over $A$ | |
to compute derived lower shriek. | |
\begin{lemma} | |
\label{lemma-pi-shriek-standard} | |
Let $A \to B$ be a ring map. Let $\epsilon : P_\bullet \to B$ | |
be the standard resolution of $B$ over $A$. Let $\pi$ be as in | |
(\ref{equation-pi}). Then | |
$$ | |
L\pi_!(\mathcal{F}) = \mathcal{F}(P_\bullet, \epsilon) | |
$$ | |
in $D(\textit{Ab})$, resp.\ $D(B)$ functorially in $\mathcal{F}$ in | |
$\textit{Ab}(\mathcal{C})$, resp.\ $\textit{Mod}(\underline{B})$. | |
\end{lemma} | |
\begin{proof}[First proof] | |
We will apply Lemma \ref{lemma-identify-pi-shriek}. | |
Since the terms $P_n$ are polynomial algebras we see the first | |
assumption of that lemma is satisfied. The second assumption is proved | |
as follows. By | |
Simplicial, Lemma \ref{simplicial-lemma-standard-simplicial-homotopy} | |
the map $\epsilon$ is a homotopy equivalence of underlying | |
simplicial sets. By | |
Simplicial, Lemma \ref{simplicial-lemma-homotopy-equivalence} | |
this implies $\epsilon$ induces a quasi-isomorphism of associated | |
complexes of abelian groups. By | |
Simplicial, Lemma \ref{simplicial-lemma-qis-simplicial-abelian-groups} | |
this implies that $\epsilon$ is a trivial Kan fibration of underlying | |
simplicial sets. | |
\end{proof} | |
\begin{proof}[Second proof] | |
We will use the criterion of Cohomology on Sites, Lemma | |
\ref{sites-cohomology-lemma-compute-by-cosimplicial-resolution}. | |
Let $U = (Q, \beta)$ be an object of $\mathcal{C}$. | |
We have to show that | |
$$ | |
S_\bullet = \Mor_\mathcal{C}((Q, \beta), (P_\bullet, \epsilon)) | |
$$ | |
is homotopy equivalent to a singleton. Write $Q = A[E]$ for some set $E$ | |
(this is possible by our choice of the category $\mathcal{C}$). Using the | |
notation of Remark \ref{remark-variant-cotangent-complex} we see that | |
$$ | |
S_\bullet = \Mor_\mathcal{S}((E \to B), i(P_\bullet \to B)) | |
$$ | |
By Simplicial, Lemma \ref{simplicial-lemma-standard-simplicial-homotopy} | |
the map $i(P_\bullet \to B) \to i(B \to B)$ is a homotopy equivalence | |
in $\mathcal{S}$. Hence $S_\bullet$ is homotopy equivalent to | |
$$ | |
\Mor_\mathcal{S}((E \to B), (B \to B)) = \{*\} | |
$$ | |
as desired. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-compute-cotangent-complex} | |
Let $A \to B$ be a ring map. Let $\pi$ and $i$ be as in (\ref{equation-pi}). | |
There is a canonical isomorphism | |
$$ | |
L_{B/A} = L\pi_!(Li^*\Omega_{\mathcal{O}/A}) = | |
L\pi_!(i^*\Omega_{\mathcal{O}/A}) = | |
L\pi_!(\Omega_{\mathcal{O}/A} \otimes_\mathcal{O} \underline{B}) | |
$$ | |
in $D(B)$. | |
\end{lemma} | |
\begin{proof} | |
For an object $\alpha : P \to B$ of the category $\mathcal{C}$ | |
the module $\Omega_{P/A}$ is a free $P$-module. Thus | |
$\Omega_{\mathcal{O}/A}$ is a flat $\mathcal{O}$-module. Hence | |
$Li^*\Omega_{\mathcal{O}/A} = i^*\Omega_{\mathcal{O}/A}$ is the sheaf | |
of $\underline{B}$-modules which associates to $\alpha : P \to A$ the | |
$B$-module $\Omega_{P/A} \otimes_{P, \alpha} B$. | |
By Lemma \ref{lemma-pi-shriek-standard} | |
we see that the right hand side is computed by | |
the value of this sheaf on the standard resolution which is our | |
definition of the left hand side | |
(Definition \ref{definition-cotangent-complex-ring-map}). | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-pi-lower-shriek-constant-sheaf} | |
If $A \to B$ is a ring map, then $L\pi_!(\pi^{-1}M) = M$ | |
with $\pi$ as in (\ref{equation-pi}). | |
\end{lemma} | |
\begin{proof} | |
This follows from Lemma \ref{lemma-identify-pi-shriek} which tells us | |
$L\pi_!(\pi^{-1}M)$ is computed by $(\pi^{-1}M)(P_\bullet, \epsilon)$ | |
which is the constant simplicial object on $M$. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-identify-H0} | |
If $A \to B$ is a ring map, then $H^0(L_{B/A}) = \Omega_{B/A}$. | |
\end{lemma} | |
\begin{proof} | |
We will prove this by a direct calculation. | |
We will use the identification of Lemma \ref{lemma-compute-cotangent-complex}. | |
There is clearly a map from $\Omega_{\mathcal{O}/A} \otimes \underline{B}$ | |
to the constant sheaf with value $\Omega_{B/A}$. Thus this map induces | |
a map | |
$$ | |
H^0(L_{B/A}) = H^0(L\pi_!(\Omega_{\mathcal{O}/A} \otimes \underline{B})) | |
= \pi_!(\Omega_{\mathcal{O}/A} \otimes \underline{B}) \to \Omega_{B/A} | |
$$ | |
By choosing an object $P \to B$ of $\mathcal{C}_{B/A}$ with $P \to B$ | |
surjective we see that this map is surjective (by | |
Algebra, Lemma \ref{algebra-lemma-differential-surjective}). | |
To show that it is injective, suppose that $P \to B$ is an object | |
of $\mathcal{C}_{B/A}$ and that $\xi \in \Omega_{P/A} \otimes_P B$ | |
is an element which maps to zero in $\Omega_{B/A}$. | |
We first choose factorization $P \to P' \to B$ such that $P' \to B$ | |
is surjective and $P'$ is a polynomial algebra over $A$. | |
We may replace $P$ by $P'$. If $B = P/I$, then the kernel | |
$\Omega_{P/A} \otimes_P B \to \Omega_{B/A}$ is the image of | |
$I/I^2$ (Algebra, Lemma \ref{algebra-lemma-differential-seq}). | |
Say $\xi$ is the image of $f \in I$. | |
Then we consider the two maps $a, b : P' = P[x] \to P$, the first of which | |
maps $x$ to $0$ and the second of which maps $x$ to $f$ (in both | |
cases $P[x] \to B$ maps $x$ to zero). We see that $\xi$ and $0$ | |
are the image of $\text{d}x \otimes 1$ in $\Omega_{P'/A} \otimes_{P'} B$. | |
Thus $\xi$ and $0$ have the same image in the colimit (see | |
Cohomology on Sites, Example \ref{sites-cohomology-example-category-to-point}) | |
$\pi_!(\Omega_{\mathcal{O}/A} \otimes \underline{B})$ as desired. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-pi-lower-shriek-polynomial-algebra} | |
If $B$ is a polynomial algebra over the ring $A$, then | |
with $\pi$ as in (\ref{equation-pi}) we have that | |
$\pi_!$ is exact and $\pi_!\mathcal{F} = \mathcal{F}(B \to B)$. | |
\end{lemma} | |
\begin{proof} | |
This follows from Lemma \ref{lemma-identify-pi-shriek} which tells us | |
the constant simplicial algebra on $B$ can be used to compute $L\pi_!$. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-cotangent-complex-polynomial-algebra} | |
If $B$ is a polynomial algebra over the ring $A$, then | |
$L_{B/A}$ is quasi-isomorphic to $\Omega_{B/A}[0]$. | |
\end{lemma} | |
\begin{proof} | |
Immediate from | |
Lemmas \ref{lemma-compute-cotangent-complex} and | |
\ref{lemma-pi-lower-shriek-polynomial-algebra}. | |
\end{proof} | |
\section{Constructing a resolution} | |
\label{section-polynomial} | |
\noindent | |
In the Noetherian finite type case we can construct a ``small'' simplicial | |
resolution for finite type ring maps. | |
\begin{lemma} | |
\label{lemma-polynomial} | |
Let $A$ be a Noetherian ring. Let $A \to B$ be a finite type ring map. | |
Let $\mathcal{A}$ be the category of $A$-algebra maps $C \to B$. Let | |
$n \geq 0$ and let $P_\bullet$ be a simplicial object of $\mathcal{A}$ | |
such that | |
\begin{enumerate} | |
\item $P_\bullet \to B$ is a trivial Kan fibration of simplicial sets, | |
\item $P_k$ is finite type over $A$ for $k \leq n$, | |
\item $P_\bullet = \text{cosk}_n \text{sk}_n P_\bullet$ as simplicial | |
objects of $\mathcal{A}$. | |
\end{enumerate} | |
Then $P_{n + 1}$ is a finite type $A$-algebra. | |
\end{lemma} | |
\begin{proof} | |
Although the proof we give of this lemma is straightforward, it is a bit | |
messy. To clarify the idea we explain what happens for low $n$ before giving | |
the proof in general. For example, if $n = 0$, then (3) means that | |
$P_1 = P_0 \times_B P_0$. Since the ring map $P_0 \to B$ is surjective, this | |
is of finite type over $A$ by | |
More on Algebra, Lemma \ref{more-algebra-lemma-fibre-product-finite-type}. | |
\medskip\noindent | |
If $n = 1$, then (3) means that | |
$$ | |
P_2 = \{(f_0, f_1, f_2) \in P_1^3 \mid | |
d_0f_0 = d_0f_1,\ d_1f_0 = d_0f_2,\ d_1f_1 = d_1f_2 \} | |
$$ | |
where the equalities take place in $P_0$. Observe that the triple | |
$$ | |
(d_0f_0, d_1f_0, d_1f_1) = (d_0f_1, d_0f_2, d_1f_2) | |
$$ | |
is an element of the fibre product $P_0 \times_B P_0 \times_B P_0$ over $B$ | |
because the maps $d_i : P_1 \to P_0$ are morphisms over $B$. Thus we get | |
a map | |
$$ | |
\psi : P_2 \longrightarrow P_0 \times_B P_0 \times_B P_0 | |
$$ | |
The fibre of $\psi$ over an element | |
$(g_0, g_1, g_2) \in P_0 \times_B P_0 \times_B P_0$ | |
is the set of triples $(f_0, f_1, f_2)$ of $1$-simplices | |
with $(d_0, d_1)(f_0) = (g_0, g_1)$, $(d_0, d_1)(f_1) = (g_0, g_2)$, | |
and $(d_0, d_1)(f_2) = (g_1, g_2)$. As $P_\bullet \to B$ is a trivial | |
Kan fibration the map $(d_0, d_1) : P_1 \to P_0 \times_B P_0$ is | |
surjective. Thus we see that $P_2$ fits into the cartesian diagram | |
$$ | |
\xymatrix{ | |
P_2 \ar[d] \ar[r] & P_1^3 \ar[d] \\ | |
P_0 \times_B P_0 \times_B P_0 \ar[r] & (P_0 \times_B P_0)^3 | |
} | |
$$ | |
By More on Algebra, Lemma \ref{more-algebra-lemma-formal-consequence} | |
we conclude. The general case is similar, but requires a bit more notation. | |
\medskip\noindent | |
The case $n > 1$. By Simplicial, Lemma \ref{simplicial-lemma-cosk-above-object} | |
the condition $P_\bullet = \text{cosk}_n \text{sk}_n P_\bullet$ | |
implies the same thing is true in the category of simplicial | |
$A$-algebras and hence in the category of sets (as the forgetful | |
functor from $A$-algebras to sets commutes with limits). Thus | |
$$ | |
P_{n + 1} = | |
\Mor(\Delta[n + 1], P_\bullet) = | |
\Mor(\text{sk}_n \Delta[n + 1], \text{sk}_n P_\bullet) | |
$$ | |
by Simplicial, Lemma \ref{simplicial-lemma-simplex-map} and | |
Equation (\ref{simplicial-equation-cosk}). We will prove by induction | |
on $1 \leq k < m \leq n + 1$ that the ring | |
$$ | |
Q_{k, m} = \Mor(\text{sk}_k \Delta[m], \text{sk}_k P_\bullet) | |
$$ | |
is of finite type over $A$. The case $k = 1$, $1 < m \leq n + 1$ | |
is entirely similar to the discussion above in the case $n = 1$. | |
Namely, there is a cartesian diagram | |
$$ | |
\xymatrix{ | |
Q_{1, m} \ar[d] \ar[r] & P_1^N \ar[d] \\ | |
P_0 \times_B \ldots \times_B P_0 \ar[r] & (P_0 \times_B P_0)^N | |
} | |
$$ | |
where $N = {m + 1 \choose 2}$. We conclude as before. | |
\medskip\noindent | |
Let $1 \leq k_0 \leq n$ and assume $Q_{k, m}$ is of finite type | |
over $A$ for all $1 \leq k \leq k_0$ and $k < m \leq n + 1$. | |
For $k_0 + 1 < m \leq n + 1$ we claim there is a cartesian square | |
$$ | |
\xymatrix{ | |
Q_{k_0 + 1, m} \ar[d] \ar[r] & P_{k_0 + 1}^N \ar[d] \\ | |
Q_{k_0, m} \ar[r] & Q_{k_0, k_0 + 1}^N | |
} | |
$$ | |
where $N$ is the number of nondegenerate $(k_0 + 1)$-simplices | |
of $\Delta[m]$. Namely, to see this is true, think of an element of | |
$Q_{k_0 + 1, m}$ as a function $f$ from the $(k_0 + 1)$-skeleton | |
of $\Delta[m]$ to $P_\bullet$. We can restrict $f$ to the $k_0$-skeleton | |
which gives the left vertical map of the diagram. We can also restrict | |
to each nondegenerate $(k_0 + 1)$-simplex which gives the top horizontal | |
arrow. Moreover, to give such an $f$ is the same thing as giving its | |
restriction to $k_0$-skeleton and to each nondegenerate | |
$(k_0 + 1)$-face, provided these agree on the overlap, and this | |
is exactly the content of the diagram. Moreover, the fact that | |
$P_\bullet \to B$ is a trivial Kan fibration implies that | |
the map | |
$$ | |
P_{k_0} \to Q_{k_0, k_0 + 1} = \Mor(\partial \Delta[k_0 + 1], P_\bullet) | |
$$ | |
is surjective as every map $\partial \Delta[k_0 + 1] \to B$ can be extended | |
to $\Delta[k_0 + 1] \to B$ for $k_0 \geq 1$ (small argument about constant | |
simplicial sets omitted). Since by induction hypothesis the rings | |
$Q_{k_0, m}$, $Q_{k_0, k_0 + 1}$ are finite type $A$-algebras, so is | |
$Q_{k_0 + 1, m}$ by | |
More on Algebra, Lemma \ref{more-algebra-lemma-formal-consequence} | |
once more. | |
\end{proof} | |
\begin{proposition} | |
\label{proposition-polynomial} | |
Let $A$ be a Noetherian ring. Let $A \to B$ be a finite type ring map. | |
There exists a simplicial $A$-algebra $P_\bullet$ with an augmentation | |
$\epsilon : P_\bullet \to B$ such that each $P_n$ is a polynomial algebra | |
of finite type over $A$ and such that $\epsilon$ is a trivial | |
Kan fibration of simplicial sets. | |
\end{proposition} | |
\begin{proof} | |
Let $\mathcal{A}$ be the category of $A$-algebra maps $C \to B$. | |
In this proof our simplicial objects and skeleton and coskeleton | |
functors will be taken in this category. | |
\medskip\noindent | |
Choose a polynomial algebra $P_0$ of finite type over $A$ and a surjection | |
$P_0 \to B$. As a first approximation we take | |
$P_\bullet = \text{cosk}_0(P_0)$. In other words, $P_\bullet$ is the simplicial | |
$A$-algebra with terms $P_n = P_0 \times_A \ldots \times_A P_0$. | |
(In the final paragraph of the proof this simplicial object will | |
be denoted $P^0_\bullet$.) By | |
Simplicial, Lemma \ref{simplicial-lemma-cosk-minus-one-equivalence} | |
the map $P_\bullet \to B$ is a trivial Kan fibration of simplicial sets. | |
Also, observe that $P_\bullet = \text{cosk}_0 \text{sk}_0 P_\bullet$. | |
\medskip\noindent | |
Suppose for some $n \geq 0$ we have constructed $P_\bullet$ | |
(in the final paragraph of the proof this will be $P^n_\bullet$) | |
such that | |
\begin{enumerate} | |
\item[(a)] $P_\bullet \to B$ is a trivial Kan fibration of simplicial sets, | |
\item[(b)] $P_k$ is a finitely generated polynomial algebra for | |
$0 \leq k \leq n$, and | |
\item[(c)] $P_\bullet = \text{cosk}_n \text{sk}_n P_\bullet$ | |
\end{enumerate} | |
By Lemma \ref{lemma-polynomial} | |
we can find a finitely generated polynomial algebra $Q$ over $A$ | |
and a surjection $Q \to P_{n + 1}$. Since $P_n$ is a polynomial algebra | |
the $A$-algebra maps $s_i : P_n \to P_{n + 1}$ lift to maps | |
$s'_i : P_n \to Q$. Set $d'_j : Q \to P_n$ equal to the composition of | |
$Q \to P_{n + 1}$ and $d_j : P_{n + 1} \to P_n$. | |
We obtain a truncated simplicial object $P'_\bullet$ of $\mathcal{A}$ | |
by setting $P'_k = P_k$ for $k \leq n$ and $P'_{n + 1} = Q$ and morphisms | |
$d'_i = d_i$ and $s'_i = s_i$ in degrees $k \leq n - 1$ and using the | |
morphisms $d'_j$ and $s'_i$ in degree $n$. Extend this to a full simplicial | |
object $P'_\bullet$ of $\mathcal{A}$ using $\text{cosk}_{n + 1}$. By | |
functoriality of the coskeleton functors there is a morphism | |
$P'_\bullet \to P_\bullet$ of simplicial objects extending the | |
given morphism of $(n + 1)$-truncated simplicial objects. | |
(This morphism will be denoted $P^{n + 1}_\bullet \to P^n_\bullet$ | |
in the final paragraph of the proof.) | |
\medskip\noindent | |
Note that conditions (b) and (c) are satisfied for $P'_\bullet$ with $n$ | |
replaced by $n + 1$. We claim the map $P'_\bullet \to P_\bullet$ satisfies | |
assumptions (1), (2), (3), and (4) of | |
Simplicial, Lemmas \ref{simplicial-lemma-section} | |
with $n + 1$ instead of $n$. Conditions (1) and (2) hold by construction. | |
By Simplicial, Lemma \ref{simplicial-lemma-cosk-above-object} | |
we see that we have | |
$P_\bullet = \text{cosk}_{n + 1}\text{sk}_{n + 1}P_\bullet$ | |
and | |
$P'_\bullet = \text{cosk}_{n + 1}\text{sk}_{n + 1}P'_\bullet$ | |
not only in $\mathcal{A}$ but also in the category of $A$-algebras, | |
whence in the category of sets (as the forgetful functor from $A$-algebras | |
to sets commutes with all limits). This proves (3) and (4). Thus the lemma | |
applies and $P'_\bullet \to P_\bullet$ is a trivial Kan fibration. By | |
Simplicial, Lemma \ref{simplicial-lemma-trivial-kan-composition} | |
we conclude that $P'_\bullet \to B$ is a trivial Kan fibration and (a) | |
holds as well. | |
\medskip\noindent | |
To finish the proof we take the inverse limit $P_\bullet = \lim P^n_\bullet$ | |
of the sequence of simplicial algebras | |
$$ | |
\ldots \to P^2_\bullet \to P^1_\bullet \to P^0_\bullet | |
$$ | |
constructed above. The map $P_\bullet \to B$ is a trivial Kan fibration by | |
Simplicial, Lemma \ref{simplicial-lemma-limit-trivial-kan}. | |
However, the construction above stabilizes in each degree | |
to a fixed finitely generated polynomial algebra as desired. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-pi-shriek-finite} | |
Let $A$ be a Noetherian ring. Let $A \to B$ be a finite type ring map. | |
Let $\pi$, $\underline{B}$ be as in (\ref{equation-pi}). | |
If $\mathcal{F}$ is an $\underline{B}$-module such that | |
$\mathcal{F}(P, \alpha)$ is a finite $B$-module for all | |
$\alpha : P = A[x_1, \ldots, x_n] \to B$, then the cohomology modules | |
of $L\pi_!(\mathcal{F})$ are finite $B$-modules. | |
\end{lemma} | |
\begin{proof} | |
By Lemma \ref{lemma-identify-pi-shriek} and | |
Proposition \ref{proposition-polynomial} | |
we can compute $L\pi_!(\mathcal{F})$ by a complex | |
constructed out of the values of $\mathcal{F}$ on finite type | |
polynomial algebras. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-cotangent-finite} | |
Let $A$ be a Noetherian ring. Let $A \to B$ be a finite type ring map. | |
Then $H^n(L_{B/A})$ is a finite $B$-module for all $n \in \mathbf{Z}$. | |
\end{lemma} | |
\begin{proof} | |
Apply Lemmas \ref{lemma-compute-cotangent-complex} and | |
\ref{lemma-pi-shriek-finite}. | |
\end{proof} | |
\begin{remark}[Resolutions] | |
\label{remark-resolution} | |
Let $A \to B$ be any ring map. Let us call an augmented simplicial $A$-algebra | |
$\epsilon : P_\bullet \to B$ a {\it resolution of $B$ over $A$} if | |
each $P_n$ is a polynomial algebra and $\epsilon$ is a trivial Kan fibration | |
of simplicial sets. If $P_\bullet \to B$ is an augmentation of a simplicial | |
$A$-algebra with each $P_n$ a polynomial algebra surjecting onto $B$, then | |
the following are equivalent | |
\begin{enumerate} | |
\item $\epsilon : P_\bullet \to B$ is a resolution of $B$ over $A$, | |
\item $\epsilon : P_\bullet \to B$ is a quasi-isomorphism on | |
associated complexes, | |
\item $\epsilon : P_\bullet \to B$ induces a homotopy equivalence | |
of simplicial sets. | |
\end{enumerate} | |
To see this use Simplicial, Lemmas | |
\ref{simplicial-lemma-trivial-kan-homotopy}, | |
\ref{simplicial-lemma-homotopy-equivalence}, and | |
\ref{simplicial-lemma-qis-simplicial-abelian-groups}. | |
A resolution $P_\bullet$ of $B$ over $A$ gives a cosimplicial object | |
$U_\bullet$ of $\mathcal{C}_{B/A}$ as in Cohomology on Sites, Lemma | |
\ref{sites-cohomology-lemma-compute-by-cosimplicial-resolution} | |
and it follows that | |
$$ | |
L\pi_!\mathcal{F} = \mathcal{F}(P_\bullet) | |
$$ | |
functorially in $\mathcal{F}$, see Lemma \ref{lemma-identify-pi-shriek}. | |
The (formal part of the) proof of Proposition \ref{proposition-polynomial} | |
shows that resolutions exist. We also have seen in the first proof of | |
Lemma \ref{lemma-pi-shriek-standard} that the standard resolution of $B$ | |
over $A$ is a resolution (so that this terminology doesn't lead to a conflict). | |
However, the argument in the proof of Proposition \ref{proposition-polynomial} | |
shows the existence of resolutions without appealing to the simplicial | |
computations in Simplicial, Section \ref{simplicial-section-standard}. | |
Moreover, for {\it any} choice of resolution we have a canonical isomorphism | |
$$ | |
L_{B/A} = \Omega_{P_\bullet/A} \otimes_{P_\bullet, \epsilon} B | |
$$ | |
in $D(B)$ by Lemma \ref{lemma-compute-cotangent-complex}. The freedom to | |
choose an arbitrary resolution can be quite useful. | |
\end{remark} | |
\begin{lemma} | |
\label{lemma-O-homology-B-homology} | |
Let $A \to B$ be a ring map. Let $\pi$, $\mathcal{O}$, $\underline{B}$ | |
be as in (\ref{equation-pi}). For any $\mathcal{O}$-module $\mathcal{F}$ | |
we have | |
$$ | |
L\pi_!(\mathcal{F}) = L\pi_!(Li^*\mathcal{F}) = | |
L\pi_!(\mathcal{F} \otimes_\mathcal{O}^\mathbf{L} \underline{B}) | |
$$ | |
in $D(\textit{Ab})$. | |
\end{lemma} | |
\begin{proof} | |
It suffices to verify the assumptions of Cohomology on Sites, Lemma | |
\ref{sites-cohomology-lemma-O-homology-qis} | |
hold for $\mathcal{O} \to \underline{B}$ on $\mathcal{C}_{B/A}$. | |
We will use the results of Remark \ref{remark-resolution} without | |
further mention. Choose a resolution $P_\bullet$ of $B$ over $A$ to get a | |
suitable cosimplicial object $U_\bullet$ of $\mathcal{C}_{B/A}$. | |
Since $P_\bullet \to B$ induces a quasi-isomorphism on associated | |
complexes of abelian groups we see that $L\pi_!\mathcal{O} = B$. | |
On the other hand $L\pi_!\underline{B}$ is computed by | |
$\underline{B}(U_\bullet) = B$. This verifies the second assumption of | |
Cohomology on Sites, Lemma | |
\ref{sites-cohomology-lemma-O-homology-qis} | |
and we are done with the proof. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-apply-O-B-comparison} | |
Let $A \to B$ be a ring map. Let $\pi$, $\mathcal{O}$, $\underline{B}$ | |
be as in (\ref{equation-pi}). We have | |
$$ | |
L\pi_!(\mathcal{O}) = L\pi_!(\underline{B}) = B | |
\quad\text{and}\quad | |
L_{B/A} = L\pi_!(\Omega_{\mathcal{O}/A} \otimes_\mathcal{O} \underline{B}) = | |
L\pi_!(\Omega_{\mathcal{O}/A}) | |
$$ | |
in $D(\textit{Ab})$. | |
\end{lemma} | |
\begin{proof} | |
This is just an application of Lemma \ref{lemma-O-homology-B-homology} | |
(and the first equality on the right is | |
Lemma \ref{lemma-compute-cotangent-complex}). | |
\end{proof} | |
\noindent | |
Here is a special case of the fundamental triangle that is easy to prove. | |
\begin{lemma} | |
\label{lemma-special-case-triangle} | |
Let $A \to B \to C$ be ring maps. If $B$ is a polynomial algebra over | |
$A$, then there is a distinguished triangle | |
$L_{B/A} \otimes_B^\mathbf{L} C \to L_{C/A} \to L_{C/B} \to | |
L_{B/A} \otimes_B^\mathbf{L} C[1]$ in $D(C)$. | |
\end{lemma} | |
\begin{proof} | |
We will use the observations of Remark \ref{remark-resolution} | |
without further mention. Choose a resolution $\epsilon : P_\bullet \to C$ | |
of $C$ over $B$ (for example the standard resolution). Since $B$ is a | |
polynomial algebra over $A$ we see that $P_\bullet$ is also a resolution of | |
$C$ over $A$. Hence $L_{C/A}$ is computed by | |
$\Omega_{P_\bullet/A} \otimes_{P_\bullet, \epsilon} C$ | |
and $L_{C/B}$ is computed by | |
$\Omega_{P_\bullet/B} \otimes_{P_\bullet, \epsilon} C$. | |
