\input{preamble} % OK, start here. % \begin{document} \title{Cohomology of Schemes} \maketitle \phantomsection \label{section-phantom} \tableofcontents \section{Introduction} \label{section-introduction} \noindent In this chapter we first prove a number of results on the cohomology of quasi-coherent sheaves. A fundamental reference is \cite{EGA}. Having done this we will elaborate on cohomology of coherent sheaves in the Noetherian setting. See \cite{FAC}. \section{{\v C}ech cohomology of quasi-coherent sheaves} \label{section-cech-quasi-coherent} \noindent Let $X$ be a scheme. Let $U \subset X$ be an affine open. Recall that a {\it standard open covering} of $U$ is a covering of the form $\mathcal{U} : U = \bigcup_{i = 1}^n D(f_i)$ where $f_1, \ldots, f_n \in \Gamma(U, \mathcal{O}_X)$ generate the unit ideal, see Schemes, Definition \ref{schemes-definition-standard-covering}. \begin{lemma} \label{lemma-cech-cohomology-quasi-coherent-trivial} Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Let $\mathcal{U} : U = \bigcup_{i = 1}^n D(f_i)$ be a standard open covering of an affine open of $X$. Then $\check{H}^p(\mathcal{U}, \mathcal{F}) = 0$ for all $p > 0$. \end{lemma} \begin{proof} Write $U = \Spec(A)$ for some ring $A$. In other words, $f_1, \ldots, f_n$ are elements of $A$ which generate the unit ideal of $A$. Write $\mathcal{F}|_U = \widetilde{M}$ for some $A$-module $M$. Clearly the {\v C}ech complex $\check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F})$ is identified with the complex $$ \prod\nolimits_{i_0} M_{f_{i_0}} \to \prod\nolimits_{i_0i_1} M_{f_{i_0}f_{i_1}} \to \prod\nolimits_{i_0i_1i_2} M_{f_{i_0}f_{i_1}f_{i_2}} \to \ldots $$ We are asked to show that the extended complex \begin{equation} \label{equation-extended} 0 \to M \to \prod\nolimits_{i_0} M_{f_{i_0}} \to \prod\nolimits_{i_0i_1} M_{f_{i_0}f_{i_1}} \to \prod\nolimits_{i_0i_1i_2} M_{f_{i_0}f_{i_1}f_{i_2}} \to \ldots \end{equation} (whose truncation we have studied in Algebra, Lemma \ref{algebra-lemma-cover-module}) is exact. It suffices to show that (\ref{equation-extended}) is exact after localizing at a prime $\mathfrak p$, see Algebra, Lemma \ref{algebra-lemma-characterize-zero-local}. In fact we will show that the extended complex localized at $\mathfrak p$ is homotopic to zero. \medskip\noindent There exists an index $i$ such that $f_i \not \in \mathfrak p$. Choose and fix such an element $i_{\text{fix}}$. Note that $M_{f_{i_{\text{fix}}}, \mathfrak p} = M_{\mathfrak p}$. Similarly for a localization at a product $f_{i_0} \ldots f_{i_p}$ and $\mathfrak p$ we can drop any $f_{i_j}$ for which $i_j = i_{\text{fix}}$. Let us define a homotopy $$ h : \prod\nolimits_{i_0 \ldots i_{p + 1}} M_{f_{i_0} \ldots f_{i_{p + 1}}, \mathfrak p} \longrightarrow \prod\nolimits_{i_0 \ldots i_p} M_{f_{i_0} \ldots f_{i_p}, \mathfrak p} $$ by the rule $$ h(s)_{i_0 \ldots i_p} = s_{i_{\text{fix}} i_0 \ldots i_p} $$ (This is ``dual'' to the homotopy in the proof of Cohomology, Lemma \ref{cohomology-lemma-homology-complex}.) In other words, $h : \prod_{i_0} M_{f_{i_0}, \mathfrak p} \to M_\mathfrak p$ is projection onto the factor $M_{f_{i_{\text{fix}}}, \mathfrak p} = M_{\mathfrak p}$ and in general the map $h$ equal projection onto the factors $M_{f_{i_{\text{fix}}} f_{i_1} \ldots f_{i_{p + 1}}, \mathfrak p} = M_{f_{i_1} \ldots f_{i_{p + 1}}, \mathfrak p}$. We compute \begin{align*} (dh + hd)(s)_{i_0 \ldots i_p} & = \sum\nolimits_{j = 0}^p (-1)^j h(s)_{i_0 \ldots \hat i_j \ldots i_p} + d(s)_{i_{\text{fix}} i_0 \ldots i_p}\\ & = \sum\nolimits_{j = 0}^p (-1)^j s_{i_{\text{fix}} i_0 \ldots \hat i_j \ldots i_p} + s_{i_0 \ldots i_p} + \sum\nolimits_{j = 0}^p (-1)^{j + 1} s_{i_{\text{fix}} i_0 \ldots \hat i_j \ldots i_p} \\ & = s_{i_0 \ldots i_p} \end{align*} This proves the identity map is homotopic to zero as desired. \end{proof} \noindent The following lemma says in particular that for any affine scheme $X$ and any quasi-coherent sheaf $\mathcal{F}$ on $X$ we have $$ H^p(X, \mathcal{F}) = 0 $$ for all $p > 0$. \begin{lemma} \label{lemma-quasi-coherent-affine-cohomology-zero} \begin{slogan} Serre vanishing: Higher cohomology vanishes on affine schemes for quasi-coherent modules. \end{slogan} Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. For any affine open $U \subset X$ we have $H^p(U, \mathcal{F}) = 0$ for all $p > 0$. \end{lemma} \begin{proof} We are going to apply Cohomology, Lemma \ref{cohomology-lemma-cech-vanish-basis}. As our basis $\mathcal{B}$ for the topology of $X$ we are going to use the affine opens of $X$. As our set $\text{Cov}$ of open coverings we are going to use the standard open coverings of affine opens of $X$. Next we check that conditions (1), (2) and (3) of Cohomology, Lemma \ref{cohomology-lemma-cech-vanish-basis} hold. Note that the intersection of standard opens in an affine is another standard open. Hence property (1) holds. The coverings form a cofinal system of open coverings of any element of $\mathcal{B}$, see Schemes, Lemma \ref{schemes-lemma-standard-open}. Hence (2) holds. Finally, condition (3) of the lemma follows from Lemma \ref{lemma-cech-cohomology-quasi-coherent-trivial}. \end{proof} \noindent Here is a relative version of the vanishing of cohomology of quasi-coherent sheaves on affines. \begin{lemma} \label{lemma-relative-affine-vanishing} Let $f : X \to S$ be a morphism of schemes. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. If $f$ is affine then $R^if_*\mathcal{F} = 0$ for all $i > 0$. \end{lemma} \begin{proof} According to Cohomology, Lemma \ref{cohomology-lemma-describe-higher-direct-images} the sheaf $R^if_*\mathcal{F}$ is the sheaf associated to the presheaf $V \mapsto H^i(f^{-1}(V), \mathcal{F}|_{f^{-1}(V)})$. By assumption, whenever $V$ is affine we have that $f^{-1}(V)$ is affine, see Morphisms, Definition \ref{morphisms-definition-affine}. By Lemma \ref{lemma-quasi-coherent-affine-cohomology-zero} we conclude that $H^i(f^{-1}(V), \mathcal{F}|_{f^{-1}(V)}) = 0$ whenever $V$ is affine. Since $S$ has a basis consisting of affine opens we win. \end{proof} \begin{lemma} \label{lemma-relative-affine-cohomology} Let $f : X \to S$ be an affine morphism of schemes. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Then $H^i(X, \mathcal{F}) = H^i(S, f_*\mathcal{F})$ for all $i \geq 0$. \end{lemma} \begin{proof} Follows from Lemma \ref{lemma-relative-affine-vanishing} and the Leray spectral sequence. See Cohomology, Lemma \ref{cohomology-lemma-apply-Leray}. \end{proof} \noindent The following two lemmas explain when {\v C}ech cohomology can be used to compute cohomology of quasi-coherent modules. \begin{lemma} \label{lemma-affine-diagonal} Let $X$ be a scheme. The following are equivalent \begin{enumerate} \item $X$ has affine diagonal $\Delta : X \to X \times X$, \item for $U, V \subset X$ affine open, the intersection $U \cap V$ is affine, and \item there exists an open covering $\mathcal{U} : X = \bigcup_{i \in I} U_i$ such that $U_{i_0 \ldots i_p}$ is affine open for all $p \ge 0$ and all $i_0, \ldots, i_p \in I$. \end{enumerate} In particular this holds if $X$ is separated. \end{lemma} \begin{proof} Assume $X$ has affine diagonal. Let $U, V \subset X$ be affine opens. Then $U \cap V = \Delta^{-1}(U \times V)$ is affine. Thus (2) holds. It is immediate that (2) implies (3). Conversely, if there is a covering of $X$ as in (3), then $X \times X = \bigcup U_i \times U_{i'}$ is an affine open covering, and we see that $\Delta^{-1}(U_i \times U_{i'}) = U_i \cap U_{i'}$ is affine. Then $\Delta$ is an affine morphism by Morphisms, Lemma \ref{morphisms-lemma-characterize-affine}. The final assertion follows from Schemes, Lemma \ref{schemes-lemma-characterize-separated}. \end{proof} \begin{lemma} \label{lemma-cech-cohomology-quasi-coherent} Let $X$ be a scheme. Let $\mathcal{U} : X = \bigcup_{i \in I} U_i$ be an open covering such that $U_{i_0 \ldots i_p}$ is affine open for all $p \ge 0$ and all $i_0, \ldots, i_p \in I$. In this case for any quasi-coherent sheaf $\mathcal{F}$ we have $$ \check{H}^p(\mathcal{U}, \mathcal{F}) = H^p(X, \mathcal{F}) $$ as $\Gamma(X, \mathcal{O}_X)$-modules for all $p$. \end{lemma} \begin{proof} In view of Lemma \ref{lemma-quasi-coherent-affine-cohomology-zero} this is a special case of Cohomology, Lemma \ref{cohomology-lemma-cech-spectral-sequence-application}. \end{proof} \section{Vanishing of cohomology} \label{section-vanishing} \noindent We have seen that on an affine scheme the higher cohomology groups of any quasi-coherent sheaf vanish (Lemma \ref{lemma-quasi-coherent-affine-cohomology-zero}). It turns out that this also characterizes affine schemes. We give two versions. \begin{lemma} \label{lemma-quasi-compact-h1-zero-covering} \begin{reference} \cite{Serre-criterion}, \cite[II, Theorem 5.2.1 (d') and IV (1.7.17)]{EGA} \end{reference} \begin{slogan} Serre's criterion for affineness. \end{slogan} Let $X$ be a scheme. Assume that \begin{enumerate} \item $X$ is quasi-compact, \item for every quasi-coherent sheaf of ideals $\mathcal{I} \subset \mathcal{O}_X$ we have $H^1(X, \mathcal{I}) = 0$. \end{enumerate} Then $X$ is affine. \end{lemma} \begin{proof} Let $x \in X$ be a closed point. Let $U \subset X$ be an affine open neighbourhood of $x$. Write $U = \Spec(A)$ and let $\mathfrak m \subset A$ be the maximal ideal corresponding to $x$. Set $Z = X \setminus U$ and $Z' = Z \cup \{x\}$. By Schemes, Lemma \ref{schemes-lemma-reduced-closed-subscheme} there are quasi-coherent sheaves of ideals $\mathcal{I}$, resp.\ $\mathcal{I}'$ cutting out the reduced closed subschemes $Z$, resp.\ $Z'$. Consider the short exact sequence $$ 0 \to \mathcal{I}' \to \mathcal{I} \to \mathcal{I}/\mathcal{I}' \to 0. $$ Since $x$ is a closed point of $X$ and $x \not \in Z$ we see that $\mathcal{I}/\mathcal{I}'$ is supported at $x$. In fact, the restriction of $\mathcal{I}/\mathcal{I'}$ to $U$ corresponds to the $A$-module $A/\mathfrak m$. Hence we see that $\Gamma(X, \mathcal{I}/\mathcal{I'}) = A/\mathfrak m$. Since by assumption $H^1(X, \mathcal{I}') = 0$ we see there exists a global section $f \in \Gamma(X, \mathcal{I})$ which maps to the element $1 \in A/\mathfrak m$ as a section of $\mathcal{I}/\mathcal{I'}$. Clearly we have $x \in X_f \subset U$. This implies that $X_f = D(f_A)$ where $f_A$ is the image of $f$ in $A = \Gamma(U, \mathcal{O}_X)$. In particular $X_f$ is affine. \medskip\noindent Consider the union $W = \bigcup X_f$ over all $f \in \Gamma(X, \mathcal{O}_X)$ such that $X_f$ is affine. Obviously $W$ is open in $X$. By the arguments above every closed point of $X$ is contained in $W$. The closed subset $X \setminus W$ of $X$ is also quasi-compact (see Topology, Lemma \ref{topology-lemma-closed-in-quasi-compact}). Hence it has a closed point if it is nonempty (see Topology, Lemma \ref{topology-lemma-quasi-compact-closed-point}). This would contradict the fact that all closed points are in $W$. Hence we conclude $X = W$. \medskip\noindent Choose finitely many $f_1, \ldots, f_n \in \Gamma(X, \mathcal{O}_X)$ such that $X = X_{f_1} \cup \ldots \cup X_{f_n}$ and such that each $X_{f_i}$ is affine. This is possible as we've seen above. By Properties, Lemma \ref{properties-lemma-characterize-affine} to finish the proof it suffices to show that $f_1, \ldots, f_n$ generate the unit ideal in $\Gamma(X, \mathcal{O}_X)$. Consider the short exact sequence $$ \xymatrix{ 0 \ar[r] & \mathcal{F} \ar[r] & \mathcal{O}_X^{\oplus n} \ar[rr]^{f_1, \ldots, f_n} & & \mathcal{O}_X \ar[r] & 0 } $$ The arrow defined by $f_1, \ldots, f_n$ is surjective since the opens $X_{f_i}$ cover $X$. We let $\mathcal{F}$ be the kernel of this surjective map. Observe that $\mathcal{F}$ has a filtration $$ 0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots \subset \mathcal{F}_n = \mathcal{F} $$ so that each subquotient $\mathcal{F}_i/\mathcal{F}_{i - 1}$ is isomorphic to a quasi-coherent sheaf of ideals. Namely we can take $\mathcal{F}_i$ to be the intersection of $\mathcal{F}$ with the first $i$ direct summands of $\mathcal{O}_X^{\oplus n}$. The assumption of the lemma implies that $H^1(X, \mathcal{F}_i/\mathcal{F}_{i - 1}) = 0$ for all $i$. This implies that $H^1(X, \mathcal{F}_2) = 0$ because it is sandwiched between $H^1(X, \mathcal{F}_1)$ and $H^1(X, \mathcal{F}_2/\mathcal{F}_1)$. Continuing like this we deduce that $H^1(X, \mathcal{F}) = 0$. Therefore we conclude that the map $$ \xymatrix{ \bigoplus\nolimits_{i = 1, \ldots, n} \Gamma(X, \mathcal{O}_X) \ar[rr]^{f_1, \ldots, f_n} & & \Gamma(X, \mathcal{O}_X) } $$ is surjective as desired. \end{proof} \noindent Note that if $X$ is a Noetherian scheme then every quasi-coherent sheaf of ideals is automatically a coherent sheaf of ideals and a finite type quasi-coherent sheaf of ideals. Hence the preceding lemma and the next lemma both apply in this case. \begin{lemma} \label{lemma-quasi-separated-h1-zero-covering} \begin{reference} \cite{Serre-criterion}, \cite[II, Theorem 5.2.1]{EGA} \end{reference} \begin{slogan} Serre's criterion for affineness. \end{slogan} Let $X$ be a scheme. Assume that \begin{enumerate} \item $X$ is quasi-compact, \item $X$ is quasi-separated, and \item $H^1(X, \mathcal{I}) = 0$ for every quasi-coherent sheaf of ideals $\mathcal{I}$ of finite type. \end{enumerate} Then $X$ is affine. \end{lemma} \begin{proof} By Properties, Lemma \ref{properties-lemma-quasi-coherent-colimit-finite-type} every quasi-coherent sheaf of ideals is a directed colimit of quasi-coherent sheaves of ideals of finite type. By Cohomology, Lemma \ref{cohomology-lemma-quasi-separated-cohomology-colimit} taking cohomology on $X$ commutes with directed colimits. Hence we see that $H^1(X, \mathcal{I}) = 0$ for every quasi-coherent sheaf of ideals on $X$. In other words we see that Lemma \ref{lemma-quasi-compact-h1-zero-covering} applies. \end{proof} \noindent We can use the arguments given above to find a sufficient condition to see when an invertible sheaf is ample. However, we warn the reader that this condition is not necessary. \begin{lemma} \label{lemma-quasi-compact-h1-zero-invertible} Let $X$ be a scheme. Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module. Assume that \begin{enumerate} \item $X$ is quasi-compact, \item for every quasi-coherent sheaf of ideals $\mathcal{I} \subset \mathcal{O}_X$ there exists an $n \geq 1$ such that $H^1(X, \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n}) = 0$. \end{enumerate} Then $\mathcal{L}$ is ample. \end{lemma} \begin{proof} This is proved in exactly the same way as Lemma \ref{lemma-quasi-compact-h1-zero-covering}. Let $x \in X$ be a closed point. Let $U \subset X$ be an affine open neighbourhood of $x$ such that $\mathcal{L}|_U \cong \mathcal{O}_U$. Write $U = \Spec(A)$ and let $\mathfrak m \subset A$ be the maximal ideal corresponding to $x$. Set $Z = X \setminus U$ and $Z' = Z \cup \{x\}$. By Schemes, Lemma \ref{schemes-lemma-reduced-closed-subscheme} there are quasi-coherent sheaves of ideals $\mathcal{I}$, resp.\ $\mathcal{I}'$ cutting out the reduced closed subschemes $Z$, resp.\ $Z'$. Consider the short exact sequence $$ 0 \to \mathcal{I}' \to \mathcal{I} \to \mathcal{I}/\mathcal{I}' \to 0. $$ For every $n \geq 1$ we obtain a short exact sequence $$ 0 \to \mathcal{I}' \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n} \to \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n} \to \mathcal{I}/\mathcal{I}' \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n} \to 0. $$ By our assumption we may pick $n$ such that $H^1(X, \mathcal{I}' \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n}) = 0$. Since $x$ is a closed point of $X$ and $x \not \in Z$ we see that $\mathcal{I}/\mathcal{I}'$ is supported at $x$. In fact, the restriction of $\mathcal{I}/\mathcal{I'}$ to $U$ corresponds to the $A$-module $A/\mathfrak m$. Since $\mathcal{L}$ is trivial on $U$ we see that the restriction of $\mathcal{I}/\mathcal{I}' \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n}$ to $U$ also corresponds to the $A$-module $A/\mathfrak m$. Hence we see that $\Gamma(X, \mathcal{I}/\mathcal{I'} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n}) = A/\mathfrak m$. By our choice of $n$ we see there exists a global section $s \in \Gamma(X, \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n})$ which maps to the element $1 \in A/\mathfrak m$. Clearly we have $x \in X_s \subset U$ because $s$ vanishes at points of $Z$. This implies that $X_s = D(f)$ where $f \in A$ is the image of $s$ in $A \cong \Gamma(U, \mathcal{L}^{\otimes n})$. In particular $X_s$ is affine. \medskip\noindent Consider the union $W = \bigcup X_s$ over all $s \in \Gamma(X, \mathcal{L}^{\otimes n})$ for $n \geq 1$ such that $X_s$ is affine. Obviously $W$ is open in $X$. By the arguments above every closed point of $X$ is contained in $W$. The closed subset $X \setminus W$ of $X$ is also quasi-compact (see Topology, Lemma \ref{topology-lemma-closed-in-quasi-compact}). Hence it has a closed point if it is nonempty (see Topology, Lemma \ref{topology-lemma-quasi-compact-closed-point}). This would contradict the fact that all closed points are in $W$. Hence we conclude $X = W$. This means that $\mathcal{L}$ is ample by Properties, Definition \ref{properties-definition-ample}. \end{proof} \noindent There is a variant of Lemma \ref{lemma-quasi-compact-h1-zero-invertible} with finite type ideal sheaves which we will formulate and prove here if we ever need it. \begin{lemma} \label{lemma-criterion-affine-morphism} Let $f : X \to Y$ be a quasi-compact morphism with $X$ and $Y$ quasi-separated. If $R^1f_*\mathcal{I} = 0$ for every quasi-coherent sheaf of ideals $\mathcal{I}$ on $X$, then $f$ is affine. \end{lemma} \begin{proof} Let $V \subset Y$ be an affine open subscheme. We have to show that $U = f^{-1}(V)$ is affine. The inclusion morphism $V \to Y$ is quasi-compact by Schemes, Lemma \ref{schemes-lemma-quasi-compact-permanence}. Hence the base change $U \to X$ is quasi-compact, see Schemes, Lemma \ref{schemes-lemma-quasi-compact-preserved-base-change}. Thus any quasi-coherent sheaf of ideals $\mathcal{I}$ on $U$ extends to a quasi-coherent sheaf of ideals on $X$, see Properties, Lemma \ref{properties-lemma-extend-trivial}. Since the formation of $R^1f_*$ is local on $Y$ (Cohomology, Section \ref{cohomology-section-locality}) we conclude that $R^1(U \to V)_*\mathcal{I} = 0$ by the assumption in the lemma. Hence by the Leray Spectral sequence (Cohomology, Lemma \ref{cohomology-lemma-Leray}) we conclude that $H^1(U, \mathcal{I}) = H^1(V, (U \to V)_*\mathcal{I})$. Since $(U \to V)_*\mathcal{I}$ is quasi-coherent by Schemes, Lemma \ref{schemes-lemma-push-forward-quasi-coherent}, we have $H^1(V, (U \to V)_*\mathcal{I}) = 0$ by Lemma \ref{lemma-quasi-coherent-affine-cohomology-zero}. Thus we find that $U$ is affine by Lemma \ref{lemma-quasi-compact-h1-zero-covering}. \end{proof} \section{Quasi-coherence of higher direct images} \label{section-quasi-coherence} \noindent We have seen that the higher cohomology groups of a quasi-coherent module on an affine is zero. For (quasi-)separated quasi-compact schemes $X$ this implies vanishing of cohomology groups of quasi-coherent sheaves beyond a certain degree. However, it may not be the case that $X$ has finite cohomological dimension, because that is defined in terms of vanishing of cohomology of {\it all} $\mathcal{O}_X$-modules. \begin{lemma}[Induction Principle] \label{lemma-induction-principle} \begin{reference} \cite[Proposition 3.3.1]{BvdB} \end{reference} Let $X$ be a quasi-compact and quasi-separated scheme. Let $P$ be a property of the quasi-compact opens of $X$. Assume that \begin{enumerate} \item $P$ holds for every affine open of $X$, \item if $U$ is quasi-compact open, $V$ affine open, $P$ holds for $U$, $V$, and $U \cap V$, then $P$ holds for $U \cup V$. \end{enumerate} Then $P$ holds for every quasi-compact open of $X$ and in particular for $X$. \end{lemma} \begin{proof} First we argue by induction that $P$ holds for {\it separated} quasi-compact opens $W \subset X$. Namely, such an open can be written as $W = U_1 \cup \ldots \cup U_n$ and we can do induction on $n$ using property (2) with $U = U_1 \cup \ldots \cup U_{n - 1}$ and $V = U_n$. This is allowed because $U \cap V = (U_1 \cap U_n) \cup \ldots \cup (U_{n - 1} \cap U_n)$ is also a union of $n - 1$ affine open subschemes by Schemes, Lemma \ref{schemes-lemma-characterize-separated} applied to the affine opens $U_i$ and $U_n$ of $W$. Having said this, for any quasi-compact open $W \subset X$ we can do induction on the number of affine opens needed to cover $W$ using the same trick as before and using that the quasi-compact open $U_i \cap U_n$ is separated as an open subscheme of the affine scheme $U_n$. \end{proof} \begin{lemma} \label{lemma-vanishing-nr-affines} \begin{slogan} For schemes with affine diagonal, the cohomology of quasi-coherent modules vanishes in degrees bigger than the number of affine opens needed in a covering. \end{slogan} Let $X$ be a quasi-compact scheme with affine diagonal (for example if $X$ is separated). Let $t = t(X)$ be the minimal number of affine opens needed to cover $X$. Then $H^n(X, \mathcal{F}) = 0$ for all $n \geq t$ and all quasi-coherent sheaves $\mathcal{F}$. \end{lemma} \begin{proof} First proof. By induction on $t$. If $t = 1$ the result follows from Lemma \ref{lemma-quasi-coherent-affine-cohomology-zero}. If $t > 1$ write $X = U \cup V$ with $V$ affine open and $U = U_1 \cup \ldots \cup U_{t - 1}$ a union of $t - 1$ open affines. Note that in this case $U \cap V = (U_1 \cap V) \cup \ldots (U_{t - 1} \cap V)$ is also a union of $t - 1$ affine open subschemes. Namely, since the diagonal is affine, the intersection of two affine opens is affine, see Lemma \ref{lemma-affine-diagonal}. We apply the Mayer-Vietoris long exact sequence $$ 0 \to H^0(X, \mathcal{F}) \to H^0(U, \mathcal{F}) \oplus H^0(V, \mathcal{F}) \to H^0(U \cap V, \mathcal{F}) \to H^1(X, \mathcal{F}) \to \ldots $$ see Cohomology, Lemma \ref{cohomology-lemma-mayer-vietoris}. By induction we see that the groups $H^i(U, \mathcal{F})$, $H^i(V, \mathcal{F})$, $H^i(U \cap V, \mathcal{F})$ are zero for $i \geq t - 1$. It follows immediately that $H^i(X, \mathcal{F})$ is zero for $i \geq t$. \medskip\noindent Second proof. Let $\mathcal{U} : X = \bigcup_{i = 1}^t U_i$ be a finite affine open covering. Since $X$ is has affine diagonal the multiple intersections $U_{i_0 \ldots i_p}$ are all affine, see Lemma \ref{lemma-affine-diagonal}. By Lemma \ref{lemma-cech-cohomology-quasi-coherent} the {\v C}ech cohomology groups $\check{H}^p(\mathcal{U}, \mathcal{F})$ agree with the cohomology groups. By Cohomology, Lemma \ref{cohomology-lemma-alternating-usual} the {\v C}ech cohomology groups may be computed using the alternating {\v C}ech complex $\check{\mathcal{C}}_{alt}^\bullet(\mathcal{U}, \mathcal{F})$. As the covering consists of $t$ elements we see immediately that $\check{\mathcal{C}}_{alt}^p(\mathcal{U}, \mathcal{F}) = 0$ for all $p \geq t$. Hence the result follows. \end{proof} \begin{lemma} \label{lemma-affine-diagonal-universal-delta-functor} Let $X$ be a quasi-compact scheme with affine