\chapter{More properties of the discriminant} I'll remind you that the discriminant of a number field $K$ is given by \[ \Delta_K \defeq \det \begin{bmatrix} \sigma_1(\alpha_1) & \dots & \sigma_n(\alpha_1) \\ \vdots & \ddots & \vdots \\ \sigma_1(\alpha_n) & \dots & \sigma_n(\alpha_n) \\ \end{bmatrix}^2 \] where $\alpha_1$, \dots, $\alpha_n$ is a $\ZZ$-basis for $K$, and the $\sigma_i$ are the $n$ embeddings of $K$ into $\CC$. Several examples, properties, and equivalent definitions follow. \section\problemhead \begin{sproblem}[Discriminant of cyclotomic field] \label{prob:discrim_cyclotomic_field} Let $p$ be an odd rational prime and $\zeta_p$ a primitive $p$th root of unity. Let $K = \QQ(\zeta_p)$. Show that \[ \Delta_K = (-1)^{\frac{p-1}{2}} p^{p-2}. \] \begin{hint} Direct linear algebra computation. \end{hint} \end{sproblem} \begin{sproblem}[Trace representation of $\Delta_K$] \gim Let $\alpha_1$, \dots, $\alpha_n$ be a basis for $\OO_K$. Prove that \[ \Delta_K = \det \begin{bmatrix} \TrK(\alpha_1^2) & \TrK(\alpha_1\alpha_2) & \dots & \TrK(\alpha_1\alpha_n) \\ \TrK(\alpha_2\alpha_1) & \TrK(\alpha_2^2) & \dots & \TrK(\alpha_2\alpha_n) \\ \qquad\vdots & \qquad\vdots & \ddots & \qquad\vdots \\ \TrK(\alpha_n\alpha_1) & \TrK(\alpha_n\alpha_2) & \dots & \TrK(\alpha_n\alpha_n) \\ \end{bmatrix}. \] In particular, $\Delta_K$ is an integer. \label{prob:trace_discriminant} \begin{hint} Let $M$ be the ``embedding'' matrix. Look at $M^\top M$, where $M^\top$ is the transpose matrix. \end{hint} \end{sproblem} \begin{sproblem}[Root representation of $\Delta_K$] The \vocab{discriminant} of a quadratic polynomial $Ax^2+Bx+C$ is defined as $B^2-4AC$. More generally, the polynomial discriminant of a polynomial $f \in \ZZ[x]$ of degree $n$ is \[ \Delta(f) \defeq c^{2n-2} \prod_{1 \le i < j \le n} \left( z_i - z_j \right)^2 \] where $z_1, \dots, z_n$ are the roots of $f$, and $c$ is the leading coefficient of $f$. Suppose $K$ is monogenic with $\OO_K = \ZZ[\theta]$. Let $f$ denote the minimal polynomial of $\theta$ (hence monic). Show that \[ \Delta_K = \Delta(f). \] \label{prob:root_discriminant} \begin{hint} Vandermonde matrices. \end{hint} \end{sproblem} \begin{problem} Show that if $K \neq \QQ$ is a number field then $\left\lvert \Delta_K \right\rvert > 1$. \begin{hint} $M_K \ge 1$ must hold. Bash. \end{hint} \end{problem} \begin{problem} [Brill's theorem] For a number field $K$ with signature $(r_1, r_2)$, show that $\Delta_K > 0$ if and only if $r_2$ is even. \end{problem} \begin{problem} [Stickelberger theorem] \kurumi Let $K$ be a number field. Prove that \[ \Delta_K \equiv 0 \text{ or } 1 \pmod 4. \] % P N \end{problem}