Since for each $n$ we have the short exact sequence | |
$0 \to \Omega_{B/A} \otimes_B P_n \to \Omega_{P_n/A} \to \Omega_{P_n/B}$ | |
(Algebra, Lemma \ref{algebra-lemma-ses-formally-smooth}) | |
and since $L_{B/A} = \Omega_{B/A}[0]$ | |
(Lemma \ref{lemma-cotangent-complex-polynomial-algebra}) | |
we obtain the result. | |
\end{proof} | |
\begin{example} | |
\label{example-resolution-length-two} | |
Let $A \to B$ be a ring map. In this example we | |
will construct an ``explicit'' resolution $P_\bullet$ of $B$ over $A$ of | |
length $2$. To do this we follow the procedure of the proof of | |
Proposition \ref{proposition-polynomial}, see also the discussion in | |
Remark \ref{remark-resolution}. | |
\medskip\noindent | |
We choose a surjection $P_0 = A[u_i] \to B$ where $u_i$ is a set of | |
variables. Choose generators $f_t \in P_0$, $t \in T$ of the ideal | |
$\Ker(P_0 \to B)$. We choose $P_1 = A[u_i, x_t]$ with face maps | |
$d_0$ and $d_1$ the unique $A$-algebra maps with $d_j(u_i) = u_i$ | |
and $d_0(x_t) = 0$ and $d_1(x_t) = f_t$. The map $s_0 : P_0 \to P_1$ | |
is the unique $A$-algebra map with $s_0(u_i) = u_i$. It is clear that | |
$$ | |
P_1 \xrightarrow{d_0 - d_1} P_0 \to B \to 0 | |
$$ | |
is exact, in particular the map $(d_0, d_1) : P_1 \to P_0 \times_B P_0$ | |
is surjective. Thus, if $P_\bullet$ denotes the $1$-truncated | |
simplicial $A$-algebra given by $P_0$, $P_1$, $d_0$, $d_1$, and $s_0$, then | |
the augmentation $\text{cosk}_1(P_\bullet) \to B$ is a trivial Kan fibration. | |
The next step of the procedure in the proof of | |
Proposition \ref{proposition-polynomial} | |
is to choose a polynomial algebra $P_2$ and a surjection | |
$$ | |
P_2 \longrightarrow \text{cosk}_1(P_\bullet)_2 | |
$$ | |
Recall that | |
$$ | |
\text{cosk}_1(P_\bullet)_2 = | |
\{(g_0, g_1, g_2) \in P_1^3 \mid d_0(g_0) = d_0(g_1), | |
d_1(g_0) = d_0(g_2), d_1(g_1) = d_1(g_2)\} | |
$$ | |
Thinking of $g_i \in P_1$ as a polynomial in $x_t$ the conditions | |
are | |
$$ | |
g_0(0) = g_1(0),\quad | |
g_0(f_t) = g_2(0),\quad | |
g_1(f_t) = g_2(f_t) | |
$$ | |
Thus $\text{cosk}_1(P_\bullet)_2$ contains the elements | |
$y_t = (x_t, x_t, f_t)$ and $z_t = (0, x_t, x_t)$. | |
Every element $G$ in $\text{cosk}_1(P_\bullet)_2$ is | |
of the form $G = H + (0, 0, g)$ where $H$ is in the image | |
of $A[u_i, y_t, z_t] \to \text{cosk}_1(P_\bullet)_2$. Here | |
$g \in P_1$ is a polynomial with vanishing | |
constant term such that $g(f_t) = 0$ in $P_0$. Observe that | |
\begin{enumerate} | |
\item $g = x_t x_{t'} - f_t x_{t'}$ and | |
\item $g = \sum r_t x_t$ with $r_t \in P_0$ if $\sum r_t f_t = 0$ in $P_0$ | |
\end{enumerate} | |
are elements of $P_1$ of the desired form. Let | |
$$ | |
Rel = \Ker(\bigoplus\nolimits_{t \in T} P_0 \longrightarrow P_0),\quad | |
(r_t) \longmapsto \sum r_tf_t | |
$$ | |
We set $P_2 = A[u_i, y_t, z_t, v_r, w_{t, t'}]$ where | |
$r = (r_t) \in Rel$, with map | |
$$ | |
P_2 \longrightarrow \text{cosk}_1(P_\bullet)_2 | |
$$ | |
given by $y_t \mapsto (x_t, x_t, f_t)$, | |
$z_t \mapsto (0, x_t, x_t)$, | |
$v_r \mapsto (0, 0, \sum r_t x_t)$, and | |
$w_{t, t'} \mapsto (0, 0, x_t x_{t'} - f_t x_{t'})$. A calculation | |
(omitted) shows that this map is surjective. Our choice of the | |
map displayed above determines the maps $d_0, d_1, d_2 : P_2 \to P_1$. | |
Finally, the procedure in the proof of | |
Proposition \ref{proposition-polynomial} | |
tells us to choose the maps $s_0, s_1 : P_1 \to P_2$ lifting the two | |
maps $P_1 \to \text{cosk}_1(P_\bullet)_2$. It is clear that we can take | |
$s_i$ to be the unique $A$-algebra maps determined by | |
$s_0(x_t) = y_t$ and $s_1(x_t) = z_t$. | |
\end{example} | |
\section{Functoriality} | |
\label{section-functoriality} | |
\noindent | |
In this section we consider a commutative square | |
\begin{equation} | |
\label{equation-commutative-square} | |
\vcenter{ | |
\xymatrix{ | |
B \ar[r] & B' \\ | |
A \ar[u] \ar[r] & A' \ar[u] | |
} | |
} | |
\end{equation} | |
of ring maps. We claim there is a canonical $B$-linear map of complexes | |
$$ | |
L_{B/A} \longrightarrow L_{B'/A'} | |
$$ | |
associated to this diagram. Namely, if $P_\bullet \to B$ is the | |
standard resolution of $B$ over $A$ and $P'_\bullet \to B'$ is the | |
standard resolution of $B'$ over $A'$, then there is a canonical map | |
$P_\bullet \to P'_\bullet$ | |
of simplicial $A$-algebras compatible with the augmentations | |
$P_\bullet \to B$ and $P'_\bullet \to B'$. This can be seen in terms | |
of the construction of standard resolutions in | |
Simplicial, Section \ref{simplicial-section-standard} | |
but in the special case at hand it probably suffices to say simply | |
that the maps | |
$$ | |
P_0 = A[B] \longrightarrow A'[B'] = P'_0,\quad | |
P_1 = A[A[B]] \longrightarrow A'[A'[B']] = P'_1, | |
$$ | |
and so on are given by the given maps $A \to A'$ and $B \to B'$. | |
The desired map $L_{B/A} \to L_{B'/A'}$ then comes from the associated | |
maps $\Omega_{P_n/A} \to \Omega_{P'_n/A'}$. | |
\medskip\noindent | |
Another description of the functoriality map can be given as follows. | |
Let $\mathcal{C} = \mathcal{C}_{B/A}$ and $\mathcal{C}' = \mathcal{C}_{B'/A}'$ | |
be the categories considered in Section \ref{section-compute-L-pi-shriek}. | |
There is a functor | |
$$ | |
u : \mathcal{C} \longrightarrow \mathcal{C}',\quad | |
(P, \alpha) \longmapsto (P \otimes_A A', c \circ (\alpha \otimes 1)) | |
$$ | |
where $c : B \otimes_A A' \to B'$ is the obvious map. As discussed in | |
Cohomology on Sites, Example | |
\ref{sites-cohomology-example-morphism-categories} | |
we obtain a morphism of topoi $g : \Sh(\mathcal{C}) \to \Sh(\mathcal{C}')$ | |
and a commutative diagram of maps of ringed topoi | |
\begin{equation} | |
\label{equation-double-square} | |
\vcenter{ | |
\xymatrix{ | |
(\Sh(\mathcal{C}'), \underline{B}) \ar[d]_\pi & | |
(\Sh(\mathcal{C}'), \underline{B'}) \ar[d]_\pi \ar[l]^h & | |
(\Sh(\mathcal{C}), \underline{B'}) \ar[d]_{\pi'} \ar[l]^g \\ | |
(\Sh(*), B) & | |
(\Sh(*), B') \ar[l]_f & | |
(\Sh(*), B') \ar[l] | |
} | |
} | |
\end{equation} | |
Here $h$ is the identity on underlying topoi and given by the ring map | |
$B \to B'$ on sheaves of rings. | |
By Cohomology on Sites, Remark | |
\ref{sites-cohomology-remark-morphism-fibred-categories} | |
given $\mathcal{F}$ on $\mathcal{C}$ and $\mathcal{F}'$ on $\mathcal{C}'$ | |
and a transformation $t : \mathcal{F} \to g^{-1}\mathcal{F}'$ | |
we obtain a canonical map $L\pi_!(\mathcal{F}) \to L\pi'_!(\mathcal{F}')$. | |
If we apply this to the sheaves | |
$$ | |
\mathcal{F} : (P, \alpha) \mapsto \Omega_{P/A} \otimes_P B,\quad | |
\mathcal{F}' : (P', \alpha') \mapsto \Omega_{P'/A'} \otimes_{P'} B', | |
$$ | |
and the transformation $t$ given by the canonical maps | |
$$ | |
\Omega_{P/A} \otimes_P B \longrightarrow | |
\Omega_{P \otimes_A A'/A'} \otimes_{P \otimes_A A'} B' | |
$$ | |
to get a canonical map | |
$$ | |
L\pi_!(\Omega_{\mathcal{O}/A} \otimes_\mathcal{O} \underline{B}) | |
\longrightarrow | |
L\pi'_!(\Omega_{\mathcal{O}'/A'} \otimes_{\mathcal{O}'} \underline{B'}) | |
$$ | |
By Lemma \ref{lemma-compute-cotangent-complex} this gives | |
$L_{B/A} \to L_{B'/A'}$. We omit the verification that this map | |
agrees with the map defined above in terms of simplicial | |
resolutions. | |
\begin{lemma} | |
\label{lemma-flat-base-change} | |
Assume (\ref{equation-commutative-square}) induces a quasi-isomorphism | |
$B \otimes_A^\mathbf{L} A' = B'$. Then, with notation as in | |
(\ref{equation-double-square}) and | |
$\mathcal{F}' \in \textit{Ab}(\mathcal{C}')$, | |
we have $L\pi_!(g^{-1}\mathcal{F}') = L\pi'_!(\mathcal{F}')$. | |
\end{lemma} | |
\begin{proof} | |
We use the results of Remark \ref{remark-resolution} without | |
further mention. We will apply Cohomology on Sites, Lemma | |
\ref{sites-cohomology-lemma-get-it-now}. Let $P_\bullet \to B$ be a resolution. | |
If we can show that $u(P_\bullet) = P_\bullet \otimes_A A' \to B'$ | |
is a quasi-isomorphism, then we are done. The complex of $A$-modules | |
$s(P_\bullet)$ associated to $P_\bullet$ (viewed as a simplicial $A$-module) | |
is a free $A$-module resolution of $B$. Namely, $P_n$ is a free $A$-module and | |
$s(P_\bullet) \to B$ is a quasi-isomorphism. Thus $B \otimes_A^\mathbf{L} A'$ | |
is computed by $s(P_\bullet) \otimes_A A' = s(P_\bullet \otimes_A A')$. | |
Therefore the assumption of the lemma signifies that | |
$\epsilon' : P_\bullet \otimes_A A' \to B'$ is a quasi-isomorphism. | |
\end{proof} | |
\noindent | |
The following lemma in particular applies when $A \to A'$ is flat | |
and $B' = B \otimes_A A'$ (flat base change). | |
\begin{lemma} | |
\label{lemma-flat-base-change-cotangent-complex} | |
If (\ref{equation-commutative-square}) induces a quasi-isomorphism | |
$B \otimes_A^\mathbf{L} A' = B'$, then the functoriality map | |
induces an isomorphism | |
$$ | |
L_{B/A} \otimes_B^\mathbf{L} B' \longrightarrow L_{B'/A'} | |
$$ | |
\end{lemma} | |
\begin{proof} | |
We will use the notation introduced in Equation (\ref{equation-double-square}). | |
We have | |
$$ | |
L_{B/A} \otimes_B^\mathbf{L} B' = | |
L\pi_!(\Omega_{\mathcal{O}/A} \otimes_\mathcal{O} \underline{B}) | |
\otimes_B^\mathbf{L} B' = | |
L\pi_!(Lh^*(\Omega_{\mathcal{O}/A} \otimes_\mathcal{O} \underline{B})) | |
$$ | |
the first equality by Lemma \ref{lemma-compute-cotangent-complex} | |
and the second by Cohomology on Sites, Lemma | |
\ref{sites-cohomology-lemma-change-of-rings}. | |
Since $\Omega_{\mathcal{O}/A}$ is a flat $\mathcal{O}$-module, | |
we see that $\Omega_{\mathcal{O}/A} \otimes_\mathcal{O} \underline{B}$ | |
is a flat $\underline{B}$-module. Thus | |
$Lh^*(\Omega_{\mathcal{O}/A} \otimes_\mathcal{O} \underline{B}) = | |
\Omega_{\mathcal{O}/A} \otimes_\mathcal{O} \underline{B'}$ | |
which is equal to | |
$g^{-1}(\Omega_{\mathcal{O}'/A'} \otimes_{\mathcal{O}'} \underline{B'})$ | |
by inspection. | |
we conclude by Lemma \ref{lemma-flat-base-change} | |
and the fact that $L_{B'/A'}$ is computed by | |
$L\pi'_!(\Omega_{\mathcal{O}'/A'} \otimes_{\mathcal{O}'} \underline{B'})$. | |
\end{proof} | |
\begin{remark} | |
\label{remark-homotopy-triangle} | |
Suppose that we are given a square (\ref{equation-commutative-square}) | |
such that there exists an arrow $\kappa : B \to A'$ making the diagram | |
commute: | |
$$ | |
\xymatrix{ | |
B \ar[r]_\beta \ar[rd]_\kappa & B' \\ | |
A \ar[u] \ar[r]^\alpha & A' \ar[u] | |
} | |
$$ | |
In this case we claim the functoriality map $P_\bullet \to P'_\bullet$ | |
is homotopic to the composition $P_\bullet \to B \to A' \to P'_\bullet$. | |
Namely, using $\kappa$ the functoriality map factors as | |
$$ | |
P_\bullet \to P_{A'/A', \bullet} \to P'_\bullet | |
$$ | |
where $P_{A'/A', \bullet}$ is the standard resolution of $A'$ over $A'$. | |
Since $A'$ is the polynomial algebra on the empty set over $A'$ we | |
see from Simplicial, Lemma \ref{simplicial-lemma-standard-simplicial-homotopy} | |
that the augmentation $\epsilon_{A'/A'} : P_{A'/A', \bullet} \to A'$ | |
is a homotopy equivalence of simplicial rings. Observe that the homotopy | |
inverse map $c : A' \to P_{A'/A', \bullet}$ constructed in the proof of | |
that lemma is just the structure morphism, hence | |
we conclude what we want because the two compositions | |
$$ | |
\xymatrix{ | |
P_\bullet \ar[r] & | |
P_{A'/A', \bullet} \ar@<1ex>[rr]^{\text{id}} | |
\ar@<-1ex>[rr]_{c \circ \epsilon_{A'/A'}} & & | |
P_{A'/A', \bullet} \ar[r] & | |
P'_\bullet | |
} | |
$$ | |
are the two maps discussed above and these are homotopic | |
(Simplicial, Remark \ref{simplicial-remark-homotopy-pre-post-compose}). | |
Since the second map $P_\bullet \to P'_\bullet$ induces the zero | |
map $\Omega_{P_\bullet/A} \to \Omega_{P'_\bullet/A'}$ we conclude | |
that the functoriality map $L_{B/A} \to L_{B'/A'}$ is homotopic | |
to zero in this case. | |
\end{remark} | |
\begin{lemma} | |
\label{lemma-cotangent-complex-product} | |
Let $A \to B$ and $A \to C$ be ring maps. | |
Then the map $L_{B \times C/A} \to L_{B/A} \oplus L_{C/A}$ is | |
an isomorphism in $D(B \times C)$. | |
\end{lemma} | |
\begin{proof} | |
Although this lemma can be deduced from the fundamental triangle | |
we will give a direct and elementary proof of this now. | |
Factor the ring map $A \to B \times C$ as $A \to A[x] \to B \times C$ | |
where $x \mapsto (1, 0)$. By Lemma \ref{lemma-special-case-triangle} | |
we have a distinguished triangle | |
$$ | |
L_{A[x]/A} \otimes_{A[x]}^\mathbf{L} (B \times C) \to L_{B \times C/A} \to | |
L_{B \times C/A[x]} \to L_{A[x]/A} \otimes_{A[x]}^\mathbf{L} (B \times C)[1] | |
$$ | |
in $D(B \times C)$. Similarly we have the distinguished triangles | |
$$ | |
\begin{matrix} | |
L_{A[x]/A} \otimes_{A[x]}^\mathbf{L} B \to L_{B/A} \to L_{B/A[x]} | |
\to L_{A[x]/A} \otimes_{A[x]}^\mathbf{L} B[1] \\ | |
L_{A[x]/A} \otimes_{A[x]}^\mathbf{L} C \to L_{C/A} \to L_{C/A[x]} | |
\to L_{A[x]/A} \otimes_{A[x]}^\mathbf{L} C[1] | |
\end{matrix} | |
$$ | |
Thus it suffices to prove the result for $B \times C$ over $A[x]$. | |
Note that $A[x] \to A[x, x^{-1}]$ is flat, that | |
$(B \times C) \otimes_{A[x]} A[x, x^{-1}] = B \otimes_{A[x]} A[x, x^{-1}]$, | |
and that $C \otimes_{A[x]} A[x, x^{-1}] = 0$. | |
Thus by base change (Lemma \ref{lemma-flat-base-change-cotangent-complex}) | |
the map $L_{B \times C/A[x]} \to L_{B/A[x]} \oplus L_{C/A[x]}$ | |
becomes an isomorphism after inverting $x$. | |
In the same way one shows that the map becomes an isomorphism after | |
inverting $x - 1$. This proves the lemma. | |
\end{proof} | |
\section{The fundamental triangle} | |
\label{section-triangle} | |
\noindent | |
In this section we consider a sequence of ring maps $A \to B \to C$. | |
It is our goal to show that this triangle gives rise to a distinguished | |
triangle | |
\begin{equation} | |
\label{equation-triangle} | |
L_{B/A} \otimes_B^\mathbf{L} C \to L_{C/A} \to L_{C/B} \to | |
L_{B/A} \otimes_B^\mathbf{L} C[1] | |
\end{equation} | |
in $D(C)$. This will be proved in Proposition \ref{proposition-triangle}. | |
For an alternative approach see Remark \ref{remark-triangle}. | |
\medskip\noindent | |
Consider the category $\mathcal{C}_{C/B/A}$ | |
wich is the {\bf opposite} of the category whose objects are | |
$(P \to B, Q \to C)$ where | |
\begin{enumerate} | |
\item $P$ is a polynomial algebra over $A$, | |
\item $P \to B$ is an $A$-algebra homomorphism, | |
\item $Q$ is a polynomial algebra over $P$, and | |
\item $Q \to C$ is a $P$-algebra-homomorphism. | |
\end{enumerate} | |
We take the opposite as we want to think of $(P \to B, Q \to C)$ | |
as corresponding to the commutative diagram | |
$$ | |
\xymatrix{ | |
\Spec(C) \ar[d] \ar[r] & \Spec(Q) \ar[d] \\ | |
\Spec(B) \ar[d] \ar[r] & \Spec(P) \ar[dl] \\ | |
\Spec(A) | |
} | |
$$ | |
Let $\mathcal{C}_{B/A}$, $\mathcal{C}_{C/A}$, $\mathcal{C}_{C/B}$ | |
be the categories considered in Section \ref{section-compute-L-pi-shriek}. | |
There are functors | |
$$ | |
\begin{matrix} | |
u_1 : \mathcal{C}_{C/B/A} \to \mathcal{C}_{B/A}, & | |
(P \to B, Q \to C) \mapsto (P \to B) \\ | |
u_2 : \mathcal{C}_{C/B/A} \to \mathcal{C}_{C/A}, & | |
(P \to B, Q \to C) \mapsto (Q \to C) \\ | |
u_3 : \mathcal{C}_{C/B/A} \to \mathcal{C}_{C/B}, & | |
(P \to B, Q \to C) \mapsto (Q \otimes_P B \to C) | |
\end{matrix} | |
$$ | |
These functors induce corresponding morphisms of topoi $g_i$. | |
Let us denote $\mathcal{O}_i = g_i^{-1}\mathcal{O}$ so that we | |
get morphisms of ringed topoi | |
\begin{equation} | |
\label{equation-three-maps} | |
\begin{matrix} | |
g_1 : (\Sh(\mathcal{C}_{C/B/A}), \mathcal{O}_1) | |
\longrightarrow (\Sh(\mathcal{C}_{B/A}), \mathcal{O}) \\ | |
g_2 : (\Sh(\mathcal{C}_{C/B/A}), \mathcal{O}_2) | |
\longrightarrow (\Sh(\mathcal{C}_{C/A}), \mathcal{O}) \\ | |
g_3 : (\Sh(\mathcal{C}_{C/B/A}), \mathcal{O}_3) | |
\longrightarrow (\Sh(\mathcal{C}_{C/B}), \mathcal{O}) | |
\end{matrix} | |
\end{equation} | |
Let us denote | |
$\pi : \Sh(\mathcal{C}_{C/B/A}) \to \Sh(*)$, | |
$\pi_1 : \Sh(\mathcal{C}_{B/A}) \to \Sh(*)$, | |
$\pi_2 : \Sh(\mathcal{C}_{C/A}) \to \Sh(*)$, and | |
$\pi_3 : \Sh(\mathcal{C}_{C/B}) \to \Sh(*)$, | |
so that $\pi = \pi_i \circ g_i$. | |
We will obtain our distinguished triangle from the identification | |
of the cotangent complex in Lemma \ref{lemma-compute-cotangent-complex} | |
and the following lemmas. | |
\begin{lemma} | |
\label{lemma-triangle-ses} | |
With notation as in (\ref{equation-three-maps}) set | |
$$ | |
\begin{matrix} | |
\Omega_1 = \Omega_{\mathcal{O}/A} \otimes_\mathcal{O} \underline{B} | |
\text{ on }\mathcal{C}_{B/A} \\ | |
\Omega_2 = \Omega_{\mathcal{O}/A} \otimes_\mathcal{O} \underline{C} | |
\text{ on }\mathcal{C}_{C/A} \\ | |
\Omega_3 = \Omega_{\mathcal{O}/B} \otimes_\mathcal{O} \underline{C} | |
\text{ on }\mathcal{C}_{C/B} | |
\end{matrix} | |
$$ | |
Then we have a canonical short exact sequence of sheaves | |
of $\underline{C}$-modules | |
$$ | |
0 \to g_1^{-1}\Omega_1 \otimes_{\underline{B}} \underline{C} \to | |
g_2^{-1}\Omega_2 \to | |
g_3^{-1}\Omega_3 \to 0 | |
$$ | |
on $\mathcal{C}_{C/B/A}$. | |
\end{lemma} | |
\begin{proof} | |
Recall that $g_i^{-1}$ is gotten by simply precomposing with $u_i$. | |
Given an object $U = (P \to B, Q \to C)$ we have a split | |
short exact sequence | |
$$ | |
0 \to \Omega_{P/A} \otimes Q \to \Omega_{Q/A} \to \Omega_{Q/P} \to 0 | |
$$ | |
for example by Algebra, Lemma \ref{algebra-lemma-ses-formally-smooth}. | |
Tensoring with $C$ over $Q$ we obtain a short exact sequence | |
$$ | |
0 \to \Omega_{P/A} \otimes C \to \Omega_{Q/A} \otimes C \to | |
\Omega_{Q/P} \otimes C \to 0 | |
$$ | |
We have $\Omega_{P/A} \otimes C = \Omega_{P/A} \otimes B \otimes C$ | |
whence this is the value of | |
$g_1^{-1}\Omega_1 \otimes_{\underline{B}} \underline{C}$ | |
on $U$. The module $\Omega_{Q/A} \otimes C$ is the value of | |
$g_2^{-1}\Omega_2$ on $U$. | |
We have $\Omega_{Q/P} \otimes C = \Omega_{Q \otimes_P B/B} \otimes C$ | |
by Algebra, Lemma \ref{algebra-lemma-differentials-base-change} | |
hence this is the value of | |
$g_3^{-1}\Omega_3$ on $U$. Thus the short exact sequence of the | |
lemma comes from assigning to $U$ the last displayed short exact | |
sequence. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-polynomial-on-top} | |
With notation as in (\ref{equation-three-maps}) | |
suppose that $C$ is a polynomial algebra over $B$. Then | |
$L\pi_!(g_3^{-1}\mathcal{F}) = L\pi_{3, !}\mathcal{F} = \pi_{3, !}\mathcal{F}$ | |
for any abelian sheaf $\mathcal{F}$ on $\mathcal{C}_{C/B}$ | |
\end{lemma} | |
\begin{proof} | |
Write $C = B[E]$ for some set $E$. Choose a resolution | |
$P_\bullet \to B$ of $B$ over $A$. For every $n$ consider | |
the object $U_n = (P_n \to B, P_n[E] \to C)$ of $\mathcal{C}_{C/B/A}$. | |
Then $U_\bullet$ is a cosimplicial object of $\mathcal{C}_{C/B/A}$. | |
Note that $u_3(U_\bullet)$ is the constant cosimplicial | |
object of $\mathcal{C}_{C/B}$ with value $(C \to C)$. | |
We will prove that the object $U_\bullet$ of $\mathcal{C}_{C/B/A}$ | |
satisfies the hypotheses of | |
Cohomology on Sites, Lemma | |
\ref{sites-cohomology-lemma-compute-by-cosimplicial-resolution}. | |
This implies the lemma as it shows that $L\pi_!(g_3^{-1}\mathcal{F})$ | |
is computed by the constant simplicial abelian group | |
$\mathcal{F}(C \to C)$ which is the value of | |
$L\pi_{3, !}\mathcal{F} = \pi_{3, !}\mathcal{F}$ by | |
Lemma \ref{lemma-pi-lower-shriek-polynomial-algebra}. | |
\medskip\noindent | |
Let $U = (\beta : P \to B, \gamma : Q \to C)$ be an object of | |
$\mathcal{C}_{C/B/A}$. We may write $P = A[S]$ and $Q = A[S \amalg T]$ | |
by the definition of our category $\mathcal{C}_{C/B/A}$. We have to show that | |
$$ | |
\Mor_{\mathcal{C}_{C/B/A}}(U_\bullet, U) | |
$$ | |
is homotopy equivalent to a singleton simplicial set $*$. Observe that this | |
simplicial set is the product | |
$$ | |
\prod\nolimits_{s \in S} F_s \times \prod\nolimits_{t \in T} F'_t | |
$$ | |
where $F_s$ is the corresponding simplicial set for | |
$U_s = (A[\{s\}] \to B, A[\{s\}] \to C)$ | |
and $F'_t$ is the corresponding simplicial set for | |
$U_t = (A \to B, A[\{t\}] \to C)$. Namely, the object $U$ | |
is the product $\prod U_s \times \prod U_t$ in $\mathcal{C}_{C/B/A}$. | |
It suffices each $F_s$ and $F'_t$ is homotopy equivalent to $*$, see | |
Simplicial, Lemma \ref{simplicial-lemma-products-homotopy}. | |
The case of $F_s$ follows as $P_\bullet \to B$ is a trivial Kan | |
fibration (as a resolution) and $F_s$ is the fibre of this map over | |
$\beta(s)$. (Use Simplicial, Lemmas | |
\ref{simplicial-lemma-trivial-kan-base-change} and | |
\ref{simplicial-lemma-trivial-kan-homotopy}). | |
The case of $F'_t$ is more interesting. Here we are saying that | |
the fibre of | |
$$ | |
P_\bullet[E] \longrightarrow C = B[E] | |
$$ | |
over $\gamma(t) \in C$ is homotopy equivalent to a point. In fact we | |
will show this map is a trivial Kan fibration. Namely, | |
$P_\bullet \to B$ is a trivial can fibration. For any ring $R$ | |
we have | |
$$ | |
R[E] = | |
\colim_{\Sigma \subset \text{Map}(E, \mathbf{Z}_{\geq 0})\text{ finite}} | |
\prod\nolimits_{I \in \Sigma} R | |
$$ | |
(filtered colimit). Thus the displayed map of simplicial sets is a | |
filtered colimit of trivial Kan fibrations, whence a trivial Kan fibration | |
by Simplicial, Lemma \ref{simplicial-lemma-filtered-colimit-trivial-kan}. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-triangle-compute-lower-shriek} | |
With notation as in (\ref{equation-three-maps}) we have | |
$Lg_{i, !} \circ g_i^{-1} = \text{id}$ for $i = 1, 2, 3$ | |
and hence also $L\pi_! \circ g_i^{-1} = L\pi_{i, !}$ for | |
$i = 1, 2, 3$. | |
\end{lemma} | |
\begin{proof} | |
Proof for $i = 1$. We claim the functor $\mathcal{C}_{C/B/A}$ | |
is a fibred category over $\mathcal{C}_{B/A}$ | |
Namely, suppose given $(P \to B, Q \to C)$ | |
and a morphism $(P' \to B) \to (P \to B)$ of $\mathcal{C}_{B/A}$. | |
Recall that this means we have an $A$-algebra homomorphism | |
$P \to P'$ compatible with maps to $B$. Then we set $Q' = Q \otimes_P P'$ | |
with induced map to $C$ and the morphism | |
$$ | |
(P' \to B, Q' \to C) \longrightarrow (P \to B, Q \to C) | |