diagonal (for example if $X$ is separated). Then \begin{enumerate} \item given a quasi-coherent $\mathcal{O}_X$-module $\mathcal{F}$ there exists an embedding $\mathcal{F} \to \mathcal{F}'$ of quasi-coherent $\mathcal{O}_X$-modules such that $H^p(X, \mathcal{F}') = 0$ for all $p \geq 1$, and \item $\{H^n(X, -)\}_{n \geq 0}$ is a universal $\delta$-functor from $\QCoh(\mathcal{O}_X)$ to $\textit{Ab}$. \end{enumerate} \end{lemma} \begin{proof} Let $X = \bigcup U_i$ be a finite affine open covering. Set $U = \coprod U_i$ and denote $j : U \to X$ the morphism inducing the given open immersions $U_i \to X$. Since $U$ is an affine scheme and $X$ has affine diagonal, the morphism $j$ is affine, see Morphisms, Lemma \ref{morphisms-lemma-affine-permanence}. For every $\mathcal{O}_X$-module $\mathcal{F}$ there is a canonical map $\mathcal{F} \to j_*j^*\mathcal{F}$. This map is injective as can be seen by checking on stalks: if $x \in U_i$, then we have a factorization $$ \mathcal{F}_x \to (j_*j^*\mathcal{F})_x \to (j^*\mathcal{F})_{x'} = \mathcal{F}_x $$ where $x' \in U$ is the point $x$ viewed as a point of $U_i \subset U$. Now if $\mathcal{F}$ is quasi-coherent, then $j^*\mathcal{F}$ is quasi-coherent on the affine scheme $U$ hence has vanishing higher cohomology by Lemma \ref{lemma-quasi-coherent-affine-cohomology-zero}. Then $H^p(X, j_*j^*\mathcal{F}) = 0$ for $p > 0$ by Lemma \ref{lemma-relative-affine-cohomology} as $j$ is affine. This proves (1). Finally, we see that the map $H^p(X, \mathcal{F}) \to H^p(X, j_*j^*\mathcal{F})$ is zero and part (2) follows from Homology, Lemma \ref{homology-lemma-efface-implies-universal}. \end{proof} \begin{lemma} \label{lemma-vanishing-nr-affines-quasi-separated} Let $X$ be a quasi-compact quasi-separated scheme. Let $X = U_1 \cup \ldots \cup U_t$ be an affine open covering. Set $$ d = \max\nolimits_{I \subset \{1, \ldots, t\}} \left(|I| + t(\bigcap\nolimits_{i \in I} U_i)\right) $$ where $t(U)$ is the minimal number of affines needed to cover the scheme $U$. Then $H^n(X, \mathcal{F}) = 0$ for all $n \geq d$ and all quasi-coherent sheaves $\mathcal{F}$. \end{lemma} \begin{proof} Note that since $X$ is quasi-separated the numbers $t(\bigcap_{i \in I} U_i)$ are finite. Let $\mathcal{U} : X = \bigcup_{i = 1}^t U_i$. By Cohomology, Lemma \ref{cohomology-lemma-cech-spectral-sequence} there is a spectral sequence $$ E_2^{p, q} = \check{H}^p(\mathcal{U}, \underline{H}^q(\mathcal{F})) $$ converging to $H^{p + q}(U, \mathcal{F})$. By Cohomology, Lemma \ref{cohomology-lemma-alternating-usual} we have $$ E_2^{p, q} = H^p(\check{\mathcal{C}}_{alt}^\bullet( \mathcal{U}, \underline{H}^q(\mathcal{F})) $$ The alternating {\v C}ech complex with values in the presheaf $\underline{H}^q(\mathcal{F})$ vanishes in high degrees by Lemma \ref{lemma-vanishing-nr-affines}, more precisely $E_2^{p, q} = 0$ for $p + q \geq d$. Hence the result follows. \end{proof} \begin{lemma} \label{lemma-quasi-coherence-higher-direct-images} Let $f : X \to S$ be a morphism of schemes. Assume that $f$ is quasi-separated and quasi-compact. \begin{enumerate} \item For any quasi-coherent $\mathcal{O}_X$-module $\mathcal{F}$ the higher direct images $R^pf_*\mathcal{F}$ are quasi-coherent on $S$. \item If $S$ is quasi-compact, there exists an integer $n = n(X, S, f)$ such that $R^pf_*\mathcal{F} = 0$ for all $p \geq n$ and any quasi-coherent sheaf $\mathcal{F}$ on $X$. \item In fact, if $S$ is quasi-compact we can find $n = n(X, S, f)$ such that for every morphism of schemes $S' \to S$ we have $R^p(f')_*\mathcal{F}' = 0$ for $p \geq n$ and any quasi-coherent sheaf $\mathcal{F}'$ on $X'$. Here $f' : X' = S' \times_S X \to S'$ is the base change of $f$. \end{enumerate} \end{lemma} \begin{proof} We first prove (1). Note that under the hypotheses of the lemma the sheaf $R^0f_*\mathcal{F} = f_*\mathcal{F}$ is quasi-coherent by Schemes, Lemma \ref{schemes-lemma-push-forward-quasi-coherent}. Using Cohomology, Lemma \ref{cohomology-lemma-localize-higher-direct-images} we see that forming higher direct images commutes with restriction to open subschemes. Since being quasi-coherent is local on $S$ we may assume $S$ is affine. \medskip\noindent Assume $S$ is affine and $f$ quasi-compact and separated. Let $t \geq 1$ be the minimal number of affine opens needed to cover $X$. We will prove this case of (1) by induction on $t$. If $t = 1$ then the morphism $f$ is affine by Morphisms, Lemma \ref{morphisms-lemma-morphism-affines-affine} and (1) follows from Lemma \ref{lemma-relative-affine-vanishing}. If $t > 1$ write $X = U \cup V$ with $V$ affine open and $U = U_1 \cup \ldots \cup U_{t - 1}$ a union of $t - 1$ open affines. Note that in this case $U \cap V = (U_1 \cap V) \cup \ldots (U_{t - 1} \cap V)$ is also a union of $t - 1$ affine open subschemes, see Schemes, Lemma \ref{schemes-lemma-characterize-separated}. We will apply the relative Mayer-Vietoris sequence $$ 0 \to f_*\mathcal{F} \to a_*(\mathcal{F}|_U) \oplus b_*(\mathcal{F}|_V) \to c_*(\mathcal{F}|_{U \cap V}) \to R^1f_*\mathcal{F} \to \ldots $$ see Cohomology, Lemma \ref{cohomology-lemma-relative-mayer-vietoris}. By induction we see that $R^pa_*\mathcal{F}$, $R^pb_*\mathcal{F}$ and $R^pc_*\mathcal{F}$ are all quasi-coherent. This implies that each of the sheaves $R^pf_*\mathcal{F}$ is quasi-coherent since it sits in the middle of a short exact sequence with a cokernel of a map between quasi-coherent sheaves on the left and a kernel of a map between quasi-coherent sheaves on the right. Using the results on quasi-coherent sheaves in Schemes, Section \ref{schemes-section-quasi-coherent} we see conclude $R^pf_*\mathcal{F}$ is quasi-coherent. \medskip\noindent Assume $S$ is affine and $f$ quasi-compact and quasi-separated. Let $t \geq 1$ be the minimal number of affine opens needed to cover $X$. We will prove (1) by induction on $t$. In case $t = 1$ the morphism $f$ is separated and we are back in the previous case (see previous paragraph). If $t > 1$ write $X = U \cup V$ with $V$ affine open and $U$ a union of $t - 1$ open affines. Note that in this case $U \cap V$ is an open subscheme of an affine scheme and hence separated (see Schemes, Lemma \ref{schemes-lemma-affine-separated}). We will apply the relative Mayer-Vietoris sequence $$ 0 \to f_*\mathcal{F} \to a_*(\mathcal{F}|_U) \oplus b_*(\mathcal{F}|_V) \to c_*(\mathcal{F}|_{U \cap V}) \to R^1f_*\mathcal{F} \to \ldots $$ see Cohomology, Lemma \ref{cohomology-lemma-relative-mayer-vietoris}. By induction and the result of the previous paragraph we see that $R^pa_*\mathcal{F}$, $R^pb_*\mathcal{F}$ and $R^pc_*\mathcal{F}$ are quasi-coherent. As in the previous paragraph this implies each of sheaves $R^pf_*\mathcal{F}$ is quasi-coherent. \medskip\noindent Next, we prove (3) and a fortiori (2). Choose a finite affine open covering $S = \bigcup_{j = 1, \ldots m} S_j$. For each $j$ choose a finite affine open covering $f^{-1}(S_j) = \bigcup_{i = 1, \ldots t_j} U_{ji} $. Let $$ d_j = \max\nolimits_{I \subset \{1, \ldots, t_j\}} \left(|I| + t(\bigcap\nolimits_{i \in I} U_{ji})\right) $$ be the integer found in Lemma \ref{lemma-vanishing-nr-affines-quasi-separated}. We claim that $n(X, S, f) = \max d_j$ works. \medskip\noindent Namely, let $S' \to S$ be a morphism of schemes and let $\mathcal{F}'$ be a quasi-coherent sheaf on $X' = S' \times_S X$. We want to show that $R^pf'_*\mathcal{F}' = 0$ for $p \geq n(X, S, f)$. Since this question is local on $S'$ we may assume that $S'$ is affine and maps into $S_j$ for some $j$. Then $X' = S' \times_{S_j} f^{-1}(S_j)$ is covered by the open affines $S' \times_{S_j} U_{ji}$, $i = 1, \ldots t_j$ and the intersections $$ \bigcap\nolimits_{i \in I} S' \times_{S_j} U_{ji} = S' \times_{S_j} \bigcap\nolimits_{i \in I} U_{ji} $$ are covered by the same number of affines as before the base change. Applying Lemma \ref{lemma-vanishing-nr-affines-quasi-separated} we get $H^p(X', \mathcal{F}') = 0$. By the first part of the proof we already know that each $R^qf'_*\mathcal{F}'$ is quasi-coherent hence has vanishing higher cohomology groups on our affine scheme $S'$, thus we see that $H^0(S', R^pf'_*\mathcal{F}') = H^p(X', \mathcal{F}') = 0$ by Cohomology, Lemma \ref{cohomology-lemma-apply-Leray}. Since $R^pf'_*\mathcal{F}'$ is quasi-coherent we conclude that $R^pf'_*\mathcal{F}' = 0$. \end{proof} \begin{lemma} \label{lemma-quasi-coherence-higher-direct-images-application} Let $f : X \to S$ be a morphism of schemes. Assume that $f$ is quasi-separated and quasi-compact. Assume $S$ is affine. For any quasi-coherent $\mathcal{O}_X$-module $\mathcal{F}$ we have $$ H^q(X, \mathcal{F}) = H^0(S, R^qf_*\mathcal{F}) $$ for all $q \in \mathbf{Z}$. \end{lemma} \begin{proof} Consider the Leray spectral sequence $E_2^{p, q} = H^p(S, R^qf_*\mathcal{F})$ converging to $H^{p + q}(X, \mathcal{F})$, see Cohomology, Lemma \ref{cohomology-lemma-Leray}. By Lemma \ref{lemma-quasi-coherence-higher-direct-images} we see that the sheaves $R^qf_*\mathcal{F}$ are quasi-coherent. By Lemma \ref{lemma-quasi-coherent-affine-cohomology-zero} we see that $E_2^{p, q} = 0$ when $p > 0$. Hence the spectral sequence degenerates at $E_2$ and we win. See also Cohomology, Lemma \ref{cohomology-lemma-apply-Leray} (2) for the general principle. \end{proof} \section{Cohomology and base change, I} \label{section-cohomology-and-base-change} \noindent Let $f : X \to S$ be a morphism of schemes. Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$. Suppose further that $g : S' \to S$ is any morphism of schemes. Denote $X' = X_{S'} = S' \times_S X$ the base change of $X$ and denote $f' : X' \to S'$ the base change of $f$. Also write $g' : X' \to X$ the projection, and set $\mathcal{F}' = (g')^*\mathcal{F}$. Here is a diagram representing the situation: \begin{equation} \label{equation-base-change-diagram} \vcenter{ \xymatrix{ \mathcal{F}' = (g')^*\mathcal{F} & X' \ar[r]_{g'} \ar[d]_{f'} & X \ar[d]^f & \mathcal{F} \\ Rf'_*\mathcal{F}' & S' \ar[r]^g & S & Rf_*\mathcal{F} } } \end{equation} Here is the simplest case of the base change property we have in mind. \begin{lemma} \label{lemma-affine-base-change} Let $f : X \to S$ be a morphism of schemes. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Assume $f$ is affine. In this case $f_*\mathcal{F} \cong Rf_*\mathcal{F}$ is a quasi-coherent sheaf, and for every base change diagram (\ref{equation-base-change-diagram}) we have $$ g^*f_*\mathcal{F} = f'_*(g')^*\mathcal{F}. $$ \end{lemma} \begin{proof} The vanishing of higher direct images is Lemma \ref{lemma-relative-affine-vanishing}. The statement is local on $S$ and $S'$. Hence we may assume $X = \Spec(A)$, $S = \Spec(R)$, $S' = \Spec(R')$ and $\mathcal{F} = \widetilde{M}$ for some $A$-module $M$. We use Schemes, Lemma \ref{schemes-lemma-widetilde-pullback} to describe pullbacks and pushforwards of $\mathcal{F}$. Namely, $X' = \Spec(R' \otimes_R A)$ and $\mathcal{F}'$ is the quasi-coherent sheaf associated to $(R' \otimes_R A) \otimes_A M$. Thus we see that the lemma boils down to the equality $$ (R' \otimes_R A) \otimes_A M = R' \otimes_R M $$ as $R'$-modules. \end{proof} \noindent In many situations it is sufficient to know about the following special case of cohomology and base change. It follows immediately from the stronger results in Section \ref{section-cohomology-and-base-change-derived}, but since it is so important it deserves its own proof. \begin{lemma}[Flat base change] \label{lemma-flat-base-change-cohomology} Consider a cartesian diagram of schemes $$ \xymatrix{ X' \ar[d]_{f'} \ar[r]_{g'} & X \ar[d]^f \\ S' \ar[r]^g & S } $$ Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module with pullback $\mathcal{F}' = (g')^*\mathcal{F}$. Assume that $g$ is flat and that $f$ is quasi-compact and quasi-separated. For any $i \geq 0$ \begin{enumerate} \item the base change map of Cohomology, Lemma \ref{cohomology-lemma-base-change-map-flat-case} is an isomorphism $$ g^*R^if_*\mathcal{F} \longrightarrow R^if'_*\mathcal{F}', $$ \item if $S = \Spec(A)$ and $S' = \Spec(B)$, then $H^i(X, \mathcal{F}) \otimes_A B = H^i(X', \mathcal{F}')$. \end{enumerate} \end{lemma} \begin{proof} Using Cohomology, Lemma \ref{cohomology-lemma-base-change-map-flat-case} in (1) is allowed since $g'$ is flat by Morphisms, Lemma \ref{morphisms-lemma-base-change-flat}. Having said this, part (1) follows from part (2). Namely, part (1) is local on $S'$ and hence we may assume $S$ and $S'$ are affine. In other words, we have $S = \Spec(A)$ and $S' = \Spec(B)$ as in (2). Then since $R^if_*\mathcal{F}$ is quasi-coherent (Lemma \ref{lemma-quasi-coherence-higher-direct-images}), it is the quasi-coherent $\mathcal{O}_S$-module associated to the $A$-module $H^0(S, R^if_*\mathcal{F}) = H^i(X, \mathcal{F})$ (equality by Lemma \ref{lemma-quasi-coherence-higher-direct-images-application}). Similarly, $R^if'_*\mathcal{F}'$ is the quasi-coherent $\mathcal{O}_{S'}$-module associated to the $B$-module $H^i(X', \mathcal{F}')$. Since pullback by $g$ corresponds to $- \otimes_A B$ on modules (Schemes, Lemma \ref{schemes-lemma-widetilde-pullback}) we see that it suffices to prove (2). \medskip\noindent Let $A \to B$ be a flat ring homomorphism. Let $X$ be a quasi-compact and quasi-separated scheme over $A$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Set $X_B = X \times_{\Spec(A)} \Spec(B)$ and denote $\mathcal{F}_B$ the pullback of $\mathcal{F}$. We are trying to show that the map $$ H^i(X, \mathcal{F}) \otimes_A B \longrightarrow H^i(X_B, \mathcal{F}_B) $$ (given by the reference in the statement of the lemma) is an isomorphism. \medskip\noindent In case $X$ is separated, choose an affine open covering $\mathcal{U} : X = U_1 \cup \ldots \cup U_t$ and recall that $$ \check{H}^p(\mathcal{U}, \mathcal{F}) = H^p(X, \mathcal{F}), $$ see Lemma \ref{lemma-cech-cohomology-quasi-coherent}. If $\mathcal{U}_B : X_B = (U_1)_B \cup \ldots \cup (U_t)_B$ we obtain by base change, then it is still the case that each $(U_i)_B$ is affine and that $X_B$ is separated. Thus we obtain $$ \check{H}^p(\mathcal{U}_B, \mathcal{F}_B) = H^p(X_B, \mathcal{F}_B). $$ We have the following relation between the {\v C}ech complexes $$ \check{\mathcal{C}}^\bullet(\mathcal{U}_B, \mathcal{F}_B) = \check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F}) \otimes_A B $$ as follows from Lemma \ref{lemma-affine-base-change}. Since $A \to B$ is flat, the same thing remains true on taking cohomology. \medskip\noindent In case $X$ is quasi-separated, choose an affine open covering $\mathcal{U} : X = U_1 \cup \ldots \cup U_t$. We will use the {\v C}ech-to-cohomology spectral sequence Cohomology, Lemma \ref{cohomology-lemma-cech-spectral-sequence}. The reader who wishes to avoid this spectral sequence can use Mayer-Vietoris and induction on $t$ as in the proof of Lemma \ref{lemma-quasi-coherence-higher-direct-images}. The spectral sequence has $E_2$-page $E_2^{p, q} = \check{H}^p(\mathcal{U}, \underline{H}^q(\mathcal{F}))$ and converges to $H^{p + q}(X, \mathcal{F})$. Similarly, we have a spectral sequence with $E_2$-page $E_2^{p, q} = \check{H}^p(\mathcal{U}_B, \underline{H}^q(\mathcal{F}_B))$ which converges to $H^{p + q}(X_B, \mathcal{F}_B)$. Since the intersections $U_{i_0 \ldots i_p}$ are quasi-compact and separated, the result of the second paragraph of the proof gives $\check{H}^p(\mathcal{U}_B, \underline{H}^q(\mathcal{F}_B)) = \check{H}^p(\mathcal{U}, \underline{H}^q(\mathcal{F})) \otimes_A B$. Using that $A \to B$ is flat we conclude that $H^i(X, \mathcal{F}) \otimes_A B \to H^i(X_B, \mathcal{F}_B)$ is an isomorphism for all $i$ and we win. \end{proof} \begin{lemma}[Finite locally free base change] \label{lemma-finite-locally-free-base-change-cohomology} Consider a cartesian diagram of schemes $$ \xymatrix{ Y \ar[d]_{g} \ar[r]_h & X \ar[d]^f \\ \Spec(B) \ar[r] & \Spec(A) } $$ Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module with pullback $\mathcal{G} = h^*\mathcal{F}$. If $B$ is a finite locally free $A$-module, then $H^i(X, \mathcal{F}) \otimes_A B = H^i(Y, \mathcal{G})$. \end{lemma} \noindent {\bf Warning}: Do not use this lemma unless you understand the difference between this and Lemma \ref{lemma-flat-base-change-cohomology}. \begin{proof} In case $X$ is separated, choose an affine open covering $\mathcal{U} : X = \bigcup_{i \in I} U_i$ and recall that $$ \check{H}^p(\mathcal{U}, \mathcal{F}) = H^p(X, \mathcal{F}), $$ see Lemma \ref{lemma-cech-cohomology-quasi-coherent}. Let $\mathcal{V} : Y = \bigcup_{i \in I} g^{-1}(U_i)$ be the corresponding affine open covering of $Y$. The opens $V_i = g^{-1}(U_i) = U_i \times_{\Spec(A)} \Spec(B)$ are affine and $Y$ is separated. Thus we obtain $$ \check{H}^p(\mathcal{V}, \mathcal{G}) = H^p(Y, \mathcal{G}). $$ We claim the map of {\v C}ech complexes $$ \check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F}) \otimes_A B \longrightarrow \check{\mathcal{C}}^\bullet(\mathcal{V}, \mathcal{G}) $$ is an isomorphism. Namely, as $B$ is finitely presented as an $A$-module we see that tensoring with $B$ over $A$ commutes with products, see Algebra, Proposition \ref{algebra-proposition-fp-tensor}. Thus it suffices to show that the maps $\Gamma(U_{i_0 \ldots i_p}, \mathcal{F}) \otimes_A B \to \Gamma(V_{i_0 \ldots i_p}, \mathcal{G})$ are isomorphisms which follows from Lemma \ref{lemma-affine-base-change}. Since $A \to B$ is flat, the same thing remains true on taking cohomology. \medskip\noindent In the general case we argue in exactly the same way using affine open covering $\mathcal{U} : X = \bigcup_{i \in I} U_i$ and the corresponding covering $\mathcal{V} : Y = \bigcup_{i \in I} V_i$ with $V_i = g^{-1}(U_i)$ as above. We will use the {\v C}ech-to-cohomology spectral sequence Cohomology, Lemma \ref{cohomology-lemma-cech-spectral-sequence}. The spectral sequence has $E_2$-page $E_2^{p, q} = \check{H}^p(\mathcal{U}, \underline{H}^q(\mathcal{F}))$ and converges to $H^{p + q}(X, \mathcal{F})$. Similarly, we have a spectral sequence with $E_2$-page $E_2^{p, q} = \check{H}^p(\mathcal{V}, \underline{H}^q(\mathcal{G}))$ which converges to $H^{p + q}(Y, \mathcal{G})$. Since the intersections $U_{i_0 \ldots i_p}$ are separated, the result of the previous paragraph gives isomorphisms $\Gamma(U_{i_0 \ldots i_p}, \underline{H}^q(\mathcal{F})) \otimes_A B \to \Gamma(V_{i_0 \ldots i_p}, \underline{H}^q(\mathcal{G}))$. Using that $- \otimes_A B$ commutes with products and is exact, we conclude that $\check{H}^p(\mathcal{U}, \underline{H}^q(\mathcal{F})) \otimes_A B \to \check{H}^p(\mathcal{V}, \underline{H}^q(\mathcal{G}))$ is an isomorphism. Using that $A \to B$ is flat we conclude that $H^i(X, \mathcal{F}) \otimes_A B \to H^i(Y, \mathcal{G})$ is an isomorphism for all $i$ and we win. \end{proof} \section{Colimits and higher direct images} \label{section-colimits} \noindent General results of this nature can be found in Cohomology, Section \ref{cohomology-section-limits}, Sheaves, Lemma \ref{sheaves-lemma-directed-colimits-sections}, and Modules, Lemma \ref{modules-lemma-finite-presentation-quasi-compact-colimit}. \begin{lemma} \label{lemma-colimit-cohomology} Let $f : X \to S$ be a quasi-compact and quasi-separated morphism of schemes. Let $\mathcal{F} = \colim \mathcal{F}_i$ be a filtered colimit of quasi-coherent sheaves on $X$. Then for any $p \geq 0$ we have $$ R^pf_*\mathcal{F} = \colim R^pf_*\mathcal{F}_i. $$ \end{lemma} \begin{proof} Recall that $R^pf_*\mathcal{F}$ is the sheaf associated to $U \mapsto H^p(f^{-1}U, \mathcal{F})$, see Cohomology, Lemma \ref{cohomology-lemma-describe-higher-direct-images}. Recall that the colimit is the sheaf associated to the presheaf colimit (taking colimits over opens). Hence we can apply Cohomology, Lemma \ref{cohomology-lemma-quasi-separated-cohomology-colimit} to $H^p(f^{-1}U, -)$ where $U$ is affine to conclude. (Because the basis of affine opens in $f^{-1}U$ satisfies the assumptions of that lemma.) \end{proof} \section{Cohomology and base change, II} \label{section-cohomology-and-base-change-derived} \noindent Let $f : X \to S$ be a morphism of schemes and let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. If $f$ is quasi-compact and quasi-separated we would like to represent $Rf_*\mathcal{F}$ by a complex of quasi-coherent sheaves on $S$. This follows from the fact that the sheaves $R^if_*\mathcal{F}$ are quasi-coherent if $S$ is quasi-compact and has affine diagonal, using that $D_\QCoh(S)$ is equivalent to $D(\QCoh(\mathcal{O}_S))$, see Derived Categories of Schemes, Proposition \ref{perfect-proposition-quasi-compact-affine-diagonal}. \medskip\noindent In this section we will use a different approach which produces an explicit complex having a good base change property. The construction is particularly easy if $f$ and $S$ are separated, or more generally have affine diagonal. Since this is the case which by far the most often used we treat it separately. \begin{lemma} \label{lemma-separated-case-relative-cech} Let $f : X \to S$ be a morphism of schemes. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Assume $X$ is quasi-compact and $X$ and $S$ have affine diagonal (e.g., if $X$ and $S$ are separated). In this case we can compute $Rf_*\mathcal{F}$ as follows: \begin{enumerate} \item Choose a finite affine open covering $\mathcal{U} : X = \bigcup_{i = 1, \ldots, n} U_i$. \item For $i_0, \ldots, i_p \in \{1, \ldots, n\}$ denote $f_{i_0 \ldots i_p} : U_{i_0 \ldots i_p} \to S$ the restriction of $f$ to the intersection $U_{i_0 \ldots i_p} = U_{i_0} \cap \ldots \cap U_{i_p}$. \item Set $\mathcal{F}_{i_0 \ldots i_p}$ equal to the restriction of $\mathcal{F}$ to $U_{i_0 \ldots i_p}$. \item Set $$ \check{\mathcal{C}}^p(\mathcal{U}, f, \mathcal{F}) = \bigoplus\nolimits_{i_0 \ldots i_p} f_{i_0 \ldots i_p *} \mathcal{F}_{i_0 \ldots i_p} $$ and define differentials $d : \check{\mathcal{C}}^p(\mathcal{U}, f, \mathcal{F}) \to \check{\mathcal{C}}^{p + 1}(\mathcal{U}, f, \mathcal{F})$ as in Cohomology, Equation (\ref{cohomology-equation-d-cech}). \end{enumerate} Then the complex $\check{\mathcal{C}}^\bullet(\mathcal{U}, f, \mathcal{F})$ is a complex of quasi-coherent sheaves on $S$ which comes equipped with an isomorphism $$ \check{\mathcal{C}}^\bullet(\mathcal{U}, f, \mathcal{F}) \longrightarrow Rf_*\mathcal{F} $$ in $D^{+}(S)$. This isomorphism is functorial in the quasi-coherent sheaf $\mathcal{F}$. \end{lemma} \begin{proof} Consider the resolution $\mathcal{F} \to {\mathfrak C}^\bullet(\mathcal{U}, \mathcal{F})$ of Cohomology, Lemma \ref{cohomology-lemma-covering-resolution}. We have an equality of complexes $\check{\mathcal{C}}^\bullet(\mathcal{U}, f, \mathcal{F}) = f_*{\mathfrak C}^\bullet(\mathcal{U}, \mathcal{F})$ of quasi-coherent $\mathcal{O}_S$-modules. The morphisms $j_{i_0 \ldots i_p} : U_{i_0 \ldots i_p} \to X$ and the morphisms $f_{i_0 \ldots i_p} : U_{i_0 \ldots i_p} \to S$ are affine by Morphisms, Lemma \ref{morphisms-lemma-affine-permanence} and Lemma \ref{lemma-affine-diagonal}. Hence $R^qj_{i_0 \ldots i_p *}\mathcal{F}_{i_0 \ldots i_p}$ as well as $R^qf_{i_0 \ldots i_p *}\mathcal{F}_{i_0 \ldots i_p}$ are zero for $q > 0$ (Lemma \ref{lemma-relative-affine-vanishing}). Using $f \circ j_{i_0 \ldots i_p} = f_{i_0 \ldots i_p}$ and the spectral sequence of Cohomology, Lemma \ref{cohomology-lemma-relative-Leray} we conclude that $R^qf_*(j_{i_0 \ldots i_p *}\mathcal{F}_{i_0 \ldots i_p}) = 0$ for $q > 0$. Since the terms of the complex ${\mathfrak C}^\bullet(\mathcal{U}, \mathcal{F})$ are finite direct sums of the sheaves $j_{i_0 \ldots i_p *}\mathcal{F}_{i_0 \ldots i_p}$ we conclude using Leray's acyclicity lemma (Derived Categories, Lemma \ref{derived-lemma-leray-acyclicity}) that $$ Rf_* \mathcal{F} = f_*{\mathfrak C}^\bullet(\mathcal{U}, \mathcal{F}) = \check{\mathcal{C}}^\bullet(\mathcal{U}, f, \mathcal{F}) $$ as desired. \end{proof} \noindent Next, we are going to consider what happens if we do a base change. \begin{lemma} \label{lemma-base-change-complex} With notation as in diagram (\ref{equation-base-change-diagram}). Assume $f : X \to S$ and $\mathcal{F}$ satisfy the hypotheses of Lemma \ref{lemma-separated-case-relative-cech}. Choose a finite affine open covering $\mathcal{U} : X = \bigcup U_i$ of $X$. There is a canonical isomorphism $$ g^*\check{\mathcal{C}}^\bullet(\mathcal{U}, f, \mathcal{F}) \longrightarrow Rf'_*\mathcal{F}' $$ in $D^{+}(S')$. Moreover, if $S' \to S$ is affine, then in fact $$ g^*\check{\mathcal{C}}^\bullet(\mathcal{U}, f, \mathcal{F}) = \check{\mathcal{C}}^\bullet(\mathcal{U}', f', \mathcal{F}') $$ with $\mathcal{U}' : X' = \bigcup U_i'$ where $U_i' = (g')^{-1}(U_i) = U_{i, S'}$ is also affine. \end{lemma} \begin{proof} In fact we may define $U_i' = (g')^{-1}(U_i) = U_{i, S'}$ no matter whether $S'$ is affine over $S$ or not. Let $\mathcal{U}' : X' = \bigcup U_i'$ be the induced covering of $X'$. In this case we claim that $$ g^*\check{\mathcal{C}}^\bullet(\mathcal{U}, f, \mathcal{F}) = \check{\mathcal{C}}^\bullet(\mathcal{U}', f', \mathcal{F}') $$ with $\check{\mathcal{C}}^\bullet(\mathcal{U}', f', \mathcal{F}')$ defined in exactly the same manner as in Lemma \ref{lemma-separated-case-relative-cech}. This is clear from the case of affine morphisms (Lemma \ref{lemma-affine-base-change}) by working locally on $S'$. Moreover, exactly as in the proof of Lemma \ref{lemma-separated-case-relative-cech} one sees that there is an isomorphism $$ \check{\mathcal{C}}^\bullet(\mathcal{U}', f', \mathcal{F}') \longrightarrow Rf'_*\mathcal{F}' $$ in $D^{+}(S')$ since the morphisms $U_i' \to X'$ and $U_i' \to S'$ are still affine (being base changes of affine morphisms). Details omitted. \end{proof} \noindent The lemma above says that the complex $$ \mathcal{K}^\bullet = \check{\mathcal{C}}^\bullet(\mathcal{U}, f, \mathcal{F}) $$ is a bounded below complex of quasi-coherent sheaves on $S$ which {\it universally} computes the higher direct images of $f : X \to S$. This is something about this particular complex and it is not preserved by replacing $\check{\mathcal{C}}^\bullet(\mathcal{U}, f, \mathcal{F})$ by a quasi-isomorphic complex in general! In other words, this is not a statement that makes sense in the derived category. The reason is that the pullback $g^*\mathcal{K}^\bullet$ is {\it not} equal to the derived pullback $Lg^*\mathcal{K}^\bullet$ of $\mathcal{K}^\bullet$ in general! \medskip\noindent Here is a more general case where we can prove this statement. We remark that the condition of $S$ being separated is harmless in most applications, since this is usually used to prove some local property of the total derived image. The proof is significantly more involved and uses hypercoverings; it is a nice example of how you can use them sometimes. \begin{lemma} \label{lemma-hypercoverings} Let $f : X \to S$ be a morphism of schemes. Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$. Assume that $f$ is quasi-compact and quasi-separated and that $S$ is quasi-compact and separated. There exists a bounded below complex $\mathcal{K}^\bullet$ of quasi-coherent $\mathcal{O}_S$-modules with the following property: For every morphism $g : S' \to S$ the complex $g^*\mathcal{K}^\bullet$ is a representative for $Rf'_*\mathcal{F}'$ with notation as in diagram (\ref{equation-base-change-diagram}). \end{lemma} \begin{proof} (If $f$ is separated as well, please see Lemma \ref{lemma-base-change-complex}.) The assumptions imply in particular that $X$ is quasi-compact and quasi-separated as a scheme. Let $\mathcal{B}$ be the set of affine opens of $X$. By Hypercoverings, Lemma \ref{hypercovering-lemma-quasi-separated-quasi-compact-hypercovering} we can find a hypercovering $K = (I, \{U_i\})$ such that each $I_n$ is finite and each $U_i$ is an affine open of $X$. By Hypercoverings, Lemma \ref{hypercovering-lemma-cech-spectral-sequence} there is a spectral sequence with $E_2$-page $$ E_2^{p, q} = \check{H}^p(K, \underline{H}^q(\mathcal{F})) $$ converging to $H^{p + q}(X, \mathcal{F})$. Note that $\check{H}^p(K, \underline{H}^q(\mathcal{F}))$ is the $p$th cohomology group of the complex $$ \prod\nolimits_{i \in I_0} H^q(U_i, \mathcal{F}) \to \prod\nolimits_{i \in I_1} H^q(U_i, \mathcal{F}) \to \prod\nolimits_{i \in I_2} H^q(U_i, \mathcal{F}) \to \ldots $$ Since each $U_i$ is affine we see that this is zero unless $q = 0$ in which case we obtain $$ \prod\nolimits_{i \in I_0} \mathcal{F}(U_i) \to \prod\nolimits_{i \in I_1} \mathcal{F}(U_i) \to \prod\nolimits_{i \in I_2} \mathcal{F}(U_i) \to \ldots $$ Thus we conclude that $R\Gamma(X, \mathcal{F})$ is computed by this complex. \medskip\noindent For any $n$ and $i \in I_n$ denote $f_i : U_i \to S$ the restriction of $f$ to $U_i$. As $S$ is separated and $U_i$ is affine this morphism is affine. Consider the complex of quasi-coherent sheaves $$ \mathcal{K}^\bullet = ( \prod\nolimits_{i \in I_0} f_{i, *}\mathcal{F}|_{U_i} \to \prod\nolimits_{i \in I_1} f_{i, *}\mathcal{F}|_{U_i} \to \prod\nolimits_{i \in I_2} f_{i, *}\mathcal{F}|_{U_i} \to \ldots ) $$ on $S$. As in Hypercoverings, Lemma \ref{hypercovering-lemma-cech-spectral-sequence} we obtain a map $\mathcal{K}^\bullet \to Rf_*\mathcal{F}$ in $D(\mathcal{O}_S)$ by choosing an injective resolution of $\mathcal{F}$ (details omitted). Consider any affine scheme $V$ and a morphism $g : V \to S$. Then the base change $X_V$ has a hypercovering $K_V = (I, \{U_{i, V}\})$ obtained by base change. Moreover, $g^*f_{i, *}\mathcal{F} = f_{i, V, *}(g')^*\mathcal{F}|_{U_{i, V}}$. Thus the arguments above prove that $\Gamma(V, g^*\mathcal{K}^\bullet)$ computes $R\Gamma(X_V, (g')^*\mathcal{F})$. This finishes the proof of the lemma as it suffices to prove the equality of complexes Zariski locally on $S'$. \end{proof} \noindent The following lemma is a variant to flat base change. \begin{lemma} \label{lemma-base-change-tensor-with-flat} Consider a cartesian diagram of schemes $$ \xymatrix{ X' \ar[d]_{f'} \ar[r]_{g'} & X \ar[d]^f \\ S' \ar[r]^g & S } $$ Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Let $\mathcal{G}$ be a quasi-coherent $\mathcal{O}_{S'}$-module flat over $S$. Assume $f$ is quasi-compact and quasi-separated. For any $i \geq 0$ there is an identification $$ \mathcal{G} \otimes_{\mathcal{O}_{S'}} g^*R^if_*\mathcal{F} = R^if'_*\left((f')^*\mathcal{G} \otimes_{\mathcal{O}_{X'}} (g')^*\mathcal{F}\right) $$ \end{lemma} \begin{proof} Let us construct a map from left to right. First, we have the base change map $Lg^*Rf_*\mathcal{F} \to Rf'_*L(g')^*\mathcal{F}$. There is also the adjunction map $\mathcal{G} \to Rf'_*L(f')^*\mathcal{G}$. Using the relative cup product We obtain \begin{align*} \mathcal{G} \otimes_{\mathcal{O}_{S'}}^\mathbf{L} Lg^*Rf_*\mathcal{F} & \to Rf'_*L(f')^*\mathcal{G} \otimes_{\mathcal{O}_{S'}}^\mathbf{L} Rf'_*L(g')^*\mathcal{F} \\ & \to Rf'_*\left(L(f')^*\mathcal{G} \otimes_{\mathcal{O}_{X'}}^\mathbf{L} L(g')^*\mathcal{F}\right) \\ & \to Rf'_*\left((f')^*\mathcal{G} \otimes_{\mathcal{O}_{X'}} (g')^*\mathcal{F}\right) \end{align*} where for the middle arrow we used the relative cup product, see Cohomology, Remark \ref{cohomology-remark-cup-product}. The source of the composition is $$ \mathcal{G} \otimes_{\mathcal{O}_{S'}}^\mathbf{L} Lg^*Rf_*\mathcal{F} = \mathcal{G} \otimes_{g^{-1}\mathcal{O}_S}^\mathbf{L} g^{-1}Rf_*\mathcal{F} $$ by Cohomology, Lemma \ref{cohomology-lemma-variant-derived-pullback}. Since $\mathcal{G}$ is flat as a sheaf of $g^{-1}\mathcal{O}_S$-modules and since $g^{-1}$ is an exact functor, this is a complex whose $i$th cohomology sheaf is $\mathcal{G} \otimes_{g^{-1}\mathcal{O}_S} g^{-1}R^if_*\mathcal{F} = \mathcal{G} \otimes_{\mathcal{O}_{S'}} g^*R^if_*\mathcal{F}$. In this way we obtain global maps from left to right in the equality of the lemma. To show this map is an isomorphism we may work locally on $S'$. Thus we may and do assume that $S$ and $S'$ are affine schemes. \medskip\noindent Proof in case $S$ and $S'$ are affine. Say $S = \Spec(A)$ and $S' = \Spec(B)$ and say $\mathcal{G}$ corresponds to the $B$-module $N$ which is assumed to be $A$-flat. Since $S$ is affine, $X$ is quasi-compact and quasi-separated. We will use a hypercovering argument to finish the proof; if $X$ is separated or has affine diagonal, then you can use a {\v C}ech covering. Let $\mathcal{B}$ be the set of affine opens of $X$. By Hypercoverings, Lemma \ref{hypercovering-lemma-quasi-separated-quasi-compact-hypercovering} we can find a hypercovering $K = (I, \{U_i\})$ of $X$ such that each $I_n$ is finite and each $U_i$ is an affine open of $X$. By Hypercoverings, Lemma \ref{hypercovering-lemma-cech-spectral-sequence} there is a spectral sequence with $E_2$-page $$ E_2^{p, q} = \check{H}^p(K, \underline{H}^q(\mathcal{F})) $$ converging to $H^{p + q}(X, \mathcal{F})$. Since each $U_i$ is affine and $\mathcal{F}$ is quasi-coherent the value of $\underline{H}^q(\mathcal{F})$ is zero on $U_i$ for $q > 0$. Thus the spectral sequence degenerates and we conclude that the cohomology modules $H^q(X, \mathcal{F})$ are computed by $$ \prod\nolimits_{i \in I_0} \mathcal{F}(U_i) \to \prod\nolimits_{i \in I_1} \mathcal{F}(U_i) \to \prod\nolimits_{i \in I_2} \mathcal{F}(U_i) \to \ldots $$ Next, note that the base change of our hypercovering to $S'$ is a hypercovering of $X' = S' \times_S X$. The schemes $S' \times_S U_i$ are affine too and we have $$ \left((f')^*\mathcal{G} \otimes_{\mathcal{O}_{S'}} (g')^*\mathcal{F}\right) (S' \times_S U_i) = N \otimes_A \mathcal{F}(U_i) $$ In this way we conclude that the cohomology modules $H^q(X', (f')^*\mathcal{G} \otimes_{\mathcal{O}_{S'}} (g')^*\mathcal{F})$ are computed by $$ N \otimes_A \left( \prod\nolimits_{i \in I_0} \mathcal{F}(U_i) \to \prod\nolimits_{i \in I_1} \mathcal{F}(U_i) \to \prod\nolimits_{i \in I_2} \mathcal{F}(U_i) \to \ldots \right) $$ Since $N$ is flat over $A$, we conclude that $$ H^q(X', (f')^*\mathcal{G} \otimes_{\mathcal{O}_{S'}} (g')^*\mathcal{F}) = N \otimes_A H^q(X, \mathcal{F}) $$ Since this is the translation into algebra of the statement we had to show the proof is complete. \end{proof} \section{Cohomology of projective space} \label{section-cohomology-projective-space} \noindent In this section we compute the cohomology of the twists of the structure sheaf on $\mathbf{P}^n_S$ over a scheme $S$. Recall that $\mathbf{P}^n_S$ was defined as the fibre product $ \mathbf{P}^n_S = S \times_{\Spec(\mathbf{Z})} \mathbf{P}^n_{\mathbf{Z}} $ in Constructions, Definition \ref{constructions-definition-projective-space}. It was shown to be equal to $$ \mathbf{P}^n_S = \underline{\text{Proj}}_S(\mathcal{O}_S[T_0, \ldots, T_n]) $$ in Constructions, Lemma \ref{constructions-lemma-projective-space-bundle}. In particular, projective space is a particular case of a projective bundle. If $S = \Spec(R)$ is affine then we have $$ \mathbf{P}^n_S = \mathbf{P}^n_R = \text{Proj}(R[T_0, \ldots, T_n]). $$ All these identifications are compatible and compatible with the constructions of the twisted structure sheaves $\mathcal{O}_{\mathbf{P}^n_S}(d)$. \medskip\noindent Before we state the result we need some notation. Let $R$ be a ring. Recall that $R[T_0, \ldots, T_n]$ is a graded $R$-algebra where each $T_i$ is homogeneous of degree $1$. Denote $(R[T_0, \ldots, T_n])_d$ the degree $d$ summand. It is a finite free $R$-module of rank $\binom{n + d}{d}$ when $d \geq 0$ and zero else. It has a basis consisting of monomials $T_0^{e_0} \ldots T_n^{e_n}$ with $\sum e_i = d$. We will also use the following notation: $R[\frac{1}{T_0}, \ldots, \frac{1}{T_n}]$ denotes the $\mathbf{Z}$-graded ring with $\frac{1}{T_i}$ in degree $-1$. In particular the $\mathbf{Z}$-graded $R[\frac{1}{T_0}, \ldots, \frac{1}{T_n}]$ module $$ \frac{1}{T_0 \ldots T_n} R[\frac{1}{T_0}, \ldots, \frac{1}{T_n}] $$ which shows up in the statement below is zero in degrees $\geq -n$, is free on the generator $\frac{1}{T_0 \ldots T_n}$ in degree $-n - 1$ and is free of rank $(-1)^n\binom{n + d}{d}$ for $d \leq -n - 1$. \begin{lemma} \label{lemma-cohomology-projective-space-over-ring} \begin{reference} \cite[III Proposition 2.1.12]{EGA} \end{reference} Let $R$ be a ring. Let $n \geq 0$ be an integer. We have $$ H^q(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n_R}(d)) = \left\{ \begin{matrix} (R[T_0, \ldots, T_n])_d & \text{if} & q = 0 \\ 0 & \text{if} & q \not = 0, n \\ \left(\frac{1}{T_0 \ldots T_n} R[\frac{1}{T_0}, \ldots, \frac{1}{T_n}]\right)_d & \text{if} & q = n \end{matrix} \right. $$ as $R$-modules. \end{lemma} \begin{proof} We will use the standard affine open covering $$ \mathcal{U} : \mathbf{P}^n_R = \bigcup\nolimits_{i = 0}^n D_{+}(T_i) $$ to compute the cohomology using the {\v C}ech complex. This is permissible by Lemma \ref{lemma-cech-cohomology-quasi-coherent} since any intersection of finitely many affine $D_{+}(T_i)$ is also a standard affine open (see Constructions, Section \ref{constructions-section-proj}). In fact, we can use the alternating or ordered {\v C}ech complex according to Cohomology, Lemmas \ref{cohomology-lemma-ordered-alternating} and \ref{cohomology-lemma-alternating-usual}. \medskip\noindent The ordering we will use on $\{0, \ldots, n\}$ is the usual one. Hence the complex we are looking at has terms $$ \check{\mathcal{C}}_{ord}^p(\mathcal{U}, \mathcal{O}_{\mathbf{P}_R}(d)) = \bigoplus\nolimits_{i_0 < \ldots < i_p} (R[T_0, \ldots, T_n, \frac{1}{T_{i_0} \ldots T_{i_p}}])_d $$ Moreover, the maps are given by the usual formula $$ d(s)_{i_0 \ldots i_{p + 1}} = \sum\nolimits_{j = 0}^{p + 1} (-1)^j s_{i_0 \ldots \hat i_j \ldots i_{p + 1}} $$ see Cohomology, Section \ref{cohomology-section-alternating-cech}. Note that each term of this complex has a natural $\mathbf{Z}^{n + 1}$-grading. Namely, we get this by declaring a monomial $T_0^{e_0} \ldots T_n^{e_n}$ to be homogeneous with weight $(e_0, \ldots, e_n) \in \mathbf{Z}^{n + 1}$. It is clear that the differential given above respects the grading. In a formula we have $$ \check{\mathcal{C}}_{ord}^\bullet(\mathcal{U}, \mathcal{O}_{\mathbf{P}_R}(d)) = \bigoplus\nolimits_{\vec{e} \in \mathbf{Z}^{n + 1}} \check{\mathcal{C}}^\bullet(\vec{e}) $$ where not all summands on the right hand side occur (see below). Hence in order to compute the cohomology modules of the complex it suffices to compute the cohomology of the graded pieces and take the direct sum at the end. \medskip\noindent Fix $\vec{e} = (e_0, \ldots, e_n) \in \mathbf{Z}^{n + 1}$. In order for this weight to occur in the complex above we need to assume $e_0 + \ldots + e_n = d$ (if not then it occurs for a different twist of the structure sheaf of course). Assuming this, set $$ NEG(\vec{e}) = \{i \in \{0, \ldots, n\} \mid e_i < 0\}. $$ With this notation the weight $\vec{e}$ summand $\check{\mathcal{C}}^\bullet(\vec{e})$ of the {\v C}ech complex above has the following terms $$ \check{\mathcal{C}}^p(\vec{e}) = \bigoplus\nolimits_{i_0 < \ldots < i_p, \ NEG(\vec{e}) \subset \{i_0, \ldots, i_p\}} R \cdot T_0^{e_0} \ldots T_n^{e_n} $$ In other words, the terms corresponding to $i_0 < \ldots < i_p$ such that $NEG(\vec{e})$ is not contained in $\{i_0 \ldots i_p\}$ are zero. The differential of the complex $\check{\mathcal{C}}^\bullet(\vec{e})$ is still given by the exact same formula as above. \medskip\noindent Suppose that $NEG(\vec{e}) = \{0, \ldots, n\}$, i.e., that all exponents $e_i$ are negative. In this case the complex $\check{\mathcal{C}}^\bullet(\vec{e})$ has only one term, namely $\check{\mathcal{C}}^n(\vec{e}) = R \cdot \frac{1}{T_0^{-e_0} \ldots T_n^{-e_n}}$. Hence in this case $$ H^q(\check{\mathcal{C}}^\bullet(\vec{e})) = \left\{ \begin{matrix} R \cdot \frac{1}{T_0^{-e_0} \ldots T_n^{-e_n}} & \text{if} & q = n \\ 0 & \text{if} & \text{else} \end{matrix} \right. $$ The direct sum of all of these terms clearly gives the value $$ \left(\frac{1}{T_0 \ldots T_n} R[\frac{1}{T_0}, \ldots, \frac{1}{T_n}]\right)_d $$ in degree $n$ as stated in the lemma. Moreover these terms do not contribute to cohomology in other degrees (also in accordance with the statement of the lemma). \medskip\noindent Assume $NEG(\vec{e}) = \emptyset$. In this case the complex $\check{\mathcal{C}}^\bullet(\vec{e})$ has a summand $R$ corresponding to all $i_0 < \ldots < i_p$. Let us compare the complex $\check{\mathcal{C}}^\bullet(\vec{e})$ to another complex. Namely, consider the affine open covering $$ \mathcal{V} : \Spec(R) = \bigcup\nolimits_{i \in \{0, \ldots, n\}} V_i $$ where $V_i = \Spec(R)$ for all $i$. Consider the alternating {\v C}ech complex $$ \check{\mathcal{C}}_{ord}^\bullet(\mathcal{V}, \mathcal{O}_{\Spec(R)}) $$ By the same reasoning as above this computes the cohomology of the structure sheaf on $\Spec(R)$. Hence we see that $H^p( \check{\mathcal{C}}_{ord}^\bullet(\mathcal{V}, \mathcal{O}_{\Spec(R)}) ) = R$ if $p = 0$ and is $0$ whenever $p > 0$. For these facts, see Lemma \ref{lemma-cech-cohomology-quasi-coherent-trivial} and its proof. Note that also $\check{\mathcal{C}}_{ord}^\bullet(\mathcal{V}, \mathcal{O}_{\Spec(R)})$ has a summand $R$ for every $i_0 < \ldots < i_p$ and has exactly the same differential as $\check{\mathcal{C}}^\bullet(\vec{e})$. In other words these complexes are isomorphic complexes and hence have the same cohomology. We conclude that $$ H^q(\check{\mathcal{C}}^\bullet(\vec{e})) = \left\{ \begin{matrix} R \cdot T_0^{e_0} \ldots T_n^{e_n} & \text{if} & q = 0 \\ 0 & \text{if} & \text{else} \end{matrix} \right. $$ in the case that $NEG(\vec{e}) = \emptyset$. The direct sum of all of these terms clearly gives the value $$ (R[T_0, \ldots, T_n])_d $$ in degree $0$ as stated in the lemma. Moreover these terms do not contribute to cohomology in other degrees (also in accordance with the statement of the lemma). \medskip\noindent To finish the proof of the lemma we have to show that the complexes $\check{\mathcal{C}}^\bullet(\vec{e})$ are acyclic when $NEG(\vec{e})$ is neither empty nor equal to $\{0, \ldots, n\}$. Pick an index $i_{\text{fix}} \not \in NEG(\vec{e})$ (such an index exists). Consider the map $$ h : \check{\mathcal{C}}^{p + 1}(\vec{e}) \to \check{\mathcal{C}}^p(\vec{e}) $$ given by the rule that for $i_0 < \ldots < i_p$ we have $$ h(s)_{i_0 \ldots i_p} = \left\{ \begin{matrix} 0 & \text{if} & p \not \in \{0, \ldots, n - 1\} \\ 0 & \text{if} & i_{\text{fix}} \in \{i_0, \ldots, i_p\} \\ s_{i_{\text{fix}} i_0 \ldots i_p} & \text{if} & i_{\text{fix}} < i_0 \\ (-1)^a s_{i_0 \ldots i_{a - 1} i_{\text{fix}} i_a \ldots i_p} & \text{if} & i_{a - 1} < i_{\text{fix}} < i_a \\ (-1)^p s_{i_0 \ldots i_p} & \text{if} & i_p < i_{\text{fix}} \end{matrix} \right. $$ Please compare with the proof of Lemma \ref{lemma-cech-cohomology-quasi-coherent-trivial}. This makes sense because we have $$ NEG(\vec{e}) \subset \{i_0, \ldots, i_p\} \Leftrightarrow NEG(\vec{e}) \subset \{i_{\text{fix}}, i_0, \ldots, i_p\} $$ The exact same (combinatorial) computation\footnote{ For example, suppose that $i_0 < \ldots < i_p$ is such that $i_{\text{fix}} \not \in \{i_0, \ldots, i_p\}$ and that $i_{a - 1} < i_{\text{fix}} < i_a$ for some $1 \leq a \leq p$. Then we have \begin{align*} & (dh + hd)(s)_{i_0 \ldots i_p} \\ & = \sum\nolimits_{j = 0}^p (-1)^j h(s)_{i_0 \ldots \hat i_j \ldots i_p} + (-1)^a d(s)_{i_0 \ldots i_{a - 1} i_{\text{fix}} i_a \ldots i_p}\\ & = \sum\nolimits_{j = 0}^{a - 1} (-1)^{j + a - 1} s_{i_0 \ldots \hat i_j \ldots i_{a - 1} i_{\text{fix}} i_a \ldots i_p} + \sum\nolimits_{j = a}^p (-1)^{j + a} s_{i_0 \ldots i_{a - 1} i_{\text{fix}} i_a \ldots \hat i_j \ldots i_p} + \\ & \sum\nolimits_{j = 0}^{a - 1} (-1)^{a + j} s_{i_0 \ldots \hat i_j \ldots i_{a - 1} i_{\text{fix}} i_a \ldots i_p} + (-1)^{2a} s_{i_0 \ldots i_p} + \sum\nolimits_{j = a}^p (-1)^{a + j + 1} s_{i_0 \ldots i_{a - 1} i_{\text{fix}} i_a \ldots \hat i_j \ldots i_p} \\ & = s_{i_0 \ldots i_p} \end{align*} as desired. The other cases are similar.} as in the proof of Lemma \ref{lemma-cech-cohomology-quasi-coherent-trivial} shows that $$ (hd + dh)(s)_{i_0 \ldots i_p} = s_{i_0 \ldots i_p} $$ Hence we see that the identity map of the complex $\check{\mathcal{C}}^\bullet(\vec{e})$ is homotopic to zero which implies that it is acyclic. \end{proof} \noindent In the following lemma we are going to use the pairing of free $R$-modules $$ R[T_0, \ldots, T_n] \times \frac{1}{T_0 \ldots T_n} R[\frac{1}{T_0}, \ldots, \frac{1}{T_n}] \longrightarrow R $$ which is defined by the rule $$ (f, g) \longmapsto \text{coefficient of } \frac{1}{T_0 \ldots T_n} \text{ in }fg. $$ In other words, the basis element $T_0^{e_0} \ldots T_n^{e_n}$ pairs with the basis element $T_0^{d_0} \ldots T_n^{d_n}$ to give $1$ if and only if $e_i + d_i = -1$ for all $i$, and pairs to zero in all other cases. Using this pairing we get an identification $$ \left(\frac{1}{T_0 \ldots T_n} R[\frac{1}{T_0}, \ldots, \frac{1}{T_n}]\right)_d = \Hom_R((R[T_0, \ldots, T_n])_{-n - 1 - d}, R) $$ Thus we can reformulate the result of Lemma \ref{lemma-cohomology-projective-space-over-ring} as saying that \begin{equation} \label{equation-identify} H^q(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n_R}(d)) = \left\{ \begin{matrix} (R[T_0, \ldots, T_n])_d & \text{if} & q = 0 \\ 0 & \text{if} & q \not = 0, n \\ \Hom_R((R[T_0, \ldots, T_n])_{-n - 1 - d}, R) & \text{if} & q = n \end{matrix} \right. \end{equation} \begin{lemma} \label{lemma-identify-functorially} The identifications of Equation (\ref{equation-identify}) are compatible with base change w.r.t.