$$ | |
in $\mathcal{C}_{C/B/A}$ (note reversal arrows again) is strongly cartesian | |
in $\mathcal{C}_{C/B/A}$ over $\mathcal{C}_{B/A}$. Moreover, observe | |
that the fibre category of $u_1$ over $P \to B$ is the category | |
$\mathcal{C}_{C/P}$. Let $\mathcal{F}$ be an abelian sheaf on | |
$\mathcal{C}_{B/A}$. Since we have a fibred category we may apply | |
Cohomology on Sites, Lemma | |
\ref{sites-cohomology-lemma-compute-left-derived-pi-shriek}. | |
Thus $L_ng_{1, !}g_1^{-1}\mathcal{F}$ is the (pre)sheaf | |
which assigns to $U \in \Ob(\mathcal{C}_{B/A})$ the $n$th homology of | |
$g_1^{-1}\mathcal{F}$ restricted to the fibre category over $U$. | |
Since these restrictions are constant the desired result follows from | |
Lemma \ref{lemma-pi-lower-shriek-constant-sheaf} | |
via our identifications of fibre categories above. | |
\medskip\noindent | |
The case $i = 2$. | |
We claim $\mathcal{C}_{C/B/A}$ is a fibred category over $\mathcal{C}_{C/A}$ | |
is a fibred category. Namely, suppose given $(P \to B, Q \to C)$ | |
and a morphism $(Q' \to C) \to (Q \to C)$ of $\mathcal{C}_{C/A}$. | |
Recall that this means we have a $B$-algebra homomorphism | |
$Q \to Q'$ compatible with maps to $C$. Then | |
$$ | |
(P \to B, Q' \to C) \longrightarrow (P \to B, Q \to C) | |
$$ | |
is strongly cartesian in $\mathcal{C}_{C/B/A}$ over $\mathcal{C}_{C/A}$. | |
Note that the fibre category of $u_2$ over $Q \to C$ has an final | |
(beware reversal arrows) object, namely, $(A \to B, Q \to C)$. Let | |
$\mathcal{F}$ be an abelian sheaf on $\mathcal{C}_{C/A}$. | |
Since we have a fibred category we may apply | |
Cohomology on Sites, Lemma | |
\ref{sites-cohomology-lemma-compute-left-derived-pi-shriek}. | |
Thus $L_ng_{2, !}g_2^{-1}\mathcal{F}$ is the (pre)sheaf | |
which assigns to $U \in \Ob(\mathcal{C}_{C/A})$ the $n$th homology of | |
$g_1^{-1}\mathcal{F}$ restricted to the fibre category over $U$. | |
Since these restrictions are constant the desired result follows from | |
Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-initial-final} | |
because the fibre categories all have final objects. | |
\medskip\noindent | |
The case $i = 3$. In this case we will apply | |
Cohomology on Sites, Lemma | |
\ref{sites-cohomology-lemma-compute-left-derived-g-shriek} | |
to $u = u_3 : \mathcal{C}_{C/B/A} \to \mathcal{C}_{C/B}$ | |
and $\mathcal{F}' = g_3^{-1}\mathcal{F}$ for some abelian sheaf | |
$\mathcal{F}$ on $\mathcal{C}_{C/B}$. | |
Suppose $U = (\overline{Q} \to C)$ is an object of $\mathcal{C}_{C/B}$. | |
Then $\mathcal{I}_U = \mathcal{C}_{\overline{Q}/B/A}$ (again beware | |
of reversal of arrows). The sheaf $\mathcal{F}'_U$ is given by the | |
rule $(P \to B, Q \to \overline{Q}) \mapsto \mathcal{F}(Q \otimes_P B \to C)$. | |
In other words, this sheaf is the pullback of a sheaf | |
on $\mathcal{C}_{\overline{Q}/C}$ via the morphism | |
$\Sh(\mathcal{C}_{\overline{Q}/B/A}) \to \Sh(\mathcal{C}_{\overline{Q}/B})$. | |
Thus Lemma \ref{lemma-polynomial-on-top} shows that | |
$H_n(\mathcal{I}_U, \mathcal{F}'_U) = 0$ for $n > 0$ | |
and equal to $\mathcal{F}(\overline{Q} \to C)$ for $n = 0$. | |
The aforementioned Cohomology on Sites, Lemma | |
\ref{sites-cohomology-lemma-compute-left-derived-g-shriek} | |
implies that $Lg_{3, !}(g_3^{-1}\mathcal{F}) = \mathcal{F}$ and | |
the proof is done. | |
\end{proof} | |
\begin{proposition} | |
\label{proposition-triangle} | |
Let $A \to B \to C$ be ring maps. There is a canonical distinguished | |
triangle | |
$$ | |
L_{B/A} \otimes_B^\mathbf{L} C \to L_{C/A} \to L_{C/B} \to | |
L_{B/A} \otimes_B^\mathbf{L} C[1] | |
$$ | |
in $D(C)$. | |
\end{proposition} | |
\begin{proof} | |
Consider the short exact sequence of sheaves of | |
Lemma \ref{lemma-triangle-ses} | |
and apply the derived functor $L\pi_!$ to obtain a distinguished | |
triangle | |
$$ | |
L\pi_!(g_1^{-1}\Omega_1 \otimes_{\underline{B}} \underline{C}) \to | |
L\pi_!(g_2^{-1}\Omega_2) \to | |
L\pi_!(g_3^{-1}\Omega_3) \to | |
L\pi_!(g_1^{-1}\Omega_1 \otimes_{\underline{B}} \underline{C})[1] | |
$$ | |
in $D(C)$. Using Lemmas \ref{lemma-triangle-compute-lower-shriek} and | |
\ref{lemma-compute-cotangent-complex} | |
we see that the second and third terms agree with $L_{C/A}$ and $L_{C/B}$ | |
and the first one equals | |
$$ | |
L\pi_{1, !}(\Omega_1 \otimes_{\underline{B}} \underline{C}) = | |
L\pi_{1, !}(\Omega_1) \otimes_B^\mathbf{L} C = | |
L_{B/A} \otimes_B^\mathbf{L} C | |
$$ | |
The first equality by Cohomology on Sites, Lemma | |
\ref{sites-cohomology-lemma-change-of-rings} | |
(and flatness of $\Omega_1$ as a sheaf of modules over $\underline{B}$) | |
and the second by Lemma \ref{lemma-compute-cotangent-complex}. | |
\end{proof} | |
\begin{remark} | |
\label{remark-triangle} | |
We sketch an alternative, perhaps simpler, proof of the existence of | |
the fundamental triangle. | |
Let $A \to B \to C$ be ring maps and assume that $B \to C$ is injective. | |
Let $P_\bullet \to B$ be the standard resolution of $B$ over $A$ and | |
let $Q_\bullet \to C$ be the standard resolution of $C$ over $B$. | |
Picture | |
$$ | |
\xymatrix{ | |
P_\bullet : & | |
A[A[A[B]]] \ar[d] | |
\ar@<2ex>[r] | |
\ar@<0ex>[r] | |
\ar@<-2ex>[r] | |
& | |
A[A[B]] \ar[d] | |
\ar@<1ex>[r] | |
\ar@<-1ex>[r] | |
\ar@<1ex>[l] | |
\ar@<-1ex>[l] | |
& | |
A[B] \ar[d] \ar@<0ex>[l] \ar[r] & | |
B \\ | |
Q_\bullet : & | |
A[A[A[C]]] | |
\ar@<2ex>[r] | |
\ar@<0ex>[r] | |
\ar@<-2ex>[r] | |
& | |
A[A[C]] | |
\ar@<1ex>[r] | |
\ar@<-1ex>[r] | |
\ar@<1ex>[l] | |
\ar@<-1ex>[l] | |
& | |
A[C] \ar@<0ex>[l] \ar[r] & | |
C | |
} | |
$$ | |
Observe that since $B \to C$ is injective, the ring $Q_n$ is a | |
polynomial algebra over $P_n$ for all $n$. Hence we obtain a cosimplicial | |
object in $\mathcal{C}_{C/B/A}$ (beware reversal arrows). | |
Now set $\overline{Q}_\bullet = Q_\bullet \otimes_{P_\bullet} B$. | |
The key to the proof of Proposition \ref{proposition-triangle} | |
is to show that $\overline{Q}_\bullet$ is a resolution of $C$ over $B$. | |
This follows from Cohomology on Sites, Lemma | |
\ref{sites-cohomology-lemma-O-homology-qis} | |
applied to $\mathcal{C} = \Delta$, $\mathcal{O} = P_\bullet$, | |
$\mathcal{O}' = B$, and $\mathcal{F} = Q_\bullet$ (this uses that $Q_n$ | |
is flat over $P_n$; see Cohomology on Sites, Remark | |
\ref{sites-cohomology-remark-simplicial-modules} to relate simplicial modules | |
to sheaves). The key fact implies that the distinguished triangle of | |
Proposition \ref{proposition-triangle} | |
is the distinguished triangle associated to the short exact sequence | |
of simplicial $C$-modules | |
$$ | |
0 \to | |
\Omega_{P_\bullet/A} \otimes_{P_\bullet} C \to | |
\Omega_{Q_\bullet/A} \otimes_{Q_\bullet} C \to | |
\Omega_{\overline{Q}_\bullet/B} \otimes_{\overline{Q}_\bullet} C \to 0 | |
$$ | |
which is deduced from the short exact sequences | |
$0 \to \Omega_{P_n/A} \otimes_{P_n} Q_n \to \Omega_{Q_n/A} \to | |
\Omega_{Q_n/P_n} \to 0$ of | |
Algebra, Lemma \ref{algebra-lemma-ses-formally-smooth}. | |
Namely, by Remark \ref{remark-resolution} and the key fact the complex on the | |
right hand side represents $L_{C/B}$ in $D(C)$. | |
\medskip\noindent | |
If $B \to C$ is not injective, then we can use the above to get a | |
fundamental triangle for $A \to B \to B \times C$. Since | |
$L_{B \times C/B} \to L_{B/B} \oplus L_{C/B}$ and | |
$L_{B \times C/A} \to L_{B/A} \oplus L_{C/A}$ | |
are quasi-isomorphism in $D(B \times C)$ | |
(Lemma \ref{lemma-cotangent-complex-product}) | |
this induces the desired distinguished triangle in $D(C)$ | |
by tensoring with the flat ring map $B \times C \to C$. | |
\end{remark} | |
\begin{remark} | |
\label{remark-explicit-map} | |
Let $A \to B \to C$ be ring maps with $B \to C$ injective. | |
Recall the notation $P_\bullet$, $Q_\bullet$, $\overline{Q}_\bullet$ of | |
Remark \ref{remark-triangle}. | |
Let $R_\bullet$ be the standard resolution of $C$ over $B$. | |
In this remark we explain how to get the canonical identification | |
of $\Omega_{\overline{Q}_\bullet/B} \otimes_{\overline{Q}_\bullet} C$ | |
with $L_{C/B} = \Omega_{R_\bullet/B} \otimes_{R_\bullet} C$. | |
Let $S_\bullet \to B$ be the standard resolution of $B$ over $B$. | |
Note that the functoriality map $S_\bullet \to R_\bullet$ identifies | |
$R_n$ as a polynomial algebra over $S_n$ because $B \to C$ is injective. | |
For example in degree $0$ we have the map $B[B] \to B[C]$, in degree | |
$1$ the map $B[B[B]] \to B[B[C]]$, and so on. Thus | |
$\overline{R}_\bullet = R_\bullet \otimes_{S_\bullet} B$ | |
is a simplicial polynomial algebra | |
over $B$ as well and it follows (as in Remark \ref{remark-triangle}) from | |
Cohomology on Sites, Lemma | |
\ref{sites-cohomology-lemma-O-homology-qis} | |
that $\overline{R}_\bullet \to C$ is a resolution. Since we have | |
a commutative diagram | |
$$ | |
\xymatrix{ | |
Q_\bullet \ar[r] & R_\bullet \\ | |
P_\bullet \ar[u] \ar[r] & S_\bullet \ar[u] \ar[r] & B | |
} | |
$$ | |
we obtain a canonical map | |
$\overline{Q}_\bullet = Q_\bullet \otimes_{P_\bullet} B \to | |
\overline{R}_\bullet$. Thus the maps | |
$$ | |
L_{C/B} = \Omega_{R_\bullet/B} \otimes_{R_\bullet} C | |
\longrightarrow | |
\Omega_{\overline{R}_\bullet/B} \otimes_{\overline{R}_\bullet} C | |
\longleftarrow | |
\Omega_{\overline{Q}_\bullet/B} \otimes_{\overline{Q}_\bullet} C | |
$$ | |
are quasi-isomorphisms (Remark \ref{remark-resolution}) and composing | |
one with the inverse of the other gives the desired identification. | |
\end{remark} | |
\section{Localization and \'etale ring maps} | |
\label{section-localization} | |
\noindent | |
In this section we study what happens if we localize our rings. | |
Let $A \to A' \to B$ be ring maps such that $B = B \otimes_A^\mathbf{L} A'$. | |
This happens for example if $A' = S^{-1}A$ is the localization of $A$ | |
at a multiplicative subset $S \subset A$. In this | |
case for an abelian sheaf $\mathcal{F}'$ on $\mathcal{C}_{B/A'}$ | |
the homology of $g^{-1}\mathcal{F}'$ over $\mathcal{C}_{B/A}$ agrees with | |
the homology of $\mathcal{F}'$ over $\mathcal{C}_{B/A'}$, see | |
Lemma \ref{lemma-flat-base-change} for a precise statement. | |
\begin{lemma} | |
\label{lemma-localize-at-bottom} | |
Let $A \to A' \to B$ be ring maps such that $B = B \otimes_A^\mathbf{L} A'$. | |
Then $L_{B/A} = L_{B/A'}$ in $D(B)$. | |
\end{lemma} | |
\begin{proof} | |
According to the discussion above (i.e., using | |
Lemma \ref{lemma-flat-base-change}) | |
and Lemma \ref{lemma-compute-cotangent-complex} | |
we have to show that the sheaf given | |
by the rule $(P \to B) \mapsto \Omega_{P/A} \otimes_P B$ on $\mathcal{C}_{B/A}$ | |
is the pullback of the sheaf given by the rule | |
$(P \to B) \mapsto \Omega_{P/A'} \otimes_P B$. | |
The pullback functor $g^{-1}$ is given by precomposing with the | |
functor $u : \mathcal{C}_{B/A} \to \mathcal{C}_{B/A'}$, | |
$(P \to B) \mapsto (P \otimes_A A' \to B)$. | |
Thus we have to show that | |
$$ | |
\Omega_{P/A} \otimes_P B = | |
\Omega_{P \otimes_A A'/A'} \otimes_{(P \otimes_A A')} B | |
$$ | |
By Algebra, Lemma \ref{algebra-lemma-differentials-base-change} | |
the right hand side is equal to | |
$$ | |
(\Omega_{P/A} \otimes_A A') \otimes_{(P \otimes_A A')} B | |
$$ | |
Since $P$ is a polynomial algebra over $A$ the module | |
$\Omega_{P/A}$ is free and the equality is obvious. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-derived-diagonal} | |
Let $A \to B$ be a ring map such that $B = B \otimes_A^\mathbf{L} B$. | |
Then $L_{B/A} = 0$ in $D(B)$. | |
\end{lemma} | |
\begin{proof} | |
This is true because $L_{B/A} = L_{B/B} = 0$ by | |
Lemmas \ref{lemma-localize-at-bottom} and | |
\ref{lemma-cotangent-complex-polynomial-algebra}. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-bootstrap} | |
Let $A \to B$ be a ring map such that $\text{Tor}^A_i(B, B) = 0$ for $i > 0$ | |
and such that $L_{B/B \otimes_A B} = 0$. | |
Then $L_{B/A} = 0$ in $D(B)$. | |
\end{lemma} | |
\begin{proof} | |
By Lemma \ref{lemma-flat-base-change-cotangent-complex} we see that | |
$L_{B/A} \otimes_B^\mathbf{L} (B \otimes_A B) = L_{B \otimes_A B/B}$. | |
Now we use the distinguished triangle (\ref{equation-triangle}) | |
$$ | |
L_{B \otimes_A B/B} \otimes^\mathbf{L}_{(B \otimes_A B)} B \to | |
L_{B/B} \to L_{B/B \otimes_A B} \to | |
L_{B \otimes_A B/B} \otimes^\mathbf{L}_{(B \otimes_A B)} B[1] | |
$$ | |
associated to the ring maps $B \to B \otimes_A B \to B$ and the vanishing of | |
$L_{B/B}$ (Lemma \ref{lemma-cotangent-complex-polynomial-algebra}) and | |
$L_{B/B \otimes_A B}$ (assumed) to see that | |
$$ | |
0 = | |
L_{B \otimes_A B/B} \otimes^\mathbf{L}_{(B \otimes_A B)} B = | |
L_{B/A} \otimes_B^\mathbf{L} (B \otimes_A B) | |
\otimes^\mathbf{L}_{(B \otimes_A B)} B = L_{B/A} | |
$$ | |
as desired. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-when-zero} | |
The cotangent complex $L_{B/A}$ is zero in each of the following cases: | |
\begin{enumerate} | |
\item $A \to B$ and $B \otimes_A B \to B$ are flat, i.e., $A \to B$ | |
is weakly \'etale | |
(More on Algebra, Definition \ref{more-algebra-definition-weakly-etale}), | |
\item $A \to B$ is a flat epimorphism of rings, | |
\item $B = S^{-1}A$ for some multiplicative subset $S \subset A$, | |
\item $A \to B$ is unramified and flat, | |
\item $A \to B$ is \'etale, | |
\item $A \to B$ is a filtered colimit of ring maps for which | |
the cotangent complex vanishes, | |
\item $B$ is a henselization of a local ring of $A$, | |
\item $B$ is a strict henselization of a local ring of $A$, and | |
\item add more here. | |
\end{enumerate} | |
\end{lemma} | |
\begin{proof} | |
In case (1) we may apply | |
Lemma \ref{lemma-derived-diagonal} | |
to the surjective flat ring map $B \otimes_A B \to B$ | |
to conclude that $L_{B/B \otimes_A B} = 0$ and then we use | |
Lemma \ref{lemma-bootstrap} | |
to conclude. The cases (2) -- (5) are each special cases of (1). | |
Part (6) follows from Lemma \ref{lemma-colimit-cotangent-complex}. | |
Parts (7) and (8) follows from the fact that (strict) henselizations | |
are filtered colimits of \'etale ring extensions of $A$, see | |
Algebra, Lemmas \ref{algebra-lemma-henselization-different} and | |
\ref{algebra-lemma-strict-henselization-different}. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-localize-on-top} | |
Let $A \to B \to C$ be ring maps such that $L_{C/B} = 0$. | |
Then $L_{C/A} = L_{B/A} \otimes_B^\mathbf{L} C$. | |
\end{lemma} | |
\begin{proof} | |
This is a trivial consequence of | |
the distinguished triangle (\ref{equation-triangle}). | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-localize} | |
Let $A \to B$ be ring maps and $S \subset A$, $T \subset B$ multiplicative | |
subsets such that $S$ maps into $T$. | |
Then $L_{T^{-1}B/S^{-1}A} = L_{B/A} \otimes_B T^{-1}B$ | |
in $D(T^{-1}B)$. | |
\end{lemma} | |
\begin{proof} | |
Lemma \ref{lemma-localize-on-top} shows that | |
$L_{T^{-1}B/A} = L_{B/A} \otimes_B T^{-1}B$ | |
and Lemma \ref{lemma-localize-at-bottom} | |
shows that $L_{T^{-1}B/A} = L_{T^{-1}B/S^{-1}A}$. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-cotangent-complex-henselization} | |
Let $A \to B$ be a local ring homomorphism of local rings. | |
Let $A^h \to B^h$, resp.\ $A^{sh} \to B^{sh}$ be the induced | |
maps of henselizations, resp.\ strict henselizations. | |
Then | |
$$ | |
L_{B^h/A^h} = L_{B^h/A} = L_{B/A} \otimes_B^\mathbf{L} B^h | |
\quad\text{resp.}\quad | |
L_{B^{sh}/A^{sh}} = L_{B^{sh}/A} = L_{B/A} \otimes_B^\mathbf{L} B^{sh} | |
$$ | |
in $D(B^h)$, resp.\ $D(B^{sh})$. | |
\end{lemma} | |
\begin{proof} | |
The complexes $L_{A^h/A}$, $L_{A^{sh}/A}$, $L_{B^h/B}$, and | |
$L_{B^{sh}/B}$ are all zero by Lemma \ref{lemma-when-zero}. | |
Using the fundamental distinguished triangle (\ref{equation-triangle}) | |
for $A \to B \to B^h$ we obtain | |
$L_{B^h/A} = L_{B/A} \otimes_B^\mathbf{L} B^h$. | |
Using the fundamental triangle for $A \to A^h \to B^h$ | |
we obtain $L_{B^h/A^h} = L_{B^h/A}$. | |
Similarly for strict henselizations. | |
\end{proof} | |
\section{Smooth ring maps} | |
\label{section-smooth} | |
\noindent | |
Let $C \to B$ be a surjection of rings with kernel $I$. Let us call such | |
a ring map ``weakly quasi-regular'' if $I/I^2$ is a flat $B$-module and | |
$\text{Tor}_*^C(B, B)$ is the exterior algebra on $I/I^2$. | |
The generalization to ``smooth ring maps'' of what is done in | |
Lemma \ref{lemma-when-zero} for ``\'etale ring maps'' is to look | |
at flat ring maps $A \to B$ such that the multiplication map | |
$B \otimes_A B \to B$ is weakly quasi-regular. For the moment we just stick to | |
smooth ring maps. | |
\begin{lemma} | |
\label{lemma-when-projective} | |
If $A \to B$ is a smooth ring map, then $L_{B/A} = \Omega_{B/A}[0]$. | |
\end{lemma} | |
\begin{proof} | |
We have the agreement in cohomological degree $0$ by | |
Lemma \ref{lemma-identify-H0}. | |
Thus it suffices to prove the other cohomology groups | |
are zero. It suffices to prove this locally on $\Spec(B)$ as | |
$L_{B_g/A} = (L_{B/A})_g$ for $g \in B$ by Lemma \ref{lemma-localize-on-top}. | |
Thus we may assume that $A \to B$ is standard smooth | |
(Algebra, Lemma \ref{algebra-lemma-smooth-syntomic}), i.e., | |
that we can factor $A \to B$ as | |
$A \to A[x_1, \ldots, x_n] \to B$ with $A[x_1, \ldots, x_n] \to B$ | |
\'etale. In this case Lemmas \ref{lemma-when-zero} and | |
Lemma \ref{lemma-localize-on-top} show that | |
$L_{B/A} = L_{A[x_1, \ldots, x_n]/A} \otimes B$ | |
whence the conclusion by | |
Lemma \ref{lemma-cotangent-complex-polynomial-algebra}. | |
\end{proof} | |
\section{Positive characteristic} | |
\label{section-positive-characteristic} | |
\noindent | |
In this section we fix a prime number $p$. | |
If $A$ is a ring with $p = 0$ in $A$, then $F_A : A \to A$ | |
denotes the Frobenius endomorphism $a \mapsto a^p$. | |
\begin{lemma} | |
\label{lemma-frobenius-homotopy} | |
Let $A \to B$ be a ring map with $p = 0$ in $A$. Let $P_\bullet$ be the | |
standard resolution of $B$ over $A$. The map $P_\bullet \to P_\bullet$ | |
induced by the diagram | |
$$ | |
\xymatrix{ | |
B \ar[r]_{F_B} & B \\ | |
A \ar[u] \ar[r]^{F_A} & A \ar[u] | |
} | |
$$ | |
discussed in Section \ref{section-functoriality} is homotopic to the Frobenius | |
endomorphism $P_\bullet \to P_\bullet$ given by Frobenius on each $P_n$. | |
\end{lemma} | |
\begin{proof} | |
Let $\mathcal{A}$ be the category of $\mathbf{F}_p$-algebra maps | |
$A \to B$. Let $\mathcal{S}$ be the category of pairs $(A, E)$ | |
where $A$ is an $\mathbf{F}_p$-algebra and $E$ is a set. Consider the | |
adjoint functors | |
$$ | |
V : \mathcal{A} \to \mathcal{S}, \quad (A \to B) \mapsto (A, B) | |
$$ | |
and | |
$$ | |
U : \mathcal{S} \to \mathcal{A}, \quad (A, E) \mapsto (A \to A[E]) | |
$$ | |
Let $X$ be the simplicial object in | |
in the category of functors from $\mathcal{A}$ to $\mathcal{A}$ | |
constructed in Simplicial, Section \ref{simplicial-section-standard}. | |
It is clear that $P_\bullet = X(A \to B)$ because if we fix | |
$A$ then. | |
\medskip\noindent | |
Set $Y = U \circ V$. Recall that $X$ is constructed from $Y$ | |
and certain maps and has terms $X_n = Y \circ \ldots \circ Y$ | |
with $n + 1$ terms; the construction is given in | |
Simplicial, Example \ref{simplicial-example-godement} and please see | |
proof of Simplicial, Lemma \ref{simplicial-lemma-standard-simplicial} | |
for details. | |
\medskip\noindent | |
Let $f : \text{id}_\mathcal{A} \to \text{id}_\mathcal{A}$ | |
be the Frobenius endomorphism of the identity functor. | |
In other words, we set $f_{A \to B} = (F_A, F_B) : (A \to B) \to (A \to B)$. | |
Then our two maps on $X(A \to B)$ are given by the natural transformations | |
$f \star 1_X$ and $1_X \star f$. Details omitted. | |
Thus we conclude by Simplicial, Lemma | |
\ref{simplicial-lemma-godement-before-after}. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-frobenius-acts-as-zero} | |
Let $p$ be a prime number. Let $A \to B$ be a ring homomorphism | |
and assume that $p = 0$ in $A$. The map $L_{B/A} \to L_{B/A}$ | |
of Section \ref{section-functoriality} induced by the | |
Frobenius maps $F_A$ and $F_B$ is homotopic to zero. | |
\end{lemma} | |
\begin{proof} | |
Let $P_\bullet$ be the standard resolution of $B$ over $A$. | |
By Lemma \ref{lemma-frobenius-homotopy} the map $P_\bullet \to P_\bullet$ | |
induced by $F_A$ and $F_B$ is homotopic to the map | |
$F_{P_\bullet} : P_\bullet \to P_\bullet$ given by | |
Frobenius on each term. Hence we obtain what we want as clearly | |
$F_{P_\bullet}$ induces the zero zero map $\Omega_{P_n/A} \to \Omega_{P_n/A}$ | |
(since the derivative of a $p$th power is zero). | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-perfect-zero} | |
Let $p$ be a prime number. Let $A \to B$ be a ring homomorphism | |
and assume that $p = 0$ in $A$. If $A$ and $B$ are perfect, then | |
$L_{B/A}$ is zero in $D(B)$. | |
\end{lemma} | |
\begin{proof} | |
The map $(F_A, F_B) : (A \to B) \to (A \to B)$ is an isomorphism | |
hence induces an isomorphism on $L_{B/A}$ and on the other hand | |
induces zero on $L_{B/A}$ by Lemma \ref{lemma-frobenius-acts-as-zero}. | |
\end{proof} | |
\section{Comparison with the naive cotangent complex} | |
\label{section-surjections} | |
\noindent | |
The naive cotangent complex was introduced in | |
Algebra, Section \ref{algebra-section-netherlander}. | |
\begin{remark} | |
\label{remark-make-map} | |
Let $A \to B$ be a ring map. Working on $\mathcal{C}_{B/A}$ as in | |
Section \ref{section-compute-L-pi-shriek} let | |
$\mathcal{J} \subset \mathcal{O}$ be the kernel of | |
$\mathcal{O} \to \underline{B}$. Note that $L\pi_!(\mathcal{J}) = 0$ by | |
Lemma \ref{lemma-apply-O-B-comparison}. Set | |
$\Omega = \Omega_{\mathcal{O}/A} \otimes_\mathcal{O} \underline{B}$ | |
so that | |
$L_{B/A} = L\pi_!(\Omega)$ by Lemma \ref{lemma-compute-cotangent-complex}. | |
It follows that $L\pi_!(\mathcal{J} \to \Omega) = L\pi_!(\Omega) = L_{B/A}$. | |
Thus, for any object $U = (P \to B)$ of $\mathcal{C}_{B/A}$ we obtain a map | |
\begin{equation} | |
\label{equation-comparison-map-A} | |
(J \to \Omega_{P/A} \otimes_P B) \longrightarrow L_{B/A} | |
\end{equation} | |
where $J = \Ker(P \to B)$ in $D(A)$, see | |
Cohomology on Sites, Remark | |
\ref{sites-cohomology-remark-map-evaluation-to-derived}. | |
Continuing in this manner, note that | |
$L\pi_!(\mathcal{J} \otimes_\mathcal{O}^\mathbf{L} \underline{B}) = | |
L\pi_!(\mathcal{J}) = 0$ by | |
Lemma \ref{lemma-O-homology-B-homology}. | |
Since $\text{Tor}_0^\mathcal{O}(\mathcal{J}, \underline{B}) = | |
\mathcal{J}/\mathcal{J}^2$ | |
the spectral sequence | |
$$ | |
H_p(\mathcal{C}_{B/A}, \text{Tor}_q^\mathcal{O}(\mathcal{J}, \underline{B})) | |
\Rightarrow | |
H_{p + q}(\mathcal{C}_{B/A}, | |
\mathcal{J} \otimes_\mathcal{O}^\mathbf{L} \underline{B}) = 0 | |
$$ | |
(dual of | |
Derived Categories, Lemma \ref{derived-lemma-two-ss-complex-functor}) | |
implies that | |
$H_0(\mathcal{C}_{B/A}, \mathcal{J}/\mathcal{J}^2) = 0$ | |
and $H_1(\mathcal{C}_{B/A}, \mathcal{J}/\mathcal{J}^2) = 0$. | |
It follows that the complex of $\underline{B}$-modules | |
$\mathcal{J}/\mathcal{J}^2 \to \Omega$ satisfies | |
$\tau_{\geq -1}L\pi_!(\mathcal{J}/\mathcal{J}^2 \to \Omega) = | |
\tau_{\geq -1}L_{B/A}$. | |
Thus, for any object $U = (P \to B)$ of $\mathcal{C}_{B/A}$ we obtain a map | |
\begin{equation} | |
\label{equation-comparison-map} | |
(J/J^2 \to \Omega_{P/A} \otimes_P B) \longrightarrow \tau_{\geq -1}L_{B/A} | |
\end{equation} | |
in $D(B)$, see | |
Cohomology on Sites, Remark | |
\ref{sites-cohomology-remark-map-evaluation-to-derived}. | |
\end{remark} | |
\noindent | |
The first case is where we have a surjection of rings. | |
\begin{lemma} | |
\label{lemma-surjection} | |
\begin{slogan} | |
The cohomology of the cotangent complex of a surjective ring map is trivial in | |
degree zero; it is the kernel modulo its square in degree $-1$. | |
\end{slogan} | |
Let $A \to B$ be a surjective ring map with kernel $I$. | |
Then $H^0(L_{B/A}) = 0$ and $H^{-1}(L_{B/A}) = I/I^2$. | |
This isomorphism comes from the map (\ref{equation-comparison-map}) | |
for the object $(A \to B)$ of $\mathcal{C}_{B/A}$. | |
\end{lemma} | |
\begin{proof} | |
We will show below (using the surjectivity of $A \to B$) | |
that there exists a short exact sequence | |
$$ | |
0 \to \pi^{-1}(I/I^2) \to \mathcal{J}/\mathcal{J}^2 \to \Omega \to 0 | |
$$ | |
of sheaves on $\mathcal{C}_{B/A}$. Taking $L\pi_!$ and | |
the associated long exact sequence of homology, and using the | |
vanishing of $H_1(\mathcal{C}_{B/A}, \mathcal{J}/\mathcal{J}^2)$ and | |
$H_0(\mathcal{C}_{B/A}, \mathcal{J}/\mathcal{J}^2)$ | |
shown in Remark \ref{remark-make-map} we obtain what we want using | |
Lemma \ref{lemma-pi-lower-shriek-constant-sheaf}. | |
\medskip\noindent | |
What is left is to verify the local statement mentioned above. | |
For every object $U = (P \to B)$ of $\mathcal{C}_{B/A}$ | |
we can choose an isomorphism $P = A[E]$ such that the map | |
$P \to B$ maps each $e \in E$ to zero. Then | |
$J = \mathcal{J}(U) \subset P = \mathcal{O}(U)$ | |
is equal to $J = IP + (e; e \in E)$. The value on $U$ of the short sequence | |
of sheaves above is the sequence | |
$$ | |
0 \to I/I^2 \to J/J^2 \to \Omega_{P/A} \otimes_P B \to 0 | |
$$ | |
Verification omitted (hint: the only tricky point is that | |
$IP \cap J^2 = IJ$; which follows for example from | |
More on Algebra, Lemma \ref{more-algebra-lemma-conormal-sequence-H1-regular}). | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-relation-with-naive-cotangent-complex} | |
Let $A \to B$ be a ring map. Then $\tau_{\geq -1}L_{B/A}$ | |
is canonically quasi-isomorphic to the naive cotangent complex. | |
\end{lemma} | |
\begin{proof} | |
Consider $P = A[B] \to B$ with kernel $I$. The naive cotangent | |
complex $\NL_{B/A}$ of $B$ over $A$ is the complex | |
$I/I^2 \to \Omega_{P/A} \otimes_P B$, | |
see Algebra, Definition \ref{algebra-definition-naive-cotangent-complex}. | |
Observe that in (\ref{equation-comparison-map}) we have already | |
constructed a canonical map | |
$$ | |
c : \NL_{B/A} \longrightarrow \tau_{\geq -1}L_{B/A} | |
$$ | |
Consider the distinguished triangle (\ref{equation-triangle}) | |
$$ | |
L_{P/A} \otimes_P^\mathbf{L} B \to L_{B/A} \to L_{B/P} \to | |
(L_{P/A} \otimes_P^\mathbf{L} B)[1] | |
$$ | |
associated to the ring maps $A \to A[B] \to B$. We know that | |
$L_{P/A} = \Omega_{P/A}[0] = \NL_{P/A}$ in $D(P)$ | |
(Lemma \ref{lemma-cotangent-complex-polynomial-algebra} | |
and | |
Algebra, Lemma \ref{algebra-lemma-NL-polynomial-algebra}) | |
and that | |
$\tau_{\geq -1}L_{B/P} = I/I^2[1] = \NL_{B/P}$ in $D(B)$ | |
(Lemma \ref{lemma-surjection} and | |
Algebra, Lemma \ref{algebra-lemma-NL-surjection}). | |
To show $c$ is a quasi-isomorphism it suffices by | |
Algebra, Lemma \ref{algebra-lemma-exact-sequence-NL} | |
and the long exact cohomology sequence associated to the | |
distinguished triangle | |
to show that the maps $L_{P/A} \to L_{B/A} \to L_{B/P}$ are compatible | |
on cohomology groups with the corresponding maps | |
$\NL_{P/A} \to \NL_{B/A} \to \NL_{B/P}$ | |
of the naive cotangent complex. We omit the verification. | |
\end{proof} | |
\begin{remark} | |
\label{remark-explicit-comparison-map} | |
We can make the comparison map of | |
Lemma \ref{lemma-relation-with-naive-cotangent-complex} | |
explicit in the following way. | |
Let $P_\bullet$ be the standard resolution of $B$ | |
over $A$. | |
Let $I = \Ker(A[B] \to B)$. | |
Recall that $P_0 = A[B]$. The map of the | |
lemma is given by the commutative diagram | |
$$ | |
\xymatrix{ | |
L_{B/A} \ar[d] & \ldots \ar[r] & | |
\Omega_{P_2/A} \otimes_{P_2} B | |
\ar[r] \ar[d] & | |
\Omega_{P_1/A} \otimes_{P_1} B | |
\ar[r] \ar[d] & | |
\Omega_{P_0/A} \otimes_{P_0} B | |
\ar[d] \\ | |
\NL_{B/A} & \ldots \ar[r] & | |
0 \ar[r] & | |
I/I^2 \ar[r] & | |
\Omega_{P_0/A} \otimes_{P_0} B | |
} | |
$$ | |
We construct the downward arrow with target $I/I^2$ | |
by sending $\text{d}f \otimes b$ to the class of | |
$(d_0(f) - d_1(f))b$ in $I/I^2$. Here $d_i : P_1 \to P_0$, | |
$i = 0, 1$ are the two face maps of the simplicial structure. | |
This makes sense as $d_0 - d_1$ maps $P_1$ into $I = \Ker(P_0 \to B)$. | |
We omit the verification that this rule is well defined. | |
Our map is compatible with the differential | |
$\Omega_{P_1/A} \otimes_{P_1} B \to \Omega_{P_0/A} \otimes_{P_0} B$ | |
as this differential maps $\text{d}f \otimes b$ to | |
$\text{d}(d_0(f) - d_1(f)) \otimes b$. Moreover, the differential | |
$\Omega_{P_2/A} \otimes_{P_2} B \to \Omega_{P_1/A} \otimes_{P_1} B$ | |
maps $\text{d}f \otimes b$ to $\text{d}(d_0(f) - d_1(f) + d_2(f)) \otimes b$ | |
which are annihilated by our downward arrow. Hence a map of complexes. | |
We omit the verification that this is the same as the map of | |
Lemma \ref{lemma-relation-with-naive-cotangent-complex}. | |
\end{remark} | |
\begin{remark} | |
\label{remark-surjection} | |
Adopt notation as in Remark \ref{remark-make-map}. The arguments given | |
there show that the differential | |
$$ | |
H_2(\mathcal{C}_{B/A}, \mathcal{J}/\mathcal{J}^2) | |
\longrightarrow | |
H_0(\mathcal{C}_{B/A}, \text{Tor}_1^\mathcal{O}(\mathcal{J}, \underline{B})) | |
$$ | |
of the spectral sequence is an isomorphism. Let $\mathcal{C}'_{B/A}$ | |
denote the full subcategory of $\mathcal{C}_{B/A}$ consisting of surjective | |
maps $P \to B$. The agreement of the cotangent complex with the naive | |
cotangent complex (Lemma \ref{lemma-relation-with-naive-cotangent-complex}) | |
shows that we have an exact sequence of sheaves | |
$$ | |
0 \to \underline{H_1(L_{B/A})} \to | |
\mathcal{J}/\mathcal{J}^2 \xrightarrow{\text{d}} \Omega \to | |
\underline{H_2(L_{B/A})} \to 0 | |
$$ | |
on $\mathcal{C}'_{B/A}$. It follows that $\Ker(d)$ and | |
$\Coker(d)$ on the whole category $\mathcal{C}_{B/A}$ have | |
vanishing higher homology groups, since | |
these are computed by the homology groups of constant simplicial abelian | |
groups by Lemma \ref{lemma-identify-pi-shriek}. Hence we conclude | |
that | |
$$ | |
H_n(\mathcal{C}_{B/A}, \mathcal{J}/\mathcal{J}^2) \to H_n(L_{B/A}) | |
$$ | |
is an isomorphism for all $n \geq 2$. Combined with the remark above | |
we obtain the formula | |
$H_2(L_{B/A}) = | |
H_0(\mathcal{C}_{B/A}, \text{Tor}_1^\mathcal{O}(\mathcal{J}, \underline{B}))$. | |
\end{remark} | |
\section{A spectral sequence of Quillen} | |
\label{section-spectral-sequence} | |
\noindent | |
In this section we discuss a spectral sequence relating derived | |
tensor product to the cotangent complex. | |
\begin{lemma} | |
\label{lemma-vanishing-symmetric-powers} | |
Notation and assumptions as in | |
Cohomology on Sites, Example \ref{sites-cohomology-example-category-to-point}. | |
Assume $\mathcal{C}$ has a cosimplicial object as in | |
Cohomology on Sites, Lemma | |
\ref{sites-cohomology-lemma-compute-by-cosimplicial-resolution}. | |
Let $\mathcal{F}$ be a flat $\underline{B}$-module such that | |
$H_0(\mathcal{C}, \mathcal{F}) = 0$. | |
Then $H_l(\mathcal{C}, \text{Sym}_{\underline{B}}^k(\mathcal{F})) = 0$ | |
for $l < k$. | |
\end{lemma} | |
\begin{proof} | |
We drop the subscript ${}_{\underline{B}}$ from tensor products, wedge powers, | |
and symmetric powers. We will prove the lemma by induction on $k$. | |
The cases $k = 0, 1$ follow from the assumptions. If $k > 1$ consider | |
the exact complex | |
$$ | |
\ldots \to | |
\wedge^2\mathcal{F} \otimes \text{Sym}^{k - 2}\mathcal{F} \to | |
\mathcal{F} \otimes \text{Sym}^{k - 1}\mathcal{F} \to | |
\text{Sym}^k\mathcal{F} \to 0 | |
$$ | |
with differentials as in the Koszul complex. If we think of this as a | |
resolution of $\text{Sym}^k\mathcal{F}$, then this gives a first quadrant | |
spectral sequence | |
$$ | |
E_1^{p, q} = | |
H_p(\mathcal{C}, | |
\wedge^{q + 1}\mathcal{F} \otimes \text{Sym}^{k - q - 1}\mathcal{F}) | |
\Rightarrow | |
H_{p + q}(\mathcal{C}, \text{Sym}^k(\mathcal{F})) | |
$$ | |
By Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-eilenberg-zilber} | |
we have | |
$$ | |
L\pi_!(\wedge^{q + 1}\mathcal{F} \otimes \text{Sym}^{k - q - 1}\mathcal{F}) = | |
L\pi_!(\wedge^{q + 1}\mathcal{F}) \otimes_B^\mathbf{L} | |
L\pi_!(\text{Sym}^{k - q - 1}\mathcal{F})) | |
$$ | |
It follows (from the construction of derived tensor products) that | |
the induction hypothesis combined with the vanishing | |
of $H_0(\mathcal{C}, \wedge^{q + 1}(\mathcal{F})) = 0$ will prove what we want. | |
This is true because $\wedge^{q + 1}(\mathcal{F})$ is a quotient | |
of $\mathcal{F}^{\otimes q + 1}$ and | |
$H_0(\mathcal{C}, \mathcal{F}^{\otimes q + 1})$ | |
is a quotient of $H_0(\mathcal{C}, \mathcal{F})^{\otimes q + 1}$ | |
which is zero. | |
\end{proof} | |
\begin{remark} | |
\label{remark-first-homology-symmetric-power} | |
In the situation of Lemma \ref{lemma-vanishing-symmetric-powers} | |
one can show that | |
$H_k(\mathcal{C}, \text{Sym}^k(\mathcal{F})) = | |
\wedge^k_B(H_1(\mathcal{C}, \mathcal{F}))$. | |
Namely, it can be deduced from the proof that | |
$H_k(\mathcal{C}, \text{Sym}^k(\mathcal{F}))$ is the $S_k$-coinvariants | |
of | |
$$ | |
H^{-k}(L\pi_!(\mathcal{F}) \otimes_B^\mathbf{L} | |
L\pi_!(\mathcal{F}) \otimes_B^\mathbf{L} | |
\ldots \otimes_B^\mathbf{L} L\pi_!(\mathcal{F})) = | |
H_1(\mathcal{C}, \mathcal{F})^{\otimes k} | |
$$ | |
Thus our claim is that this action is given by the usual action | |
of $S_k$ on the tensor product multiplied by the sign character. | |
To prove this one has to work through the sign conventions | |
in the definition of the total complex associated to a | |
multi-complex. We omit the verification. | |
\end{remark} | |
\begin{lemma} | |
\label{lemma-map-tors-zero} | |
Let $A$ be a ring. Let $P = A[E]$ be a polynomial ring. | |
Set $I = (e; e \in E) \subset P$. The maps | |
$\text{Tor}_i^P(A, I^{n + 1}) \to \text{Tor}_i^P(A, I^n)$ | |
are zero for all $i$ and $n$. | |
\end{lemma} | |
\begin{proof} | |
Denote $x_e \in P$ the variable corresponding to $e \in E$. | |
A free resolution of $A$ over $P$ is given by the Koszul complex | |
$K_\bullet$ on the $x_e$. Here $K_i$ has basis given by wedges | |
$e_1 \wedge \ldots \wedge e_i$, $e_1, \ldots, e_i \in E$ and $d(e) = x_e$. | |
Thus $K_\bullet \otimes_P I^n = I^nK_\bullet$ computes | |
$\text{Tor}_i^P(A, I^n)$. Observe that everything is graded | |
with $\deg(x_e) = 1$, $\deg(e) = 1$, and $\deg(a) = 0$ for $a \in A$. | |
Suppose $\xi \in I^{n + 1}K_i$ is a cocycle homogeneous of degree $m$. | |
Note that $m \geq i + 1 + n$. Then $\xi = \text{d}\eta$ for some | |
$\eta \in K_{i + 1}$ as $K_\bullet$ is exact in degrees $ > 0$. | |
(The case $i = 0$ is left to the reader.) | |
Now $\deg(\eta) = m \geq i + 1 + n$. Hence writing $\eta$ | |
in terms of the basis we see the coordinates are in $I^n$. | |
Thus $\xi$ maps to zero in the homology of $I^nK_\bullet$ as desired. | |
\end{proof} | |
\begin{theorem}[Quillen spectral sequence] | |
\label{theorem-quillen-spectral-sequence} | |
Let $A \to B$ be a surjective ring map. Consider the sheaf | |
$\Omega = \Omega_{\mathcal{O}/A} \otimes_\mathcal{O} \underline{B}$ of | |
$\underline{B}$-modules on $\mathcal{C}_{B/A}$, see | |
Section \ref{section-compute-L-pi-shriek}. | |
Then there is a spectral sequence with $E_1$-page | |
$$ | |
E_1^{p, q} = | |
H_{- p - q}(\mathcal{C}_{B/A}, \text{Sym}^p_{\underline{B}}(\Omega)) | |
\Rightarrow \text{Tor}^A_{- p - q}(B, B) | |
$$ | |
with $d_r$ of bidegree $(r, -r + 1)$. | |
Moreover, $H_i(\mathcal{C}_{B/A}, \text{Sym}^k_{\underline{B}}(\Omega)) = 0$ | |
for $i < k$. | |
\end{theorem} | |
\begin{proof} | |
Let $I \subset A$ be the kernel of $A \to B$. Let | |
$\mathcal{J} \subset \mathcal{O}$ | |
be the kernel of $\mathcal{O} \to \underline{B}$. Then | |
$I\mathcal{O} \subset \mathcal{J}$. Set | |
$\mathcal{K} = \mathcal{J}/I\mathcal{O}$ and | |
$\overline{\mathcal{O}} = \mathcal{O}/I\mathcal{O}$. | |
\medskip\noindent | |
For every object $U = (P \to B)$ of $\mathcal{C}_{B/A}$ | |
we can choose an isomorphism $P = A[E]$ such that the map | |
$P \to B$ maps each $e \in E$ to zero. Then | |
$J = \mathcal{J}(U) \subset P = \mathcal{O}(U)$ | |
is equal to $J = IP + (e; e \in E)$. Moreover | |
$\overline{\mathcal{O}}(U) = B[E]$ and $K = \mathcal{K}(U) = (e; e \in E)$ | |
is the ideal generated by the variables in the polynomial ring $B[E]$. | |
In particular it is clear that | |
$$ | |
K/K^2 \xrightarrow{\text{d}} \Omega_{P/A} \otimes_P B | |
$$ | |
is a bijection. In other words, $\Omega = \mathcal{K}/\mathcal{K}^2$ | |
and $\text{Sym}_B^k(\Omega) = \mathcal{K}^k/\mathcal{K}^{k + 1}$. | |
Note that $\pi_!(\Omega) = \Omega_{B/A} = 0$ (Lemma \ref{lemma-identify-H0}) | |
as $A \to B$ is surjective | |
(Algebra, Lemma \ref{algebra-lemma-trivial-differential-surjective}). | |
By Lemma \ref{lemma-vanishing-symmetric-powers} we conclude that | |
$$ | |
H_i(\mathcal{C}_{B/A}, \mathcal{K}^k/\mathcal{K}^{k + 1}) = | |
H_i(\mathcal{C}_{B/A}, \text{Sym}^k_{\underline{B}}(\Omega)) = 0 | |
$$ | |
for $i < k$. This proves the final statement of the theorem. | |
\medskip\noindent | |
The approach to the theorem is to note that | |
$$ | |
B \otimes_A^\mathbf{L} B = L\pi_!(\mathcal{O}) \otimes_A^\mathbf{L} B = | |
L\pi_!(\mathcal{O} \otimes_{\underline{A}}^\mathbf{L} \underline{B}) = | |
L\pi_!(\overline{\mathcal{O}}) | |
$$ | |
The first equality by Lemma \ref{lemma-apply-O-B-comparison}, | |
the second equality by | |
Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-change-of-rings}, and | |
the third equality as $\mathcal{O}$ is flat over $\underline{A}$. | |
The sheaf $\overline{\mathcal{O}}$ has a filtration | |
$$ | |
\ldots \subset | |
\mathcal{K}^3 \subset | |
\mathcal{K}^2 \subset | |
\mathcal{K} \subset | |
\overline{\mathcal{O}} | |
$$ | |
This induces a filtration $F$ on a complex $C$ representing | |
$L\pi_!(\overline{\mathcal{O}})$ with $F^pC$ representing | |
$L\pi_!(\mathcal{K}^p)$ (construction of $C$ and $F$ omitted). | |
Consider the spectral sequence of | |
Homology, Section \ref{homology-section-filtered-complex} | |
associated to $(C, F)$. It has $E_1$-page | |
$$ | |
E_1^{p, q} = H_{- p - q}(\mathcal{C}_{B/A}, \mathcal{K}^p/\mathcal{K}^{p + 1}) | |
\quad\Rightarrow\quad | |
H_{- p - q}(\mathcal{C}_{B/A}, \overline{\mathcal{O}}) = | |
\text{Tor}_{- p - q}^A(B, B) | |
$$ | |
and differentials $E_r^{p, q} \to E_r^{p + r, q - r + 1}$. To show convergence | |
we will show that for every $k$ there exists a $c$ such that | |
$H_i(\mathcal{C}_{B/A}, \mathcal{K}^n) = 0$ | |
for $i < k$ and $n > c$\footnote{A posteriori | |
the ``correct'' vanishing $H_i(\mathcal{C}_{B/A}, \mathcal{K}^n) = 0$ for | |
$i < n$ can be concluded.}. | |
\medskip\noindent | |
Given $k \geq 0$ set $c = k^2$. We claim that | |
$$ | |
H_i(\mathcal{C}_{B/A}, \mathcal{K}^{n + c}) \to | |
H_i(\mathcal{C}_{B/A}, \mathcal{K}^n) | |
$$ | |
is zero for $i < k$ and all $n \geq 0$. Note that | |
$\mathcal{K}^n/\mathcal{K}^{n + c}$ has a finite filtration whose successive | |
quotients $\mathcal{K}^m/\mathcal{K}^{m + 1}$, $n \leq m < n + c$ | |
have $H_i(\mathcal{C}_{B/A}, \mathcal{K}^m/\mathcal{K}^{m + 1}) = 0$ | |
for $i < n$ (see above). Hence the claim implies | |
$H_i(\mathcal{C}_{B/A}, \mathcal{K}^{n + c}) = 0$ for $i < k$ and all | |
$n \geq k$ which is what we need to show. | |
\medskip\noindent | |
Proof of the claim. Recall that for any $\mathcal{O}$-module $\mathcal{F}$ | |
the map $\mathcal{F} \to \mathcal{F} \otimes_\mathcal{O}^\mathbf{L} B$ | |
induces an isomorphism on applying $L\pi_!$, see | |
Lemma \ref{lemma-O-homology-B-homology}. | |
Consider the map | |
$$ | |
\mathcal{K}^{n + k} \otimes_\mathcal{O}^\mathbf{L} B | |
\longrightarrow | |
\mathcal{K}^n \otimes_\mathcal{O}^\mathbf{L} B | |
$$ | |
We claim that this map induces the zero map on cohomology sheaves | |
in degrees $0, -1, \ldots, - k + 1$. If this second claim holds, then | |
the $k$-fold composition | |
$$ | |
\mathcal{K}^{n + c} \otimes_\mathcal{O}^\mathbf{L} B | |
\longrightarrow | |
\mathcal{K}^n \otimes_\mathcal{O}^\mathbf{L} B | |
$$ | |
factors through $\tau_{\leq -k}\mathcal{K}^n \otimes_\mathcal{O}^\mathbf{L} B$ | |
hence induces zero on $H_i(\mathcal{C}_{B/A}, -) = L_i\pi_!( - )$ | |
for $i < k$, see | |
Derived Categories, Lemma \ref{derived-lemma-trick-vanishing-composition}. | |
By the remark above this means the same thing is true for | |
$H_i(\mathcal{C}_{B/A}, \mathcal{K}^{n + c}) \to | |
H_i(\mathcal{C}_{B/A}, \mathcal{K}^n)$ | |
which proves the (first) claim. | |
\medskip\noindent | |
Proof of the second claim. The statement is local, hence we may work | |
over an object $U = (P \to B)$ as above. We have to show | |
the maps | |
$$ | |
\text{Tor}_i^P(B, K^{n + k}) \to \text{Tor}_i^P(B, K^n) | |
$$ | |
are zero for $i < k$. There is a spectral sequence | |
$$ | |
\text{Tor}_a^P(P/IP, \text{Tor}_b^{P/IP}(B, K^n)) | |
\Rightarrow | |
\text{Tor}_{a + b}^P(B, K^n), | |
$$ | |
see More on Algebra, Example \ref{more-algebra-example-tor-change-rings}. | |
Thus it suffices to prove the maps | |
$$ | |
\text{Tor}_i^{P/IP}(B, K^{n + 1}) \to \text{Tor}_i^{P/IP}(B, K^n) | |
$$ | |
are zero for all $i$. This is Lemma \ref{lemma-map-tors-zero}. | |
\end{proof} | |
\begin{remark} | |
\label{remark-elucidate-ss} | |
In the situation of Theorem \ref{theorem-quillen-spectral-sequence} | |
let $I = \Ker(A \to B)$. Then | |
$H^{-1}(L_{B/A}) = H_1(\mathcal{C}_{B/A}, \Omega) = I/I^2$, see | |
Lemma \ref{lemma-surjection}. | |
Hence $H_k(\mathcal{C}_{B/A}, \text{Sym}^k(\Omega)) = \wedge^k_B(I/I^2)$ by | |
Remark \ref{remark-first-homology-symmetric-power}. Thus the | |
$E_1$-page looks like | |
$$ | |
\begin{matrix} | |
B \\ | |
0 \\ | |
0 & I/I^2 \\ | |
0 & H^{-2}(L_{B/A}) \\ | |
0 & H^{-3}(L_{B/A}) & \wedge^2(I/I^2) \\ | |
0 & H^{-4}(L_{B/A}) & H_3(\mathcal{C}_{B/A}, \text{Sym}^2(\Omega)) \\ | |
0 & H^{-5}(L_{B/A}) & H_4(\mathcal{C}_{B/A}, \text{Sym}^2(\Omega)) & | |
\wedge^3(I/I^2) | |
\end{matrix} | |
$$ | |
with horizontal differential. Thus we obtain edge maps | |
$\text{Tor}_i^A(B, B) \to H^{-i}(L_{B/A})$, $i > 0$ and | |
$\wedge^i_B(I/I^2) \to \text{Tor}_i^A(B, B)$. Finally, we have | |
$\text{Tor}_1^A(B, B) = I/I^2$ and there is a | |
five term exact sequence | |
$$ | |
\text{Tor}_3^A(B, B) \to H^{-3}(L_{B/A}) \to \wedge^2_B(I/I^2) \to | |
\text{Tor}_2^A(B, B) \to H^{-2}(L_{B/A}) \to 0 | |
$$ | |
of low degree terms. | |
\end{remark} | |
\begin{remark} | |
\label{remark-elucidate-degree-two} | |
Let $A \to B$ be a ring map. Let $P_\bullet$ be a resolution of | |
$B$ over $A$ (Remark \ref{remark-resolution}). | |
Set $J_n = \Ker(P_n \to B)$. Note that | |
$$ | |
\text{Tor}_2^{P_n}(B, B) = | |
\text{Tor}_1^{P_n}(J_n, B) = | |
\Ker(J_n \otimes_{P_n} J_n \to J_n^2). | |
$$ | |
Hence $H_2(L_{B/A})$ is canonically equal to | |
$$ | |
\Coker(\text{Tor}_2^{P_1}(B, B) \to \text{Tor}_2^{P_0}(B, B)) | |
$$ | |
by Remark \ref{remark-surjection}. To make this more explicit we choose | |
$P_2$, $P_1$, $P_0$ as in Example \ref{example-resolution-length-two}. | |
We claim that | |
$$ | |
\text{Tor}_2^{P_1}(B, B) = | |
\wedge^2(\bigoplus\nolimits_{t \in T} B)\ \oplus | |
\ \bigoplus\nolimits_{t \in T} J_0\ \oplus | |
\ \text{Tor}_2^{P_0}(B, B) | |
$$ | |
Namely, the basis elements $x_t \wedge x_{t'}$ of the first summand | |
corresponds to the element $x_t \otimes x_{t'} - x_{t'} \otimes x_t$ | |
of $J_1 \otimes_{P_1} J_1$. For $f \in J_0$ the element $x_t \otimes f$ | |
of the second summand corresponds to the element | |
$x_t \otimes s_0(f) - s_0(f) \otimes x_t$ of $J_1 \otimes_{P_1} J_1$. | |
Finally, the map $\text{Tor}_2^{P_0}(B, B) \to \text{Tor}_2^{P_1}(B, B)$ | |
is given by $s_0$. The map | |
$d_0 - d_1 : \text{Tor}_2^{P_1}(B, B) \to \text{Tor}_2^{P_0}(B, B)$ | |
is zero on the last summand, maps $x_t \otimes f$ to | |
$f \otimes f_t - f_t \otimes f$, and maps $x_t \wedge x_{t'}$ | |
to $f_t \otimes f_{t'} - f_{t'} \otimes f_t$. All in all we conclude | |
that there is an exact sequence | |
$$ | |
\wedge^2_B(J_0/J_0^2) \to \text{Tor}_2^{P_0}(B, B) \to H^{-2}(L_{B/A}) \to 0 | |
$$ | |
In this way we obtain a direct proof of a consequence of Quillen's spectral | |
sequence discussed in Remark \ref{remark-elucidate-ss}. | |
\end{remark} | |
\section{Comparison with Lichtenbaum-Schlessinger} | |
\label{section-compare-higher} | |
\noindent | |