\ ring maps $R \to R'$. Moreover, for any $f \in R[T_0, \ldots, T_n]$ homogeneous of degree $m$ the map multiplication by $f$ $$ \mathcal{O}_{\mathbf{P}^n_R}(d) \longrightarrow \mathcal{O}_{\mathbf{P}^n_R}(d + m) $$ induces the map on the cohomology group via the identifications of Equation (\ref{equation-identify}) which is multiplication by $f$ for $H^0$ and the contragredient of multiplication by $f$ $$ (R[T_0, \ldots, T_n])_{-n - 1 - (d + m)} \longrightarrow (R[T_0, \ldots, T_n])_{-n - 1 - d} $$ on $H^n$. \end{lemma} \begin{proof} Suppose that $R \to R'$ is a ring map. Let $\mathcal{U}$ be the standard affine open covering of $\mathbf{P}^n_R$, and let $\mathcal{U}'$ be the standard affine open covering of $\mathbf{P}^n_{R'}$. Note that $\mathcal{U}'$ is the pullback of the covering $\mathcal{U}$ under the canonical morphism $\mathbf{P}^n_{R'} \to \mathbf{P}^n_R$. Hence there is a map of {\v C}ech complexes $$ \gamma : \check{\mathcal{C}}_{ord}^\bullet(\mathcal{U}, \mathcal{O}_{\mathbf{P}_R}(d)) \longrightarrow \check{\mathcal{C}}_{ord}^\bullet(\mathcal{U}', \mathcal{O}_{\mathbf{P}_{R'}}(d)) $$ which is compatible with the map on cohomology by Cohomology, Lemma \ref{cohomology-lemma-functoriality-cech}. It is clear from the computations in the proof of Lemma \ref{lemma-cohomology-projective-space-over-ring} that this map of {\v C}ech complexes is compatible with the identifications of the cohomology groups in question. (Namely the basis elements for the {\v C}ech complex over $R$ simply map to the corresponding basis elements for the {\v C}ech complex over $R'$.) Whence the first statement of the lemma. \medskip\noindent Now fix the ring $R$ and consider two homogeneous polynomials $f, g \in R[T_0, \ldots, T_n]$ both of the same degree $m$. Since cohomology is an additive functor, it is clear that the map induced by multiplication by $f + g$ is the same as the sum of the maps induced by multiplication by $f$ and the map induced by multiplication by $g$. Moreover, since cohomology is a functor, a similar result holds for multiplication by a product $fg$ where $f, g$ are both homogeneous (but not necessarily of the same degree). Hence to verify the second statement of the lemma it suffices to prove this when $f = x \in R$ or when $f = T_i$. In the case of multiplication by an element $x \in R$ the result follows since every cohomology groups or complex in sight has the structure of an $R$-module or complex of $R$-modules. Finally, we consider the case of multiplication by $T_i$ as a $\mathcal{O}_{\mathbf{P}^n_R}$-linear map $$ \mathcal{O}_{\mathbf{P}^n_R}(d) \longrightarrow \mathcal{O}_{\mathbf{P}^n_R}(d + 1) $$ The statement on $H^0$ is clear. For the statement on $H^n$ consider multiplication by $T_i$ as a map on {\v C}ech complexes $$ \check{\mathcal{C}}_{ord}^\bullet(\mathcal{U}, \mathcal{O}_{\mathbf{P}_R}(d)) \longrightarrow \check{\mathcal{C}}_{ord}^\bullet(\mathcal{U}, \mathcal{O}_{\mathbf{P}_R}(d + 1)) $$ We are going to use the notation introduced in the proof of Lemma \ref{lemma-cohomology-projective-space-over-ring}. We consider the effect of multiplication by $T_i$ in terms of the decompositions $$ \check{\mathcal{C}}_{ord}^\bullet(\mathcal{U}, \mathcal{O}_{\mathbf{P}_R}(d)) = \bigoplus\nolimits_{\vec{e} \in \mathbf{Z}^{n + 1}, \ \sum e_i = d} \check{\mathcal{C}}^\bullet(\vec{e}) $$ and $$ \check{\mathcal{C}}_{ord}^\bullet(\mathcal{U}, \mathcal{O}_{\mathbf{P}_R}(d + 1)) = \bigoplus\nolimits_{\vec{e} \in \mathbf{Z}^{n + 1}, \ \sum e_i = d + 1} \check{\mathcal{C}}^\bullet(\vec{e}) $$ It is clear that it maps the subcomplex $\check{\mathcal{C}}^\bullet(\vec{e})$ to the subcomplex $\check{\mathcal{C}}^\bullet(\vec{e} + \vec{b}_i)$ where $\vec{b}_i = (0, \ldots, 0, 1, 0, \ldots, 0))$ the $i$th basis vector. In other words, it maps the summand of $H^n$ corresponding to $\vec{e}$ with $e_i < 0$ and $\sum e_i = d$ to the summand of $H^n$ corresponding to $\vec{e} + \vec{b}_i$ (which is zero if $e_i + b_i \geq 0$). It is easy to see that this corresponds exactly to the action of the contragredient of multiplication by $T_i$ as a map $$ (R[T_0, \ldots, T_n])_{-n - 1 - (d + 1)} \longrightarrow (R[T_0, \ldots, T_n])_{-n - 1 - d} $$ This proves the lemma. \end{proof} \noindent Before we state the relative version we need some notation. Namely, recall that $\mathcal{O}_S[T_0, \ldots, T_n]$ is a graded $\mathcal{O}_S$-module where each $T_i$ is homogeneous of degree $1$. Denote $(\mathcal{O}_S[T_0, \ldots, T_n])_d$ the degree $d$ summand. It is a finite locally free sheaf of rank $\binom{n + d}{d}$ on $S$. \begin{lemma} \label{lemma-cohomology-projective-space-over-base} Let $S$ be a scheme. Let $n \geq 0$ be an integer. Consider the structure morphism $$ f : \mathbf{P}^n_S \longrightarrow S. $$ We have $$ R^qf_*(\mathcal{O}_{\mathbf{P}^n_S}(d)) = \left\{ \begin{matrix} (\mathcal{O}_S[T_0, \ldots, T_n])_d & \text{if} & q = 0 \\ 0 & \text{if} & q \not = 0, n \\ \SheafHom_{\mathcal{O}_S}( (\mathcal{O}_S[T_0, \ldots, T_n])_{- n - 1 - d}, \mathcal{O}_S) & \text{if} & q = n \end{matrix} \right. $$ \end{lemma} \begin{proof} Omitted. Hint: This follows since the identifications in (\ref{equation-identify}) are compatible with affine base change by Lemma \ref{lemma-identify-functorially}. \end{proof} \noindent Next we state the version for projective bundles associated to finite locally free sheaves. Let $S$ be a scheme. Let $\mathcal{E}$ be a finite locally free $\mathcal{O}_S$-module of constant rank $n + 1$, see Modules, Section \ref{modules-section-locally-free}. In this case we think of $\text{Sym}(\mathcal{E})$ as a graded $\mathcal{O}_S$-module where $\mathcal{E}$ is the graded part of degree $1$. And $\text{Sym}^d(\mathcal{E})$ is the degree $d$ summand. It is a finite locally free sheaf of rank $\binom{n + d}{d}$ on $S$. Recall that our normalization is that $$ \pi : \mathbf{P}(\mathcal{E}) = \underline{\text{Proj}}_S(\text{Sym}(\mathcal{E})) \longrightarrow S $$ and that there are natural maps $\text{Sym}^d(\mathcal{E}) \to \pi_*\mathcal{O}_{\mathbf{P}(\mathcal{E})}(d)$. \begin{lemma} \label{lemma-cohomology-projective-bundle} Let $S$ be a scheme. Let $n \geq 1$. Let $\mathcal{E}$ be a finite locally free $\mathcal{O}_S$-module of constant rank $n + 1$. Consider the structure morphism $$ \pi : \mathbf{P}(\mathcal{E}) \longrightarrow S. $$ We have $$ R^q\pi_*(\mathcal{O}_{\mathbf{P}(\mathcal{E})}(d)) = \left\{ \begin{matrix} \text{Sym}^d(\mathcal{E}) & \text{if} & q = 0 \\ 0 & \text{if} & q \not = 0, n \\ \SheafHom_{\mathcal{O}_S}( \text{Sym}^{- n - 1 - d}(\mathcal{E}) \otimes_{\mathcal{O}_S} \wedge^{n + 1}\mathcal{E}, \mathcal{O}_S) & \text{if} & q = n \end{matrix} \right. $$ These identifications are compatible with base change and isomorphism between locally free sheaves. \end{lemma} \begin{proof} Consider the canonical map $$ \pi^*\mathcal{E} \longrightarrow \mathcal{O}_{\mathbf{P}(\mathcal{E})}(1) $$ and twist down by $1$ to get $$ \pi^*(\mathcal{E})(-1) \longrightarrow \mathcal{O}_{\mathbf{P}(\mathcal{E})} $$ This is a surjective map from a locally free rank $n + 1$ sheaf onto the structure sheaf. Hence the corresponding Koszul complex is exact (More on Algebra, Lemma \ref{more-algebra-lemma-homotopy-koszul-abstract}). In other words there is an exact complex $$ 0 \to \pi^*(\wedge^{n + 1}\mathcal{E})(-n - 1) \to \ldots \to \pi^*(\wedge^i\mathcal{E})(-i) \to \ldots \to \pi^*\mathcal{E}(-1) \to \mathcal{O}_{\mathbf{P}(\mathcal{E})} \to 0 $$ We will think of the term $\pi^*(\wedge^i\mathcal{E})(-i)$ as being in degree $-i$. We are going to compute the higher direct images of this acyclic complex using the first spectral sequence of Derived Categories, Lemma \ref{derived-lemma-two-ss-complex-functor}. Namely, we see that there is a spectral sequence with terms $$ E_1^{p, q} = R^q\pi_*\left(\pi^*(\wedge^{-p}\mathcal{E})(p)\right) $$ converging to zero! By the projection formula (Cohomology, Lemma \ref{cohomology-lemma-projection-formula}) we have $$ E_1^{p, q} = \wedge^{-p} \mathcal{E} \otimes_{\mathcal{O}_S} R^q\pi_*\left(\mathcal{O}_{\mathbf{P}(\mathcal{E})}(p)\right). $$ Note that locally on $S$ the sheaf $\mathcal{E}$ is trivial, i.e., isomorphic to $\mathcal{O}_S^{\oplus n + 1}$, hence locally on $S$ the morphism $\mathbf{P}(\mathcal{E}) \to S$ can be identified with $\mathbf{P}^n_S \to S$. Hence locally on $S$ we can use the result of Lemmas \ref{lemma-cohomology-projective-space-over-ring}, \ref{lemma-identify-functorially}, or \ref{lemma-cohomology-projective-space-over-base}. It follows that $E_1^{p, q} = 0$ unless $(p, q)$ is $(0, 0)$ or $(-n - 1, n)$. The nonzero terms are \begin{align*} E_1^{0, 0} & = \pi_*\mathcal{O}_{\mathbf{P}(\mathcal{E})} = \mathcal{O}_S \\ E_1^{-n - 1, n} & = R^n\pi_*\left(\pi^*(\wedge^{n + 1}\mathcal{E})(-n - 1)\right) = \wedge^{n + 1}\mathcal{E} \otimes_{\mathcal{O}_S} R^n\pi_*\left(\mathcal{O}_{\mathbf{P}(\mathcal{E})}(-n - 1)\right) \end{align*} Hence there can only be one nonzero differential in the spectral sequence namely the map $d_{n + 1}^{-n - 1, n} : E_{n + 1}^{-n - 1, n} \to E_{n + 1}^{0, 0}$ which has to be an isomorphism (because the spectral sequence converges to the $0$ sheaf). Thus $E_1^{p, q} = E_{n + 1}^{p, q}$ and we obtain a canonical isomorphism $$ \wedge^{n + 1}\mathcal{E} \otimes_{\mathcal{O}_S} R^n\pi_*\left(\mathcal{O}_{\mathbf{P}(\mathcal{E})}(-n - 1)\right) = R^n\pi_*\left(\pi^*(\wedge^{n + 1}\mathcal{E})(-n - 1)\right) \xrightarrow{d_{n + 1}^{-n - 1, n}} \mathcal{O}_S $$ Since $\wedge^{n + 1}\mathcal{E}$ is an invertible sheaf, this implies that $R^n\pi_*\mathcal{O}_{\mathbf{P}(\mathcal{E})}(-n - 1)$ is invertible as well and canonically isomorphic to the inverse of $\wedge^{n + 1}\mathcal{E}$. In other words we have proved the case $d = - n - 1$ of the lemma. \medskip\noindent Working locally on $S$ we see immediately from the computation of cohomology in Lemmas \ref{lemma-cohomology-projective-space-over-ring}, \ref{lemma-identify-functorially}, or \ref{lemma-cohomology-projective-space-over-base} the statements on vanishing of the lemma. Moreover the result on $R^0\pi_*$ is clear as well, since there are canonical maps $\text{Sym}^d(\mathcal{E}) \to \pi_* \mathcal{O}_{\mathbf{P}(\mathcal{E})}(d)$ for all $d$. It remains to show that the description of $R^n\pi_*\mathcal{O}_{\mathbf{P}(\mathcal{E})}(d)$ is correct for $d < -n - 1$. In order to do this we consider the map $$ \pi^*(\text{Sym}^{-d - n - 1}(\mathcal{E})) \otimes_{\mathcal{O}_{\mathbf{P}(\mathcal{E})}} \mathcal{O}_{\mathbf{P}(\mathcal{E})}(d) \longrightarrow \mathcal{O}_{\mathbf{P}(\mathcal{E})}(-n - 1) $$ Applying $R^n\pi_*$ and the projection formula (see above) we get a map $$ \text{Sym}^{-d - n - 1}(\mathcal{E}) \otimes_{\mathcal{O}_S} R^n\pi_*(\mathcal{O}_{\mathbf{P}(\mathcal{E})}(d)) \longrightarrow R^n\pi_*\mathcal{O}_{\mathbf{P}(\mathcal{E})}(-n - 1) = (\wedge^{n + 1}\mathcal{E})^{\otimes -1} $$ (the last equality we have shown above). Again by the local calculations of Lemmas \ref{lemma-cohomology-projective-space-over-ring}, \ref{lemma-identify-functorially}, or \ref{lemma-cohomology-projective-space-over-base} it follows that this map induces a perfect pairing between $R^n\pi_*(\mathcal{O}_{\mathbf{P}(\mathcal{E})}(d))$ and $\text{Sym}^{-d - n - 1}(\mathcal{E}) \otimes \wedge^{n + 1}(\mathcal{E})$ as desired. \end{proof} \section{Coherent sheaves on locally Noetherian schemes} \label{section-coherent-sheaves} \noindent We have defined the notion of a coherent module on any ringed space in Modules, Section \ref{modules-section-coherent}. Although it is possible to consider coherent sheaves on non-Noetherian schemes we will always assume the base scheme is locally Noetherian when we consider coherent sheaves. Here is a characterization of coherent sheaves on locally Noetherian schemes. \begin{lemma} \label{lemma-coherent-Noetherian} Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$ be an $\mathcal{O}_X$-module. The following are equivalent \begin{enumerate} \item $\mathcal{F}$ is coherent, \item $\mathcal{F}$ is a quasi-coherent, finite type $\mathcal{O}_X$-module, \item $\mathcal{F}$ is a finitely presented $\mathcal{O}_X$-module, \item for any affine open $\Spec(A) = U \subset X$ we have $\mathcal{F}|_U = \widetilde M$ with $M$ a finite $A$-module, and \item there exists an affine open covering $X = \bigcup U_i$, $U_i = \Spec(A_i)$ such that each $\mathcal{F}|_{U_i} = \widetilde M_i$ with $M_i$ a finite $A_i$-module. \end{enumerate} In particular $\mathcal{O}_X$ is coherent, any invertible $\mathcal{O}_X$-module is coherent, and more generally any finite locally free $\mathcal{O}_X$-module is coherent. \end{lemma} \begin{proof} The implications (1) $\Rightarrow$ (2) and (1) $\Rightarrow$ (3) hold in general, see Modules, Lemma \ref{modules-lemma-coherent-finite-presentation}. If $\mathcal{F}$ is finitely presented then $\mathcal{F}$ is quasi-coherent, see Modules, Lemma \ref{modules-lemma-finite-presentation-quasi-coherent}. Hence also (3) $\Rightarrow$ (2). \medskip\noindent Assume $\mathcal{F}$ is a quasi-coherent, finite type $\mathcal{O}_X$-module. By Properties, Lemma \ref{properties-lemma-finite-type-module} we see that on any affine open $\Spec(A) = U \subset X$ we have $\mathcal{F}|_U = \widetilde M$ with $M$ a finite $A$-module. Since $A$ is Noetherian we see that $M$ has a finite resolution $$ A^{\oplus m} \to A^{\oplus n} \to M \to 0. $$ Hence $\mathcal{F}$ is of finite presentation by Properties, Lemma \ref{properties-lemma-finite-presentation-module}. In other words (2) $\Rightarrow$ (3). \medskip\noindent By Modules, Lemma \ref{modules-lemma-coherent-structure-sheaf} it suffices to show that $\mathcal{O}_X$ is coherent in order to show that (3) implies (1). Thus we have to show: given any open $U \subset X$ and any finite collection of sections $f_i \in \mathcal{O}_X(U)$, $i = 1, \ldots, n$ the kernel of the map $\bigoplus_{i = 1, \ldots, n} \mathcal{O}_U \to \mathcal{O}_U$ is of finite type. Since being of finite type is a local property it suffices to check this in a neighbourhood of any $x \in U$. Thus we may assume $U = \Spec(A)$ is affine. In this case $f_1, \ldots, f_n \in A$ are elements of $A$. Since $A$ is Noetherian, see Properties, Lemma \ref{properties-lemma-locally-Noetherian} the kernel $K$ of the map $\bigoplus_{i = 1, \ldots, n} A \to A$ is a finite $A$-module. See for example Algebra, Lemma \ref{algebra-lemma-Noetherian-basic}. As the functor\ $\widetilde{ }$\ is exact, see Schemes, Lemma \ref{schemes-lemma-spec-sheaves} we get an exact sequence $$ \widetilde K \to \bigoplus\nolimits_{i = 1, \ldots, n} \mathcal{O}_U \to \mathcal{O}_U $$ and by Properties, Lemma \ref{properties-lemma-finite-type-module} again we see that $\widetilde K$ is of finite type. We conclude that (1), (2) and (3) are all equivalent. \medskip\noindent It follows from Properties, Lemma \ref{properties-lemma-finite-type-module} that (2) implies (4). It is trivial that (4) implies (5). The discussion in Schemes, Section \ref{schemes-section-quasi-coherent} show that (5) implies that $\mathcal{F}$ is quasi-coherent and it is clear that (5) implies that $\mathcal{F}$ is of finite type. Hence (5) implies (2) and we win. \end{proof} \begin{lemma} \label{lemma-coherent-abelian-Noetherian} Let $X$ be a locally Noetherian scheme. The category of coherent $\mathcal{O}_X$-modules is abelian. More precisely, the kernel and cokernel of a map of coherent $\mathcal{O}_X$-modules are coherent. Any extension of coherent sheaves is coherent. \end{lemma} \begin{proof} This is a restatement of Modules, Lemma \ref{modules-lemma-coherent-abelian} in a particular case. \end{proof} \noindent The following lemma does not always hold for the category of coherent $\mathcal{O}_X$-modules on a general ringed space $X$. \begin{lemma} \label{lemma-coherent-Noetherian-quasi-coherent-sub-quotient} Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. Any quasi-coherent submodule of $\mathcal{F}$ is coherent. Any quasi-coherent quotient module of $\mathcal{F}$ is coherent. \end{lemma} \begin{proof} We may assume that $X$ is affine, say $X = \Spec(A)$. Properties, Lemma \ref{properties-lemma-locally-Noetherian} implies that $A$ is Noetherian. Lemma \ref{lemma-coherent-Noetherian} turns this into algebra. The algebraic counter part of the lemma is that a quotient, or a submodule of a finite $A$-module is a finite $A$-module, see for example Algebra, Lemma \ref{algebra-lemma-Noetherian-basic}. \end{proof} \begin{lemma} \label{lemma-tensor-hom-coherent} Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$, $\mathcal{G}$ be coherent $\mathcal{O}_X$-modules. The $\mathcal{O}_X$-modules $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$ and $\SheafHom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ are coherent. \end{lemma} \begin{proof} It is shown in Modules, Lemma \ref{modules-lemma-internal-hom-locally-kernel-direct-sum} that $\SheafHom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ is coherent. The result for tensor products is Modules, Lemma \ref{modules-lemma-tensor-product-permanence} \end{proof} \begin{lemma} \label{lemma-local-isomorphism} Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$, $\mathcal{G}$ be coherent $\mathcal{O}_X$-modules. Let $\varphi : \mathcal{G} \to \mathcal{F}$ be a homomorphism of $\mathcal{O}_X$-modules. Let $x \in X$. \begin{enumerate} \item If $\mathcal{F}_x = 0$ then there exists an open neighbourhood $U \subset X$ of $x$ such that $\mathcal{F}|_U = 0$. \item If $\varphi_x : \mathcal{G}_x \to \mathcal{F}_x$ is injective, then there exists an open neighbourhood $U \subset X$ of $x$ such that $\varphi|_U$ is injective. \item If $\varphi_x : \mathcal{G}_x \to \mathcal{F}_x$ is surjective, then there exists an open neighbourhood $U \subset X$ of $x$ such that $\varphi|_U$ is surjective. \item If $\varphi_x : \mathcal{G}_x \to \mathcal{F}_x$ is bijective, then there exists an open neighbourhood $U \subset X$ of $x$ such that $\varphi|_U$ is an isomorphism. \end{enumerate} \end{lemma} \begin{proof} See Modules, Lemmas \ref{modules-lemma-finite-type-surjective-on-stalk}, \ref{modules-lemma-finite-type-stalk-zero}, and \ref{modules-lemma-finite-type-to-coherent-injective-on-stalk}. \end{proof} \begin{lemma} \label{lemma-map-stalks-local-map} Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$, $\mathcal{G}$ be coherent $\mathcal{O}_X$-modules. Let $x \in X$. Suppose $\psi : \mathcal{G}_x \to \mathcal{F}_x$ is a map of $\mathcal{O}_{X, x}$-modules. Then there exists an open neighbourhood $U \subset X$ of $x$ and a map $\varphi : \mathcal{G}|_U \to \mathcal{F}|_U$ such that $\varphi_x = \psi$. \end{lemma} \begin{proof} In view of Lemma \ref{lemma-coherent-Noetherian} this is a reformulation of Modules, Lemma \ref{modules-lemma-stalk-internal-hom}. \end{proof} \begin{lemma} \label{lemma-coherent-support-closed} Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. Then $\text{Supp}(\mathcal{F})$ is closed, and $\mathcal{F}$ comes from a coherent sheaf on the scheme theoretic support of $\mathcal{F}$, see Morphisms, Definition \ref{morphisms-definition-scheme-theoretic-support}. \end{lemma} \begin{proof} Let $i : Z \to X$ be the scheme theoretic support of $\mathcal{F}$ and let $\mathcal{G}$ be the finite type quasi-coherent sheaf on $Z$ such that $i_*\mathcal{G} \cong \mathcal{F}$. Since $Z = \text{Supp}(\mathcal{F})$ we see that the support is closed. The scheme $Z$ is locally Noetherian by Morphisms, Lemmas \ref{morphisms-lemma-immersion-locally-finite-type} and \ref{morphisms-lemma-finite-type-noetherian}. Finally, $\mathcal{G}$ is a coherent $\mathcal{O}_Z$-module by Lemma \ref{lemma-coherent-Noetherian} \end{proof} \begin{lemma} \label{lemma-i-star-equivalence} Let $i : Z \to X$ be a closed immersion of locally Noetherian schemes. Let $\mathcal{I} \subset \mathcal{O}_X$ be the quasi-coherent sheaf of ideals cutting out $Z$. The functor $i_*$ induces an equivalence between the category of coherent $\mathcal{O}_X$-modules annihilated by $\mathcal{I}$ and the category of coherent $\mathcal{O}_Z$-modules. \end{lemma} \begin{proof} The functor is fully faithful by Morphisms, Lemma \ref{morphisms-lemma-i-star-equivalence}. Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module annihilated by $\mathcal{I}$. By Morphisms, Lemma \ref{morphisms-lemma-i-star-equivalence} we can write $\mathcal{F} = i_*\mathcal{G}$ for some quasi-coherent sheaf $\mathcal{G}$ on $Z$. By Modules, Lemma \ref{modules-lemma-i-star-reflects-finite-type} we see that $\mathcal{G}$ is of finite type. Hence $\mathcal{G}$ is coherent by Lemma \ref{lemma-coherent-Noetherian}. Thus the functor is also essentially surjective as desired. \end{proof} \begin{lemma} \label{lemma-finite-pushforward-coherent} Let $f : X \to Y$ be a morphism of schemes. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Assume $f$ is finite and $Y$ locally Noetherian. Then $R^pf_*\mathcal{F} = 0$ for $p > 0$ and $f_*\mathcal{F}$ is coherent if $\mathcal{F}$ is coherent. \end{lemma} \begin{proof} The higher direct images vanish by Lemma \ref{lemma-relative-affine-vanishing} and because a finite morphism is affine (by definition). Note that the assumptions imply that also $X$ is locally Noetherian (see Morphisms, Lemma \ref{morphisms-lemma-finite-type-noetherian}) and hence the statement makes sense. Let $\Spec(A) = V \subset Y$ be an affine open subset. By Morphisms, Definition \ref{morphisms-definition-integral} we see that $f^{-1}(V) = \Spec(B)$ with $A \to B$ finite. Lemma \ref{lemma-coherent-Noetherian} turns the statement of the lemma into the following algebra fact: If $M$ is a finite $B$-module, then $M$ is also finite viewed as a $A$-module, see Algebra, Lemma \ref{algebra-lemma-finite-module-over-finite-extension}. \end{proof} \noindent In the situation of the lemma also the higher direct images are coherent since they vanish. We will show that this is always the case for a proper morphism between locally Noetherian schemes (Proposition \ref{proposition-proper-pushforward-coherent}). \begin{lemma} \label{lemma-coherent-support-dimension-0} Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$ be a coherent sheaf with $\dim(\text{Supp}(\mathcal{F})) \leq 0$. Then $\mathcal{F}$ is generated by global sections and $H^i(X, \mathcal{F}) = 0$ for $i > 0$. \end{lemma} \begin{proof} By Lemma \ref{lemma-coherent-support-closed} we see that $\mathcal{F} = i_*\mathcal{G}$ where $i : Z \to X$ is the inclusion of the scheme theoretic support of $\mathcal{F}$ and where $\mathcal{G}$ is a coherent $\mathcal{O}_Z$-module. Since the dimension of $Z$ is $0$, we see $Z$ is a disjoint union of affines (Properties, Lemma \ref{properties-lemma-locally-Noetherian-dimension-0}). Hence $\mathcal{G}$ is globally generated and the higher cohomology groups of $\mathcal{G}$ are zero (Lemma \ref{lemma-quasi-coherent-affine-cohomology-zero}). Hence $\mathcal{F} = i_*\mathcal{G}$ is globally generated. Since the cohomologies of $\mathcal{F}$ and $\mathcal{G}$ agree (Lemma \ref{lemma-relative-affine-cohomology} applies as a closed immersion is affine) we conclude that the higher cohomology groups of $\mathcal{F}$ are zero. \end{proof} \begin{lemma} \label{lemma-pushforward-coherent-on-open} Let $X$ be a scheme. Let $j : U \to X$ be the inclusion of an open. Let $T \subset X$ be a closed subset contained in $U$. If $\mathcal{F}$ is a coherent $\mathcal{O}_U$-module with $\text{Supp}(\mathcal{F}) \subset T$, then $j_*\mathcal{F}$ is a coherent $\mathcal{O}_X$-module. \end{lemma} \begin{proof} Consider the open covering $X = U \cup (X \setminus T)$. Then $j_*\mathcal{F}|_U = \mathcal{F}$ is coherent and $j_*\mathcal{F}|_{X \setminus T} = 0$ is also coherent. Hence $j_*\mathcal{F}$ is coherent. \end{proof} \section{Coherent sheaves on Noetherian schemes} \label{section-coherent-quasi-compact} \noindent In this section we mention some properties of coherent sheaves on Noetherian schemes. \begin{lemma} \label{lemma-acc-coherent} Let $X$ be a Noetherian scheme. Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. The ascending chain condition holds for quasi-coherent submodules of $\mathcal{F}$. In other words, given any sequence $$ \mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots \subset \mathcal{F} $$ of quasi-coherent submodules, then $\mathcal{F}_n = \mathcal{F}_{n + 1} = \ldots $ for some $n \geq 0$. \end{lemma} \begin{proof} Choose a finite affine open covering. On each member of the covering we get stabilization by Algebra, Lemma \ref{algebra-lemma-Noetherian-basic}. Hence the lemma follows. \end{proof} \begin{lemma} \label{lemma-power-ideal-kills-sheaf} Let $X$ be a Noetherian scheme. Let $\mathcal{F}$ be a coherent sheaf on $X$. Let $\mathcal{I} \subset \mathcal{O}_X$ be a quasi-coherent sheaf of ideals corresponding to a closed subscheme $Z \subset X$. Then there is some $n \geq 0$ such that $\mathcal{I}^n\mathcal{F} = 0$ if and only if $\text{Supp}(\mathcal{F}) \subset Z$ (set theoretically). \end{lemma} \begin{proof} This follows immediately from Algebra, Lemma \ref{algebra-lemma-Noetherian-power-ideal-kills-module} because $X$ has a finite covering by spectra of Noetherian rings. \end{proof} \begin{lemma}[Artin-Rees] \label{lemma-Artin-Rees} Let $X$ be a Noetherian scheme. Let $\mathcal{F}$ be a coherent sheaf on $X$. Let $\mathcal{G} \subset \mathcal{F}$ be a quasi-coherent subsheaf. Let $\mathcal{I} \subset \mathcal{O}_X$ be a quasi-coherent sheaf of ideals. Then there exists a $c \geq 0$ such that for all $n \geq c$ we have $$ \mathcal{I}^{n - c}(\mathcal{I}^c\mathcal{F} \cap \mathcal{G}) = \mathcal{I}^n\mathcal{F} \cap \mathcal{G} $$ \end{lemma} \begin{proof} This follows immediately from Algebra, Lemma \ref{algebra-lemma-Artin-Rees} because $X$ has a finite covering by spectra of Noetherian rings. \end{proof} \begin{lemma} \label{lemma-directed-colimit-coherent} Let $X$ be a Noetherian scheme. Every quasi-coherent $\mathcal{O}_X$-module is the filtered colimit of its coherent submodules. \end{lemma} \begin{proof} This is a reformulation of Properties, Lemma \ref{properties-lemma-quasi-coherent-colimit-finite-type} in view of the fact that a finite type quasi-coherent $\mathcal{O}_X$-module is coherent by Lemma \ref{lemma-coherent-Noetherian}. \end{proof} \begin{lemma} \label{lemma-homs-over-open} Let $X$ be a Noetherian scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Let $\mathcal{G}$ be a coherent $\mathcal{O}_X$-module. Let $\mathcal{I} \subset \mathcal{O}_X$ be a quasi-coherent sheaf of ideals. Denote $Z \subset X$ the corresponding closed subscheme and set $U = X \setminus Z$. There is a canonical isomorphism $$ \colim_n \Hom_{\mathcal{O}_X}(\mathcal{I}^n\mathcal{G}, \mathcal{F}) \longrightarrow \Hom_{\mathcal{O}_U}(\mathcal{G}|_U, \mathcal{F}|_U). $$ In particular we have an isomorphism $$ \colim_n \Hom_{\mathcal{O}_X}( \mathcal{I}^n, \mathcal{F}) \longrightarrow \Gamma(U, \mathcal{F}). $$ \end{lemma} \begin{proof} We first prove the second map is an isomorphism. It is injective by Properties, Lemma \ref{properties-lemma-sections-over-quasi-compact-open}. Since $\mathcal{F}$ is the union of its coherent submodules, see Properties, Lemma \ref{properties-lemma-quasi-coherent-colimit-finite-type} (and Lemma \ref{lemma-coherent-Noetherian}) we may and do assume that $\mathcal{F}$ is coherent to prove surjectivity. Let $\mathcal{F}_n$ denote the quasi-coherent subsheaf of $\mathcal{F}$ consisting of sections annihilated by $\mathcal{I}^n$, see Properties, Lemma \ref{properties-lemma-sections-over-quasi-compact-open}. Since $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots$ we see that $\mathcal{F}_n = \mathcal{F}_{n + 1} = \ldots $ for some $n \geq 0$ by Lemma \ref{lemma-acc-coherent}. Set $\mathcal{H} = \mathcal{F}_n$ for this $n$. By Artin-Rees (Lemma \ref{lemma-Artin-Rees}) there exists an $c \geq 0$ such that $\mathcal{I}^m\mathcal{F} \cap \mathcal{H} \subset \mathcal{I}^{m - c}\mathcal{H}$. Picking $m = n + c$ we get $\mathcal{I}^m\mathcal{F} \cap \mathcal{H} \subset \mathcal{I}^n\mathcal{H} = 0$. Thus if we set $\mathcal{F}' = \mathcal{I}^m\mathcal{F}$ then we see that $\mathcal{F}' \cap \mathcal{F}_n = 0$ and $\mathcal{F}'|_U = \mathcal{F}|_U$. Note in particular that the subsheaf $(\mathcal{F}')_N$ of sections annihilated by $\mathcal{I}^N$ is zero for all $N \geq 0$. Hence by Properties, Lemma \ref{properties-lemma-sections-over-quasi-compact-open} we deduce that the top horizontal arrow in the following commutative diagram is a bijection: $$ \xymatrix{ \colim_n \Hom_{\mathcal{O}_X}( \mathcal{I}^n, \mathcal{F}') \ar[r] \ar[d] & \Gamma(U, \mathcal{F}') \ar[d] \\ \colim_n \Hom_{\mathcal{O}_X}( \mathcal{I}^n, \mathcal{F}) \ar[r] & \Gamma(U, \mathcal{F}) } $$ Since also the right vertical arrow is a bijection we conclude that the bottom horizontal arrow is surjective as desired. \medskip\noindent Next, we prove the first arrow of the lemma is a bijection. By Lemma \ref{lemma-coherent-Noetherian} the sheaf $\mathcal{G}$ is of finite presentation and hence the sheaf $\mathcal{H} = \SheafHom_{\mathcal{O}_X}(\mathcal{G}, \mathcal{F})$ is quasi-coherent, see Schemes, Section \ref{schemes-section-quasi-coherent}. By definition we have $$ \mathcal{H}(U) = \Hom_{\mathcal{O}_U}(\mathcal{G}|_U, \mathcal{F}|_U) $$ Pick a $\psi$ in the right hand side of the first arrow of the lemma, i.e., $\psi \in \mathcal{H}(U)$. The result just proved applies to $\mathcal{H}$ and hence there exists an $n \geq 0$ and an $\varphi : \mathcal{I}^n \to \mathcal{H}$ which recovers $\psi$ on restriction to $U$. By Modules, Lemma \ref{modules-lemma-internal-hom} $\varphi$ corresponds to a map $$ \varphi : \mathcal{I}^n \otimes_{\mathcal{O}_X} \mathcal{G} \longrightarrow \mathcal{F}. $$ This is almost what we want except that the source of the arrow is the tensor product of $\mathcal{I}^n$ and $\mathcal{G}$ and not the product. We will show that, at the cost of increasing $n$, the difference is irrelevant. Consider the short exact sequence $$ 0 \to \mathcal{K} \to \mathcal{I}^n \otimes_{\mathcal{O}_X} \mathcal{G} \to \mathcal{I}^n\mathcal{G} \to 0 $$ where $\mathcal{K}$ is defined as the kernel. Note that $\mathcal{I}^n\mathcal{K} = 0$ (proof omitted). By Artin-Rees again we see that $$ \mathcal{K} \cap \mathcal{I}^m(\mathcal{I}^n \otimes_{\mathcal{O}_X} \mathcal{G}) = 0 $$ for some $m$ large enough. In other words we see that $$ \mathcal{I}^m(\mathcal{I}^n \otimes_{\mathcal{O}_X} \mathcal{G}) \longrightarrow \mathcal{I}^{n + m}\mathcal{G} $$ is an isomorphism. Let $\varphi'$ be the restriction of $\varphi$ to this submodule thought of as a map $\mathcal{I}^{m + n}\mathcal{G} \to \mathcal{F}$. Then $\varphi'$ gives an element of the left hand side of the first arrow of the lemma which maps to $\psi$ via the arrow. In other words we have proved surjectivity of the arrow. We omit the proof of injectivity. \end{proof} \begin{lemma} \label{lemma-extend-coherent} Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$, $\mathcal{G}$ be coherent $\mathcal{O}_X$-modules. Let $U \subset X$ be open and let $\varphi : \mathcal{F}|_U \to \mathcal{G}|_U$ be an $\mathcal{O}_U$-module map. Then there exists a coherent submodule $\mathcal{F}' \subset \mathcal{F}$ agreeing with $\mathcal{F}$ over $U$ such that $\varphi$ extends to $\varphi' : \mathcal{F}' \to \mathcal{G}$. \end{lemma} \begin{proof} Let $\mathcal{I} \subset \mathcal{O}_X$ be the coherent sheaf of ideals cutting out the reduced induced scheme structure on $X \setminus U$. If $X$ is Noetherian, then Lemma \ref{lemma-homs-over-open} tells us that we can take $\mathcal{F}' = \mathcal{I}^n\mathcal{F}$ for some $n$. The general case will follow from this using Zorn's lemma. \medskip\noindent Consider the set of triples $(U', \mathcal{F}', \varphi')$ where $U \subset U' \subset X$ is open, $\mathcal{F}' \subset \mathcal{F}|_{U'}$ is a coherent subsheaf agreeing with $\mathcal{F}$ over $U$, and $\varphi' : \mathcal{F}' \to \mathcal{G}|_{U'}$ restricts to $\varphi$ over $U$. We say $(U'', \mathcal{F}'', \varphi'') \geq (U', \mathcal{F}', \varphi')$ if and only if $U'' \supset U'$, $\mathcal{F}''|_{U'} = \mathcal{F}'$, and $\varphi''|_{U'} = \varphi'$. It is clear that if we have a totally ordered collection of triples $(U_i, \mathcal{F}_i, \varphi_i)$, then we can glue the $\mathcal{F}_i$ to a subsheaf $\mathcal{F}'$ of $\mathcal{F}$ over $U' = \bigcup U_i$ and extend $\varphi$ to a map $\varphi' : \mathcal{F}' \to \mathcal{G}|_{U'}$. Hence any totally ordered subset of triples has an upper bound. Finally, suppose that $(U', \mathcal{F}', \varphi')$ is any triple but $U' \not = X$. Then we can choose an affine open $W \subset X$ which is not contained in $U'$. By the result of the first paragraph we can extend the subsheaf $\mathcal{F}'|_{W \cap U'}$ and the restriction $\varphi'|_{W \cap U'}$ to some subsheaf $\mathcal{F}'' \subset \mathcal{F}|_W$ and map $\varphi'' : \mathcal{F}'' \to \mathcal{G}|_W$. Of course the agreement between $(\mathcal{F}', \varphi')$ and $(\mathcal{F}'', \varphi'')$ over $W \cap U'$ exactly means that we can extend this to a triple $(U' \cup W, \mathcal{F}''', \varphi''')$. Hence any maximal triple $(U', \mathcal{F}', \varphi')$ (which exist by Zorn's lemma) must have $U' = X$ and the proof is complete. \end{proof} \section{Depth} \label{section-depth} \noindent In this section we talk a little bit about depth and property $(S_k)$ for coherent modules on locally Noetherian schemes. Note that we have already discussed this notion for locally Noetherian schemes in Properties, Section \ref{properties-section-Rk}. \begin{definition} \label{definition-depth} Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. Let $k \geq 0$ be an integer. \begin{enumerate} \item We say $\mathcal{F}$ has {\it depth $k$ at a point} $x$ of $X$ if $\text{depth}_{\mathcal{O}_{X, x}}(\mathcal{F}_x) = k$. \item We say $X$ has {\it depth $k$ at a point} $x$ of $X$ if $\text{depth}(\mathcal{O}_{X, x}) = k$. \item We say $\mathcal{F}$ has property {\it $(S_k)$} if $$ \text{depth}_{\mathcal{O}_{X, x}}(\mathcal{F}_x) \geq \min(k, \dim(\text{Supp}(\mathcal{F}_x))) $$ for all $x \in X$. \item We say $X$ has property {\it $(S_k)$} if $\mathcal{O}_X$ has property $(S_k)$. \end{enumerate} \end{definition} \noindent Any coherent sheaf satisfies condition $(S_0)$. Condition $(S_1)$ is equivalent to having no embedded associated points, see Divisors, Lemma \ref{divisors-lemma-S1-no-embedded}. \begin{lemma} \label{lemma-hom-into-depth} Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$, $\mathcal{G}$ be coherent $\mathcal{O}_X$-modules and $x \in X$. \begin{enumerate} \item If $\mathcal{G}_x$ has depth $\geq 1$, then $\SheafHom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})_x$ has depth $\geq 1$. \item If $\mathcal{G}_x$ has depth $\geq 2$, then $\Hom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})_x$ has depth $\geq 2$. \end{enumerate} \end{lemma} \begin{proof} Observe that $\SheafHom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ is a coherent $\mathcal{O}_X$-module by Lemma \ref{lemma-tensor-hom-coherent}. Coherent modules are of finite presentation (Lemma \ref{lemma-coherent-Noetherian}) hence taking stalks commutes with taking $\SheafHom$ and $\Hom$, see Modules, Lemma \ref{modules-lemma-stalk-internal-hom}. Thus we reduce to the case of finite modules over local rings which is More on Algebra, Lemma \ref{more-algebra-lemma-hom-into-depth}. \end{proof} \begin{lemma} \label{lemma-hom-into-S2} Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$, $\mathcal{G}$ be coherent $\mathcal{O}_X$-modules. \begin{enumerate} \item If $\mathcal{G}$ has property $(S_1)$, then $\SheafHom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ has property $(S_1)$. \item If $\mathcal{G}$ has property $(S_2)$, then $\SheafHom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ has property $(S_2)$. \end{enumerate} \end{lemma} \begin{proof} Follows immediately from Lemma \ref{lemma-hom-into-depth} and the definitions. \end{proof} \noindent We have seen in Properties, Lemma \ref{properties-lemma-scheme-CM-iff-all-Sk} that a locally Noetherian scheme is Cohen-Macaulay if and only if $(S_k)$ holds for all $k$. Thus it makes sense to introduce the following definition, which is equivalent to the condition that all stalks are Cohen-Macaulay modules. \begin{definition} \label{definition-Cohen-Macaulay} Let $X$ be a locally Noetherian scheme. Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. We say $\mathcal{F}$ is {\it Cohen-Macaulay} if and only if $(S_k)$ holds for all $k \geq 0$. \end{definition} \begin{lemma} \label{lemma-Cohen-Macaulay-over-regular} Let $X$ be a regular scheme. Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. The following are equivalent \begin{enumerate} \item $\mathcal{F}$ is Cohen-Macaulay and $\text{Supp}(\mathcal{F}) = X$, \item $\mathcal{F}$ is finite locally free of rank $> 0$. \end{enumerate} \end{lemma} \begin{proof} Let $x \in X$. If (2) holds, then $\mathcal{F}_x$ is a free $\mathcal{O}_{X, x}$-module of rank $> 0$. Hence $\text{depth}(\mathcal{F}_x) = \dim(\mathcal{O}_{X, x})$ because a regular local ring is Cohen-Macaulay (Algebra, Lemma \ref{algebra-lemma-regular-ring-CM}). Conversely, if (1) holds, then $\mathcal{F}_x$ is a maximal Cohen-Macaulay module over $\mathcal{O}_{X, x}$ (Algebra, Definition \ref{algebra-definition-maximal-CM}). Hence $\mathcal{F}_x$ is free by Algebra, Lemma \ref{algebra-lemma-regular-mcm-free}. \end{proof} \section{Devissage of coherent sheaves} \label{section-devissage} \noindent Let $X$ be a Noetherian scheme. Consider an integral closed subscheme $i : Z \to X$. It is often convenient to consider coherent sheaves of the form $i_*\mathcal{G}$ where $\mathcal{G}$ is a coherent sheaf on $Z$. In particular we are interested in these sheaves when $\mathcal{G}$ is a torsion free rank $1$ sheaf. For example $\mathcal{G}$ could be a nonzero sheaf of ideals on $Z$, or even more specifically $\mathcal{G} = \mathcal{O}_Z$. \medskip\noindent Throughout this section we will use that a coherent sheaf is the same thing as a finite type quasi-coherent sheaf and that a quasi-coherent subquotient of a coherent sheaf is coherent, see Section \ref{section-coherent-sheaves}. The support of a coherent sheaf is closed, see Modules, Lemma \ref{modules-lemma-support-finite-type-closed}. \begin{lemma} \label{lemma-prepare-filter-support} Let $X$ be a Noetherian scheme. Let $\mathcal{F}$ be a coherent sheaf on $X$. Suppose that $\text{Supp}(\mathcal{F}) = Z \cup Z'$ with $Z$, $Z'$ closed. Then there exists a short exact sequence of coherent sheaves $$ 0 \to \mathcal{G}' \to \mathcal{F} \to \mathcal{G} \to 0 $$ with $\text{Supp}(\mathcal{G}') \subset Z'$ and $\text{Supp}(\mathcal{G}) \subset Z$. \end{lemma} \begin{proof} Let $\mathcal{I} \subset \mathcal{O}_X$ be the sheaf of ideals defining the reduced induced closed subscheme structure on $Z$, see Schemes, Lemma \ref{schemes-lemma-reduced-closed-subscheme}. Consider the subsheaves $\mathcal{G}'_n = \mathcal{I}^n\mathcal{F}$ and the quotients $\mathcal{G}_n = \mathcal{F}/\mathcal{I}^n\mathcal{F}$. For each $n$ we have a short exact sequence $$ 0 \to \mathcal{G}'_n \to \mathcal{F} \to \mathcal{G}_n \to 0 $$ For every point $x$ of $Z' \setminus Z$ we have $\mathcal{I}_x = \mathcal{O}_{X, x}$ and hence $\mathcal{G}_{n, x} = 0$. Thus we see that $\text{Supp}(\mathcal{G}_n) \subset Z$. Note that $X \setminus Z'$ is a Noetherian scheme. Hence by Lemma \ref{lemma-power-ideal-kills-sheaf} there exists an $n$ such that $\mathcal{G}'_n|_{X \setminus Z'} = \mathcal{I}^n\mathcal{F}|_{X \setminus Z'} = 0$. For such an $n$ we see that $\text{Supp}(\mathcal{G}'_n) \subset Z'$. Thus setting $\mathcal{G}' = \mathcal{G}'_n$ and $\mathcal{G} = \mathcal{G}_n$ works. \end{proof} \begin{lemma} \label{lemma-prepare-filter-irreducible} Let $X$ be a Noetherian scheme. Let $i : Z \to X$ be an integral closed subscheme. Let $\xi \in Z$ be the generic point. Let $\mathcal{F}$ be a coherent sheaf on $X$. Assume that $\mathcal{F}_\xi$ is annihilated by $\mathfrak m_\xi$. Then there exist an integer $r \geq 0$ and a coherent sheaf of ideals $\mathcal{I} \subset \mathcal{O}_Z$ and an injective map of coherent sheaves $$ i_*\left(\mathcal{I}^{\oplus r}\right) \to \mathcal{F} $$ which is an isomorphism in a neighbourhood of $\xi$. \end{lemma} \begin{proof} Let $\mathcal{J} \subset \mathcal{O}_X$ be the ideal sheaf of $Z$. Let $\mathcal{F}' \subset \mathcal{F}$ be the subsheaf of local sections of $\mathcal{F}$ which are annihilated by $\mathcal{J}$. It is a quasi-coherent sheaf by Properties, Lemma \ref{properties-lemma-sections-annihilated-by-ideal}. Moreover, $\mathcal{F}'_\xi = \mathcal{F}_\xi$ because $\mathcal{J}_\xi = \mathfrak m_\xi$ and part (3) of Properties, Lemma \ref{properties-lemma-sections-annihilated-by-ideal}. By Lemma \ref{lemma-local-isomorphism} we see that $\mathcal{F}' \to \mathcal{F}$ induces an isomorphism in a neighbourhood of $\xi$. Hence we may replace $\mathcal{F}$ by $\mathcal{F}'$ and assume that $\mathcal{F}$ is annihilated by $\mathcal{J}$. \medskip\noindent Assume $\mathcal{J}\mathcal{F} = 0$. By Lemma \ref{lemma-i-star-equivalence} we can write $\mathcal{F} = i_*\mathcal{G}$ for some coherent sheaf $\mathcal{G}$ on $Z$. Suppose we can find a morphism $\mathcal{I}^{\oplus r} \to \mathcal{G}$ which is an isomorphism in a neighbourhood of the generic point $\xi$ of $Z$. Then applying $i_*$ (which is left exact) we get the result of the lemma. Hence we have reduced to the case $X = Z$. \medskip\noindent Suppose $Z = X$ is an integral Noetherian scheme with generic point $\xi$. Note that $\mathcal{O}_{X, \xi} = \kappa(\xi)$ is the function field of $X$ in this case. Since $\mathcal{F}_\xi$ is a finite $\mathcal{O}_\xi$-module we see that $r = \dim_{\kappa(\xi)} \mathcal{F}_\xi$ is finite. Hence the sheaves $\mathcal{O}_X^{\oplus r}$ and $\mathcal{F}$ have isomorphic stalks at $\xi$. By Lemma \ref{lemma-map-stalks-local-map} there exists a nonempty open $U \subset X$ and a morphism $\psi : \mathcal{O}_X^{\oplus r}|_U \to \mathcal{F}|_U$ which is an isomorphism at $\xi$, and hence an isomorphism in a neighbourhood of $\xi$ by Lemma \ref{lemma-local-isomorphism}. By Schemes, Lemma \ref{schemes-lemma-reduced-closed-subscheme} there exists a quasi-coherent sheaf of ideals $\mathcal{I} \subset \mathcal{O}_X$ whose associated closed subscheme $Z \subset X$ is the complement of $U$. By Lemma \ref{lemma-homs-over-open} there exists an $n \geq 0$ and a morphism $\mathcal{I}^n(\mathcal{O}_X^{\oplus r}) \to \mathcal{F}$ which recovers our $\psi$ over $U$. Since $\mathcal{I}^n(\mathcal{O}_X^{\oplus r}) = (\mathcal{I}^n)^{\oplus r}$ we get a map as in the lemma. It is injective because $X$ is integral and it is injective at the generic point of $X$ (easy proof omitted). \end{proof} \begin{lemma} \label{lemma-coherent-filter} Let $X$ be a Noetherian scheme. Let $\mathcal{F}$ be a coherent sheaf on $X$. There exists a filtration $$ 0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots \subset \mathcal{F}_m = \mathcal{F} $$ by coherent subsheaves such that for each $j = 1, \ldots, m$ there exist an integral closed subscheme $Z_j \subset X$ and a nonzero coherent sheaf of ideals $\mathcal{I}_j \subset \mathcal{O}_{Z_j}$ such that $$ \mathcal{F}_j/\mathcal{F}_{j - 1} \cong (Z_j \to X)_* \mathcal{I}_j $$ \end{lemma} \begin{proof} Consider the collection $$ \mathcal{T} = \left\{ \begin{matrix} Z \subset X \text{ closed such that there exists a coherent sheaf } \mathcal{F} \\ \text{ with } \text{Supp}(\mathcal{F}) = Z \text{ for which the lemma is wrong} \end{matrix} \right\} $$ We are trying to show that $\mathcal{T}$ is empty. If not, then because $X$ is Noetherian we can choose a minimal element $Z \in \mathcal{T}$. This means that there exists a coherent sheaf $\mathcal{F}$ on $X$ whose support is $Z$ and for which the lemma does not hold. Clearly $Z \not = \emptyset$ since the only sheaf whose support is empty is the zero sheaf for which the lemma does hold (with $m = 0$). \medskip\noindent If $Z$ is not irreducible, then we can write $Z = Z_1 \cup Z_2$ with $Z_1, Z_2$ closed and strictly smaller than $Z$. Then we can apply Lemma \ref{lemma-prepare-filter-support} to get a short exact sequence of coherent sheaves $$ 0 \to \mathcal{G}_1 \to \mathcal{F} \to \mathcal{G}_2 \to 0 $$ with $\text{Supp}(\mathcal{G}_i) \subset Z_i$. By minimality of $Z$ each of $\mathcal{G}_i$ has a filtration as in the statement of the lemma. By considering the induced filtration on $\mathcal{F}$ we arrive at a contradiction. Hence we conclude that $Z$ is irreducible. \medskip\noindent Suppose $Z$ is irreducible. Let $\mathcal{J}$ be the sheaf of ideals cutting out the reduced induced closed subscheme structure of $Z$, see Schemes, Lemma \ref{schemes-lemma-reduced-closed-subscheme}. By Lemma \ref{lemma-power-ideal-kills-sheaf} we see there exists an $n \geq 0$ such that $\mathcal{J}^n\mathcal{F} = 0$. Hence we obtain a filtration $$ 0 = \mathcal{J}^n\mathcal{F} \subset \mathcal{J}^{n - 1}\mathcal{F} \subset \ldots \subset \mathcal{J}\mathcal{F} \subset \mathcal{F} $$ each of whose successive subquotients is annihilated by $\mathcal{J}$. Hence if each of these subquotients has a filtration as in the statement of the lemma then also $\mathcal{F}$ does. In other words we may assume that $\mathcal{J}$ does annihilate $\mathcal{F}$. \medskip\noindent In the case where $Z$ is irreducible and $\mathcal{J}\mathcal{F} = 0$ we can apply Lemma \ref{lemma-prepare-filter-irreducible}. This gives a short exact sequence $$ 0 \to i_*(\mathcal{I}^{\oplus r}) \to \mathcal{F} \to \mathcal{Q} \to 0 $$ where $\mathcal{Q}$ is defined as the quotient. Since $\mathcal{Q}$ is zero in a neighbourhood of $\xi$ by the lemma just cited we see that the support of $\mathcal{Q}$ is strictly smaller than $Z$. Hence we see that $\mathcal{Q}$ has a filtration of the desired type by minimality of $Z$. But then clearly $\mathcal{F}$ does too, which is our final contradiction. \end{proof} \begin{lemma} \label{lemma-property-initial} Let $X$ be a Noetherian scheme. Let $\mathcal{P}$ be a property of coherent sheaves on $X$. Assume \begin{enumerate} \item For any short exact sequence of coherent sheaves $$ 0 \to \mathcal{F}_1 \to \mathcal{F} \to \mathcal{F}_2 \to 0 $$ if $\mathcal{F}_i$, $i = 1, 2$ have property $\mathcal{P}$ then so does $\mathcal{F}$. \item For every integral closed subscheme $Z \subset X$ and every quasi-coherent sheaf of ideals $\mathcal{I} \subset \mathcal{O}_Z$ we have $\mathcal{P}$ for $i_*\mathcal{I}$. \end{enumerate} Then property $\mathcal{P}$ holds for every coherent sheaf on $X$. \end{lemma} \begin{proof} First note that if $\mathcal{F}$ is a coherent sheaf with a filtration $$ 0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots \subset \mathcal{F}_m = \mathcal{F} $$ by coherent subsheaves such that each of $\mathcal{F}_i/\mathcal{F}_{i - 1}$ has property $\mathcal{P}$, then so does $\mathcal{F}$. This follows from the property (1) for $\mathcal{P}$. On the other hand, by Lemma \ref{lemma-coherent-filter} we can filter any $\mathcal{F}$ with successive subquotients as in (2). Hence the lemma follows. \end{proof} \begin{lemma} \label{lemma-property-irreducible} Let $X$ be a Noetherian scheme. Let $Z_0 \subset X$ be an irreducible closed subset with generic point $\xi$. Let $\mathcal{P}$ be a property of coherent sheaves on $X$ with support contained in $Z_0$ such that \begin{enumerate} \item For any short exact sequence of coherent sheaves if two out of three of them have property $\mathcal{P}$ then so does the third. \item For every integral closed subscheme $Z \subset Z_0 \subset X$, $Z \not = Z_0$ and every quasi-coherent sheaf of ideals $\mathcal{I} \subset \mathcal{O}_Z$ we have $\mathcal{P}$ for $(Z \to X)_*\mathcal{I}$. \item There exists some coherent sheaf $\mathcal{G}$ on $X$ such that \begin{enumerate} \item $\text{Supp}(\mathcal{G}) = Z_0$, \item $\mathcal{G}_\xi$ is annihilated by $\mathfrak m_\xi$, \item $\dim_{\kappa(\xi)} \mathcal{G}_\xi = 1$, and \item property $\mathcal{P}$ holds for $\mathcal{G}$. \end{enumerate} \end{enumerate} Then property $\mathcal{P}$ holds for every coherent sheaf $\mathcal{F}$ on $X$ whose support is contained in $Z_0$. \end{lemma} \begin{proof} First note that if $\mathcal{F}$ is a coherent sheaf with support contained in $Z_0$ with a filtration $$ 0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots \subset \mathcal{F}_m = \mathcal{F} $$ by coherent subsheaves such that each of $\mathcal{F}_i/\mathcal{F}_{i - 1}$ has property $\mathcal{P}$, then so does $\mathcal{F}$. Or, if $\mathcal{F}$ has property $\mathcal{P}$ and all but one of the $\mathcal{F}_i/\mathcal{F}_{i - 1}$ has property $\mathcal{P}$ then so does the last one. This follows from assumption (1). \medskip\noindent As a first application we conclude that any coherent sheaf whose support is strictly contained in $Z_0$ has property $\mathcal{P}$. Namely, such a sheaf has a filtration (see Lemma \ref{lemma-coherent-filter}) whose subquotients have property $\mathcal{P}$ according to (2). \medskip\noindent Let $\mathcal{G}$ be as in (3). By Lemma \ref{lemma-prepare-filter-irreducible} there exist a sheaf of ideals $\mathcal{I}$ on $Z_0$, an integer $r \geq 1$, and a short exact sequence $$ 0 \to \left((Z_0 \to X)_*\mathcal{I}\right)^{\oplus r} \to \mathcal{G} \to \mathcal{Q} \to 0 $$ where the support of $\mathcal{Q}$ is strictly contained in $Z_0$. By (3)(c) we see that $r = 1$. Since $\mathcal{Q}$ has property $\mathcal{P}$ too we conclude that $(Z_0 \to X)_*\mathcal{I}$ has property $\mathcal{P}$. \medskip\noindent Next, suppose that $\mathcal{I}' \not = 0$ is another quasi-coherent sheaf of ideals on $Z_0$. Then we can consider the intersection $\mathcal{I}'' = \mathcal{I}' \cap \mathcal{I}$ and we get two short exact sequences $$ 0 \to (Z_0 \to X)_*\mathcal{I}'' \to (Z_0 \to X)_*\mathcal{I} \to \mathcal{Q} \to 0 $$ and $$ 0 \to (Z_0 \to X)_*\mathcal{I}'' \to (Z_0 \to X)_*\mathcal{I}' \to \mathcal{Q}' \to 0. $$ Note that the support of the coherent sheaves $\mathcal{Q}$ and $\mathcal{Q}'$ are strictly contained in $Z_0$. Hence $\mathcal{Q}$ and $\mathcal{Q}'$ have property $\mathcal{P}$ (see above). Hence we conclude using (1) that $(Z_0 \to X)_*\mathcal{I}''$ and $(Z_0 \to X)_*\mathcal{I}'$ both have $\mathcal{P}$ as well. \medskip\noindent The final step of the proof is to note that any coherent sheaf $\mathcal{F}$ on $X$ whose support is contained in $Z_0$ has a filtration (see Lemma \ref{lemma-coherent-filter} again) whose subquotients all have property $\mathcal{P}$ by what we just said. \end{proof} \begin{lemma} \label{lemma-property} Let $X$ be a Noetherian scheme. Let $\mathcal{P}$ be a property of coherent sheaves on $X$ such that \begin{enumerate} \item For any short exact sequence of coherent sheaves if two out of three of them have property $\mathcal{P}$ then so does the third. \item For every integral closed subscheme $Z \subset X$ with generic point $\xi$ there exists some coherent sheaf $\mathcal{G}$ such that \begin{enumerate} \item $\text{Supp}(\mathcal{G}) = Z$, \item $\mathcal{G}_\xi$ is annihilated by $\mathfrak m_\xi$, \item $\dim_{\kappa(\xi)} \mathcal{G}_\xi = 1$, and \item property $\mathcal{P}$ holds for $\mathcal{G}$. \end{enumerate} \end{enumerate} Then property $\mathcal{P}$ holds for every coherent sheaf on $X$. \end{lemma} \begin{proof} According to Lemma \ref{lemma-property-initial} it suffices to show that for all integral closed subschemes $Z \subset X$ and all quasi-coherent ideal sheaves $\mathcal{I} \subset \mathcal{O}_Z$ we have $\mathcal{P}$ for $(Z \to X)_*\mathcal{I}$. If this fails, then since $X$ is Noetherian there is a minimal integral closed subscheme $Z_0 \subset X$ such that $\mathcal{P}$ fails for $(Z_0 \to X)_*\mathcal{I}_0$ for some quasi-coherent sheaf of ideals $\mathcal{I}_0 \subset \mathcal{O}_{Z_0}$, but $\mathcal{P}$ does hold for $(Z \to X)_*\mathcal{I}$ for all integral closed subschemes $Z \subset Z_0$, $Z \not = Z_0$ and quasi-coherent ideal sheaves $\mathcal{I} \subset \mathcal{O}_Z$. Since we have the existence of $\mathcal{G}$ for $Z_0$ by part (2), according to Lemma \ref{lemma-property-irreducible} this cannot happen. \end{proof} \begin{lemma} \label{lemma-property-irreducible-higher-rank-cohomological} Let $X$ be a Noetherian scheme. Let $Z_0 \subset X$ be an irreducible closed subset with generic point $\xi$. Let $\mathcal{P}$ be a property of coherent sheaves on $X$ such that \begin{enumerate} \item For any short exact sequence of coherent sheaves $$ 0 \to \mathcal{F}_1 \to \mathcal{F} \to \mathcal{F}_2 \to 0 $$ if $\mathcal{F}_i$, $i = 1, 2$ have property $\mathcal{P}$ then so does $\mathcal{F}$. \item If $\mathcal{P}$ holds for $\mathcal{F}^{\oplus r}$ for some $r \geq 1$, then it holds for $\mathcal{F}$. \item For every integral closed subscheme $Z \subset Z_0 \subset X$, $Z \not = Z_0$ and every quasi-coherent sheaf of ideals $\mathcal{I} \subset \mathcal{O}_Z$ we have $\mathcal{P}$ for $(Z \to X)_*\mathcal{I}$. \item There exists some coherent sheaf $\mathcal{G}$ such that \begin{enumerate} \item $\text{Supp}(\mathcal{G}) = Z_0$, \item $\mathcal{G}_\xi$ is annihilated by $\mathfrak m_\xi$, and \item for every quasi-coherent sheaf of ideals $\mathcal{J} \subset \mathcal{O}_X$ such that $\mathcal{J}_\xi = \mathcal{O}_{X, \xi}$ there exists a quasi-coherent subsheaf $\mathcal{G}' \subset \mathcal{J}\mathcal{G}$ with $\mathcal{G}'_\xi = \mathcal{G}_\xi$ and such that $\mathcal{P}$ holds for $\mathcal{G}'$. \end{enumerate} \end{enumerate} Then property $\mathcal{P}$ holds for every coherent sheaf $\mathcal{F}$ on $X$ whose support is contained in $Z_0$. \end{lemma} \begin{proof} Note that if $\mathcal{F}$ is a coherent sheaf with a filtration $$ 0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots \subset \mathcal{F}_m = \mathcal{F} $$ by coherent subsheaves such that each of $\mathcal{F}_i/\mathcal{F}_{i - 1}$ has property $\mathcal{P}$, then so does $\mathcal{F}$. This follows from assumption (1). \medskip\noindent As a first application we conclude that any coherent sheaf whose support is strictly contained in $Z_0$ has property $\mathcal{P}$. Namely, such a sheaf has a filtration (see Lemma \ref{lemma-coherent-filter}) whose subquotients have property $\mathcal{P}$ according to (3). \medskip\noindent Let us denote $i : Z_0 \to X$ the closed immersion. Consider a coherent sheaf $\mathcal{G}$ as in (4). By Lemma \ref{lemma-prepare-filter-irreducible} there exists a sheaf of ideals $\mathcal{I}$ on $Z_0$ and a short exact sequence $$ 0 \to i_*\mathcal{I}^{\oplus r} \to \mathcal{G} \to \mathcal{Q} \to 0 $$ where the support of $\mathcal{Q}$ is strictly contained in $Z_0$. In particular $r > 0$ and $\mathcal{I}$ is nonzero because the support of $\mathcal{G}$ is equal to $Z_0$. Let $\mathcal{I}' \subset \mathcal{I}$ be any nonzero quasi-coherent sheaf of ideals on $Z_0$ contained in $\mathcal{I}$. Then we also get a short exact sequence $$ 0 \to i_*(\mathcal{I}')^{\oplus r} \to \mathcal{G} \to \mathcal{Q}' \to 0 $$ where $\mathcal{Q}'$ has support properly contained in $Z_0$. Let $\mathcal{J} \subset \mathcal{O}_X$ be a quasi-coherent sheaf of ideals cutting out the support of $\mathcal{Q}'$ (for example the ideal corresponding to the reduced induced closed subscheme structure on the support of $\mathcal{Q}'$). Then $\mathcal{J}_\xi = \mathcal{O}_{X, \xi}$. By Lemma \ref{lemma-power-ideal-kills-sheaf} we see that $\mathcal{J}^n\mathcal{Q}' = 0$ for some $n$. Hence $\mathcal{J}^n\mathcal{G} \subset i_*(\mathcal{I}')^{\oplus r}$. By assumption (4)(c) of the lemma we see there exists a quasi-coherent subsheaf $\mathcal{G}' \subset \mathcal{J}^n\mathcal{G}$ with $\mathcal{G}'_\xi = \mathcal{G}_\xi$ for which property $\mathcal{P}$ holds. Hence we get a short exact sequence $$ 0 \to \mathcal{G}' \to i_*(\mathcal{I}')^{\oplus r} \to \mathcal{Q}'' \to 0 $$ where $\mathcal{Q}''$ has support properly contained in $Z_0$. Thus by our initial remarks and property (1) of the lemma we conclude that $i_*(\mathcal{I}')^{\oplus r}$ satisfies $\mathcal{P}$. Hence we see that $i_*\mathcal{I}'$ satisfies $\mathcal{P}$ by (2). Finally, for an arbitrary quasi-coherent sheaf of ideals $\mathcal{I}'' \subset \mathcal{O}_{Z_0}$ we can set $\mathcal{I}' = \mathcal{I}'' \cap \mathcal{I}$ and we get a short exact sequence $$ 0 \to i_*(\mathcal{I}') \to i_*(\mathcal{I}'') \to \mathcal{Q}''' \to 0 $$ where $\mathcal{Q}'''$ has support properly contained in $Z_0$. Hence we conclude that property $\mathcal{P}$ holds for $i_*\mathcal{I}''$ as well. \medskip\noindent The final step of the proof is to note that any coherent sheaf $\mathcal{F}$ on $X$ whose support is contained in $Z_0$ has a filtration (see Lemma \ref{lemma-coherent-filter} again) whose subquotients all have property $\mathcal{P}$ by what we just said. \end{proof} \begin{lemma} \label{lemma-property-higher-rank-cohomological} Let $X$ be a Noetherian scheme. Let $\mathcal{P}$ be a property of coherent sheaves on $X$ such that \begin{enumerate} \item For any short exact sequence of coherent sheaves $$ 0 \to \mathcal{F}_1 \to \mathcal{F} \to \mathcal{F}_2 \to 0 $$ if $\mathcal{F}_i$, $i = 1, 2$ have property $\mathcal{P}$ then so does $\mathcal{F}$. \item If $\mathcal{P}$ holds for $\mathcal{F}^{\oplus r}$ for some $r \geq 1$, then it holds for $\mathcal{F}$. \item For every integral closed subscheme $Z \subset X$ with generic point $\xi$ there exists some coherent sheaf $\mathcal{G}$ such that \begin{enumerate} \item $\text{Supp}(\mathcal{G}) = Z$, \item $\mathcal{G}_\xi$ is annihilated by $\mathfrak m_\xi$, and \item for every quasi-coherent sheaf of ideals $\mathcal{J} \subset \mathcal{O}_X$ such that $\mathcal{J}_\xi = \mathcal{O}_{X, \xi}$ there exists a quasi-coherent subsheaf $\mathcal{G}' \subset \mathcal{J}\mathcal{G}$ with $\mathcal{G}'_\xi = \mathcal{G}_\xi$ and such that $\mathcal{P}$ holds for $\mathcal{G}'$. \end{enumerate} \end{enumerate} Then property $\mathcal{P}$ holds for every coherent sheaf on $X$. \end{lemma} \begin{proof} Follows from Lemma \ref{lemma-property-irreducible-higher-rank-cohomological} in exactly the same way that Lemma \ref{lemma-property} follows from Lemma \ref{lemma-property-irreducible}. \end{proof} \section{Finite morphisms and affines} \label{section-finite-affine} \noindent In this section we use the results of the preceding sections to show that the image of a Noetherian affine scheme under a finite morphism is affine. We will see later that this result holds more generally (see Limits, Lemma \ref{limits-lemma-affine} and Proposition \ref{limits-proposition-affine}). \begin{lemma} \label{lemma-finite-morphism-Noetherian} Let $f : Y \to X$ be a morphism of schemes. Assume $f$ is finite, surjective and $X$ locally Noetherian. Let $Z \subset X$ be an integral closed subscheme with generic point $\xi$. Then there exists a coherent sheaf $\mathcal{F}$ on $Y$ such that the support of $f_*\mathcal{F}$ is equal to $Z$ and $(f_*\mathcal{F})_\xi$ is annihilated by $\mathfrak m_\xi$. \end{lemma} \begin{proof} Note that $Y$ is locally Noetherian by Morphisms, Lemma \ref{morphisms-lemma-finite-type-noetherian}. Because $f$ is surjective the fibre $Y_\xi$ is not empty. Pick $\xi' \in Y$ mapping to $\xi$. Let $Z' = \overline{\{\xi'\}}$. We may think of $Z' \subset Y$ as a reduced closed subscheme, see Schemes, Lemma \ref{schemes-lemma-reduced-closed-subscheme}. Hence the sheaf $\mathcal{F} = (Z' \to Y)_*\mathcal{O}_{Z'}$ is a coherent sheaf on $Y$ (see Lemma \ref{lemma-finite-pushforward-coherent}). Look at the commutative diagram $$ \xymatrix{ Z' \ar[r]_{i'} \ar[d]_{f'} & Y \ar[d]^f \\ Z \ar[r]^i & X } $$ We see that $f_*\mathcal{F} = i_*f'_*\mathcal{O}_{Z'}$. Hence the stalk of $f_*\mathcal{F}$ at $\xi$ is the stalk of $f'_*\mathcal{O}_{Z'}$ at $\xi$. Note that since $Z'$ is integral with generic point $\xi'$ we have that $\xi'$ is the only point of $Z'$ lying over $\xi$, see Algebra, Lemmas \ref{algebra-lemma-finite-is-integral} and \ref{algebra-lemma-integral-no-inclusion}. Hence the stalk of $f'_*\mathcal{O}_{Z'}$ at $\xi$ equal $\mathcal{O}_{Z', \xi'} = \kappa(\xi')$. In particular the stalk of $f_*\mathcal{F}$ at $\xi$ is not zero. This combined with the fact that $f_*\mathcal{F}$ is of the form $i_*f'_*(\text{something})$ implies the lemma. \end{proof} \begin{lemma} \label{lemma-affine-morphism-projection-ideal} Let $f : Y \to X$ be a morphism of schemes. Let $\mathcal{F}$ be a quasi-coherent sheaf on $Y$. Let $\mathcal{I}$ be a quasi-coherent sheaf of ideals on $X$. If the morphism $f$ is affine then $\mathcal{I}f_*\mathcal{F} = f_*(f^{-1}\mathcal{I}\mathcal{F})$. \end{lemma} \begin{proof} The notation means the following. Since $f^{-1}$ is an exact functor we see that $f^{-1}\mathcal{I}$ is a sheaf of ideals of $f^{-1}\mathcal{O}_X$. Via the map $f^\sharp : f^{-1}\mathcal{O}_X \to \mathcal{O}_Y$ this acts on $\mathcal{F}$. Then $f^{-1}\mathcal{I}\mathcal{F}$ is the subsheaf generated by sums of local sections of the form $as$ where $a$ is a local section of $f^{-1}\mathcal{I}$ and $s$ is a local section of $\mathcal{F}$. It is a quasi-coherent $\mathcal{O}_Y$-submodule of $\mathcal{F}$ because it is also the image of a natural map $f^*\mathcal{I} \otimes_{\mathcal{O}_Y} \mathcal{F} \to \mathcal{F}$. \medskip\noindent Having said this the proof is straightforward. Namely, the question is local and hence we may assume $X$ is affine. Since $f$ is affine we see that $Y$ is affine too. Thus we may write $Y = \Spec(B)$, $X = \Spec(A)$, $\mathcal{F} = \widetilde{M}$, and $\mathcal{I} = \widetilde{I}$. The assertion of the lemma in this case boils down to the statement that $$ I(M_A) = ((IB)M)_A $$ where $M_A$ indicates the $A$-module associated to the $B$-module $M$. \end{proof} \begin{lemma} \label{lemma-image-affine-finite-morphism-affine-Noetherian} Let $f : Y \to X$ be a morphism of schemes. Assume \begin{enumerate} \item $f$ finite, \item $f$ surjective, \item $Y$ affine, and \item $X$ Noetherian. \end{enumerate} Then $X$ is affine. \end{lemma} \begin{proof} We will prove that under the assumptions of the lemma for any coherent $\mathcal{O}_X$-module $\mathcal{F}$ we have $H^1(X, \mathcal{F}) = 0$. This will in particular imply that $H^1(X, \mathcal{I}) = 0$ for every quasi-coherent sheaf of ideals of $\mathcal{O}_X$. Then it follows that $X$ is affine from either Lemma \ref{lemma-quasi-compact-h1-zero-covering} or Lemma \ref{lemma-quasi-separated-h1-zero-covering}. \medskip\noindent Let $\mathcal{P}$ be the property of coherent sheaves $\mathcal{F}$ on $X$ defined by the rule $$ \mathcal{P}(\mathcal{F}) \Leftrightarrow H^1(X, \mathcal{F}) = 0. $$ We are going to apply Lemma \ref{lemma-property-higher-rank-cohomological}. Thus we have to verify (1), (2) and (3) of that lemma for $\mathcal{P}$. Property (1) follows from the long exact cohomology sequence associated to a short exact sequence of sheaves. Property (2) follows since $H^1(X, -)$ is an additive functor. To see (3) let $Z \subset X$ be an integral closed subscheme with generic point $\xi$. Let $\mathcal{F}$ be a coherent sheaf on $Y$ such that the support of $f_*\mathcal{F}$ is equal to $Z$ and $(f_*\mathcal{F})_\xi$ is annihilated by $\mathfrak m_\xi$, see Lemma \ref{lemma-finite-morphism-Noetherian}. We claim that taking $\mathcal{G} = f_*\mathcal{F}$ works. We only have to verify part (3)(c) of Lemma \ref{lemma-property-higher-rank-cohomological}. Hence assume that $\mathcal{J} \subset \mathcal{O}_X$ is a quasi-coherent sheaf of ideals such that $\mathcal{J}_\xi = \mathcal{O}_{X, \xi}$. A finite morphism is affine hence by Lemma \ref{lemma-affine-morphism-projection-ideal} we see that $\mathcal{J}\mathcal{G} = f_*(f^{-1}\mathcal{J}\mathcal{F})$. Also, as pointed out in the proof of Lemma \ref{lemma-affine-morphism-projection-ideal} the sheaf $f^{-1}\mathcal{J}\mathcal{F}$ is a quasi-coherent $\mathcal{O}_Y$-module. Since $Y$ is affine we see that $H^1(Y, f^{-1}\mathcal{J}\mathcal{F}) = 0$, see Lemma \ref{lemma-quasi-coherent-affine-cohomology-zero}. Since $f$ is finite, hence affine, we see that $$ H^1(X, \mathcal{J}\mathcal{G}) = H^1(X, f_*(f^{-1}\mathcal{J}\mathcal{F})) = H^1(Y, f^{-1}\mathcal{J}\mathcal{F}) = 0 $$ by Lemma \ref{lemma-relative-affine-cohomology}. Hence the quasi-coherent subsheaf $\mathcal{G}' = \mathcal{J}\mathcal{G}$ satisfies $\mathcal{P}$. This verifies property (3)(c) of Lemma \ref{lemma-property-higher-rank-cohomological} as desired. \end{proof} \section{Coherent sheaves on Proj, I} \label{section-coherent-proj} \noindent In this section we discuss coherent sheaves on $\text{Proj}(A)$ where $A$ is a Noetherian graded ring generated by $A_1$ over $A_0$. In the next section we discuss what happens if $A$ is not generated by degree $1$ elements. First, we formulate an all-in-one result for projective space over a Noetherian ring. \begin{lemma} \label{lemma-coherent-projective} Let $R$ be a Noetherian ring. Let $n \geq 0$ be an integer. For every coherent sheaf $\mathcal{F}$ on $\mathbf{P}^n_R$ we have the following: \begin{enumerate} \item There exists an $r \geq 0$ and $d_1, \ldots, d_r \in \mathbf{Z}$ and a surjection $$ \bigoplus\nolimits_{j = 1, \ldots, r} \mathcal{O}_{\mathbf{P}^n_R}(d_j) \longrightarrow \mathcal{F}. $$ \item We have $H^i(\mathbf{P}^n_R, \mathcal{F}) = 0$ unless $0 \leq i \leq n$. \item For any $i$ the cohomology group $H^i(\mathbf{P}^n_R, \mathcal{F})$ is a finite $R$-module. \item If $i > 0$, then $H^i(\mathbf{P}^n_R, \mathcal{F}(d)) = 0$ for all $d$ large enough. \item For any $k \in \mathbf{Z}$ the graded $R[T_0, \ldots, T_n]$-module $$ \bigoplus\nolimits_{d \geq k} H^0(\mathbf{P}^n_R, \mathcal{F}(d)) $$ is a finite $R[T_0, \ldots, T_n]$-module. \end{enumerate} \end{lemma} \begin{proof} We will use that $\mathcal{O}_{\mathbf{P}^n_R}(1)$ is an ample invertible sheaf on the scheme $\mathbf{P}^n_R$. This follows directly from the definition since $\mathbf{P}^n_R$ covered by the standard affine opens $D_{+}(T_i)$. Hence by Properties, Proposition \ref{properties-proposition-characterize-ample} every finite type quasi-coherent $\mathcal{O}_{\mathbf{P}^n_R}$-module is a quotient of a finite direct sum of tensor powers of $\mathcal{O}_{\mathbf{P}^n_R}(1)$. On the other hand coherent sheaves and finite type quasi-coherent sheaves are the same thing on projective space over $R$ by Lemma \ref{lemma-coherent-Noetherian}. Thus we see (1). \medskip\noindent Projective $n$-space $\mathbf{P}^n_R$ is covered by $n + 1$ affines, namely the standard opens $D_{+}(T_i)$, $i = 0, \ldots, n$, see Constructions, Lemma \ref{constructions-lemma-standard-covering-projective-space}. Hence we see that for any quasi-coherent sheaf $\mathcal{F}$ on $\mathbf{P}^n_R$ we have $H^i(\mathbf{P}^n_R, \mathcal{F}) = 0$ for $i \geq n + 1$, see Lemma \ref{lemma-vanishing-nr-affines}. Hence (2) holds. \medskip\noindent Let us prove (3) and (4) simultaneously for all coherent sheaves on $\mathbf{P}^n_R$ by descending induction on $i$. Clearly the result holds for $i \geq n + 1$ by (2). Suppose we know the result for $i + 1$ and we want to show the result for $i$. (If $i = 0$, then part (4) is vacuous.) Let $\mathcal{F}$ be a coherent sheaf on $\mathbf{P}^n_R$. Choose a surjection as in (1) and denote $\mathcal{G}$ the kernel so that we have a short exact sequence $$ 0 \to \mathcal{G} \to \bigoplus\nolimits_{j = 1, \ldots, r} \mathcal{O}_{\mathbf{P}^n_R}(d_j) \to \mathcal{F} \to 0 $$ By Lemma \ref{lemma-coherent-abelian-Noetherian} we see that $\mathcal{G}$ is coherent. The long exact cohomology sequence gives an exact sequence $$ H^i(\mathbf{P}^n_R, \bigoplus\nolimits_{j = 1, \ldots, r} \mathcal{O}_{\mathbf{P}^n_R}(d_j)) \to H^i(\mathbf{P}^n_R, \mathcal{F}) \to H^{i + 1}(\mathbf{P}^n_R, \mathcal{G}). $$ By induction assumption the right $R$-module is finite and by Lemma \ref{lemma-cohomology-projective-space-over-ring} the left $R$-module is finite. Since $R$ is Noetherian it follows immediately that $H^i(\mathbf{P}^n_R, \mathcal{F})$ is a finite $R$-module. This proves the induction step for assertion (3). Since $\mathcal{O}_{\mathbf{P}^n_R}(d)$ is invertible we see that twisting on $\mathbf{P}^n_R$ is an exact functor (since you get it by tensoring with an invertible sheaf, see Constructions, Definition \ref{constructions-definition-twist}). This means that for all $d \in \mathbf{Z}$ the sequence $$ 0 \to \mathcal{G}(d) \to \bigoplus\nolimits_{j = 1, \ldots, r} \mathcal{O}_{\mathbf{P}^n_R}(d_j + d) \to \mathcal{F}(d) \to 0 $$ is short exact. The resulting cohomology sequence is $$ H^i(\mathbf{P}^n_R, \bigoplus\nolimits_{j = 1, \ldots, r} \mathcal{O}_{\mathbf{P}^n_R}(d_j + d)) \to H^i(\mathbf{P}^n_R, \mathcal{F}(d)) \to H^{i + 1}(\mathbf{P}^n_R, \mathcal{G}(d)). $$ By induction assumption we see the module on the right is zero for $d \gg 0$ and by the computation in Lemma \ref{lemma-cohomology-projective-space-over-ring} the module on the left is zero as soon as $d \geq -\min\{d_j\}$ and $i \geq 1$. Hence the induction step for assertion (4). This concludes the proof of (3) and (4). \medskip\noindent In order to prove (5) note that for all sufficiently large $d$ the map $$ H^0(\mathbf{P}^n_R, \bigoplus\nolimits_{j = 1, \ldots, r} \mathcal{O}_{\mathbf{P}^n_R}(d_j + d)) \to H^0(\mathbf{P}^n_R, \mathcal{F}(d)) $$ is surjective by the vanishing of $H^1(\mathbf{P}^n_R, \mathcal{G}(d))$ we just proved. In other words, the module $$ M_k = \bigoplus\nolimits_{d \geq k} H^0(\mathbf{P}^n_R, \mathcal{F}(d)) $$ is for $k$ large enough a quotient of the corresponding module $$ N_k = \bigoplus\nolimits_{d \geq k} H^0(\mathbf{P}^n_R, \bigoplus\nolimits_{j = 1, \ldots, r} \mathcal{O}_{\mathbf{P}^n_R}(d_j + d) ) $$ When $k$ is sufficiently small (e.g.