Let $A \to B$ be a ring map. In \cite{Lichtenbaum-Schlessinger} | |
there is a fairly explicit determination of $\tau_{\geq -2}L_{B/A}$ | |
which is often used in calculations of versal deformation spaces of | |
singularities. The construction follows. | |
Choose a polynomial algebra $P$ over $A$ | |
and a surjection $P \to B$ with kernel $I$. Choose generators | |
$f_t$, $t \in T$ for $I$ which induces a surjection | |
$F = \bigoplus_{t \in T} P \to I$ with $F$ a free $P$-module. | |
Let $Rel \subset F$ be the kernel of $F \to I$, in other words | |
$Rel$ is the set of relations among the $f_t$. Let $TrivRel \subset Rel$ | |
be the submodule of trivial relations, i.e., the submodule of $Rel$ | |
generated by the elements $(\ldots, f_{t'}, 0, \ldots, 0, -f_t, 0, \ldots)$. | |
Consider the complex of $B$-modules | |
\begin{equation} | |
\label{equation-lichtenbaum-schlessinger} | |
Rel/TrivRel \longrightarrow | |
F \otimes_P B \longrightarrow | |
\Omega_{P/A} \otimes_P B | |
\end{equation} | |
where the last term is placed in degree $0$. The first map is the obvious | |
one and the second map sends the basis element corresponding to $t \in T$ | |
to $\text{d}f_t \otimes 1$. | |
\begin{definition} | |
\label{definition-biderivation} | |
Let $A \to B$ be a ring map. Let $M$ be a $(B, B)$-bimodule | |
over $A$. An {\it $A$-biderivation} is an $A$-linear map $\lambda : B \to M$ | |
such that $\lambda(xy) = x\lambda(y) + \lambda(x)y$. | |
\end{definition} | |
\noindent | |
For a polynomial algebra the biderivations are easy to describe. | |
\begin{lemma} | |
\label{lemma-polynomial-ring-unique} | |
Let $P = A[S]$ be a polynomial ring over $A$. Let $M$ be a $(P, P)$-bimodule | |
over $A$. Given $m_s \in M$ for $s \in S$, there exists a unique | |
$A$-biderivation $\lambda : P \to M$ mapping $s$ to $m_s$ for $s \in S$. | |
\end{lemma} | |
\begin{proof} | |
We set | |
$$ | |
\lambda(s_1 \ldots s_t) = | |
\sum s_1 \ldots s_{i - 1} m_{s_i} s_{i + 1} \ldots s_t | |
$$ | |
in $M$. Extending by $A$-linearity we obtain a biderivation. | |
\end{proof} | |
\noindent | |
Here is the comparison statement. The reader may also read about this | |
in \cite[page 206, Proposition 12]{Andre-Homologie} or in the paper | |
\cite{Doncel} which extends the complex | |
(\ref{equation-lichtenbaum-schlessinger}) by one term and the comparison | |
to $\tau_{\geq -3}$. | |
\begin{lemma} | |
\label{lemma-compare-higher} | |
In the situation above denote $L$ the complex | |
(\ref{equation-lichtenbaum-schlessinger}). | |
There is a canonical map $L_{B/A} \to L$ in $D(B)$ which | |
induces an isomorphism $\tau_{\geq -2}L_{B/A} \to L$ in $D(B)$. | |
\end{lemma} | |
\begin{proof} | |
Let $P_\bullet \to B$ be a resolution of $B$ over $A$ | |
(Remark \ref{remark-resolution}). We will identify $L_{B/A}$ with | |
$\Omega_{P_\bullet/A} \otimes B$. To construct the map we | |
make some choices. | |
\medskip\noindent | |
Choose an $A$-algebra map $\psi : P_0 \to P$ compatible with the | |
given maps $P_0 \to B$ and $P \to B$. | |
\medskip\noindent | |
Write $P_1 = A[S]$ for some set $S$. For $s \in S$ we may write | |
$$ | |
\psi(d_0(s) - d_1(s)) = \sum p_{s, t} f_t | |
$$ | |
for some $p_{s, t} \in P$. Think of $F = \bigoplus_{t \in T} P$ | |
as a $(P_1, P_1)$-bimodule via the maps $(\psi \circ d_0, \psi \circ d_1)$. | |
By Lemma \ref{lemma-polynomial-ring-unique} we obtain a unique | |
$A$-biderivation $\lambda : P_1 \to F$ mapping $s$ to the vector with | |
coordinates $p_{s, t}$. By construction the composition | |
$$ | |
P_1 \longrightarrow F \longrightarrow P | |
$$ | |
sends $f \in P_1$ to $\psi(d_0(f) - d_1(f))$ because the map | |
$f \mapsto \psi(d_0(f) - d_1(f))$ is an $A$-biderivation agreeing with | |
the composition on generators. | |
\medskip\noindent | |
For $g \in P_2$ we claim that $\lambda(d_0(g) - d_1(g) + d_2(g))$ | |
is an element of $Rel$. Namely, by the last remark of the previous | |
paragraph the image of $\lambda(d_0(g) - d_1(g) + d_2(g))$ in $P$ is | |
$$ | |
\psi((d_0 - d_1)(d_0(g) - d_1(g) + d_2(g))) | |
$$ | |
which is zero by Simplicial, Section \ref{simplicial-section-complexes}). | |
\medskip\noindent | |
The choice of $\psi$ determines a map | |
$$ | |
\text{d}\psi \otimes 1 : | |
\Omega_{P_0/A} \otimes B | |
\longrightarrow | |
\Omega_{P/A} \otimes B | |
$$ | |
Composing $\lambda$ with the map $F \to F \otimes B$ gives a | |
usual $A$-derivation as the two $P_1$-module structures on | |
$F \otimes B$ agree. Thus $\lambda$ determines a map | |
$$ | |
\overline{\lambda} : | |
\Omega_{P_1/A} \otimes B | |
\longrightarrow | |
F \otimes B | |
$$ | |
Finally, We obtain a $B$-linear map | |
$$ | |
q : | |
\Omega_{P_2/A} \otimes B | |
\longrightarrow | |
Rel/TrivRel | |
$$ | |
by mapping $\text{d}g$ to the class of $\lambda(d_0(g) - d_1(g) + d_2(g))$ | |
in the quotient. | |
\medskip\noindent | |
The diagram | |
$$ | |
\xymatrix{ | |
\Omega_{P_3/A} \otimes B \ar[r] \ar[d] & | |
\Omega_{P_2/A} \otimes B \ar[r] \ar[d]_q & | |
\Omega_{P_1/A} \otimes B \ar[r] \ar[d]_{\overline{\lambda}} & | |
\Omega_{P_0/A} \otimes B \ar[d]_{\text{d}\psi \otimes 1} \\ | |
0 \ar[r] & | |
Rel/TrivRel \ar[r] & | |
F \otimes B \ar[r] & | |
\Omega_{P/A} \otimes B | |
} | |
$$ | |
commutes (calculation omitted) and we obtain the map of the lemma. | |
By Remark \ref{remark-explicit-comparison-map} and | |
Lemma \ref{lemma-relation-with-naive-cotangent-complex} we see that this map | |
induces isomorphisms $H_1(L_{B/A}) \to H_1(L)$ and $H_0(L_{B/A}) \to H_0(L)$. | |
\medskip\noindent | |
It remains to see that our map $L_{B/A} \to L$ induces an isomorphism | |
$H_2(L_{B/A}) \to H_2(L)$. Choose a resolution of $B$ over $A$ with | |
$P_0 = P = A[u_i]$ and then $P_1$ and $P_2$ as in | |
Example \ref{example-resolution-length-two}. | |
In Remark \ref{remark-elucidate-degree-two} we have constructed an exact | |
sequence | |
$$ | |
\wedge^2_B(J_0/J_0^2) \to \text{Tor}_2^{P_0}(B, B) \to H^{-2}(L_{B/A}) \to 0 | |
$$ | |
where $P_0 = P$ and $J_0 = \Ker(P \to B) = I$. | |
Calculating the Tor group using the short exact sequences | |
$0 \to I \to P \to B \to 0$ and $0 \to Rel \to F \to I \to 0$ | |
we find that | |
$\text{Tor}_2^P(B, B) = \Ker(Rel \otimes B \to F \otimes B)$. | |
The image of the map $\wedge^2_B(I/I^2) \to \text{Tor}_2^P(B, B)$ | |
under this identification is exactly the image of $TrivRel \otimes B$. | |
Thus we see that $H_2(L_{B/A}) \cong H_2(L)$. | |
\medskip\noindent | |
Finally, we have to check that our map $L_{B/A} \to L$ actually induces | |
this isomorphism. We will use the notation and results discussed in | |
Example \ref{example-resolution-length-two} and | |
Remarks \ref{remark-elucidate-degree-two} and \ref{remark-surjection} | |
without further mention. Pick an element $\xi$ of | |
$\text{Tor}_2^{P_0}(B, B) = \Ker(I \otimes_P I \to I^2)$. | |
Write $\xi = \sum h_{t', t}f_{t'} \otimes f_t$ for some | |
$h_{t', t} \in P$. Tracing through the exact sequences above we | |
find that $\xi$ corresponds to the image in $Rel \otimes B$ | |
of the element $r \in Rel \subset F = \bigoplus_{t \in T} P$ with | |
$t$th coordinate $r_t = \sum_{t' \in T} h_{t', t}f_{t'}$. | |
On the other hand, $\xi$ corresponds to the element of | |
$H_2(L_{B/A}) = H_2(\Omega)$ which is the image | |
via $\text{d} : H_2(\mathcal{J}/\mathcal{J}^2) \to H_2(\Omega)$ | |
of the boundary of $\xi$ under the $2$-extension | |
$$ | |
0 \to | |
\text{Tor}_2^\mathcal{O}(\underline{B}, \underline{B}) | |
\to | |
\mathcal{J} \otimes_\mathcal{O} \mathcal{J} \to \mathcal{J} | |
\to | |
\mathcal{J}/\mathcal{J}^2 \to 0 | |
$$ | |
We compute the successive transgressions of our element. First we have | |
$$ | |
\xi = (d_0 - d_1)(- \sum s_0(h_{t', t} f_{t'}) \otimes x_t) | |
$$ | |
and next we have | |
$$ | |
\sum s_0(h_{t', t} f_{t'}) x_t = d_0(v_r) - d_1(v_r) + d_2(v_r) | |
$$ | |
by our choice of the variables $v$ in | |
Example \ref{example-resolution-length-two}. | |
We may choose our map $\lambda$ above such that | |
$\lambda(u_i) = 0$ and $\lambda(x_t) = - e_t$ where $e_t \in F$ | |
denotes the basis vector corresponding to $t \in T$. | |
Hence the construction of our map $q$ above sends $\text{d}v_r$ to | |
$$ | |
\lambda(\sum s_0(h_{t', t} f_{t'}) x_t) = | |
\sum\nolimits_t \left(\sum\nolimits_{t'} h_{t', t}f_{t'}\right) e_t | |
$$ | |
matching the image of $\xi$ in $Rel \otimes B$ (the two minus signs | |
we found above cancel out). This agreement finishes the proof. | |
\end{proof} | |
\begin{remark}[Functoriality of the Lichtenbaum-Schlessinger complex] | |
\label{remark-functoriality-lichtenbaum-schlessinger} | |
Consider a commutative square | |
$$ | |
\xymatrix{ | |
A' \ar[r] & B' \\ | |
A \ar[u] \ar[r] & B \ar[u] | |
} | |
$$ | |
of ring maps. Choose a factorization | |
$$ | |
\xymatrix{ | |
A' \ar[r] & P' \ar[r] & B' \\ | |
A \ar[u] \ar[r] & P \ar[u] \ar[r] & B \ar[u] | |
} | |
$$ | |
with $P$ a polynomial algebra over $A$ and $P'$ a polynomial algebra over $A'$. | |
Choose generators $f_t$, $t \in T$ for $\Ker(P \to B)$. | |
For $t \in T$ denote $f'_t$ the image of $f_t$ in $P'$. | |
Choose $f'_s \in P'$ such that the elements $f'_t$ for | |
$t \in T' = T \amalg S$ generate the kernel | |
of $P' \to B'$. Set $F = \bigoplus_{t \in T} P$ and | |
$F' = \bigoplus_{t' \in T'} P'$. Let $Rel = \Ker(F \to P)$ | |
and $Rel' = \Ker(F' \to P')$ where the maps are given | |
by multiplication by $f_t$, resp.\ $f'_t$ on the coordinates. | |
Finally, set $TrivRel$, resp.\ $TrivRel'$ equal to the submodule | |
of $Rel$, resp.\ $TrivRel$ generated by the elements | |
$(\ldots, f_{t'}, 0, \ldots, 0, -f_t, 0, \ldots)$ | |
for $t, t' \in T$, resp.\ $T'$. Having made these choices we obtain a | |
canonical commutative diagram | |
$$ | |
\xymatrix{ | |
L' : & | |
Rel'/TrivRel' \ar[r] & | |
F' \otimes_{P'} B' \ar[r] & | |
\Omega_{P'/A'} \otimes_{P'} B' \\ | |
L : \ar[u] & | |
Rel/TrivRel \ar[r] \ar[u] & | |
F \otimes_P B \ar[r] \ar[u] & | |
\Omega_{P/A} \otimes_P B \ar[u] | |
} | |
$$ | |
Moreover, tracing through the choices made in the proof of | |
Lemma \ref{lemma-compare-higher} | |
the reader sees that one obtains a commutative diagram | |
$$ | |
\xymatrix{ | |
L_{B'/A'} \ar[r] & L' \\ | |
L_{B/A} \ar[r] \ar[u] & L \ar[u] | |
} | |
$$ | |
\end{remark} | |
\section{The cotangent complex of a local complete intersection} | |
\label{section-lci} | |
\noindent | |
If $A \to B$ is a local complete intersection map, then | |
$L_{B/A}$ is a perfect complex. The key to proving this is | |
the following lemma. | |
\begin{lemma} | |
\label{lemma-special-case} | |
Let $A = \mathbf{Z}[x_1, \ldots, x_n] \to B = \mathbf{Z}$ | |
be the ring map which sends $x_i$ to $0$ for $i = 1, \ldots, n$. | |
Let $I = (x_1, \ldots, x_n) \subset A$. Then $L_{B/A}$ is quasi-isomorphic to | |
$I/I^2[1]$. | |
\end{lemma} | |
\begin{proof} | |
There are several ways to prove this. For example one can explicitly construct | |
a resolution of $B$ over $A$ and compute. We will use (\ref{equation-triangle}). | |
Namely, consider the distinguished triangle | |
$$ | |
L_{\mathbf{Z}[x_1, \ldots, x_n]/\mathbf{Z}} | |
\otimes_{\mathbf{Z}[x_1, \ldots, x_n]} \mathbf{Z} \to | |
L_{\mathbf{Z}/\mathbf{Z}} \to | |
L_{\mathbf{Z}/\mathbf{Z}[x_1, \ldots, x_n]}\to | |
L_{\mathbf{Z}[x_1, \ldots, x_n]/\mathbf{Z}} | |
\otimes_{\mathbf{Z}[x_1, \ldots, x_n]} \mathbf{Z}[1] | |
$$ | |
The complex $L_{\mathbf{Z}[x_1, \ldots, x_n]/\mathbf{Z}}$ | |
is quasi-isomorphic to $\Omega_{\mathbf{Z}[x_1, \ldots, x_n]/\mathbf{Z}}$ by | |
Lemma \ref{lemma-cotangent-complex-polynomial-algebra}. | |
The complex $L_{\mathbf{Z}/\mathbf{Z}}$ is zero in $D(\mathbf{Z})$ by | |
Lemma \ref{lemma-when-zero}. | |
Thus we see that $L_{B/A}$ has only one nonzero cohomology group | |
which is as described in the lemma by Lemma \ref{lemma-surjection}. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-mod-regular-sequence} | |
Let $A \to B$ be a surjective ring map whose kernel $I$ is generated | |
by a Koszul-regular sequence (for example a regular sequence). | |
Then $L_{B/A}$ is quasi-isomorphic to $I/I^2[1]$. | |
\end{lemma} | |
\begin{proof} | |
Let $f_1, \ldots, f_r \in I$ be a Koszul regular sequence generating $I$. | |
Consider the ring map $\mathbf{Z}[x_1, \ldots, x_r] \to A$ sending | |
$x_i$ to $f_i$. Since $x_1, \ldots, x_r$ is a regular sequence in | |
$\mathbf{Z}[x_1, \ldots, x_r]$ we see that the Koszul complex | |
on $x_1, \ldots, x_r$ is a free resolution of | |
$\mathbf{Z} = \mathbf{Z}[x_1, \ldots, x_r]/(x_1, \ldots, x_r)$ | |
over $\mathbf{Z}[x_1, \ldots, x_r]$ | |
(see More on Algebra, Lemma \ref{more-algebra-lemma-regular-koszul-regular}). | |
Thus the assumption that $f_1, \ldots, f_r$ is Koszul regular | |
exactly means that | |
$B = A \otimes_{\mathbf{Z}[x_1, \ldots, x_r]}^\mathbf{L} \mathbf{Z}$. | |
Hence | |
$L_{B/A} = L_{\mathbf{Z}/\mathbf{Z}[x_1, \ldots, x_r]} | |
\otimes_\mathbf{Z}^\mathbf{L} B$ by | |
Lemmas \ref{lemma-flat-base-change-cotangent-complex} and | |
\ref{lemma-special-case}. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-mod-Koszul-regular-ideal} | |
Let $A \to B$ be a surjective ring map whose kernel $I$ is Koszul. | |
Then $L_{B/A}$ is quasi-isomorphic to $I/I^2[1]$. | |
\end{lemma} | |
\begin{proof} | |
Locally on $\Spec(A)$ the ideal $I$ is generated by a Koszul regular | |
sequence, see More on Algebra, Definition | |
\ref{more-algebra-definition-regular-ideal}. | |
Hence this follows from | |
Lemma \ref{lemma-flat-base-change-cotangent-complex}. | |
\end{proof} | |
\begin{proposition} | |
\label{proposition-cotangent-complex-local-complete-intersection} | |
Let $A \to B$ be a local complete intersection map. | |
Then $L_{B/A}$ is a perfect complex with tor amplitude in $[-1, 0]$. | |
\end{proposition} | |
\begin{proof} | |
Choose a surjection $P = A[x_1, \ldots, x_n] \to B$ with kernel $J$. | |
By Lemma \ref{lemma-relation-with-naive-cotangent-complex} | |
we see that $J/J^2 \to \bigoplus B\text{d}x_i$ | |
is quasi-isomorphic to $\tau_{\geq -1}L_{B/A}$. | |
Note that $J/J^2$ is finite projective | |
(More on Algebra, Lemma | |
\ref{more-algebra-lemma-quasi-regular-ideal-finite-projective}), | |
hence $\tau_{\geq -1}L_{B/A}$ is a perfect complex with | |
tor amplitude in $[-1, 0]$. | |
Thus it suffices to show that $H^i(L_{B/A}) = 0$ for $i \not \in [-1, 0]$. | |
This follows from (\ref{equation-triangle}) | |
$$ | |
L_{P/A} \otimes_P^\mathbf{L} B \to L_{B/A} \to L_{B/P} \to | |
L_{P/A} \otimes_P^\mathbf{L} B[1] | |
$$ | |
and Lemma \ref{lemma-mod-Koszul-regular-ideal} | |
to see that $H^i(L_{B/P})$ is zero unless $i \in \{-1, 0\}$. | |
(We also use Lemma \ref{lemma-cotangent-complex-polynomial-algebra} | |
for the term on the left.) | |
\end{proof} | |
\section{Tensor products and the cotangent complex} | |
\label{section-tensor-product} | |
\noindent | |
Let $R$ be a ring and let $A$, $B$ be $R$-algebras. In this section we | |
discuss $L_{A \otimes_R B/R}$. Most of the information we want is contained | |
in the following diagram | |
\begin{equation} | |
\label{equation-tensor-product} | |
\vcenter{ | |
\xymatrix{ | |
L_{A/R} \otimes_A^\mathbf{L} (A \otimes_R B) \ar[r] & | |
L_{A \otimes_R B/B} \ar[r] & | |
E \\ | |
L_{A/R} \otimes_A^\mathbf{L} (A \otimes_R B) \ar[r] \ar@{=}[u] & | |
L_{A \otimes_R B/R} \ar[r] \ar[u] & | |
L_{A \otimes_R B/A} \ar[u] \\ | |
& | |
L_{B/R} \otimes_B^\mathbf{L} (A \otimes_R B) \ar[u] \ar@{=}[r] & | |
L_{B/R} \otimes_B^\mathbf{L} (A \otimes_R B) \ar[u] | |
} | |
} | |
\end{equation} | |
Explanation: The middle row is the fundamental triangle | |
(\ref{equation-triangle}) for the ring maps $R \to A \to A \otimes_R B$. | |
The middle column is the fundamental triangle | |
(\ref{equation-triangle}) for the ring maps $R \to B \to A \otimes_R B$. | |
Next, $E$ is an object of $D(A \otimes_R B)$ which ``fits'' into the | |
upper right corner, i.e., which turns both the top row | |
and the right column into distinguished triangles. Such an $E$ | |
exists by Derived Categories, Proposition \ref{derived-proposition-9} | |
applied to the lower left square (with $0$ placed in the missing | |
spot). To be more explicit, we could for example define $E$ as the cone | |
(Derived Categories, Definition \ref{derived-definition-cone}) | |
of the map of complexes | |
$$ | |
L_{A/R} \otimes_A^\mathbf{L} (A \otimes_R B) \oplus | |
L_{B/R} \otimes_B^\mathbf{L} (A \otimes_R B) | |
\longrightarrow | |
L_{A \otimes_R B/R} | |
$$ | |
and get the two maps with target $E$ by an application of TR3. | |
In the Tor independent case the object $E$ is zero. | |
\begin{lemma} | |
\label{lemma-tensor-product-tor-independent} | |
If $A$ and $B$ are Tor independent $R$-algebras, then the object $E$ | |
in (\ref{equation-tensor-product}) is zero. In this case we have | |
$$ | |
L_{A \otimes_R B/R} = | |
L_{A/R} \otimes_A^\mathbf{L} (A \otimes_R B) \oplus | |
L_{B/R} \otimes_B^\mathbf{L} (A \otimes_R B) | |
$$ | |
which is represented by the complex | |
$L_{A/R} \otimes_R B \oplus L_{B/R} \otimes_R A $ | |
of $A \otimes_R B$-modules. | |
\end{lemma} | |
\begin{proof} | |
The first two statements are immediate from | |
Lemma \ref{lemma-flat-base-change-cotangent-complex}. | |
The last statement follows as $L_{A/R}$ is a complex | |
of free $A$-modules, hence $L_{A/R} \otimes_A^\mathbf{L} (A \otimes_R B)$ | |
is represented by | |
$L_{A/R} \otimes_A (A \otimes_R B) = L_{A/R} \otimes_R B$ | |
\end{proof} | |
\noindent | |
In general we can say this about the object $E$. | |
\begin{lemma} | |
\label{lemma-tensor-product} | |
Let $R$ be a ring and let $A$, $B$ be $R$-algebras. The object $E$ | |
in (\ref{equation-tensor-product}) satisfies | |
$$ | |
H^i(E) = | |
\left\{ | |
\begin{matrix} | |
0 & \text{if} & i \geq -1 \\ | |
\text{Tor}_1^R(A, B) & \text{if} & i = -2 | |
\end{matrix} | |
\right. | |
$$ | |
\end{lemma} | |
\begin{proof} | |
We use the description of $E$ as the cone on | |
$L_{B/R} \otimes_B^\mathbf{L} (A \otimes_R B) \to L_{A \otimes_R B/A}$. | |
By Lemma \ref{lemma-compare-higher} the canonical truncations | |
$\tau_{\geq -2}L_{B/R}$ and $\tau_{\geq -2}L_{A \otimes_R B/A}$ | |
are computed by the Lichtenbaum-Schlessinger complex | |
(\ref{equation-lichtenbaum-schlessinger}). | |
These isomorphisms are compatible with functoriality | |
(Remark \ref{remark-functoriality-lichtenbaum-schlessinger}). | |
Thus in this proof we work with the Lichtenbaum-Schlessinger complexes. | |
\medskip\noindent | |
Choose a polynomial algebra $P$ over $R$ and a surjection $P \to B$. | |
Choose generators $f_t \in P$, $t \in T$ of the kernel of this surjection. | |
Let $Rel \subset F = \bigoplus_{t \in T} P$ be the kernel of the map | |
$F \to P$ which maps the basis vector corresponding to $t$ to $f_t$. | |
Set $P_A = A \otimes_R P$ and $F_A = A \otimes_R F = P_A \otimes_P F$. | |
Let $Rel_A$ be the kernel of the map $F_A \to P_A$. Using the exact sequence | |
$$ | |
0 \to Rel \to F \to P \to B \to 0 | |
$$ | |
and standard short exact sequences for Tor we obtain an exact sequence | |
$$ | |
A \otimes_R Rel \to Rel_A \to \text{Tor}_1^R(A, B) \to 0 | |
$$ | |
Note that $P_A \to A \otimes_R B$ is a surjection whose kernel is generated | |
by the elements $1 \otimes f_t$ in $P_A$. Denote $TrivRel_A \subset Rel_A$ | |
the $P_A$-submodule generated by the elements | |
$(\ldots, 1 \otimes f_{t'}, 0, \ldots, | |
0, - 1 \otimes f_t \otimes 1, 0, \ldots)$. | |
Since $TrivRel \otimes_R A \to TrivRel_A$ is surjective, we find a | |
canonical exact sequence | |
$$ | |
A \otimes_R (Rel/TrivRel) \to Rel_A/TrivRel_A \to \text{Tor}_1^R(A, B) \to 0 | |
$$ | |
The map of Lichtenbaum-Schlessinger complexes is given by the diagram | |
$$ | |
\xymatrix{ | |
Rel_A/TrivRel_A \ar[r] & | |
F_A \otimes_{P_A} (A \otimes_R B) \ar[r] & | |
\Omega_{P_A/A \otimes_R B} \otimes_{P_A} (A \otimes_R B) \\ | |
Rel/TrivRel \ar[r] \ar[u]_{-2} & | |
F \otimes_P B \ar[r] \ar[u]_{-1} & | |
\Omega_{P/A} \otimes_P B \ar[u]_0 | |
} | |
$$ | |
Note that vertical maps $-1$ and $-0$ induce an isomorphism after applying | |
the functor $A \otimes_R - = P_A \otimes_P -$ to the source and the vertical | |
map $-2$ gives exactly the map whose cokernel is the desired Tor module | |
as we saw above. | |
\end{proof} | |
\section{Deformations of ring maps and the cotangent complex} | |
\label{section-deformations} | |
\noindent | |
This section is the continuation of | |
Deformation Theory, Section \ref{defos-section-deformations} | |
which we urge the reader to read first. | |
We start with a surjective ring map $A' \to A$ | |
whose kernel is an ideal $I$ of square zero. Moreover we assume | |
given a ring map $A \to B$, a $B$-module $N$, and an $A$-module map | |
$c : I \to N$. In this section we ask ourselves whether we can find | |
the question mark fitting into the following diagram | |
\begin{equation} | |
\label{equation-to-solve} | |
\vcenter{ | |
\xymatrix{ | |
0 \ar[r] & N \ar[r] & {?} \ar[r] & B \ar[r] & 0 \\ | |
0 \ar[r] & I \ar[u]^c \ar[r] & A' \ar[u] \ar[r] & A \ar[u] \ar[r] & 0 | |
} | |
} | |
\end{equation} | |
and moreover how unique the solution is (if it exists). More precisely, | |
we look for a surjection of $A'$-algebras $B' \to B$ whose kernel is | |
an ideal of square zero and is | |
identified with $N$ such that $A' \to B'$ induces the given map $c$. | |
We will say $B'$ is a {\it solution} to (\ref{equation-to-solve}). | |
\begin{lemma} | |
\label{lemma-find-obstruction} | |
In the situation above we have | |
\begin{enumerate} | |
\item There is a canonical element $\xi \in \Ext^2_B(L_{B/A}, N)$ | |
whose vanishing is a sufficient and necessary condition for the existence | |
of a solution to (\ref{equation-to-solve}). | |
\item If there exists a solution, then the set of | |
isomorphism classes of solutions is principal homogeneous under | |
$\Ext^1_B(L_{B/A}, N)$. | |
\item Given a solution $B'$, the set of automorphisms of $B'$ | |
fitting into (\ref{equation-to-solve}) is canonically isomorphic | |
to $\Ext^0_B(L_{B/A}, N)$. | |
\end{enumerate} | |
\end{lemma} | |
\begin{proof} | |
Via the identifications $\NL_{B/A} = \tau_{\geq -1}L_{B/A}$ | |
(Lemma \ref{lemma-relation-with-naive-cotangent-complex}) and | |
$H^0(L_{B/A}) = \Omega_{B/A}$ (Lemma \ref{lemma-identify-H0}) | |
we have seen parts (2) and (3) in | |
Deformation Theory, Lemmas \ref{defos-lemma-huge-diagram} and | |
\ref{defos-lemma-choices}. | |
\medskip\noindent | |
Proof of (1). Roughly speaking, this follows from the discussion in | |
Deformation Theory, Remark \ref{defos-remark-parametrize-solutions} | |
by replacing the naive cotangent complex by the full cotangent complex. | |
Here is a more detailed explanation. By | |
Deformation Theory, Lemma \ref{defos-lemma-parametrize-solutions} | |
and Remark \ref{defos-remark-parametrize-solutions} | |
there exists an element | |
$$ | |
\xi' \in | |
\Ext^1_A(\NL_{A/A'}, N) = | |
\Ext^1_B(\NL_{A/A'} \otimes_A^\mathbf{L} B, N) = | |
\Ext^1_B(L_{A/A'} \otimes_A^\mathbf{L} B, N) | |
$$ | |
(for the equalities see Deformation Theory, Remark | |
\ref{defos-remark-parametrize-solutions} and use that | |
$\NL_{A'/A} = \tau_{\geq -1} L_{A'/A}$) | |
such that a solution exists if and only if this element is in | |
the image of the map | |
$$ | |
\Ext^1_B(\NL_{B/A'}, N) = \Ext^1_B(L_{B/A'}, N) | |
\longrightarrow | |
\Ext^1_B(L_{A/A'} \otimes_A^\mathbf{L} B, N) | |
$$ | |
The distinguished triangle (\ref{equation-triangle}) | |
for $A' \to A \to B$ gives rise to a long exact sequence | |
$$ | |
\ldots \to | |
\Ext^1_B(L_{B/A'}, N) \to | |
\Ext^1_B(L_{A/A'} \otimes_A^\mathbf{L} B, N) \to | |
\Ext^2_B(L_{B/A}, N) \to \ldots | |
$$ | |
Hence taking $\xi$ the image of $\xi'$ works. | |
\end{proof} | |
\section{The Atiyah class of a module} | |
\label{section-atiyah} | |
\noindent | |
Let $A \to B$ be a ring map. Let $M$ be a $B$-module. | |
Let $P \to B$ be an object of $\mathcal{C}_{B/A}$ | |
(Section \ref{section-compute-L-pi-shriek}). | |
Consider the extension of principal parts | |
$$ | |
0 \to \Omega_{P/A} \otimes_P M \to P^1_{P/A}(M) \to M \to 0 | |
$$ | |
see Algebra, Lemma \ref{algebra-lemma-sequence-of-principal-parts}. | |
This sequence is functorial in $P$ by | |
Algebra, Remark \ref{algebra-remark-functoriality-principal-parts}. | |
Thus we obtain a short exact sequence of sheaves of $\mathcal{O}$-modules | |
$$ | |
0 \to \Omega_{\mathcal{O}/\underline{A}} \otimes_\mathcal{O} \underline{M} \to | |
P^1_{\mathcal{O}/\underline{A}}(M) \to \underline{M} \to 0 | |
$$ | |
on $\mathcal{C}_{B/A}$. We have | |
$L\pi_!(\Omega_{\mathcal{O}/\underline{A}} \otimes_\mathcal{O} \underline{M}) | |
= L_{B/A} \otimes_B M = L_{B/A} \otimes_B^\mathbf{L} M$ | |
by Lemma \ref{lemma-pi-shriek-standard} and the flatness of | |
the terms of $L_{B/A}$. | |
We have $L\pi_!(\underline{M}) = M$ by | |
Lemma \ref{lemma-pi-lower-shriek-constant-sheaf}. | |
Thus a distinguished triangle | |
\begin{equation} | |
\label{equation-atiyah} | |
L_{B/A} \otimes_B^\mathbf{L} M \to | |
L\pi_!\left(P^1_{\mathcal{O}/\underline{A}}(M)\right) \to M | |
\to L_{B/A} \otimes_B^\mathbf{L} M [1] | |
\end{equation} | |
in $D(B)$. Here we use Cohomology on Sites, Remark | |
\ref{sites-cohomology-remark-O-homology-B-homology-general} | |
to get a distinguished triangle in $D(B)$ and not just in $D(A)$. | |
\begin{definition} | |
\label{definition-atiyah-class} | |
Let $A \to B$ be a ring map. Let $M$ be a $B$-module. | |
The map $M \to L_{B/A} \otimes_B^\mathbf{L} M[1]$ | |
in (\ref{equation-atiyah}) is called the {\it Atiyah class} of $M$. | |
\end{definition} | |
\section{The cotangent complex} | |
\label{section-cotangent-complex} | |
\noindent | |
In this section we discuss the cotangent complex of a map of sheaves | |
of rings on a site. In later sections we specialize this to obtain | |
the cotangent complex of a morphism of ringed topoi, a morphism of | |
ringed spaces, a morphism of schemes, a morphism of algebraic space, etc. | |
\medskip\noindent | |
Let $\mathcal{C}$ be a site and let $\Sh(\mathcal{C})$ denote the | |
associated topos. Let $\mathcal{A}$ denote a sheaf of rings | |
on $\mathcal{C}$. Let $\mathcal{A}\textit{-Alg}$ be the category of | |
$\mathcal{A}$-algebras. Consider the pair of adjoint functors $(U, V)$ where | |
$V : \mathcal{A}\textit{-Alg} \to \Sh(\mathcal{C})$ is the forgetful functor and | |
$U : \Sh(\mathcal{C}) \to \mathcal{A}\textit{-Alg}$ assigns to a sheaf of sets | |
$\mathcal{E}$ the polynomial algebra $\mathcal{A}[\mathcal{E}]$ on | |
$\mathcal{E}$ over $\mathcal{A}$. | |
Let $X_\bullet$ be the simplicial object of | |
$\text{Fun}(\mathcal{A}\textit{-Alg}, \mathcal{A}\textit{-Alg})$ | |
constructed in | |
Simplicial, Section \ref{simplicial-section-standard}. | |
\medskip\noindent | |
Now assume that $\mathcal{A} \to \mathcal{B}$ is a homomorphism of sheaves | |
of rings. Then $\mathcal{B}$ is an object of the category | |
$\mathcal{A}\textit{-Alg}$. Denote | |
$\mathcal{P}_\bullet = X_\bullet(\mathcal{B})$ the resulting | |
simplicial $\mathcal{A}$-algebra. | |
Recall that | |
$\mathcal{P}_0 = \mathcal{A}[\mathcal{B}]$, | |
$\mathcal{P}_1 = \mathcal{A}[\mathcal{A}[\mathcal{B}]]$, and so on. | |
Recall also that there is an augmentation | |
$$ | |
\epsilon : \mathcal{P}_\bullet \longrightarrow \mathcal{B} | |
$$ | |
where we view $\mathcal{B}$ as a constant simplicial $\mathcal{A}$-algebra. | |
\begin{definition} | |
\label{definition-standard-resolution-sheaves-rings} | |
Let $\mathcal{C}$ be a site. | |
Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings | |
on $\mathcal{C}$. The {\it standard resolution of $\mathcal{B}$ over | |
$\mathcal{A}$} is the augmentation | |
$\epsilon : \mathcal{P}_\bullet \to \mathcal{B}$ | |
with terms | |
$$ | |
\mathcal{P}_0 = \mathcal{A}[\mathcal{B}],\quad | |
\mathcal{P}_1 = \mathcal{A}[\mathcal{A}[\mathcal{B}]],\quad \ldots | |
$$ | |
and maps as constructed above. | |
\end{definition} | |
\noindent | |
With this definition in hand the cotangent complex of a map of sheaves | |
of rings is defined as follows. | |
We will use the module of differentials as defined in | |
Modules on Sites, Section \ref{sites-modules-section-differentials}. | |
\begin{definition} | |
\label{definition-cotangent-complex-morphism-sheaves-rings} | |
Let $\mathcal{C}$ be a site. | |
Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings | |
on $\mathcal{C}$. | |
The {\it cotangent complex} $L_{\mathcal{B}/\mathcal{A}}$ | |
is the complex of $\mathcal{B}$-modules associated to the | |
simplicial module | |
$$ | |
\Omega_{\mathcal{P}_\bullet/\mathcal{A}} | |
\otimes_{\mathcal{P}_\bullet, \epsilon} \mathcal{B} | |
$$ | |
where $\epsilon : \mathcal{P}_\bullet \to \mathcal{B}$ | |
is the standard resolution of $\mathcal{B}$ over | |
$\mathcal{A}$. We usually think of $L_{\mathcal{B}/\mathcal{A}}$ | |
as an object of $D(\mathcal{B})$. | |
\end{definition} | |
\noindent | |
These constructions satisfy a functoriality similar to that discussed | |
in Section \ref{section-functoriality}. Namely, given a commutative diagram | |
\begin{equation} | |
\label{equation-commutative-square-sheaves} | |
\vcenter{ | |
\xymatrix{ | |
\mathcal{B} \ar[r] & \mathcal{B}' \\ | |
\mathcal{A} \ar[u] \ar[r] & \mathcal{A}' \ar[u] | |
} | |
} | |
\end{equation} | |
of sheaves of rings on $\mathcal{C}$ there is a canonical | |
$\mathcal{B}$-linear map of complexes | |
$$ | |
L_{\mathcal{B}/\mathcal{A}} \longrightarrow L_{\mathcal{B}'/\mathcal{A}'} | |
$$ | |
constructed as follows. If $\mathcal{P}_\bullet \to \mathcal{B}$ is the | |
standard resolution of $\mathcal{B}$ over $\mathcal{A}$ and | |
$\mathcal{P}'_\bullet \to \mathcal{B}'$ is the | |
standard resolution of $\mathcal{B}'$ over $\mathcal{A}'$, | |
then there is a canonical map $\mathcal{P}_\bullet \to \mathcal{P}'_\bullet$ | |
of simplicial $\mathcal{A}$-algebras compatible with the augmentations | |
$\mathcal{P}_\bullet \to \mathcal{B}$ and | |
$\mathcal{P}'_\bullet \to \mathcal{B}'$. The maps | |
$$ | |
\mathcal{P}_0 = \mathcal{A}[\mathcal{B}] | |
\longrightarrow | |
\mathcal{A}'[\mathcal{B}'] = \mathcal{P}'_0, | |
\quad | |
\mathcal{P}_1 = \mathcal{A}[\mathcal{A}[\mathcal{B}]] | |
\longrightarrow | |
\mathcal{A}'[\mathcal{A}'[\mathcal{B}']] = \mathcal{P}'_1 | |
$$ | |
and so on are given by the given maps $\mathcal{A} \to \mathcal{A}'$ | |
and $\mathcal{B} \to \mathcal{B}'$. The desired map | |
$L_{\mathcal{B}/\mathcal{A}} \to L_{\mathcal{B}'/\mathcal{A}'}$ | |
then comes from the associated maps on sheaves of differentials. | |
\begin{lemma} | |
\label{lemma-pullback-cotangent-morphism-topoi} | |
Let $f : \Sh(\mathcal{D}) \to \Sh(\mathcal{C})$ be a morphism of topoi. | |
Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings | |
on $\mathcal{C}$. Then | |
$f^{-1}L_{\mathcal{B}/\mathcal{A}} = L_{f^{-1}\mathcal{B}/f^{-1}\mathcal{A}}$. | |
\end{lemma} | |
\begin{proof} | |
The diagram | |
$$ | |
\xymatrix{ | |
\mathcal{A}\textit{-Alg} \ar[d]_{f^{-1}} \ar[r] & | |
\Sh(\mathcal{C}) \ar@<1ex>[l] \ar[d]^{f^{-1}} \\ | |
f^{-1}\mathcal{A}\textit{-Alg} \ar[r] & \Sh(\mathcal{D}) \ar@<1ex>[l] | |
} | |
$$ | |
commutes. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-compute-L-morphism-sheaves-rings} | |
Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ be a | |
homomorphism of sheaves of rings on $\mathcal{C}$. Then | |
$H^i(L_{\mathcal{B}/\mathcal{A}})$ is the sheaf associated to the | |
presheaf $U \mapsto H^i(L_{\mathcal{B}(U)/\mathcal{A}(U)})$. | |
\end{lemma} | |
\begin{proof} | |
Let $\mathcal{C}'$ be the site we get by endowing $\mathcal{C}$ with the | |
chaotic topology (presheaves are sheaves). There is a morphism of topoi | |
$f : \Sh(\mathcal{C}) \to \Sh(\mathcal{C}')$ where $f_*$ is the inclusion | |
of sheaves into presheaves and $f^{-1}$ is sheafification. | |
By Lemma \ref{lemma-pullback-cotangent-morphism-topoi} | |
it suffices to prove the result for $\mathcal{C}'$, i.e., | |
in case $\mathcal{C}$ has the chaotic topology. | |
\medskip\noindent | |
If $\mathcal{C}$ carries the chaotic topology, then | |
$L_{\mathcal{B}/\mathcal{A}}(U)$ is equal to | |
$L_{\mathcal{B}(U)/\mathcal{A}(U)}$ because | |
$$ | |
\xymatrix{ | |
\mathcal{A}\textit{-Alg} \ar[d]_{\text{sections over }U} \ar[r] & | |
\Sh(\mathcal{C}) \ar@<1ex>[l] \ar[d]^{\text{sections over }U} \\ | |
\mathcal{A}(U)\textit{-Alg} \ar[r] & \textit{Sets} \ar@<1ex>[l] | |
} | |
$$ | |
commutes. | |
\end{proof} | |
\begin{remark} | |
\label{remark-map-sections-over-U} | |
It is clear from the proof of | |
Lemma \ref{lemma-compute-L-morphism-sheaves-rings} | |
that for any $U \in \Ob(\mathcal{C})$ there is a canonical map | |
$L_{\mathcal{B}(U)/\mathcal{A}(U)} \to L_{\mathcal{B}/\mathcal{A}}(U)$ | |
of complexes of $\mathcal{B}(U)$-modules. Moreover, these maps | |
are compatible with restriction maps and the complex | |
$L_{\mathcal{B}/\mathcal{A}}$ | |
is the sheafification of the rule $U \mapsto L_{\mathcal{B}(U)/\mathcal{A}(U)}$. | |
\end{remark} | |
\begin{lemma} | |
\label{lemma-H0-L-morphism-sheaves-rings} | |
Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ be a | |
homomorphism of sheaves of rings on $\mathcal{C}$. Then | |
$H^0(L_{\mathcal{B}/\mathcal{A}}) = \Omega_{\mathcal{B}/\mathcal{A}}$. | |
\end{lemma} | |
\begin{proof} | |
Follows from Lemmas \ref{lemma-compute-L-morphism-sheaves-rings} | |
and \ref{lemma-identify-H0} and | |
Modules on Sites, Lemma \ref{sites-modules-lemma-differentials-sheafify}. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-compute-L-product-sheaves-rings} | |
Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ | |
and $\mathcal{A} \to \mathcal{B}'$ be homomorphisms of sheaves of rings | |
on $\mathcal{C}$. Then | |
$$ | |
L_{\mathcal{B} \times \mathcal{B}'/\mathcal{A}} | |
\longrightarrow | |
L_{\mathcal{B}/\mathcal{A}} \oplus L_{\mathcal{B}'/\mathcal{A}} | |
$$ | |
is an isomorphism in $D(\mathcal{B} \times \mathcal{B}')$. | |
\end{lemma} | |
\begin{proof} | |
By Lemma \ref{lemma-compute-L-morphism-sheaves-rings} | |
it suffices to prove this for ring maps. | |
In the case of rings this is | |
Lemma \ref{lemma-cotangent-complex-product}. | |
\end{proof} | |
\noindent | |
The fundamental triangle for the cotangent complex of sheaves of rings | |
is an easy consequence of the result for homomorphisms of rings. | |
\begin{lemma} | |
\label{lemma-triangle-sheaves-rings} | |
Let $\mathcal{D}$ be a site. Let $\mathcal{A} \to \mathcal{B} \to \mathcal{C}$ | |
be homomorphisms of sheaves of rings on $\mathcal{D}$. | |
There is a canonical distinguished triangle | |
$$ | |
L_{\mathcal{B}/\mathcal{A}} \otimes_\mathcal{B}^\mathbf{L} \mathcal{C} | |
\to L_{\mathcal{C}/\mathcal{A}} \to L_{\mathcal{C}/\mathcal{B}} \to | |
L_{\mathcal{B}/\mathcal{A}} \otimes_\mathcal{B}^\mathbf{L} \mathcal{C}[1] | |
$$ | |
in $D(\mathcal{C})$. | |
\end{lemma} | |
\begin{proof} | |
We will use the method described in | |
Remarks \ref{remark-triangle} and \ref{remark-explicit-map} | |
to construct the triangle; we will freely use the results mentioned there. | |
As in those remarks we first construct the triangle in case | |
$\mathcal{B} \to \mathcal{C}$ is an injective map of sheaves of rings. | |
In this case we set | |
\begin{enumerate} | |
\item $\mathcal{P}_\bullet$ is the standard resolution of $\mathcal{B}$ | |
over $\mathcal{A}$, | |
\item $\mathcal{Q}_\bullet$ is the standard resolution of $\mathcal{C}$ | |
over $\mathcal{A}$, | |
\item $\mathcal{R}_\bullet$ is the standard resolution of $\mathcal{C}$ | |
over $\mathcal{B}$, | |
\item $\mathcal{S}_\bullet$ is the standard resolution of $\mathcal{B}$ | |
over $\mathcal{B}$, | |
\item $\overline{\mathcal{Q}}_\bullet = | |
\mathcal{Q}_\bullet \otimes_{\mathcal{P}_\bullet} \mathcal{B}$, and | |
\item $\overline{\mathcal{R}}_\bullet = | |
\mathcal{R}_\bullet \otimes_{\mathcal{S}_\bullet} \mathcal{B}$. | |
\end{enumerate} | |
The distinguished triangle is the distinguished triangle associated | |
to the short exact sequence | |
of simplicial $\mathcal{C}$-modules | |
$$ | |
0 \to | |
\Omega_{\mathcal{P}_\bullet/\mathcal{A}} | |
\otimes_{\mathcal{P}_\bullet} \mathcal{C} \to | |
\Omega_{\mathcal{Q}_\bullet/\mathcal{A}} | |
\otimes_{\mathcal{Q}_\bullet} \mathcal{C} \to | |
\Omega_{\overline{\mathcal{Q}}_\bullet/\mathcal{B}} | |
\otimes_{\overline{\mathcal{Q}}_\bullet} \mathcal{C} \to 0 | |
$$ | |
The first two terms are equal to the first two terms of the triangle | |
of the statement of the lemma. The identification of the last term with | |
$L_{\mathcal{C}/\mathcal{B}}$ uses the quasi-isomorphisms of complexes | |
$$ | |
L_{\mathcal{C}/\mathcal{B}} = | |
\Omega_{\mathcal{R}_\bullet/\mathcal{B}} | |
\otimes_{\mathcal{R}_\bullet} \mathcal{C} | |
\longrightarrow | |
\Omega_{\overline{\mathcal{R}}_\bullet/\mathcal{B}} | |
\otimes_{\overline{\mathcal{R}}_\bullet} \mathcal{C} | |
\longleftarrow | |
\Omega_{\overline{\mathcal{Q}}_\bullet/\mathcal{B}} | |
\otimes_{\overline{\mathcal{Q}}_\bullet} \mathcal{C} | |
$$ | |
All the constructions used above can first be done on the level | |
of presheaves and then sheafified. Hence to prove sequences are exact, | |
or that map are quasi-isomorphisms it suffices to prove the corresponding | |
statement for the ring maps | |
$\mathcal{A}(U) \to \mathcal{B}(U) \to \mathcal{C}(U)$ | |
which are known. This finishes the proof in the case that | |
$\mathcal{B} \to \mathcal{C}$ is injective. | |
\medskip\noindent | |
In general, we reduce to the case where $\mathcal{B} \to \mathcal{C}$ is | |
injective by replacing $\mathcal{C}$ by $\mathcal{B} \times \mathcal{C}$ if | |
necessary. This is possible by the argument given in | |
Remark \ref{remark-triangle} by | |
Lemma \ref{lemma-compute-L-product-sheaves-rings}. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-stalk-cotangent-complex} | |
Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ be a | |
homomorphism of sheaves of rings on $\mathcal{C}$. If $p$ is a point | |
of $\mathcal{C}$, then | |
$(L_{\mathcal{B}/\mathcal{A}})_p = L_{\mathcal{B}_p/\mathcal{A}_p}$. | |
\end{lemma} | |
\begin{proof} | |
This is a special case of Lemma \ref{lemma-pullback-cotangent-morphism-topoi}. | |
\end{proof} | |
\noindent | |
For the construction of the naive cotangent complex and its properties | |
we refer to | |
Modules on Sites, Section \ref{sites-modules-section-netherlander}. | |
\begin{lemma} | |
\label{lemma-compare-cotangent-complex-with-naive} | |
Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ be a | |
homomorphism of sheaves of rings on $\mathcal{C}$. | |
There is a canonical map | |
$L_{\mathcal{B}/\mathcal{A}} \to \NL_{\mathcal{B}/\mathcal{A}}$ | |
which identifies the naive cotangent complex with the truncation | |
$\tau_{\geq -1}L_{\mathcal{B}/\mathcal{A}}$. | |
\end{lemma} | |
\begin{proof} | |
Let $\mathcal{P}_\bullet$ be the standard resolution of $\mathcal{B}$ | |
over $\mathcal{A}$. | |
Let $\mathcal{I} = \Ker(\mathcal{A}[\mathcal{B}] \to \mathcal{B})$. | |
Recall that $\mathcal{P}_0 = \mathcal{A}[\mathcal{B}]$. The map of the | |
lemma is given by the commutative diagram | |
$$ | |
\xymatrix{ | |
L_{\mathcal{B}/\mathcal{A}} \ar[d] & \ldots \ar[r] & | |
\Omega_{\mathcal{P}_2/\mathcal{A}} \otimes_{\mathcal{P}_2} \mathcal{B} | |
\ar[r] \ar[d] & | |
\Omega_{\mathcal{P}_1/\mathcal{A}} \otimes_{\mathcal{P}_1} \mathcal{B} | |
\ar[r] \ar[d] & | |
\Omega_{\mathcal{P}_0/\mathcal{A}} \otimes_{\mathcal{P}_0} \mathcal{B} | |
\ar[d] \\ | |
\NL_{\mathcal{B}/\mathcal{A}} & \ldots \ar[r] & | |
0 \ar[r] & | |
\mathcal{I}/\mathcal{I}^2 \ar[r] & | |
\Omega_{\mathcal{P}_0/\mathcal{A}} \otimes_{\mathcal{P}_0} \mathcal{B} | |
} | |
$$ | |
We construct the downward arrow with target $\mathcal{I}/\mathcal{I}^2$ | |
by sending a local section $\text{d}f \otimes b$ to the class of | |
$(d_0(f) - d_1(f))b$ in $\mathcal{I}/\mathcal{I}^2$. | |
Here $d_i : \mathcal{P}_1 \to \mathcal{P}_0$, | |
$i = 0, 1$ are the two face maps of the simplicial structure. | |
This makes sense as $d_0 - d_1$ maps $\mathcal{P}_1$ into | |
$\mathcal{I} = \Ker(\mathcal{P}_0 \to \mathcal{B})$. | |
We omit the verification that this rule is well defined. | |
Our map is compatible with the differential | |
$\Omega_{\mathcal{P}_1/\mathcal{A}} \otimes_{\mathcal{P}_1} \mathcal{B} | |
\to \Omega_{\mathcal{P}_0/\mathcal{A}} \otimes_{\mathcal{P}_0} \mathcal{B}$ | |
as this differential maps a local section $\text{d}f \otimes b$ to | |
$\text{d}(d_0(f) - d_1(f)) \otimes b$. Moreover, the differential | |
$\Omega_{\mathcal{P}_2/\mathcal{A}} \otimes_{\mathcal{P}_2} \mathcal{B} | |
\to \Omega_{\mathcal{P}_1/\mathcal{A}} \otimes_{\mathcal{P}_1} \mathcal{B}$ | |
maps a local section $\text{d}f \otimes b$ to | |
$\text{d}(d_0(f) - d_1(f) + d_2(f)) \otimes b$ | |
which are annihilated by our downward arrow. Hence a map of complexes. | |
\medskip\noindent | |
To see that our map induces an isomorphism on the cohomology sheaves | |
$H^0$ and $H^{-1}$ we argue as follows. Let $\mathcal{C}'$ be the site | |
with the same underlying category as $\mathcal{C}$ but endowed with the | |
chaotic topology. Let $f : \Sh(\mathcal{C}) \to \Sh(\mathcal{C}')$ be | |
the morphism of topoi whose pullback functor is sheafification. | |
Let $\mathcal{A}' \to \mathcal{B}'$ be the given map, but thought of | |
as a map of sheaves of rings on $\mathcal{C}'$. The construction above | |
gives a map $L_{\mathcal{B}'/\mathcal{A}'} \to \NL_{\mathcal{B}'/\mathcal{A}'}$ | |
on $\mathcal{C}'$ whose value over any object $U$ of $\mathcal{C}'$ | |
is just the map | |
$$ | |
L_{\mathcal{B}(U)/\mathcal{A}(U)} \to \NL_{\mathcal{B}(U)/\mathcal{A}(U)} | |
$$ | |
of Remark \ref{remark-explicit-comparison-map} which induces an isomorphism | |
on $H^0$ and $H^{-1}$. Since | |
$f^{-1}L_{\mathcal{B}'/\mathcal{A}'} = L_{\mathcal{B}/\mathcal{A}}$ | |
(Lemma \ref{lemma-pullback-cotangent-morphism-topoi}) | |
and | |
$f^{-1}\NL_{\mathcal{B}'/\mathcal{A}'} = \NL_{\mathcal{B}/\mathcal{A}}$ | |
(Modules on Sites, Lemma \ref{sites-modules-lemma-pullback-NL}) | |
the lemma is proved. | |
\end{proof} | |
\section{The Atiyah class of a sheaf of modules} | |
\label{section-atiyah-general} | |
\noindent | |
Let $\mathcal{C}$ be a site. Let $\mathcal{A} \to \mathcal{B}$ be a | |
homomorphism of sheaves of rings. Let $\mathcal{F}$ be a | |
sheaf of $\mathcal{B}$-modules. Let $\mathcal{P}_\bullet \to \mathcal{B}$ | |
be the standard resolution of $\mathcal{B}$ over $\mathcal{A}$ | |
(Section \ref{section-cotangent-complex}). | |
For every $n \geq 0$ consider the extension of principal parts | |
\begin{equation} | |
\label{equation-atiyah-extension} | |
0 \to | |
\Omega_{\mathcal{P}_n/\mathcal{A}} \otimes_{\mathcal{P}_n} \mathcal{F} \to | |
\mathcal{P}^1_{\mathcal{P}_n/\mathcal{A}}(\mathcal{F}) \to | |
\mathcal{F} \to 0 | |
\end{equation} | |
see | |
Modules on Sites, Lemma \ref{sites-modules-lemma-sequence-of-principal-parts}. | |
The functoriality of this construction | |
(Modules on Sites, Remark | |
\ref{sites-modules-remark-functoriality-principal-parts}) | |
tells us (\ref{equation-atiyah-extension}) is the degree $n$ part of | |
a short exact sequence of simplicial $\mathcal{P}_\bullet$-modules | |
(Cohomology on Sites, Section | |
\ref{sites-cohomology-section-simplicial-modules}). | |
Using the functor $L\pi_! : D(\mathcal{P}_\bullet) \to D(\mathcal{B})$ | |
of Cohomology on Sites, Remark | |
\ref{sites-cohomology-remark-homology-augmentation} | |
(here we use that $\mathcal{P}_\bullet \to \mathcal{A}$ is a resolution) | |
we obtain a distinguished triangle | |
\begin{equation} | |
\label{equation-atiyah-general} | |
L_{\mathcal{B}/\mathcal{A}} \otimes_\mathcal{B}^\mathbf{L} \mathcal{F} \to | |
L\pi_!\left(\mathcal{P}^1_{\mathcal{P}_\bullet/\mathcal{A}}(\mathcal{F})\right) | |
\to \mathcal{F} \to | |
L_{\mathcal{B}/\mathcal{A}} \otimes_\mathcal{B}^\mathbf{L} \mathcal{F} [1] | |
\end{equation} | |
in $D(\mathcal{B})$. | |
\begin{definition} | |
\label{definition-atiyah-class-general} | |
Let $\mathcal{C}$ be a site. | |
Let $\mathcal{A} \to \mathcal{B}$ be a homomorphism of sheaves of rings. | |
Let $\mathcal{F}$ be a sheaf of $\mathcal{B}$-modules. | |
The map $\mathcal{F} \to | |
L_{\mathcal{B}/\mathcal{A}} \otimes_\mathcal{B}^\mathbf{L} \mathcal{F}[1]$ | |
in (\ref{equation-atiyah-general}) is called the {\it Atiyah class} of | |
$\mathcal{F}$. | |
\end{definition} | |
\section{The cotangent complex of a morphism of ringed spaces} | |
\label{section-cotangent-morphism-ringed-spaces} | |
\noindent | |
The cotangent complex of a morphism of ringed spaces is defined | |
in terms of the cotangent complex we defined above. | |
\begin{definition} | |
\label{definition-cotangent-complex-morphism-ringed-spaces} | |
Let $f : (X, \mathcal{O}_X) \to (S, \mathcal{O}_S)$ be a morphism of | |
ringed spaces. The {\it cotangent complex} $L_f$ of $f$ is | |
$L_f = L_{\mathcal{O}_X/f^{-1}\mathcal{O}_S}$. | |
We will also use the notation | |
$L_f = L_{X/S} = L_{\mathcal{O}_X/\mathcal{O}_S}$. | |
\end{definition} | |
\noindent | |
More precisely, this means that we consider the cotangent complex | |
(Definition \ref{definition-cotangent-complex-morphism-sheaves-rings}) | |
of the homomorphism $f^\sharp : f^{-1}\mathcal{O}_S \to \mathcal{O}_X$ | |
of sheaves of rings on the site associated to the topological space $X$ | |
(Sites, Example \ref{sites-example-site-topological}). | |
\begin{lemma} | |
\label{lemma-H0-L-morphism-ringed-spaces} | |
Let $f : (X, \mathcal{O}_X) \to (S, \mathcal{O}_S)$ be a morphism of | |
ringed spaces. Then $H^0(L_{X/S}) = \Omega_{X/S}$. | |
\end{lemma} | |
\begin{proof} | |
Special case of Lemma \ref{lemma-H0-L-morphism-sheaves-rings}. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-triangle-ringed-spaces} | |
Let $f : X \to Y$ and $g : Y \to Z$ be morphisms of ringed spaces. | |
Then there is a canonical distinguished triangle | |
$$ | |
Lf^* L_{Y/Z} \to L_{X/Z} \to L_{X/Y} \to Lf^*L_{Y/Z}[1] | |
$$ | |
in $D(\mathcal{O}_X)$. | |
\end{lemma} | |
\begin{proof} | |
Set $h = g \circ f$ so that $h^{-1}\mathcal{O}_Z = f^{-1}g^{-1}\mathcal{O}_Z$. | |
By Lemma \ref{lemma-pullback-cotangent-morphism-topoi} we have | |
$f^{-1}L_{Y/Z} = L_{f^{-1}\mathcal{O}_Y/h^{-1}\mathcal{O}_Z}$ | |
and this is a complex of flat $f^{-1}\mathcal{O}_Y$-modules. | |
Hence the distinguished triangle above is an example of the | |
distinguished triangle of | |
Lemma \ref{lemma-triangle-sheaves-rings} | |
with $\mathcal{A} = h^{-1}\mathcal{O}_Z$, $\mathcal{B} = f^{-1}\mathcal{O}_Y$, | |
and $\mathcal{C} = \mathcal{O}_X$. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-compare-cotangent-complex-with-naive-ringed-spaces} | |
Let $f : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of | |
ringed spaces. There is a canonical map $L_{X/Y} \to \NL_{X/Y}$ which | |
identifies the naive cotangent complex with the truncation | |
$\tau_{\geq -1}L_{X/Y}$. | |
\end{lemma} | |
\begin{proof} | |
Special case of Lemma \ref{lemma-compare-cotangent-complex-with-naive}. | |
\end{proof} | |
\section{Deformations of ringed spaces and the cotangent complex} | |
\label{section-deformations-ringed-spaces} | |
\noindent | |
This section is the continuation of | |
Deformation Theory, Section \ref{defos-section-deformations-ringed-spaces} | |
which we urge the reader to read first. We briefly recall the setup. | |
We have a first order thickening | |
$t : (S, \mathcal{O}_S) \to (S', \mathcal{O}_{S'})$ of ringed spaces | |
with $\mathcal{J} = \Ker(t^\sharp)$, a morphism of ringed spaces | |
$f : (X, \mathcal{O}_X) \to (S, \mathcal{O}_S)$, an $\mathcal{O}_X$-module | |
$\mathcal{G}$, and an $f$-map $c : \mathcal{J} \to \mathcal{G}$ | |
of sheaves of modules. We ask whether we can find | |
the question mark fitting into the following diagram | |
\begin{equation} | |
\label{equation-to-solve-ringed-spaces} | |
\vcenter{ | |
\xymatrix{ | |
0 \ar[r] & \mathcal{G} \ar[r] & {?} \ar[r] & \mathcal{O}_X \ar[r] & 0 \\ | |
0 \ar[r] & \mathcal{J} \ar[u]^c \ar[r] & \mathcal{O}_{S'} \ar[u] \ar[r] & | |
\mathcal{O}_S \ar[u] \ar[r] & 0 | |
} | |
} | |
\end{equation} | |
and moreover how unique the solution is (if it exists). More precisely, | |
we look for a first order thickening | |
$i : (X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$ | |
and a morphism of thickenings $(f, f')$ as in | |
Deformation Theory, Equation (\ref{defos-equation-morphism-thickenings}) | |
where $\Ker(i^\sharp)$ is identified with $\mathcal{G}$ | |
such that $(f')^\sharp$ induces the given map $c$. | |
We will say $X'$ is a {\it solution} to | |
(\ref{equation-to-solve-ringed-spaces}). | |
\begin{lemma} | |
\label{lemma-find-obstruction-ringed-spaces} | |
In the situation above we have | |
\begin{enumerate} | |
\item There is a canonical element | |
$\xi \in \Ext^2_{\mathcal{O}_X}(L_{X/S}, \mathcal{G})$ | |
whose vanishing is a sufficient and necessary condition for the existence | |
of a solution to (\ref{equation-to-solve-ringed-spaces}). | |
\item If there exists a solution, then the set of | |
isomorphism classes of solutions is principal homogeneous under | |
$\Ext^1_{\mathcal{O}_X}(L_{X/S}, \mathcal{G})$. | |
\item Given a solution $X'$, the set of automorphisms of $X'$ | |
fitting into (\ref{equation-to-solve-ringed-spaces}) is canonically isomorphic | |
to $\Ext^0_{\mathcal{O}_X}(L_{X/S}, \mathcal{G})$. | |
\end{enumerate} | |
\end{lemma} | |
\begin{proof} | |
Via the identifications $\NL_{X/S} = \tau_{\geq -1}L_{X/S}$ | |
(Lemma \ref{lemma-compare-cotangent-complex-with-naive-ringed-spaces}) | |
and | |
$H^0(L_{X/S}) = \Omega_{X/S}$ | |
(Lemma \ref{lemma-H0-L-morphism-ringed-spaces}) | |
we have seen parts (2) and (3) in | |
Deformation Theory, Lemmas \ref{defos-lemma-huge-diagram-ringed-spaces} and | |
\ref{defos-lemma-choices-ringed-spaces}. | |
\medskip\noindent | |
Proof of (1). Roughly speaking, this follows from the discussion in | |
Deformation Theory, Remark | |
\ref{defos-remark-parametrize-solutions-ringed-spaces} | |
by replacing the naive cotangent complex by the full cotangent complex. | |
Here is a more detailed explanation. By | |
Deformation Theory, Lemma \ref{defos-lemma-parametrize-solutions-ringed-spaces} | |
there exists an element | |
$$ | |
\xi' \in | |
\Ext^1_{\mathcal{O}_X}(Lf^*\NL_{S/S'}, \mathcal{G}) = | |
\Ext^1_{\mathcal{O}_X}(Lf^*L_{S/S'}, \mathcal{G}) | |
$$ | |
such that a solution exists if and only if this element is in | |
the image of the map | |
$$ | |
\Ext^1_{\mathcal{O}_X}(NL_{X/S'}, \mathcal{G}) = | |
\Ext^1_{\mathcal{O}_X}(L_{X/S'}, \mathcal{G}) | |
\longrightarrow | |
\Ext^1_{\mathcal{O}_X}(Lf^*L_{S/S'}, \mathcal{G}) | |
$$ | |
The distinguished triangle of Lemma \ref{lemma-triangle-ringed-spaces} | |
for $X \to S \to S'$ gives rise to a long exact sequence | |
$$ | |
\ldots \to | |
\Ext^1_{\mathcal{O}_X}(L_{X/S'}, \mathcal{G}) \to | |
\Ext^1_{\mathcal{O}_X}(Lf^*L_{S/S'}, \mathcal{G}) \to | |
\Ext^2_{\mathcal{O}_X}(L_{X/S}, \mathcal{G}) \to \ldots | |
$$ | |
Hence taking $\xi$ the image of $\xi'$ works. | |
\end{proof} | |
\section{The cotangent complex of a morphism of ringed topoi} | |
\label{section-cotangent-morphism-ringed-topoi} | |
\noindent | |
The cotangent complex of a morphism of ringed topoi is defined | |
in terms of the cotangent complex we defined above. | |
\begin{definition} | |
\label{definition-cotangent-complex-morphism-ringed-topoi} | |
Let $(f, f^\sharp) : (\Sh(\mathcal{C}), \mathcal{O}_\mathcal{C}) \to | |
(\Sh(\mathcal{D}), \mathcal{O}_\mathcal{D})$ be a morphism of ringed topoi. | |
The {\it cotangent complex} $L_f$ of $f$ is | |
$L_f = L_{\mathcal{O}_\mathcal{C}/f^{-1}\mathcal{O}_\mathcal{D}}$. | |
We sometimes write $L_f = L_{\mathcal{O}_\mathcal{C}/\mathcal{O}_\mathcal{D}}$. | |
\end{definition} | |
\noindent | |
This definition applies to many situations, but it doesn't always produce | |
the thing one expects. For example, if $f : X \to Y$ is a morphism of | |
schemes, then $f$ induces a morphism of big \'etale sites | |
$f_{big} : (\Sch/X)_\etale \to (\Sch/Y)_\etale$ | |
which is a morphism of ringed topoi (Descent, Remark | |
\ref{descent-remark-change-topologies-ringed}). | |
However, $L_{f_{big}} = 0$ since $(f_{big})^\sharp$ is an isomorphism. | |
On the other hand, if we take $L_f$ where we think of $f$ as a morphism | |
between the underlying Zariski ringed topoi, then $L_f$ does agree with | |
the cotangent complex $L_{X/Y}$ (as defined below) | |
whose zeroth cohomology sheaf is $\Omega_{X/Y}$. | |
\begin{lemma} | |
\label{lemma-H0-L-morphism-ringed-topoi} | |
Let $f : (\Sh(\mathcal{C}), \mathcal{O}) \to | |
(\Sh(\mathcal{B}), \mathcal{O}_\mathcal{B})$ be a morphism of | |
ringed topoi. Then $H^0(L_f) = \Omega_f$. | |
\end{lemma} | |
\begin{proof} | |
Special case of Lemma \ref{lemma-H0-L-morphism-sheaves-rings}. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-triangle-ringed-topoi} | |
Let $f : (\Sh(\mathcal{C}_1), \mathcal{O}_1) \to | |
(\Sh(\mathcal{C}_2), \mathcal{O}_2)$ and | |
$g : (\Sh(\mathcal{C}_2), \mathcal{O}_2) \to | |
(\Sh(\mathcal{C}_3), \mathcal{O}_3)$ be morphisms of ringed topoi. | |
Then there is a canonical distinguished triangle | |
$$ | |
Lf^* L_g \to L_{g \circ f} \to L_f \to Lf^*L_g[1] | |
$$ | |
in $D(\mathcal{O}_1)$. | |
\end{lemma} | |
\begin{proof} | |
Set $h = g \circ f$ so that $h^{-1}\mathcal{O}_3 = f^{-1}g^{-1}\mathcal{O}_3$. | |
By Lemma \ref{lemma-pullback-cotangent-morphism-topoi} we have | |
$f^{-1}L_g = L_{f^{-1}\mathcal{O}_2/h^{-1}\mathcal{O}_3}$ | |
and this is a complex of flat $f^{-1}\mathcal{O}_2$-modules. | |
Hence the distinguished triangle above is an example of the | |
distinguished triangle of | |
Lemma \ref{lemma-triangle-sheaves-rings} | |
with $\mathcal{A} = h^{-1}\mathcal{O}_3$, $\mathcal{B} = f^{-1}\mathcal{O}_2$, | |
and $\mathcal{C} = \mathcal{O}_1$. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-compare-cotangent-complex-with-naive-ringed-topoi} | |
Let $f : (\Sh(\mathcal{C}), \mathcal{O}) \to | |
(\Sh(\mathcal{B}), \mathcal{O}_\mathcal{B})$ be a morphism of | |
ringed topoi. There is a canonical map $L_f \to \NL_f$ which | |
identifies the naive cotangent complex with the truncation | |
$\tau_{\geq -1}L_f$. | |
\end{lemma} | |
\begin{proof} | |
Special case of Lemma \ref{lemma-compare-cotangent-complex-with-naive}. | |
\end{proof} | |
\section{Deformations of ringed topoi and the cotangent complex} | |
\label{section-deformations-ringed-topoi} | |
\noindent | |
This section is the continuation of | |
Deformation Theory, Section \ref{defos-section-deformations-ringed-topoi} | |
which we urge the reader to read first. We briefly recall the setup. | |
We have a first order thickening | |
$t : (\Sh(\mathcal{B}), \mathcal{O}_\mathcal{B}) \to | |
(\Sh(\mathcal{B}'), \mathcal{O}_{\mathcal{B}'})$ of ringed topoi | |
with $\mathcal{J} = \Ker(t^\sharp)$, a morphism of ringed topoi | |
$f : (\Sh(\mathcal{C}), \mathcal{O}) \to | |
(\Sh(\mathcal{B}), \mathcal{O}_\mathcal{B})$, an $\mathcal{O}$-module | |
$\mathcal{G}$, and a map $f^{-1}\mathcal{J} \to \mathcal{G}$ | |
of sheaves of $f^{-1}\mathcal{O}_\mathcal{B}$-modules. | |
We ask whether we can find | |
the question mark fitting into the following diagram | |
\begin{equation} | |
\label{equation-to-solve-ringed-topoi} | |
\vcenter{ | |
\xymatrix{ | |
0 \ar[r] & \mathcal{G} \ar[r] & {?} \ar[r] & \mathcal{O} \ar[r] & 0 \\ | |
0 \ar[r] & f^{-1}\mathcal{J} \ar[u]^c \ar[r] & | |
f^{-1}\mathcal{O}_{\mathcal{B}'} \ar[u] \ar[r] & | |
f^{-1}\mathcal{O}_\mathcal{B} \ar[u] \ar[r] & 0 | |
} | |
} | |
\end{equation} | |
and moreover how unique the solution is (if it exists). More precisely, | |
we look for a first order thickening | |
$i : (\Sh(\mathcal{C}), \mathcal{O}) \to (\Sh(\mathcal{C}'), \mathcal{O}')$ | |
and a morphism of thickenings $(f, f')$ as in | |
Deformation Theory, Equation | |
(\ref{defos-equation-morphism-thickenings-ringed-topoi}) | |
where $\Ker(i^\sharp)$ is identified with $\mathcal{G}$ | |
such that $(f')^\sharp$ induces the given map $c$. | |
We will say $(\Sh(\mathcal{C}'), \mathcal{O}')$ is a {\it solution} to | |
(\ref{equation-to-solve-ringed-topoi}). | |
\begin{lemma} | |
\label{lemma-find-obstruction-ringed-topoi} | |
In the situation above we have | |
\begin{enumerate} | |
\item There is a canonical element | |
$\xi \in \Ext^2_\mathcal{O}(L_f, \mathcal{G})$ | |
whose vanishing is a sufficient and necessary condition for the existence | |
of a solution to (\ref{equation-to-solve-ringed-topoi}). | |
\item If there exists a solution, then the set of | |
isomorphism classes of solutions is principal homogeneous under | |
$\Ext^1_\mathcal{O}(L_f, \mathcal{G})$. | |
\item Given a solution $X'$, the set of automorphisms of $X'$ | |
fitting into (\ref{equation-to-solve-ringed-topoi}) is canonically isomorphic | |
to $\Ext^0_\mathcal{O}(L_f, \mathcal{G})$. | |
\end{enumerate} | |
\end{lemma} | |
\begin{proof} | |
Via the identifications $\NL_f = \tau_{\geq -1}L_f$ | |
(Lemma \ref{lemma-compare-cotangent-complex-with-naive-ringed-topoi}) and | |
$H^0(L_f) = \Omega_f$ | |
(Lemma \ref{lemma-H0-L-morphism-ringed-topoi}) | |
we have seen parts (2) and (3) in | |
Deformation Theory, Lemmas \ref{defos-lemma-huge-diagram-ringed-topoi} and | |
\ref{defos-lemma-choices-ringed-topoi}. | |
\medskip\noindent | |
Proof of (1). To match notation with Deformation Theory, Section | |
\ref{defos-section-deformations-ringed-topoi} we will write | |
$\NL_f = \NL_{\mathcal{O}/\mathcal{O}_\mathcal{B}}$ and | |
$L_f = L_{\mathcal{O}/\mathcal{O}_\mathcal{B}}$ and similarly | |
for the morphisms $t$ and $t \circ f$. By | |
Deformation Theory, Lemma \ref{defos-lemma-parametrize-solutions-ringed-topoi} | |
there exists an element | |
$$ | |
\xi' \in | |
\Ext^1_\mathcal{O}( | |
Lf^*\NL_{\mathcal{O}_\mathcal{B}/\mathcal{O}_{\mathcal{B}'}}, \mathcal{G}) = | |
\Ext^1_\mathcal{O}( | |
Lf^*L_{\mathcal{O}_\mathcal{B}/\mathcal{O}_{\mathcal{B}'}}, \mathcal{G}) | |
$$ | |
such that a solution exists if and only if this element is in | |
the image of the map | |
$$ | |
\Ext^1_\mathcal{O}( | |
\NL_{\mathcal{O}/\mathcal{O}_{\mathcal{B}'}}, \mathcal{G}) = | |
\Ext^1_\mathcal{O}( | |
L_{\mathcal{O}/\mathcal{O}_{\mathcal{B}'}}, \mathcal{G}) | |
\longrightarrow | |
\Ext^1_\mathcal{O}( | |
Lf^*L_{\mathcal{O}_\mathcal{B}/\mathcal{O}_{\mathcal{B}'}}, \mathcal{G}) | |
$$ | |
The distinguished triangle of Lemma \ref{lemma-triangle-ringed-topoi} | |
for $f$ and $t$ gives rise to a long exact sequence | |
$$ | |
\ldots \to | |
\Ext^1_\mathcal{O}( | |
L_{\mathcal{O}/\mathcal{O}_{\mathcal{B}'}}, \mathcal{G}) \to | |
\Ext^1_\mathcal{O}( | |
Lf^*L_{\mathcal{O}_\mathcal{B}/\mathcal{O}_{\mathcal{B}'}}, \mathcal{G}) | |
\to | |
\Ext^1_\mathcal{O}( | |
L_{\mathcal{O}/\mathcal{O}_\mathcal{B}}, \mathcal{G}) | |
$$ | |
Hence taking $\xi$ the image of $\xi'$ works. | |
\end{proof} | |
\section{The cotangent complex of a morphism of schemes} | |
\label{section-cotangent-morphism-schemes} | |
\noindent | |
As promised above we define the cotangent complex of a morphism of | |
schemes as follows. | |
\begin{definition} | |
\label{definition-cotangent-morphism-schemes} | |
Let $f : X \to Y$ be a morphism of schemes. The {\it cotangent complex | |
$L_{X/Y}$ of $X$ over $Y$} is the cotangent complex of $f$ as a | |
morphism of ringed spaces | |
(Definition \ref{definition-cotangent-complex-morphism-ringed-spaces}). | |
\end{definition} | |
\noindent | |
In particular, the results of | |
Section \ref{section-cotangent-morphism-ringed-spaces} apply | |
to cotangent complexes of morphisms of schemes. | |
The next lemma shows this definition is compatible with the definition | |
for ring maps and it also implies that $L_{X/Y}$ is an | |
object of $D_\QCoh(\mathcal{O}_X)$. | |
\begin{lemma} | |
\label{lemma-morphism-affine-schemes} | |
Let $f : X \to Y$ be a morphism of schemes. Let $U = \Spec(A) \subset X$ | |
and $V = \Spec(B) \subset Y$ be affine opens such that $f(U) \subset V$. | |
There is a canonical map | |
$$ | |
\widetilde{L_{B/A}} \longrightarrow L_{X/Y}|_U | |
$$ | |
of complexes which is an isomorphism in $D(\mathcal{O}_U)$. | |
This map is compatible with restricting to smaller affine opens | |
of $X$ and $Y$. | |
\end{lemma} | |
\begin{proof} | |
By Remark \ref{remark-map-sections-over-U} | |
there is a canonical map of complexes | |
$L_{\mathcal{O}_X(U)/f^{-1}\mathcal{O}_Y(U)} \to L_{X/Y}(U)$ | |
of $B = \mathcal{O}_X(U)$-modules, which is compatible | |
with further restrictions. Using the canonical map | |
$A \to f^{-1}\mathcal{O}_Y(U)$ we obtain a canonical map | |
$L_{B/A} \to L_{\mathcal{O}_X(U)/f^{-1}\mathcal{O}_Y(U)}$ | |
of complexes of $B$-modules. | |
Using the universal property of the $\widetilde{\ }$ | |
functor (see Schemes, Lemma \ref{schemes-lemma-compare-constructions}) | |
we obtain a map as in the statement of the lemma. | |
We may check this map is an isomorphism on cohomology sheaves | |
by checking it induces isomorphisms on stalks. | |
This follows immediately from | |
Lemmas \ref{lemma-stalk-cotangent-complex} and \ref{lemma-localize} | |
(and the description of the stalks of | |
$\mathcal{O}_X$ and $f^{-1}\mathcal{O}_Y$ | |
at a point $\mathfrak p \in \Spec(B)$ as $B_\mathfrak p$ and | |
$A_\mathfrak q$ where $\mathfrak q = A \cap \mathfrak p$; references | |
used are Schemes, Lemma \ref{schemes-lemma-spec-sheaves} | |
and | |
Sheaves, Lemma \ref{sheaves-lemma-stalk-pullback}). | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-scheme-over-ring} | |
Let $\Lambda$ be a ring. Let $X$ be a scheme over $\Lambda$. | |
Then | |
$$ | |
L_{X/\Spec(\Lambda)} = L_{\mathcal{O}_X/\underline{\Lambda}} | |
$$ | |
where $\underline{\Lambda}$ is the constant sheaf with value | |
$\Lambda$ on $X$. | |
\end{lemma} | |
\begin{proof} | |
Let $p : X \to \Spec(\Lambda)$ be the structure morphism. | |
Let $q : \Spec(\Lambda) \to (*, \Lambda)$ be the obvious morphism. | |
By the distinguished triangle of Lemma \ref{lemma-triangle-ringed-spaces} | |
it suffices to show that $L_q = 0$. To see this it suffices to | |
show for $\mathfrak p \in \Spec(\Lambda)$ that | |
$$ | |
(L_q)_\mathfrak p = | |
L_{\mathcal{O}_{\Spec(\Lambda), \mathfrak p}/\Lambda} = | |
L_{\Lambda_\mathfrak p/\Lambda} | |
$$ | |
(Lemma \ref{lemma-stalk-cotangent-complex}) | |
is zero which follows from Lemma \ref{lemma-when-zero}. | |
\end{proof} | |
\section{The cotangent complex of a scheme over a ring} | |
\label{section-cotangent-schemes-variant} | |
\noindent | |
Let $\Lambda$ be a ring and let $X$ be a scheme over $\Lambda$. | |
Write $L_{X/\Spec(\Lambda)} = L_{X/\Lambda}$ which is justified | |
by Lemma \ref{lemma-scheme-over-ring}. | |
In this section we give a description of $L_{X/\Lambda}$ similar to | |
Lemma \ref{lemma-compute-cotangent-complex}. | |
Namely, we construct a category $\mathcal{C}_{X/\Lambda}$ | |
fibred over $X_{Zar}$ and endow it with a sheaf of (polynomial) | |
$\Lambda$-algebras $\mathcal{O}$ such that | |
$$ | |
L_{X/\Lambda} = | |
L\pi_!(\Omega_{\mathcal{O}/\underline{\Lambda}} \otimes_\mathcal{O} | |
\underline{\mathcal{O}}_X). | |
$$ | |
We will later use the category $\mathcal{C}_{X/\Lambda}$ to construct | |
a naive obstruction theory for the stack of coherent sheaves. | |
\medskip\noindent | |
Let $\Lambda$ be a ring. Let $X$ be a scheme over $\Lambda$. | |
Let $\mathcal{C}_{X/\Lambda}$ be the category whose objects are | |
commutative diagrams | |
\begin{equation} | |
\label{equation-object} | |
\vcenter{ | |
\xymatrix{ | |
X \ar[d] & U \ar[l] \ar[d] \\ | |
\Spec(\Lambda) & \mathbf{A} \ar[l] | |
} | |
} | |
\end{equation} | |
of schemes where | |
\begin{enumerate} | |
\item $U$ is an open subscheme of $X$, | |
\item there exists an isomorphism $\mathbf{A} = \Spec(P)$ | |
where $P$ is a polynomial algebra over $\Lambda$ (on some set | |
of variables). | |
\end{enumerate} | |
In other words, $\mathbf{A}$ is an (infinite dimensional) affine space over | |
$\Spec(\Lambda)$. Morphisms are given by commutative diagrams. | |
Recall that $X_{Zar}$ denotes the small Zariski site $X$. | |
There is a forgetful functor | |
$$ | |
u : \mathcal{C}_{X/\Lambda} \to X_{Zar},\ (U \to \mathbf{A}) \mapsto U | |
$$ | |
Observe that the fibre category over $U$ is canonically equivalent | |
to the category $\mathcal{C}_{\mathcal{O}_X(U)/\Lambda}$ introduced | |
in Section \ref{section-compute-L-pi-shriek}. | |
\begin{lemma} | |
\label{lemma-category-fibred} | |
In the situation above the category | |
$\mathcal{C}_{X/\Lambda}$ is fibred over $X_{Zar}$. | |
\end{lemma} | |
\begin{proof} | |
Given an object $U \to \mathbf{A}$ of $\mathcal{C}_{X/\Lambda}$ and a morphism | |
$U' \to U$ of $X_{Zar}$ consider the object $U' \to \mathbf{A}$ of | |
$\mathcal{C}_{X/\Lambda}$ where $U' \to \mathbf{A}$ is the composition of | |
$U \to \mathbf{A}$ and $U' \to U$. The morphism | |
$(U' \to \mathbf{A}) \to (U \to \mathbf{A})$ of | |
$\mathcal{C}_{X/\Lambda}$ is strongly cartesian over $X_{Zar}$. | |
\end{proof} | |
\noindent | |
We endow $\mathcal{C}_{X/\Lambda}$ with the topology inherited from | |
$X_{Zar}$ (see Stacks, Section \ref{stacks-section-topology}). | |
The functor $u$ defines a morphism of topoi | |
$\pi : \Sh(\mathcal{C}_{X/\Lambda}) \to \Sh(X_{Zar})$. | |
The site $\mathcal{C}_{X/\Lambda}$ comes with several sheaves of rings. | |
\begin{enumerate} | |
\item The sheaf $\mathcal{O}$ given by the rule | |
$(U \to \mathbf{A}) \mapsto \Gamma(\mathbf{A}, \mathcal{O}_\mathbf{A})$. | |
\item The sheaf $\underline{\mathcal{O}}_X = \pi^{-1}\mathcal{O}_X$ given by | |
the rule $(U \to \mathbf{A}) \mapsto \mathcal{O}_X(U)$. | |
\item The constant sheaf $\underline{\Lambda}$. | |
\end{enumerate} | |
We obtain morphisms of ringed topoi | |
\begin{equation} | |
\label{equation-pi-schemes} | |
\vcenter{ | |
\xymatrix{ | |
(\Sh(\mathcal{C}_{X/\Lambda}), \underline{\mathcal{O}}_X) \ar[r]_i \ar[d]_\pi & | |
(\Sh(\mathcal{C}_{X/\Lambda}), \mathcal{O}) \\ | |
(\Sh(X_{Zar}), \mathcal{O}_X) | |
} | |
} | |
\end{equation} | |
The morphism $i$ is the identity on underlying topoi and | |
$i^\sharp : \mathcal{O} \to \underline{\mathcal{O}}_X$ | |
is the obvious map. | |
The map $\pi$ is a special case of Cohomology on Sites, Situation | |
\ref{sites-cohomology-situation-fibred-category}. | |
An important role will be played in the following | |
by the derived functors | |
$ | |
Li^* : D(\mathcal{O}) \longrightarrow D(\underline{\mathcal{O}}_X) | |
$ | |
left adjoint to $Ri_* = i_* : D(\underline{\mathcal{O}}_X) \to D(\mathcal{O})$ | |
and | |
$ | |
L\pi_! : D(\underline{\mathcal{O}}_X) \longrightarrow D(\mathcal{O}_X) | |
$ | |
left adjoint to | |
$\pi^* = \pi^{-1} : D(\mathcal{O}_X) \to D(\underline{\mathcal{O}}_X)$. | |
We can compute $L\pi_!$ thanks to our earlier work. | |
\begin{remark} | |
\label{remark-compute-L-pi-shriek} | |
In the situation above, for every $U \subset X$ open let | |
$P_{\bullet, U}$ be the standard resolution of $\mathcal{O}_X(U)$ | |
over $\Lambda$. Set $\mathbf{A}_{n, U} = \Spec(P_{n, U})$. Then | |
$\mathbf{A}_{\bullet, U}$ | |
is a cosimplicial object of the fibre category | |
$\mathcal{C}_{\mathcal{O}_X(U)/\Lambda}$ of | |
$\mathcal{C}_{X/\Lambda}$ over $U$. Moreover, as discussed | |
in Remark \ref{remark-resolution} we have that $\mathbf{A}_{\bullet, U}$ | |
is a cosimplicial object of $\mathcal{C}_{\mathcal{O}_X(U)/\Lambda}$ | |
as in Cohomology on Sites, Lemma | |
\ref{sites-cohomology-lemma-compute-by-cosimplicial-resolution}. | |
Since the construction $U \mapsto \mathbf{A}_{\bullet, U}$ is functorial | |
in $U$, given any (abelian) sheaf $\mathcal{F}$ on $\mathcal{C}_{X/\Lambda}$ | |
we obtain a complex of presheaves | |
$$ | |
U \longmapsto \mathcal{F}(\mathbf{A}_{\bullet, U}) | |
$$ | |
whose cohomology groups compute the homology of $\mathcal{F}$ on the fibre | |
category. We conclude by | |
Cohomology on Sites, Lemma | |
\ref{sites-cohomology-lemma-compute-left-derived-pi-shriek} | |
that the sheafification computes $L_n\pi_!(\mathcal{F})$. | |
In other words, the complex of sheaves whose term in degree $-n$ is | |
the sheafification of $U \mapsto \mathcal{F}(\mathbf{A}_{n, U})$ computes | |
$L\pi_!(\mathcal{F})$. | |
\end{remark} | |
\noindent | |
With this remark out of the way we can state the main | |
result of this section. | |
\begin{lemma} | |
\label{lemma-cotangent-morphism-schemes} | |
In the situation above there is a canonical isomorphism | |
$$ | |
L_{X/\Lambda} = | |
L\pi_!(Li^*\Omega_{\mathcal{O}/\underline{\Lambda}}) = | |
L\pi_!(i^*\Omega_{\mathcal{O}/\underline{\Lambda}}) = | |
L\pi_!(\Omega_{\mathcal{O}/\underline{\Lambda}} | |
\otimes_\mathcal{O} \underline{\mathcal{O}}_X) | |
$$ | |
in $D(\mathcal{O}_X)$. | |
\end{lemma} | |
\begin{proof} | |
We first observe that for any object $(U \to \mathbf{A})$ of | |
$\mathcal{C}_{X/\Lambda}$ | |
the value of the sheaf $\mathcal{O}$ is a polynomial algebra over $\Lambda$. | |
Hence $\Omega_{\mathcal{O}/\underline{\Lambda}}$ is a flat $\mathcal{O}$-module | |
and we conclude the second and third equalities of the statement of the | |
lemma hold. | |
\medskip\noindent | |
By Remark \ref{remark-compute-L-pi-shriek} the object | |
$L\pi_!(\Omega_{\mathcal{O}/\underline{\Lambda}} | |
\otimes_\mathcal{O} \underline{\mathcal{O}}_X)$ | |
is computed as the sheafification of the complex of presheaves | |
$$ | |
U \mapsto | |
\left(\Omega_{\mathcal{O}/\underline{\Lambda}} | |
\otimes_\mathcal{O} \underline{\mathcal{O}}_X\right)(\mathbf{A}_{\bullet, U}) | |
= | |
\Omega_{P_{\bullet, U}/\Lambda} \otimes_{P_{\bullet, U}} \mathcal{O}_X(U) = | |
L_{\mathcal{O}_X(U)/\Lambda} | |
$$ | |
using notation as in Remark \ref{remark-compute-L-pi-shriek}. | |
Now Remark \ref{remark-map-sections-over-U} shows that | |
$L\pi_!(\Omega_{\mathcal{O}/\underline{\Lambda}} | |
\otimes_\mathcal{O} \underline{\mathcal{O}}_X)$ | |
computes the cotangent complex of the map of rings | |
$\underline{\Lambda} \to \mathcal{O}_X$ on $X$. | |
This is what we want by Lemma \ref{lemma-scheme-over-ring}. | |
\end{proof} | |
\section{The cotangent complex of a morphism of algebraic spaces} | |
\label{section-cotangent-morphism-spaces} | |
\noindent | |
We define the cotangent complex of a morphism of algebraic spaces | |
using the associated morphism between the small \'etale sites. | |
\begin{definition} | |
\label{definition-cotangent-morphism-spaces} | |
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces | |
over $S$. The {\it cotangent complex $L_{X/Y}$ of $X$ over $Y$} is the | |
cotangent complex of the morphism of ringed topoi $f_{small}$ | |
between the small \'etale sites of $X$ and $Y$ | |
(see | |
Properties of Spaces, Lemma | |
\ref{spaces-properties-lemma-morphism-ringed-topoi} | |
and | |
Definition \ref{definition-cotangent-complex-morphism-ringed-topoi}). | |
\end{definition} | |
\noindent | |
In particular, the results of | |
Section \ref{section-cotangent-morphism-ringed-topoi} apply | |
to cotangent complexes of morphisms of algebraic spaces. | |
The next lemmas show this definition is compatible with the definition | |
for ring maps and for schemes and that $L_{X/Y}$ is an | |
object of $D_\QCoh(\mathcal{O}_X)$. | |
\begin{lemma} | |
\label{lemma-etale-localization} | |
Let $S$ be a scheme. Consider a commutative diagram | |
$$ | |
\xymatrix{ | |
U \ar[d]_p \ar[r]_g & V \ar[d]^q \\ | |
X \ar[r]^f & Y | |
} | |
$$ | |
of algebraic spaces over $S$ with $p$ and $q$ \'etale. | |
Then there is a canonical identification | |
$L_{X/Y}|_{U_\etale} = L_{U/V}$ in $D(\mathcal{O}_U)$. | |
\end{lemma} | |
\begin{proof} | |
Formation of the cotangent complex commutes with pullback | |
(Lemma \ref{lemma-pullback-cotangent-morphism-topoi}) and | |
we have $p_{small}^{-1}\mathcal{O}_X = \mathcal{O}_U$ and | |
$g_{small}^{-1}\mathcal{O}_{V_\etale} = | |
p_{small}^{-1}f_{small}^{-1}\mathcal{O}_{Y_\etale}$ | |
because $q_{small}^{-1}\mathcal{O}_{Y_\etale} = | |
\mathcal{O}_{V_\etale}$ | |
(Properties of Spaces, Lemma | |
\ref{spaces-properties-lemma-etale-exact-pullback}). | |
Tracing through the definitions we conclude that | |
$L_{X/Y}|_{U_\etale} = L_{U/V}$. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-compare-spaces-schemes} | |
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces | |
over $S$. Assume $X$ and $Y$ representable by schemes $X_0$ and $Y_0$. | |
Then there is a canonical identification | |
$L_{X/Y} = \epsilon^*L_{X_0/Y_0}$ in $D(\mathcal{O}_X)$ | |
where $\epsilon$ is as in Derived Categories of Spaces, Section | |
\ref{spaces-perfect-section-derived-quasi-coherent-etale} | |
and $L_{X_0/Y_0}$ is as in | |
Definition \ref{definition-cotangent-morphism-schemes}. | |
\end{lemma} | |
\begin{proof} | |
Let $f_0 : X_0 \to Y_0$ be the morphism of schemes corresponding to $f$. | |
There is a canonical map | |
$\epsilon^{-1}f_0^{-1}\mathcal{O}_{Y_0} \to f_{small}^{-1}\mathcal{O}_Y$ | |
compatible with | |
$\epsilon^\sharp : \epsilon^{-1}\mathcal{O}_{X_0} \to \mathcal{O}_X$ | |
because there is a commutative diagram | |
$$ | |
\xymatrix{ | |
X_{0, Zar} \ar[d]_{f_0} & X_\etale \ar[l]^\epsilon \ar[d]^f \\ | |
Y_{0, Zar} & Y_\etale \ar[l]_\epsilon | |
} | |
$$ | |
see Derived Categories of Spaces, Remark | |
\ref{spaces-perfect-remark-match-total-direct-images}. | |
Thus we obtain a canonical map | |
$$ | |
\epsilon^{-1}L_{X_0/Y_0} = | |
\epsilon^{-1}L_{\mathcal{O}_{X_0}/f_0^{-1}\mathcal{O}_{Y_0}} = | |
L_{\epsilon^{-1}\mathcal{O}_{X_0}/\epsilon^{-1}f_0^{-1}\mathcal{O}_{Y_0}} | |
\longrightarrow | |
L_{\mathcal{O}_X/f^{-1}_{small}\mathcal{O}_Y} = L_{X/Y} | |
$$ | |
by the functoriality discussed in Section \ref{section-cotangent-complex} | |
and Lemma \ref{lemma-pullback-cotangent-morphism-topoi}. | |
To see that the induced map $\epsilon^*L_{X_0/Y_0} \to L_{X/Y}$ is an | |
isomorphism we may check on stalks at geometric points | |
(Properties of Spaces, Theorem | |
\ref{spaces-properties-theorem-exactness-stalks}). | |
We will use Lemma \ref{lemma-stalk-cotangent-complex} | |
to compute the stalks. Let $\overline{x} : \Spec(k) \to X_0$ | |
be a geometric point lying over $x \in X_0$, with | |
$\overline{y} = f \circ \overline{x}$ lying over $y \in Y_0$. Then | |
$$ | |
L_{X/Y, \overline{x}} = | |
L_{\mathcal{O}_{X, \overline{x}}/\mathcal{O}_{Y, \overline{y}}} | |
$$ | |
and | |
$$ | |
(\epsilon^*L_{X_0/Y_0})_{\overline{x}} = | |
L_{X_0/Y_0, x} \otimes_{\mathcal{O}_{X_0, x}} | |
\mathcal{O}_{X, \overline{x}} = | |
L_{\mathcal{O}_{X_0, x}/\mathcal{O}_{Y_0, y}} | |
\otimes_{\mathcal{O}_{X_0, x}} \mathcal{O}_{X, \overline{x}} | |
$$ | |
Some details omitted (hint: use that the stalk of a pullback | |
is the stalk at the image point, see | |
Sites, Lemma \ref{sites-lemma-point-morphism-sites}, | |
as well as the corresponding result for modules, see | |
Modules on Sites, Lemma \ref{sites-modules-lemma-pullback-stalk}). | |
Observe that $\mathcal{O}_{X, \overline{x}}$ is the strict | |
henselization of $\mathcal{O}_{X_0, x}$ and similarly | |
for $\mathcal{O}_{Y, \overline{y}}$ | |
(Properties of Spaces, Lemma | |
\ref{spaces-properties-lemma-describe-etale-local-ring}). | |
Thus the result follows from | |
Lemma \ref{lemma-cotangent-complex-henselization}. | |
\end{proof} | |
\begin{lemma} | |
\label{lemma-space-over-ring} | |
Let $\Lambda$ be a ring. Let $X$ be an algebraic space over $\Lambda$. | |
Then | |
$$ | |
L_{X/\Spec(\Lambda)} = L_{\mathcal{O}_X/\underline{\Lambda}} | |
$$ | |
where $\underline{\Lambda}$ is the constant sheaf with value | |
$\Lambda$ on $X_\etale$. | |
\end{lemma} | |
\begin{proof} | |
Let $p : X \to \Spec(\Lambda)$ be the structure morphism. | |
Let $q : \Spec(\Lambda)_\etale \to (*, \Lambda)$ | |
be the obvious morphism. By the distinguished triangle of | |
Lemma \ref{lemma-triangle-ringed-topoi} | |
it suffices to show that $L_q = 0$. To see this it suffices to | |
show | |
(Properties of Spaces, Theorem | |
\ref{spaces-properties-theorem-exactness-stalks}) | |
for a geometric point $\overline{t} : \Spec(k) \to \Spec(\Lambda)$ that | |
$$ | |
(L_q)_{\overline{t}} = | |
L_{\mathcal{O}_{\Spec(\Lambda)_\etale, \overline{t}}/\Lambda} | |
$$ | |
(Lemma \ref{lemma-stalk-cotangent-complex}) | |
is zero. Since $\mathcal{O}_{\Spec(\Lambda)_\etale, \overline{t}}$ | |
is a strict henselization of a local ring of $\Lambda$ | |
(Properties of Spaces, Lemma | |
\ref{spaces-properties-lemma-describe-etale-local-ring}) | |
this follows from Lemma \ref{lemma-when-zero}. | |
\end{proof} | |
\section{The cotangent complex of an algebraic space over a ring} | |
\label{section-cotangent-spaces-variant} | |
\noindent | |
Let $\Lambda$ be a ring and let $X$ be an algebraic space over $\Lambda$. | |
Write $L_{X/\Spec(\Lambda)} = L_{X/\Lambda}$ which is justified | |
by Lemma \ref{lemma-space-over-ring}. | |
In this section we give a description of $L_{X/\Lambda}$ similar to | |
Lemma \ref{lemma-compute-cotangent-complex}. | |
Namely, we construct a category $\mathcal{C}_{X/\Lambda}$ | |
fibred over $X_\etale$ and endow it with a sheaf of (polynomial) | |
$\Lambda$-algebras $\mathcal{O}$ such that | |
$$ | |
L_{X/\Lambda} = | |
L\pi_!(\Omega_{\mathcal{O}/\underline{\Lambda}} \otimes_\mathcal{O} | |
\underline{\mathcal{O}}_X). | |
$$ | |
We will later use the category $\mathcal{C}_{X/\Lambda}$ to construct | |
a naive obstruction theory for the stack of coherent sheaves. | |
\medskip\noindent | |
Let $\Lambda$ be a ring. Let $X$ be an algebraic space over $\Lambda$. | |
Let $\mathcal{C}_{X/\Lambda}$ be the category whose objects are | |
commutative diagrams | |
\begin{equation} | |
\label{equation-object-space} | |
\vcenter{ | |
\xymatrix{ | |
X \ar[d] & U \ar[l] \ar[d] \\ | |
\Spec(\Lambda) & \mathbf{A} \ar[l] | |
} | |
} | |
\end{equation} | |
of schemes where | |
\begin{enumerate} | |
\item $U$ is a scheme, | |
\item $U \to X$ is \'etale, | |
\item there exists an isomorphism $\mathbf{A} = \Spec(P)$ | |
where $P$ is a polynomial algebra over $\Lambda$ (on some set | |
of variables). | |
\end{enumerate} | |
In other words, $\mathbf{A}$ is an (infinite dimensional) affine space over | |
$\Spec(\Lambda)$. Morphisms are given by commutative diagrams. | |
Recall that $X_\etale$ denotes the small \'etale site of $X$ | |
whose objects are schemes \'etale over $X$. | |
There is a forgetful functor | |
$$ | |
u : \mathcal{C}_{X/\Lambda} \to X_\etale, | |
\quad | |
(U \to \mathbf{A}) \mapsto U | |
$$ | |
Observe that the fibre category over $U$ is canonically equivalent | |
to the category $\mathcal{C}_{\mathcal{O}_X(U)/\Lambda}$ introduced | |
in Section \ref{section-compute-L-pi-shriek}. | |
\begin{lemma} | |
\label{lemma-category-fibred-space} | |
In the situation above the category | |
$\mathcal{C}_{X/\Lambda}$ is fibred over $X_\etale$. | |
\end{lemma} | |
\begin{proof} | |
Given an object $U \to \mathbf{A}$ of $\mathcal{C}_{X/\Lambda}$ and a morphism | |
$U' \to U$ of $X_\etale$ consider the object $U' \to \mathbf{A}$ of | |
$\mathcal{C}_{X/\Lambda}$ where $U' \to \mathbf{A}$ is the composition of | |
$U \to \mathbf{A}$ | |
and $U' \to U$. The morphism $(U' \to \mathbf{A}) \to (U \to \mathbf{A})$ of | |
$\mathcal{C}_{X/\Lambda}$ is strongly cartesian over $X_\etale$. | |
\end{proof} | |
\noindent | |
We endow $\mathcal{C}_{X/\Lambda}$ with the topology inherited from | |
$X_\etale$ (see Stacks, Section \ref{stacks-section-topology}). | |
The functor $u$ defines a morphism of topoi | |
$\pi : \Sh(\mathcal{C}_{X/\Lambda}) \to \Sh(X_\etale)$. | |
The site $\mathcal{C}_{X/\Lambda}$ comes with several sheaves of rings. | |
\begin{enumerate} | |
\item The sheaf $\mathcal{O}$ given by the rule | |
$(U \to \mathbf{A}) \mapsto \Gamma(\mathbf{A}, \mathcal{O}_\mathbf{A})$. | |
\item The sheaf $\underline{\mathcal{O}}_X = \pi^{-1}\mathcal{O}_X$ given by | |
the rule $(U \to \mathbf{A}) \mapsto \mathcal{O}_X(U)$. | |
\item The constant sheaf $\underline{\Lambda}$. | |
\end{enumerate} | |
We obtain morphisms of ringed topoi | |
\begin{equation} | |
\label{equation-pi-spaces} | |
\vcenter{ | |
\xymatrix{ | |
(\Sh(\mathcal{C}_{X/\Lambda}), \underline{\mathcal{O}}_X) \ar[r]_i \ar[d]_\pi & | |
(\Sh(\mathcal{C}_{X/\Lambda}), \mathcal{O}) \\ | |
(\Sh(X_\etale), \mathcal{O}_X) | |
} | |
} | |
\end{equation} | |
The morphism $i$ is the identity on underlying topoi and | |
$i^\sharp : \mathcal{O} \to \underline{\mathcal{O}}_X$ | |
is the obvious map. | |
The map $\pi$ is a special case of Cohomology on Sites, Situation | |
\ref{sites-cohomology-situation-fibred-category}. | |
An important role will be played in the following | |
by the derived functors | |
$ | |
Li^* : D(\mathcal{O}) \longrightarrow D(\underline{\mathcal{O}}_X) | |
$ | |
left adjoint to $Ri_* = i_* : D(\underline{\mathcal{O}}_X) \to D(\mathcal{O})$ | |
and | |
$ | |
L\pi_! : D(\underline{\mathcal{O}}_X) \longrightarrow D(\mathcal{O}_X) | |
$ | |
left adjoint to | |
$\pi^* = \pi^{-1} : D(\mathcal{O}_X) \to D(\underline{\mathcal{O}}_X)$. | |
We can compute $L\pi_!$ thanks to our earlier work. | |
\begin{remark} | |
\label{remark-compute-L-pi-shriek-spaces} | |
In the situation above, for every object $U \to X$ of $X_\etale$ | |
let $P_{\bullet, U}$ be the standard resolution of $\mathcal{O}_X(U)$ | |
over $\Lambda$. Set $\mathbf{A}_{n, U} = \Spec(P_{n, U})$. | |
Then $\mathbf{A}_{\bullet, U}$ | |
is a cosimplicial object of the fibre category | |
$\mathcal{C}_{\mathcal{O}_X(U)/\Lambda}$ of | |
$\mathcal{C}_{X/\Lambda}$ over $U$. Moreover, as discussed | |
in Remark \ref{remark-resolution} we have that $\mathbf{A}_{\bullet, U}$ | |
is a cosimplicial object of $\mathcal{C}_{\mathcal{O}_X(U)/\Lambda}$ | |
as in Cohomology on Sites, Lemma | |
\ref{sites-cohomology-lemma-compute-by-cosimplicial-resolution}. | |
Since the construction $U \mapsto \mathbf{A}_{\bullet, U}$ is functorial | |
in $U$, given any (abelian) sheaf $\mathcal{F}$ on $\mathcal{C}_{X/\Lambda}$ | |
we obtain a complex of presheaves | |
$$ | |
U \longmapsto \mathcal{F}(\mathbf{A}_{\bullet, U}) | |
$$ | |
whose cohomology groups compute the homology of $\mathcal{F}$ on the fibre | |
category. We conclude by | |
Cohomology on Sites, Lemma | |
\ref{sites-cohomology-lemma-compute-left-derived-pi-shriek} | |
that the sheafification computes $L_n\pi_!(\mathcal{F})$. | |
In other words, the complex of sheaves whose term in degree $-n$ is | |
the sheafification of $U \mapsto \mathcal{F}(\mathbf{A}_{n, U})$ computes | |
$L\pi_!(\mathcal{F})$. | |
\end{remark} | |
\noindent | |
With this remark out of the way we can state the main | |
result of this section. | |
\begin{lemma} | |
\label{lemma-cotangent-morphism-spaces} | |
In the situation above there is a canonical isomorphism | |
$$ | |
L_{X/\Lambda} = | |
L\pi_!(Li^*\Omega_{\mathcal{O}/\underline{\Lambda}}) = | |
L\pi_!(i^*\Omega_{\mathcal{O}/\underline{\Lambda}}) = | |
L\pi_!(\Omega_{\mathcal{O}/\underline{\Lambda}} | |
\otimes_\mathcal{O} \underline{\mathcal{O}}_X) | |
$$ | |
in $D(\mathcal{O}_X)$. | |
\end{lemma} | |
\begin{proof} | |
We first observe that for any object $(U \to \mathbf{A})$ of | |
$\mathcal{C}_{X/\Lambda}$ | |
the value of the sheaf $\mathcal{O}$ is a polynomial algebra over $\Lambda$. | |
Hence $\Omega_{\mathcal{O}/\underline{\Lambda}}$ is a flat $\mathcal{O}$-module | |
and we conclude the second and third equalities of the statement of the | |
lemma hold. | |
\medskip\noindent | |
By Remark \ref{remark-compute-L-pi-shriek-spaces} the object | |
$L\pi_!(\Omega_{\mathcal{O}/\underline{\Lambda}} | |
\otimes_\mathcal{O} \underline{\mathcal{O}}_X)$ | |
is computed as the sheafification of the complex of presheaves | |
$$ | |
U \mapsto | |
\left(\Omega_{\mathcal{O}/\underline{\Lambda}} | |
\otimes_\mathcal{O} \underline{\mathcal{O}}_X\right)(\mathbf{A}_{\bullet, U}) | |
= | |
\Omega_{P_{\bullet, U}/\Lambda} \otimes_{P_{\bullet, U}} \mathcal{O}_X(U) = | |
L_{\mathcal{O}_X(U)/\Lambda} | |
$$ | |
using notation as in Remark \ref{remark-compute-L-pi-shriek-spaces}. | |
Now Remark \ref{remark-map-sections-over-U} shows that | |
$L\pi_!(\Omega_{\mathcal{O}/\underline{\Lambda}} | |
\otimes_\mathcal{O} \underline{\mathcal{O}}_X)$ | |
computes the cotangent complex of the map of rings | |
$\underline{\Lambda} \to \mathcal{O}_X$ on $X_\etale$. | |
This is what we want by Lemma \ref{lemma-space-over-ring}. | |
\end{proof} | |
\section{Fibre products of algebraic spaces and the cotangent complex} | |
\label{section-fibre-product} | |
\noindent | |
Let $S$ be a scheme. Let $X \to B$ and $Y \to B$ be morphisms of algebraic | |
spaces over $S$. Consider the fibre product $X \times_B Y$ with projection | |
morphisms $p : X \times_B Y \to X$ and $q : X \times_B Y \to Y$. | |
In this section we discuss $L_{X \times_B Y/B}$. Most of the | |
information we want is contained in the following diagram | |
\begin{equation} | |
\label{equation-fibre-product} | |
\vcenter{ | |
\xymatrix{ | |
Lp^*L_{X/B} \ar[r] & | |
L_{X \times_B Y/Y} \ar[r] & | |
E \\ | |
Lp^*L_{X/B} \ar[r] \ar@{=}[u] & | |
L_{X \times_B Y/B} \ar[r] \ar[u] & | |
L_{X \times_B Y/X} \ar[u] \\ | |
& | |
Lq^*L_{Y/B} \ar[u] \ar@{=}[r] & | |
Lq^*L_{Y/B} \ar[u] | |
} | |
} | |
\end{equation} | |
Explanation: The middle row is the fundamental triangle of | |
Lemma \ref{lemma-triangle-ringed-topoi} for the morphisms | |
$X \times_B Y \to X \to B$. The middle column is the fundamental triangle | |
for the morphisms $X \times_B Y \to Y \to B$. | |
Next, $E$ is an object of $D(\mathcal{O}_{X \times_B Y})$ which ``fits'' | |
into the upper right corner, i.e., which turns both the top row | |
and the right column into distinguished triangles. Such an $E$ | |
exists by Derived Categories, Proposition \ref{derived-proposition-9} | |
applied to the lower left square (with $0$ placed in the missing | |
spot). To be more explicit, we could for example define $E$ as the cone | |
(Derived Categories, Definition \ref{derived-definition-cone}) | |
of the map of complexes | |
$$ | |
Lp^*L_{X/B} \oplus Lq^*L_{Y/B} \longrightarrow L_{X \times_B Y/B} | |
$$ | |
and get the two maps with target $E$ by an application of TR3. | |
In the Tor independent case the object $E$ is zero. | |
\begin{lemma} | |
\label{lemma-fibre-product-tor-independent} | |
In the situation above, if $X$ and $Y$ are Tor independent over $B$, then | |
the object $E$ in (\ref{equation-fibre-product}) is zero. In this case we | |
have | |
$$ | |
L_{X \times_B Y/B} = Lp^*L_{X/B} \oplus Lq^*L_{Y/B} | |
$$ | |
\end{lemma} | |
\begin{proof} | |
Choose a scheme $W$ and a surjective \'etale morphism $W \to B$. | |
Choose a scheme $U$ and a surjective \'etale morphism $U \to X \times_B W$. | |
Choose a scheme $V$ and a surjective \'etale morphism $V \to Y \times_B W$. | |
Then $U \times_W V \to X \times_B Y$ is surjective \'etale too. | |
Hence it suffices to prove that the restriction of $E$ to $U \times_W V$ | |
is zero. By Lemma \ref{lemma-compare-spaces-schemes} and | |
Derived Categories of Spaces, Lemma \ref{spaces-perfect-lemma-tor-independent} | |
this reduces us to the case of schemes. | |
Taking suitable affine opens we reduce to the case of affine schemes. | |
Using | |
Lemma \ref{lemma-morphism-affine-schemes} | |
we reduce to the case of a tensor product of rings, i.e., to | |
Lemma \ref{lemma-tensor-product-tor-independent}. | |
\end{proof} | |
\noindent | |
In general we can say the following about the object $E$. | |
\begin{lemma} | |
\label{lemma-fibre-product} | |
Let $S$ be a scheme. Let $X \to B$ and $Y \to B$ be morphisms of algebraic | |
spaces over $S$. The object $E$ in (\ref{equation-fibre-product}) satisfies | |
$H^i(E) = 0$ for $i = 0, -1$ and for a geometric point | |
$(\overline{x}, \overline{y}) : \Spec(k) \to X \times_B Y$ we have | |
$$ | |
H^{-2}(E)_{(\overline{x}, \overline{y})} = | |
\text{Tor}_1^R(A, B) \otimes_{A \otimes_R B} C | |
$$ | |
where $R = \mathcal{O}_{B, \overline{b}}$, $A = \mathcal{O}_{X, \overline{x}}$, | |
$B = \mathcal{O}_{Y, \overline{y}}$, and | |
$C = \mathcal{O}_{X \times_B Y, (\overline{x}, \overline{y})}$. | |
\end{lemma} | |
\begin{proof} | |
The formation of the cotangent complex commutes with taking stalks | |
and pullbacks, see | |
Lemmas \ref{lemma-stalk-cotangent-complex} and | |
\ref{lemma-pullback-cotangent-morphism-topoi}. | |
Note that $C$ is a henselization of $A \otimes_R B$. | |
$L_{C/R} = L_{A \otimes_R B/R} \otimes_{A \otimes_R B} C$ | |
by the results of Section \ref{section-localization}. | |
Thus the stalk of $E$ at our geometric point is the cone of the | |
map $L_{A/R} \otimes C \to L_{A \otimes_R B/R} \otimes C$. | |
Therefore the results of the lemma follow from | |
the case of rings, i.e., Lemma \ref{lemma-tensor-product}. | |
\end{proof} | |
\input{chapters} | |
\bibliography{my} | |
\bibliographystyle{amsalpha} | |
\end{document} | |