\ $k < -d_j$ for all $j$) then $$ N_k = \bigoplus\nolimits_{j = 1, \ldots, r} R[T_0, \ldots, T_n](d_j) $$ by our computations in Section \ref{section-cohomology-projective-space}. In particular it is finitely generated. Suppose $k \in \mathbf{Z}$ is arbitrary. Choose $k_{-} \ll k \ll k_{+}$. Consider the diagram $$ \xymatrix{ N_{k_{-}} & N_{k_{+}} \ar[d] \ar[l] \\ M_k & M_{k_{+}} \ar[l] } $$ where the vertical arrow is the surjective map above and the horizontal arrows are the obvious inclusion maps. By what was said above we see that $N_{k_{-}}$ is a finitely generated $R[T_0, \ldots, T_n]$-module. Hence $N_{k_{+}}$ is a finitely generated $R[T_0, \ldots, T_n]$-module because it is a submodule of a finitely generated module and the ring $R[T_0, \ldots, T_n]$ is Noetherian. Since the vertical arrow is surjective we conclude that $M_{k_{+}}$ is a finitely generated $R[T_0, \ldots, T_n]$-module. The quotient $M_k/M_{k_{+}}$ is finite as an $R$-module since it is a finite direct sum of the finite $R$-modules $H^0(\mathbf{P}^n_R, \mathcal{F}(d))$ for $k \leq d < k_{+}$. Note that we use part (3) for $i = 0$ here. Hence $M_k/M_{k_{+}}$ is a fortiori a finite $R[T_0, \ldots, T_n]$-module. In other words, we have sandwiched $M_k$ between two finite $R[T_0, \ldots, T_n]$-modules and we win. \end{proof} \begin{lemma} \label{lemma-coherent-on-proj} Let $A$ be a graded ring such that $A_0$ is Noetherian and $A$ is generated by finitely many elements of $A_1$ over $A_0$. Set $X = \text{Proj}(A)$. Then $X$ is a Noetherian scheme. Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. \begin{enumerate} \item There exists an $r \geq 0$ and $d_1, \ldots, d_r \in \mathbf{Z}$ and a surjection $$ \bigoplus\nolimits_{j = 1, \ldots, r} \mathcal{O}_X(d_j) \longrightarrow \mathcal{F}. $$ \item For any $p$ the cohomology group $H^p(X, \mathcal{F})$ is a finite $A_0$-module. \item If $p > 0$, then $H^p(X, \mathcal{F}(d)) = 0$ for all $d$ large enough. \item For any $k \in \mathbf{Z}$ the graded $A$-module $$ \bigoplus\nolimits_{d \geq k} H^0(X, \mathcal{F}(d)) $$ is a finite $A$-module. \end{enumerate} \end{lemma} \begin{proof} By assumption there exists a surjection of graded $A_0$-algebras $$ A_0[T_0, \ldots, T_n] \longrightarrow A $$ where $\deg(T_j) = 1$ for $j = 0, \ldots, n$. By Constructions, Lemma \ref{constructions-lemma-surjective-graded-rings-generated-degree-1-map-proj} this defines a closed immersion $i : X \to \mathbf{P}^n_{A_0}$ such that $i^*\mathcal{O}_{\mathbf{P}^n_{A_0}}(1) = \mathcal{O}_X(1)$. In particular, $X$ is Noetherian as a closed subscheme of the Noetherian scheme $\mathbf{P}^n_{A_0}$. We claim that the results of the lemma for $\mathcal{F}$ follow from the corresponding results of Lemma \ref{lemma-coherent-projective} for the coherent sheaf $i_*\mathcal{F}$ (Lemma \ref{lemma-i-star-equivalence}) on $\mathbf{P}^n_{A_0}$. For example, by this lemma there exists a surjection $$ \bigoplus\nolimits_{j = 1, \ldots, r} \mathcal{O}_{\mathbf{P}^n_{A_0}}(d_j) \longrightarrow i_*\mathcal{F}. $$ By adjunction this corresponds to a map $\bigoplus_{j = 1, \ldots, r} \mathcal{O}_X(d_j) \longrightarrow \mathcal{F}$ which is surjective as well. The statements on cohomology follow from the fact that $H^p(X, \mathcal{F}(d)) = H^p(\mathbf{P}^n_{A_0}, i_*\mathcal{F}(d))$ by Lemma \ref{lemma-relative-affine-cohomology}. \end{proof} \begin{lemma} \label{lemma-recover-tail-graded-module} Let $A$ be a graded ring such that $A_0$ is Noetherian and $A$ is generated by finitely many elements of $A_1$ over $A_0$. Let $M$ be a finite graded $A$-module. Set $X = \text{Proj}(A)$ and let $\widetilde{M}$ be the quasi-coherent $\mathcal{O}_X$-module on $X$ associated to $M$. The maps $$ M_n \longrightarrow \Gamma(X, \widetilde{M}(n)) $$ from Constructions, Lemma \ref{constructions-lemma-apply-modules} are isomorphisms for all sufficiently large $n$. \end{lemma} \begin{proof} Because $M$ is a finite $A$-module we see that $\widetilde{M}$ is a finite type $\mathcal{O}_X$-module, i.e., a coherent $\mathcal{O}_X$-module. Set $N = \bigoplus_{n \geq 0} \Gamma(X, \widetilde{M}(n))$. We have to show that the map $M \to N$ of graded $A$-modules is an isomorphism in all sufficiently large degrees. By Properties, Lemma \ref{properties-lemma-proj-quasi-coherent} we have a canonical isomorphism $\widetilde{N} \to \widetilde{M}$ such that the induced maps $N_n \to N_n = \Gamma(X, \widetilde{M}(n))$ are the identity maps. Thus we have maps $\widetilde{M} \to \widetilde{N} \to \widetilde{M}$ such that for all $n$ the diagram $$ \xymatrix{ M_n \ar[d] \ar[r] & N_n \ar[d] \ar@{=}[rd] \\ \Gamma(X, \widetilde{M}(n)) \ar[r] & \Gamma(X, \widetilde{N}(n)) \ar[r]^{\cong} & \Gamma(X, \widetilde{M}(n)) } $$ is commutative. This means that the composition $$ M_n \to \Gamma(X, \widetilde{M}(n)) \to \Gamma(X, \widetilde{N}(n)) \to \Gamma(X, \widetilde{M}(n) $$ is equal to the canonical map $M_n \to \Gamma(X, \widetilde{M}(n)$. Clearly this implies that the composition $\widetilde{M} \to \widetilde{N} \to \widetilde{M}$ is the identity. Hence $\widetilde{M} \to \widetilde{N}$ is an isomorphism. Let $K = \Ker(M \to N)$ and $Q = \Coker(M \to N)$. Recall that the functor $M \mapsto \widetilde{M}$ is exact, see Constructions, Lemma \ref{constructions-lemma-proj-sheaves}. Hence we see that $\widetilde{K} = 0$ and $\widetilde{Q} = 0$. Recall that $A$ is a Noetherian ring, $M$ is a finitely generated $A$-module, and $N$ is a graded $A$-module such that $N' = \bigoplus_{n \geq 0} N$ is finitely generated by the last part of Lemma \ref{lemma-coherent-on-proj}. Hence $K' = \bigoplus_{n \geq 0} N_n$ and $Q' = \bigoplus_{n \geq 0} Q_n$ are finite $A$-modules. Observe that $\widetilde{Q} = \widetilde{Q'}$ and $\widetilde{K} = \widetilde{K'}$. Thus to finish the proof it suffices to show that a finite $A$-module $K$ with $\widetilde{K} = 0$ has only finitely many nonzero homogeneous parts $K_d$ with $d \geq 0$. To do this, let $x_1, \ldots, x_r \in K$ be homogeneous generators say sitting in degrees $d_1, \ldots, d_r$. Let $f_1, \ldots, f_n \in A_1$ be elements generating $A$ over $A_0$. For each $i$ and $j$ there exists an $n_{ij} \geq 0$ such that $f_i^{n_{ij}} x_j = 0$ in $K_{d_j + n_{ij}}$: if not then $x_i/f_i^{d_i} \in K_{(f_i)}$ would not be zero, i.e., $\widetilde{K}$ would not be zero. Then we see that $K_d$ is zero for $d > \max_j(d_j + \sum_i n_{ij})$ as every element of $K_d$ is a sum of terms where each term is a monomials in the $f_i$ times one of the $x_j$ of total degree $d$. \end{proof} \noindent Let $A$ be a graded ring such that $A_0$ is Noetherian and $A$ is generated by finitely many elements of $A_1$ over $A_0$. Recall that $A_+ = \bigoplus_{n > 0} A_n$ is the irrelevant ideal. Let $M$ be a graded $A$-module. Recall that $M$ is an $A_+$-power torsion module if for all $x \in M$ there is an $n \geq 1$ such that $(A_+)^n x = 0$, see More on Algebra, Definition \ref{more-algebra-definition-f-power-torsion}. If $M$ is finitely generated, then we see that this is equivalent to $M_n = 0$ for $n \gg 0$. Sometimes $A_+$-power torsion modules are called torsion modules. Sometimes a graded $A$-module $M$ is called torsion free if $x \in M$ with $(A_+)^n x = 0$, $n > 0$ implies $x = 0$. Denote $\text{Mod}_A$ the category of graded $A$-modules, $\text{Mod}^{fg}_A$ the full subcategory of finitely generated ones, and $\text{Mod}^{fg}_{A, torsion}$ the full subcategory of modules $M$ such that $M_n = 0$ for $n \gg 0$. \begin{proposition} \label{proposition-coherent-modules-on-proj} Let $A$ be a graded ring such that $A_0$ is Noetherian and $A$ is generated by finitely many elements of $A_1$ over $A_0$. Set $X = \text{Proj}(A)$. The functor $M \mapsto \widetilde M$ induces an equivalence $$ \text{Mod}^{fg}_A/\text{Mod}^{fg}_{A, torsion} \longrightarrow \textit{Coh}(\mathcal{O}_X) $$ whose quasi-inverse is given by $\mathcal{F} \longmapsto \bigoplus_{n \geq 0} \Gamma(X, \mathcal{F}(n))$. \end{proposition} \begin{proof} The subcategory $\text{Mod}^{fg}_{A, torsion}$ is a Serre subcategory of $\text{Mod}^{fg}_A$, see Homology, Definition \ref{homology-definition-serre-subcategory}. This is clear from the description of objects given above but it also follows from More on Algebra, Lemma \ref{more-algebra-lemma-I-power-torsion}. Hence the quotient category on the left of the arrow is defined in Homology, Lemma \ref{homology-lemma-serre-subcategory-is-kernel}. To define the functor of the proposition, it suffices to show that the functor $M \mapsto \widetilde M$ sends torsion modules to $0$. This is clear because for any $f \in A_+$ homogeneous the module $M_f$ is zero and hence the value $M_{(f)}$ of $\widetilde M$ on $D_+(f)$ is zero too. \medskip\noindent By Lemma \ref{lemma-coherent-on-proj} the proposed quasi-inverse makes sense. Namely, the lemma shows that $\mathcal{F} \longmapsto \bigoplus_{n \geq 0} \Gamma(X, \mathcal{F}(n))$ is a functor $\textit{Coh}(\mathcal{O}_X) \to \text{Mod}^{fg}_A$ which we can compose with the quotient functor $\text{Mod}^{fg}_A \to \text{Mod}^{fg}_A/\text{Mod}^{fg}_{A, torsion}$. \medskip\noindent By Lemma \ref{lemma-recover-tail-graded-module} the composite left to right to left is isomorphic to the identity functor. \medskip\noindent Finally, let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. Set $M = \bigoplus_{n \in \mathbf{Z}} \Gamma(X, \mathcal{F}(n))$ viewed as a graded $A$-module, so that our functor sends $\mathcal{F}$ to $M_{\geq 0} = \bigoplus_{n \geq 0} M_n$. By Properties, Lemma \ref{properties-lemma-proj-quasi-coherent} the canonical map $\widetilde M \to \mathcal{F}$ is an isomorphism. Since the inclusion map $M_{\geq 0} \to M$ defines an isomorphism $\widetilde{M_{\geq 0}} \to \widetilde M$ we conclude that the composite right to left to right is isomorphic to the identity functor as well. \end{proof} \section{Coherent sheaves on Proj, II} \label{section-coherent-proj-general} \noindent In this section we discuss coherent sheaves on $\text{Proj}(A)$ where $A$ is a Noetherian graded ring. Most of the results will be deduced by sleight of hand from the corresponding result in the previous section where we discussed what happens if $A$ is generated by degree $1$ elements. \begin{lemma} \label{lemma-coherent-on-proj-general} Let $A$ be a Noetherian graded ring. Set $X = \text{Proj}(A)$. Then $X$ is a Noetherian scheme. Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. \begin{enumerate} \item There exists an $r \geq 0$ and $d_1, \ldots, d_r \in \mathbf{Z}$ and a surjection $$ \bigoplus\nolimits_{j = 1, \ldots, r} \mathcal{O}_X(d_j) \longrightarrow \mathcal{F}. $$ \item For any $p$ the cohomology group $H^p(X, \mathcal{F})$ is a finite $A_0$-module. \item If $p > 0$, then $H^p(X, \mathcal{F}(d)) = 0$ for all $d$ large enough. \item For any $k \in \mathbf{Z}$ the graded $A$-module $$ \bigoplus\nolimits_{d \geq k} H^0(X, \mathcal{F}(d)) $$ is a finite $A$-module. \end{enumerate} \end{lemma} \begin{proof} We will prove this by reducing the statement to Lemma \ref{lemma-coherent-on-proj}. By Algebra, Lemmas \ref{algebra-lemma-graded-Noetherian} and \ref{algebra-lemma-S-plus-generated} the ring $A_0$ is Noetherian and $A$ is generated over $A_0$ by finitely many elements $f_1, \ldots, f_r$ homogeneous of positive degree. Let $d$ be a sufficiently divisible integer. Set $A' = A^{(d)}$ with notation as in Algebra, Section \ref{algebra-section-graded}. Then $A'$ is generated over $A'_0 = A_0$ by elements of degree $1$, see Algebra, Lemma \ref{algebra-lemma-uple-generated-degree-1}. Thus Lemma \ref{lemma-coherent-on-proj} applies to $X' = \text{Proj}(A')$. \medskip\noindent By Constructions, Lemma \ref{constructions-lemma-d-uple} there exist an isomorphism of schemes $i : X \to X'$ and isomorphisms $\mathcal{O}_X(nd) \to i^*\mathcal{O}_{X'}(n)$ compatible with the map $A' \to A$ and the maps $A_n \to H^0(X, \mathcal{O}_X(n))$ and $A'_n \to H^0(X', \mathcal{O}_{X'}(n))$. Thus Lemma \ref{lemma-coherent-on-proj} implies $X$ is Noetherian and that (1) and (2) hold. To see (3) and (4) we can use that for any fixed $k$, $p$, and $q$ we have $$ \bigoplus\nolimits_{dn + q \geq k} H^p(X, \mathcal{F}(dn + q)) = \bigoplus\nolimits_{dn + q \geq k} H^p(X', (i_*\mathcal{F}(q))(n) $$ by the compatibilities above. If $p > 0$, we have the vanishing of the right hand side for $k$ depending on $q$ large enough by Lemma \ref{lemma-coherent-on-proj}. Since there are only a finite number of congruence classes of integers modulo $d$, we see that (3) holds for $\mathcal{F}$ on $X$. If $p = 0$, then we have that the right hand side is a finite $A'$-module by Lemma \ref{lemma-coherent-on-proj}. Using the finiteness of congruence classes once more, we find that $\bigoplus_{n \geq k} H^0(X, \mathcal{F}(n))$ is a finite $A'$-module too. Since the $A'$-module structure comes from the $A$-module structure (by the compatibilities mentioned above), we conclude it is finite as an $A$-module as well. \end{proof} \begin{lemma} \label{lemma-recover-tail-graded-module-general} Let $A$ be a Noetherian graded ring and let $d$ be the lcm of generators of $A$ over $A_0$. Let $M$ be a finite graded $A$-module. Set $X = \text{Proj}(A)$ and let $\widetilde{M}$ be the quasi-coherent $\mathcal{O}_X$-module on $X$ associated to $M$. Let $k \in \mathbf{Z}$. \begin{enumerate} \item $N' = \bigoplus_{n \geq k} H^0(X, \widetilde{M(n)})$ is a finite $A$-module, \item $N = \bigoplus_{n \geq k} H^0(X, \widetilde{M}(n))$ is a finite $A$-module, \item there is a canonical map $N \to N'$, \item if $k$ is small enough there is a canonical map $M \to N'$, \item the map $M_n \to N'_n$ is an isomorphism for $n \gg 0$, \item $N_n \to N'_n$ is an isomorphism for $d | n$. \end{enumerate} \end{lemma} \begin{proof} The map $N \to N'$ in (3) comes from Constructions, Equation (\ref{constructions-equation-multiply-more-generally}) by taking global sections. \medskip\noindent By Constructions, Equation (\ref{constructions-equation-global-sections-more-generally}) there is a map of graded $A$-modules $M \to \bigoplus_{n \in \mathbf{Z}} H^0(X, \widetilde{M(n)})$. If the generators of $M$ sit in degrees $\geq k$, then the image is contained in the submodule $N' \subset \bigoplus_{n \in \mathbf{Z}} H^0(X, \widetilde{M(n)})$ and we get the map in (4). \medskip\noindent By Algebra, Lemmas \ref{algebra-lemma-graded-Noetherian} and \ref{algebra-lemma-S-plus-generated} the ring $A_0$ is Noetherian and $A$ is generated over $A_0$ by finitely many elements $f_1, \ldots, f_r$ homogeneous of positive degree. Let $d = \text{lcm}(\deg(f_i))$. Then we see that (6) holds for example by Constructions, Lemma \ref{constructions-lemma-where-invertible}. \medskip\noindent Because $M$ is a finite $A$-module we see that $\widetilde{M}$ is a finite type $\mathcal{O}_X$-module, i.e., a coherent $\mathcal{O}_X$-module. Thus part (2) follows from Lemma \ref{lemma-coherent-on-proj-general}. \medskip\noindent We will deduce (1) from (2) using a trick. For $q \in \{0, \ldots, d - 1\}$ write $$ {}^qN = \bigoplus\nolimits_{n + q \geq k} H^0(X, \widetilde{M(q)}(n)) $$ By part (2) these are finite $A$-modules. The Noetherian ring $A$ is finite over $A^{(d)} = \bigoplus_{n \geq 0} A_{dn}$, because it is generated by $f_i$ over $A^{(d)}$ and $f_i^d \in A^{(d)}$. Hence ${}^qN$ is a finite $A^{(d)}$-module. Moreover, $A^{(d)}$ is Noetherian (follows from Algebra, Lemma \ref{algebra-lemma-dehomogenize-finite-type}). It follows that the $A^{(d)}$-submodule ${}^qN^{(d)} = \bigoplus_{n \in \mathbf{Z}} {}^qN_{dn}$ is a finite module over $A^{(d)}$. Using the isomorphisms $\widetilde{M(dn + q)} = \widetilde{M(q)}(dn)$ we can write $$ N' = \bigoplus\nolimits_{q \in \{0, \ldots, d - 1\}} \bigoplus\nolimits_{dn + q \geq k} H^0(X, \widetilde{M(q)}(dn)) = \bigoplus\nolimits_{q \in \{0, \ldots, d - 1\}} {}^qN^{(d)} $$ Thus $N'$ is finite over $A^{(d)}$ and a fortiori finite over $A$. Thus (1) is true. \medskip\noindent Let $K$ be a finite $A$-module such that $\widetilde{K} = 0$. We claim that $K_n = 0$ for $d|n$ and $n \gg 0$. Arguing as above we see that $K^{(d)}$ is a finite $A^{(d)}$-module. Let $x_1, \ldots, x_m \in K$ be homogeneous generators of $K^{(d)}$ over $A^{(d)}$, say sitting in degrees $d_1, \ldots, d_m$ with $d | d_j$. For each $i$ and $j$ there exists an $n_{ij} \geq 0$ such that $f_i^{n_{ij}} x_j = 0$ in $K_{d_j + n_{ij}}$: if not then $x_j/f_i^{d_i/\deg(f_i)} \in K_{(f_i)}$ would not be zero, i.e., $\widetilde{K}$ would not be zero. Here we use that $\deg(f_i) | d | d_j$ for all $i, j$. We conclude that $K_n$ is zero for $n$ with $d | n$ and $n > \max_j (d_j + \sum_i n_{ij} \deg(f_i))$ as every element of $K_n$ is a sum of terms where each term is a monomials in the $f_i$ times one of the $x_j$ of total degree $n$. \medskip\noindent To finish the proof, we have to show that $M \to N'$ is an isomorphism in all sufficiently large degrees. The map $N \to N'$ induces an isomorphism $\widetilde{N} \to \widetilde{N'}$ because on the affine opens $D_+(f_i) = D_+(f_i^d)$ the corresponding modules are isomorphic: $N_{(f_i)} \cong N_{(f_i^d)} \cong N'_{(f_i^d)} \cong N'_{(f_i)}$ by property (6). By Properties, Lemma \ref{properties-lemma-proj-quasi-coherent} we have a canonical isomorphism $\widetilde{N} \to \widetilde{M}$. The composition $\widetilde{N} \to \widetilde{M} \to \widetilde{N'}$ is the isomorphism above (proof omitted; hint: look on standard affine opens to check this). Thus the map $M \to N'$ induces an isomorphism $\widetilde{M} \to \widetilde{N'}$. Let $K = \Ker(M \to N')$ and $Q = \Coker(M \to N')$. Recall that the functor $M \mapsto \widetilde{M}$ is exact, see Constructions, Lemma \ref{constructions-lemma-proj-sheaves}. Hence we see that $\widetilde{K} = 0$ and $\widetilde{Q} = 0$. By the result of the previous paragraph we see that $K_n = 0$ and $Q_n = 0$ for $d | n$ and $n \gg 0$. At this point we finally see the advantage of using $N'$ over $N$: the functor $M \leadsto N'$ is compatible with shifts (immediate from the construction). Thus, repeating the whole argument with $M$ replaced by $M(q)$ we find that $K_n = 0$ and $Q_n = 0$ for $n \equiv q \bmod d$ and $n \gg 0$. Since there are only finitely many congruence classes modulo $n$ the proof is finished. \end{proof} \noindent Let $A$ be a Noetherian graded ring. Recall that $A_+ = \bigoplus_{n > 0} A_n$ is the irrelevant ideal. By Algebra, Lemmas \ref{algebra-lemma-graded-Noetherian} and \ref{algebra-lemma-S-plus-generated} the ring $A_0$ is Noetherian and $A$ is generated over $A_0$ by finitely many elements $f_1, \ldots, f_r$ homogeneous of positive degree. Let $d = \text{lcm}(\deg(f_i))$. Let $M$ be a graded $A$-module. In this situation we say a homogeneous element $x \in M$ is {\it irrelevant}\footnote{This is nonstandard notation.} if $$ (A_+ x)_{nd} = 0\text{ for all }n \gg 0 $$ If $x \in M$ is homogeneous and irrelevant and $f \in A$ is homogeneous, then $fx$ is irrelevant too. Hence the set of irrelevant elements generate a graded submodule $M_{irrelevant} \subset M$. We will say $M$ is {\it irrelevant} if every homogeneous element of $M$ is irrelevant, i.e., if $M_{irrelevant} = M$. If $M$ is finitely generated, then we see that this is equivalent to $M_{nd} = 0$ for $n \gg 0$. Denote $\text{Mod}_A$ the category of graded $A$-modules, $\text{Mod}^{fg}_A$ the full subcategory of finitely generated ones, and $\text{Mod}^{fg}_{A, irrelevant}$ the full subcategory of irrelevant modules. \begin{proposition} \label{proposition-coherent-modules-on-proj-general} Let $A$ be a Noetherian graded ring. Set $X = \text{Proj}(A)$. The functor $M \mapsto \widetilde M$ induces an equivalence $$ \text{Mod}^{fg}_A/\text{Mod}^{fg}_{A, irrelevant} \longrightarrow \textit{Coh}(\mathcal{O}_X) $$ whose quasi-inverse is given by $\mathcal{F} \longmapsto \bigoplus_{n \geq 0} \Gamma(X, \mathcal{F}(n))$. \end{proposition} \begin{proof} We urge the reader to read the proof in the case where $A$ is generated in degree $1$ first, see Proposition \ref{proposition-coherent-modules-on-proj}. Let $f_1, \ldots, f_r \in A$ be homogeneous elements of positive degree which generate $A$ over $A_0$. Let $d$ be the lcm of the degrees $d_i$ of $f_i$. Let $M$ be a finite $A$-module. Let us show that $\widetilde{M}$ is zero if and only if $M$ is an irrelevant graded $A$-module (as defined above the statement of the proposition). Namely, let $x \in M$ be a homogeneous element. Choose $k \in \mathbf{Z}$ sufficiently small and let $N \to N'$ and $M \to N'$ be as in Lemma \ref{lemma-recover-tail-graded-module-general}. We may also pick $l$ sufficiently large such that $M_n \to N_n$ is an isomorphism for $n \geq l$. If $\widetilde{M}$ is zero, then $N = 0$. Thus for any $f \in A_+$ homogeneous with $\deg(f) + \deg(x) = nd$ and $nd > l$ we see that $fx$ is zero because $N_{nd} \to N'_{nd}$ and $M_{nd} \to N'_{nd}$ are isomorphisms. Hence $x$ is irrelevant. Conversely, assume $M$ is irrelevant. Then $M_{nd}$ is zero for $n \gg 0$ (see discussion above proposition). Clearly this implies that $M_{(f_i)} = M_{(f_i^{d/\deg(f_i)})} = 0$, whence $\widetilde{M} = 0$ by construction. \medskip\noindent It follows that the subcategory $\text{Mod}^{fg}_{A, irrelevant}$ is a Serre subcategory of $\text{Mod}^{fg}_A$ as the kernel of the exact functor $M \mapsto \widetilde M$, see Homology, Lemma \ref{homology-lemma-kernel-exact-functor} and Constructions, Lemma \ref{constructions-lemma-proj-sheaves}. Hence the quotient category on the left of the arrow is defined in Homology, Lemma \ref{homology-lemma-serre-subcategory-is-kernel}. To define the functor of the proposition, it suffices to show that the functor $M \mapsto \widetilde M$ sends irrelevant modules to $0$ which we have shown above. \medskip\noindent By Lemma \ref{lemma-coherent-on-proj-general} the proposed quasi-inverse makes sense. Namely, the lemma shows that $\mathcal{F} \longmapsto \bigoplus_{n \geq 0} \Gamma(X, \mathcal{F}(n))$ is a functor $\textit{Coh}(\mathcal{O}_X) \to \text{Mod}^{fg}_A$ which we can compose with the quotient functor $\text{Mod}^{fg}_A \to \text{Mod}^{fg}_A/\text{Mod}^{fg}_{A, irrelevant}$. \medskip\noindent By Lemma \ref{lemma-recover-tail-graded-module-general} the composite left to right to left is isomorphic to the identity functor. Namely, let $M$ be a finite graded $A$-module and let $k \in \mathbf{Z}$ sufficiently small and let $N \to N'$ and $M \to N'$ be as in Lemma \ref{lemma-recover-tail-graded-module-general}. Then the kernel and cokernel of $M \to N'$ are nonzero in only finitely many degrees, hence are irrelevant. Moreover, the kernel and cokernel of the map $N \to N'$ are zero in all sufficiently large degrees divisible by $d$, hence these are irrelevant modules too. Thus $M \to N'$ and $N \to N'$ are both isomorphisms in the quotient category, as desired. \medskip\noindent Finally, let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. Set $M = \bigoplus_{n \in \mathbf{Z}} \Gamma(X, \mathcal{F}(n))$ viewed as a graded $A$-module, so that our functor sends $\mathcal{F}$ to $M_{\geq 0} = \bigoplus_{n \geq 0} M_n$. By Properties, Lemma \ref{properties-lemma-proj-quasi-coherent} the canonical map $\widetilde M \to \mathcal{F}$ is an isomorphism. Since the inclusion map $M_{\geq 0} \to M$ defines an isomorphism $\widetilde{M_{\geq 0}} \to \widetilde M$ we conclude that the composite right to left to right is isomorphic to the identity functor as well. \end{proof} \section{Higher direct images along projective morphisms} \label{section-projective-pushforward} \noindent We first state and prove a result for when the base is affine and then we deduce some results for projective morphisms. \begin{lemma} \label{lemma-coherent-proper-ample} Let $R$ be a Noetherian ring. Let $X \to \Spec(R)$ be a proper morphism. Let $\mathcal{L}$ be an ample invertible sheaf on $X$. Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. \begin{enumerate} \item The graded ring $A = \bigoplus_{d \geq 0} H^0(X, \mathcal{L}^{\otimes d})$ is a finitely generated $R$-algebra. \item There exists an $r \geq 0$ and $d_1, \ldots, d_r \in \mathbf{Z}$ and a surjection $$ \bigoplus\nolimits_{j = 1, \ldots, r} \mathcal{L}^{\otimes d_j} \longrightarrow \mathcal{F}. $$ \item For any $p$ the cohomology group $H^p(X, \mathcal{F})$ is a finite $R$-module. \item If $p > 0$, then $H^p(X, \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes d}) = 0$ for all $d$ large enough. \item For any $k \in \mathbf{Z}$ the graded $A$-module $$ \bigoplus\nolimits_{d \geq k} H^0(X, \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes d}) $$ is a finite $A$-module. \end{enumerate} \end{lemma} \begin{proof} By Morphisms, Lemma \ref{morphisms-lemma-finite-type-over-affine-ample-very-ample} there exists a $d > 0$ and an immersion $i : X \to \mathbf{P}^n_R$ such that $\mathcal{L}^{\otimes d} \cong i^*\mathcal{O}_{\mathbf{P}^n_R}(1)$. Since $X$ is proper over $R$ the morphism $i$ is a closed immersion (Morphisms, Lemma \ref{morphisms-lemma-image-proper-scheme-closed}). Thus we have $H^i(X, \mathcal{G}) = H^i(\mathbf{P}^n_R, i_*\mathcal{G})$ for any quasi-coherent sheaf $\mathcal{G}$ on $X$ (by Lemma \ref{lemma-relative-affine-cohomology} and the fact that closed immersions are affine, see Morphisms, Lemma \ref{morphisms-lemma-closed-immersion-affine}). Moreover, if $\mathcal{G}$ is coherent, then $i_*\mathcal{G}$ is coherent as well (Lemma \ref{lemma-i-star-equivalence}). We will use these facts without further mention. \medskip\noindent Proof of (1). Set $S = R[T_0, \ldots, T_n]$ so that $\mathbf{P}^n_R = \text{Proj}(S)$. Observe that $A$ is an $S$-algebra (but the ring map $S \to A$ is not a homomorphism of graded rings because $S_n$ maps into $A_{dn}$). By the projection formula (Cohomology, Lemma \ref{cohomology-lemma-projection-formula}) we have $$ i_*(\mathcal{L}^{\otimes nd + q}) = i_*(\mathcal{L}^{\otimes q}) \otimes_{\mathcal{O}_{\mathbf{P}^n_R}} \mathcal{O}_{\mathbf{P}^n_R}(n) $$ for all $n \in \mathbf{Z}$. We conclude that $\bigoplus_{n \geq 0} A_{nd + q}$ is a finite graded $S$-module by Lemma \ref{lemma-coherent-projective}. Since $A = \bigoplus_{q \in \{0, \ldots, d - 1} \bigoplus_{n \geq 0} A_{nd + q}$ we see that $A$ is finite as an $S$-algebra, hence (1) is true. \medskip\noindent Proof of (2). This follows from Properties, Proposition \ref{properties-proposition-characterize-ample}. \medskip\noindent Proof of (3). Apply Lemma \ref{lemma-coherent-projective} and use $H^p(X, \mathcal{F}) = H^p(\mathbf{P}^n_R, i_*\mathcal{F})$. \medskip\noindent Proof of (4). Fix $p > 0$. By the projection formula we have $$ i_*(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes nd + q}) = i_*(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes q}) \otimes_{\mathcal{O}_{\mathbf{P}^n_R}} \mathcal{O}_{\mathbf{P}^n_R}(n) $$ for all $n \in \mathbf{Z}$. By Lemma \ref{lemma-coherent-projective} we conclude that $H^p(X, \mathcal{F} \otimes \mathcal{L}^{nd + q}) = 0$ for $n \gg 0$. Since there are only finitely many congruence classes of integers modulo $d$ this proves (4). \medskip\noindent Proof of (5). Fix an integer $k$. Set $M = \bigoplus_{n \geq k} H^0(X, \mathcal{F} \otimes \mathcal{L}^{\otimes n})$. Arguing as above we conclude that $\bigoplus_{nd + q \geq k} M_{nd + q}$ is a finite graded $S$-module. Since $M = \bigoplus_{q \in \{0, \ldots, d - 1\}} \bigoplus_{nd + q \geq k} M_{nd + q}$ we see that $M$ is finite as an $S$-module. Since the $S$-module structure factors through the ring map $S \to A$, we conclude that $M$ is finite as an $A$-module. \end{proof} \begin{lemma} \label{lemma-kill-by-twisting} Let $f : X \to S$ be a morphism of schemes. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Let $\mathcal{L}$ be an invertible sheaf on $X$. Assume that \begin{enumerate} \item $S$ is Noetherian, \item $f$ is proper, \item $\mathcal{F}$ is coherent, and \item $\mathcal{L}$ is relatively ample on $X/S$. \end{enumerate} Then there exists an $n_0$ such that for all $n \geq n_0$ we have $$ R^pf_*\left(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n}\right) = 0 $$ for all $p > 0$. \end{lemma} \begin{proof} Choose a finite affine open covering $S = \bigcup V_j$ and set $X_j = f^{-1}(V_j)$. Clearly, if we solve the question for each of the finitely many systems $(X_j \to V_j, \mathcal{L}|_{X_j}, \mathcal{F}|_{V_j})$ then the result follows. Thus we may assume $S$ is affine. In this case the vanishing of $R^pf_*(\mathcal{F} \otimes \mathcal{L}^{\otimes n})$ is equivalent to the vanishing of $H^p(X, \mathcal{F} \otimes \mathcal{L}^{\otimes n})$, see Lemma \ref{lemma-quasi-coherence-higher-direct-images-application}. Thus the required vanishing follows from Lemma \ref{lemma-coherent-proper-ample} (which applies because $\mathcal{L}$ is ample on $X$ by Morphisms, Lemma \ref{morphisms-lemma-finite-type-over-affine-ample-very-ample}). \end{proof} \begin{lemma} \label{lemma-locally-projective-pushforward} Let $S$ be a locally Noetherian scheme. Let $f : X \to S$ be a locally projective morphism. Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. Then $R^if_*\mathcal{F}$ is a coherent $\mathcal{O}_S$-module for all $i \geq 0$. \end{lemma} \begin{proof} We first remark that a locally projective morphism is proper (Morphisms, Lemma \ref{morphisms-lemma-locally-projective-proper}) and hence of finite type. In particular $X$ is locally Noetherian (Morphisms, Lemma \ref{morphisms-lemma-finite-type-noetherian}) and hence the statement makes sense. Moreover, by Lemma \ref{lemma-quasi-coherence-higher-direct-images} the sheaves $R^pf_*\mathcal{F}$ are quasi-coherent. \medskip\noindent Having said this the statement is local on $S$ (for example by Cohomology, Lemma \ref{cohomology-lemma-localize-higher-direct-images}). Hence we may assume $S = \Spec(R)$ is the spectrum of a Noetherian ring, and $X$ is a closed subscheme of $\mathbf{P}^n_R$ for some $n$, see Morphisms, Lemma \ref{morphisms-lemma-characterize-locally-projective}. In this case, the sheaves $R^pf_*\mathcal{F}$ are the quasi-coherent sheaves associated to the $R$-modules $H^p(X, \mathcal{F})$, see Lemma \ref{lemma-quasi-coherence-higher-direct-images-application}. Hence it suffices to show that $R$-modules $H^p(X, \mathcal{F})$ are finite $R$-modules (Lemma \ref{lemma-coherent-Noetherian}). This follows from Lemma \ref{lemma-coherent-proper-ample} (because the restriction of $\mathcal{O}_{\mathbf{P}^n_R}(1)$ to $X$ is ample on $X$). \end{proof} \section{Ample invertible sheaves and cohomology} \label{section-ample-cohomology} \noindent Here is a criterion for ampleness on proper schemes over affine bases in terms of vanishing of cohomology after twisting. \begin{lemma} \label{lemma-vanshing-gives-ample} \begin{reference} \cite[III Proposition 2.6.1]{EGA} \end{reference} Let $R$ be a Noetherian ring. Let $f : X \to \Spec(R)$ be a proper morphism. Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module. The following are equivalent \begin{enumerate} \item $\mathcal{L}$ is ample on $X$ (this is equivalent to many other things, see Properties, Proposition \ref{properties-proposition-characterize-ample} and Morphisms, Lemma \ref{morphisms-lemma-finite-type-over-affine-ample-very-ample}), \item for every coherent $\mathcal{O}_X$-module $\mathcal{F}$ there exists an $n_0 \geq 0$ such that $H^p(X, \mathcal{F} \otimes \mathcal{L}^{\otimes n}) = 0$ for all $n \geq n_0$ and $p > 0$, and \item for every quasi-coherent sheaf of ideals $\mathcal{I} \subset \mathcal{O}_X$, there exists an $n \geq 1$ such that $H^1(X, \mathcal{I} \otimes \mathcal{L}^{\otimes n}) = 0$. \end{enumerate} \end{lemma} \begin{proof} The implication (1) $\Rightarrow$ (2) follows from Lemma \ref{lemma-coherent-proper-ample}. The implication (2) $\Rightarrow$ (3) is trivial. The implication (3) $\Rightarrow$ (1) is Lemma \ref{lemma-quasi-compact-h1-zero-invertible}. \end{proof} \begin{lemma} \label{lemma-surjective-finite-morphism-ample} Let $R$ be a Noetherian ring. Let $f : Y \to X$ be a morphism of schemes proper over $R$. Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module. Assume $f$ is finite and surjective. Then $\mathcal{L}$ is ample if and only if $f^*\mathcal{L}$ is ample. \end{lemma} \begin{proof} The pullback of an ample invertible sheaf by a quasi-affine morphism is ample, see Morphisms, Lemma \ref{morphisms-lemma-pullback-ample-tensor-relatively-ample}. This proves one of the implications as a finite morphism is affine by definition. \medskip\noindent Assume that $f^*\mathcal{L}$ is ample. Let $P$ be the following property on coherent $\mathcal{O}_X$-modules $\mathcal{F}$: there exists an $n_0$ such that $H^p(X, \mathcal{F} \otimes \mathcal{L}^{\otimes n}) = 0$ for all $n \geq n_0$ and $p > 0$. We will prove that $P$ holds for any coherent $\mathcal{O}_X$-module $\mathcal{F}$, which implies $\mathcal{L}$ is ample by Lemma \ref{lemma-vanshing-gives-ample}. We are going to apply Lemma \ref{lemma-property-higher-rank-cohomological}. Thus we have to verify (1), (2) and (3) of that lemma for $P$. Property (1) follows from the long exact cohomology sequence associated to a short exact sequence of sheaves and the fact that tensoring with an invertible sheaf is an exact functor. Property (2) follows since $H^p(X, -)$ is an additive functor. To see (3) let $Z \subset X$ be an integral closed subscheme with generic point $\xi$. Let $\mathcal{F}$ be a coherent sheaf on $Y$ such that the support of $f_*\mathcal{F}$ is equal to $Z$ and $(f_*\mathcal{F})_\xi$ is annihilated by $\mathfrak m_\xi$, see Lemma \ref{lemma-finite-morphism-Noetherian}. We claim that taking $\mathcal{G} = f_*\mathcal{F}$ works. We only have to verify part (3)(c) of Lemma \ref{lemma-property-higher-rank-cohomological}. Hence assume that $\mathcal{J} \subset \mathcal{O}_X$ is a quasi-coherent sheaf of ideals such that $\mathcal{J}_\xi = \mathcal{O}_{X, \xi}$. A finite morphism is affine hence by Lemma \ref{lemma-affine-morphism-projection-ideal} we see that $\mathcal{J}\mathcal{G} = f_*(f^{-1}\mathcal{J}\mathcal{F})$. Also, as pointed out in the proof of Lemma \ref{lemma-affine-morphism-projection-ideal} the sheaf $f^{-1}\mathcal{J}\mathcal{F}$ is a coherent $\mathcal{O}_Y$-module. As $\mathcal{L}$ is ample we see from Lemma \ref{lemma-vanshing-gives-ample} that there exists an $n_0$ such that $$ H^p(Y, f^{-1}\mathcal{J}\mathcal{F} \otimes_{\mathcal{O}_Y} f^*\mathcal{L}^{\otimes n}) = 0, $$ for $n \geq n_0$ and $p > 0$. Since $f$ is finite, hence affine, we see that \begin{align*} H^p(X, \mathcal{J}\mathcal{G} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n}) & = H^p(X, f_*(f^{-1}\mathcal{J}\mathcal{F}) \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n}) \\ & = H^p(X, f_*(f^{-1}\mathcal{J}\mathcal{F} \otimes_{\mathcal{O}_Y} f^*\mathcal{L}^{\otimes n})) \\ & = H^p(Y, f^{-1}\mathcal{J}\mathcal{F} \otimes_{\mathcal{O}_Y} f^*\mathcal{L}^{\otimes n}) = 0 \end{align*} Here we have used the projection formula (Cohomology, Lemma \ref{cohomology-lemma-projection-formula}) and Lemma \ref{lemma-relative-affine-cohomology}. Hence the quasi-coherent subsheaf $\mathcal{G}' = \mathcal{J}\mathcal{G}$ satisfies $P$. This verifies property (3)(c) of Lemma \ref{lemma-property-higher-rank-cohomological} as desired. \end{proof} \noindent Cohomology is functorial. In particular, given a ringed space $X$, an invertible $\mathcal{O}_X$-module $\mathcal{L}$, a section $s \in \Gamma(X, \mathcal{L})$ we get maps $$ H^p(X, \mathcal{F}) \longrightarrow H^p(X, \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}), \quad \xi \longmapsto s\xi $$ induced by the map $\mathcal{F} \to \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}$ which is multiplication by $s$. We set $\Gamma_*(X, \mathcal{L}) = \bigoplus_{n \geq 0} \Gamma(X, \mathcal{L}^{\otimes n})$ as a graded ring, see Modules, Definition \ref{modules-definition-gamma-star}. Given a sheaf of $\mathcal{O}_X$-modules $\mathcal{F}$ and an integer $p \geq 0$ we set $$ H^p_*(X, \mathcal{L}, \mathcal{F}) = \bigoplus\nolimits_{n \in \mathbf{Z}} H^p(X, \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n}) $$ This is a graded $\Gamma_*(X, \mathcal{L})$-module by the multiplication defined above. Warning: the notation $H^p_*(X, \mathcal{L}, \mathcal{F})$ is nonstandard. \begin{lemma} \label{lemma-invert-s-cohomology} Let $X$ be a scheme. Let $\mathcal{L}$ be an invertible sheaf on $X$. Let $s \in \Gamma(X, \mathcal{L})$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. If $X$ is quasi-compact and quasi-separated, the canonical map $$ H^p_*(X, \mathcal{L}, \mathcal{F})_{(s)} \longrightarrow H^p(X_s, \mathcal{F}) $$ which maps $\xi/s^n$ to $s^{-n}\xi$ is an isomorphism. \end{lemma} \begin{proof} Note that for $p = 0$ this is Properties, Lemma \ref{properties-lemma-invert-s-sections}. We will prove the statement using the induction principle (Lemma \ref{lemma-induction-principle}) where for $U \subset X$ quasi-compact open we let $P(U)$ be the property: for all $p \geq 0$ the map $$ H^p_*(U, \mathcal{L}, \mathcal{F})_{(s)} \longrightarrow H^p(U_s, \mathcal{F}) $$ is an isomorphism. \medskip\noindent If $U$ is affine, then both sides of the arrow displayed above are zero for $p > 0$ by Lemma \ref{lemma-quasi-coherent-affine-cohomology-zero} and Properties, Lemma \ref{properties-lemma-affine-cap-s-open} and the statement is true. If $P$ is true for $U$, $V$, and $U \cap V$, then we can use the Mayer-Vietoris sequences (Cohomology, Lemma \ref{cohomology-lemma-mayer-vietoris}) to obtain a map of long exact sequences $$ \xymatrix{ H^{p - 1}_*(U \cap V, \mathcal{L}, \mathcal{F})_{(s)} \ar[r] \ar[d] & H^p_*(U \cup V, \mathcal{L}, \mathcal{F})_{(s)} \ar[r] \ar[d] & H^p_*(U, \mathcal{L}, \mathcal{F})_{(s)} \oplus H^p_*(V, \mathcal{L}, \mathcal{F})_{(s)} \ar[d] \\ H^{p - 1}(U_s \cap V_s, \mathcal{F}) \ar[r]& H^p(U_s \cup V_s, \mathcal{F}) \ar[r] & H^p(U_s, \mathcal{F}) \oplus H^p(V_s, \mathcal{F}) } $$ (only a snippet shown). Observe that $U_s \cap V_s = (U \cap V)_s$ and that $U_s \cup V_s = (U \cup V)_s$. Thus the left and right vertical maps are isomorphisms (as well as one more to the right and one more to the left which are not shown in the diagram). We conclude that $P(U \cup V)$ holds by the 5-lemma (Homology, Lemma \ref{homology-lemma-five-lemma}). This finishes the proof. \end{proof} \begin{lemma} \label{lemma-section-affine-open-kills-classes} Let $X$ be a scheme. Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module. Let $s \in \Gamma(X, \mathcal{L})$ be a section. Assume that \begin{enumerate} \item $X$ is quasi-compact and quasi-separated, and \item $X_s$ is affine. \end{enumerate} Then for every quasi-coherent $\mathcal{O}_X$-module $\mathcal{F}$ and every $p > 0$ and all $\xi \in H^p(X, \mathcal{F})$ there exists an $n \geq 0$ such that $s^n\xi = 0$ in $H^p(X, \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n})$. \end{lemma} \begin{proof} Recall that $H^p(X_s, \mathcal{G})$ is zero for every quasi-coherent module $\mathcal{G}$ by Lemma \ref{lemma-quasi-coherent-affine-cohomology-zero}. Hence the lemma follows from Lemma \ref{lemma-invert-s-cohomology}. \end{proof} \noindent For a more general version of the following lemma see Limits, Lemma \ref{limits-lemma-ample-on-reduction}. \begin{lemma} \label{lemma-ample-on-reduction} Let $i : Z \to X$ be a closed immersion of Noetherian schemes inducing a homeomorphism of underlying topological spaces. Let $\mathcal{L}$ be an invertible sheaf on $X$. Then $i^*\mathcal{L}$ is ample on $Z$, if and only if $\mathcal{L}$ is ample on $X$. \end{lemma} \begin{proof} If $\mathcal{L}$ is ample, then $i^*\mathcal{L}$ is ample for example by Morphisms, Lemma \ref{morphisms-lemma-pullback-ample-tensor-relatively-ample}. Assume $i^*\mathcal{L}$ is ample. We have to show that $\mathcal{L}$ is ample on $X$. Let $\mathcal{I} \subset \mathcal{O}_X$ be the coherent sheaf of ideals cutting out the closed subscheme $Z$. Since $i(Z) = X$ set theoretically we see that $\mathcal{I}^n = 0$ for some $n$ by Lemma \ref{lemma-power-ideal-kills-sheaf}. Consider the sequence $$ X = Z_n \supset Z_{n - 1} \supset Z_{n - 2} \supset \ldots \supset Z_1 = Z $$ of closed subschemes cut out by $0 = \mathcal{I}^n \subset \mathcal{I}^{n - 1} \subset \ldots \subset \mathcal{I}$. Then each of the closed immersions $Z_i \to Z_{i - 1}$ is defined by a coherent sheaf of ideals of square zero. In this way we reduce to the case that $\mathcal{I}^2 = 0$. \medskip\noindent Consider the short exact sequence $$ 0 \to \mathcal{I} \to \mathcal{O}_X \to i_*\mathcal{O}_Z \to 0 $$ of quasi-coherent $\mathcal{O}_X$-modules. Tensoring with $\mathcal{L}^{\otimes n}$ we obtain short exact sequences \begin{equation} \label{equation-ses} 0 \to \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n} \to \mathcal{L}^{\otimes n} \to i_*i^*\mathcal{L}^{\otimes n} \to 0 \end{equation} As $\mathcal{I}^2 = 0$, we can use Morphisms, Lemma \ref{morphisms-lemma-i-star-equivalence} to think of $\mathcal{I}$ as a quasi-coherent $\mathcal{O}_Z$-module and then $\mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n} = \mathcal{I} \otimes_{\mathcal{O}_Z} i^*\mathcal{L}^{\otimes n}$ with obvious abuse of notation. Moreover, the cohomology of this sheaf over $Z$ is canonically the same as the cohomology of this sheaf over $X$ (as $i$ is a homeomorphism). \medskip\noindent Let $x \in X$ be a point and denote $z \in Z$ the corresponding point. Because $i^*\mathcal{L}$ is ample there exists an $n$ and a section $s \in \Gamma(Z, i^*\mathcal{L}^{\otimes n})$ with $z \in Z_s$ and with $Z_s$ affine. The obstruction to lifting $s$ to a section of $\mathcal{L}^{\otimes n}$ over $X$ is the boundary $$ \xi = \partial s \in H^1(X, \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n}) = H^1(Z, \mathcal{I} \otimes_{\mathcal{O}_Z} i^*\mathcal{L}^{\otimes n}) $$ coming from the short exact sequence of sheaves (\ref{equation-ses}). If we replace $s$ by $s^{e + 1}$ then $\xi$ is replaced by $\partial(s^{e + 1}) = (e + 1) s^e \xi$ in $H^1(Z, \mathcal{I} \otimes_{\mathcal{O}_Z} i^*\mathcal{L}^{\otimes (e + 1)n})$ because the boundary map for $$ 0 \to \bigoplus\nolimits_{m \geq 0} \mathcal{I} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes m} \to \bigoplus\nolimits_{m \geq 0} \mathcal{L}^{\otimes m} \to \bigoplus\nolimits_{m \geq 0} i_*i^*\mathcal{L}^{\otimes m} \to 0 $$ is a derivation by Cohomology, Lemma \ref{cohomology-lemma-boundary-derivation-over-cup-product}. By Lemma \ref{lemma-section-affine-open-kills-classes} we see that $s^e \xi$ is zero for $e$ large enough. Hence, after replacing $s$ by a power, we can assume $s$ is the image of a section $s' \in \Gamma(X, \mathcal{L}^{\otimes n})$. Then $X_{s'}$ is an open subscheme and $Z_s \to X_{s'}$ is a surjective closed immersion of Noetherian schemes with $Z_s$ affine. Hence $X_s$ is affine by Lemma \ref{lemma-image-affine-finite-morphism-affine-Noetherian} and we conclude that $\mathcal{L}$ is ample. \end{proof} \noindent For a more general version of the following lemma see Limits, Lemma \ref{limits-lemma-thickening-quasi-affine}. \begin{lemma} \label{lemma-thickening-quasi-affine} Let $i : Z \to X$ be a closed immersion of Noetherian schemes inducing a homeomorphism of underlying topological spaces. Then $X$ is quasi-affine if and only if $Z$ is quasi-affine. \end{lemma} \begin{proof} Recall that a scheme is quasi-affine if and only if the structure sheaf is ample, see Properties, Lemma \ref{properties-lemma-quasi-affine-O-ample}. Hence if $Z$ is quasi-affine, then $\mathcal{O}_Z$ is ample, hence $\mathcal{O}_X$ is ample by Lemma \ref{lemma-ample-on-reduction}, hence $X$ is quasi-affine. A proof of the converse, which can also be seen in an elementary way, is gotten by reading the argument just given backwards. \end{proof} \begin{lemma} \label{lemma-affine-in-presence-ample} Let $X$ be a scheme. Let $\mathcal{L}$ be an ample invertible $\mathcal{O}_X$-module. Let $n_0$ be an integer. If $H^p(X, \mathcal{L}^{\otimes -n}) = 0$ for $n \geq n_0$ and $p > 0$, then $X$ is affine. \end{lemma} \begin{proof} We claim $H^p(X, \mathcal{F}) = 0$ for every quasi-coherent $\mathcal{O}_X$-module and $p > 0$. Since $X$ is quasi-compact by Properties, Definition \ref{properties-definition-ample} the claim finishes the proof by Lemma \ref{lemma-quasi-compact-h1-zero-covering}. The scheme $X$ is separated by Properties, Lemma \ref{properties-lemma-ample-separated}. Say $X$ is covered by $e + 1$ affine opens. Then $H^p(X, \mathcal{F}) = 0$ for $p > e$, see Lemma \ref{lemma-vanishing-nr-affines}. Thus we may use descending induction on $p$ to prove the claim. Writing $\mathcal{F}$ as a filtered colimit of finite type quasi-coherent modules (Properties, Lemma \ref{properties-lemma-quasi-coherent-colimit-finite-type}) and using Cohomology, Lemma \ref{cohomology-lemma-quasi-separated-cohomology-colimit} we may assume $\mathcal{F}$ is of finite type. Then we can choose $n > n_0$ such that $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes n}$ is globally generated, see Properties, Proposition \ref{properties-proposition-characterize-ample}. This means there is a short exact sequence $$ 0 \to \mathcal{F}' \to \bigoplus\nolimits_{i \in I} \mathcal{L}^{\otimes -n} \to \mathcal{F} \to 0 $$ for some set $I$ (in fact we can choose $I$ finite). By induction hypothesis we have $H^{p + 1}(X, \mathcal{F}') = 0$ and by assumption (combined with the already used commutation of cohomology with colimits) we have $H^p(X, \bigoplus_{i \in I} \mathcal{L}^{\otimes -n}) = 0$. From the long exact cohomology sequence we conclude that $H^p(X, \mathcal{F}) = 0$ as desired. \end{proof} \begin{lemma} \label{lemma-affine-if-quasi-affine} Let $X$ be a quasi-affine scheme. If $H^p(X, \mathcal{O}_X) = 0$ for $p > 0$, then $X$ is affine. \end{lemma} \begin{proof} Since $\mathcal{O}_X$ is ample by Properties, Lemma \ref{properties-lemma-quasi-affine-O-ample} this follows from Lemma \ref{lemma-affine-in-presence-ample}. \end{proof} \section{Chow's Lemma} \label{section-chows-lemma} \noindent In this section we prove Chow's lemma in the Noetherian case (Lemma \ref{lemma-chow-Noetherian}). In Limits, Section \ref{limits-section-chows-lemma} we prove some variants for the non-Noetherian case. \begin{lemma} \label{lemma-chow-Noetherian} \begin{reference} \cite[II Theorem 5.6.1(a)]{EGA} \end{reference} Let $S$ be a Noetherian scheme. Let $f : X \to S$ be a separated morphism of finite type. Then there exist an $n \geq 0$ and a diagram $$ \xymatrix{ X \ar[rd] & X' \ar[d] \ar[l]^\pi \ar[r] & \mathbf{P}^n_S \ar[dl] \\ & S & } $$ where $X' \to \mathbf{P}^n_S$ is an immersion, and $\pi : X' \to X$ is proper and surjective. Moreover, we may arrange it such that there exists a dense open subscheme $U \subset X$ such that $\pi^{-1}(U) \to U$ is an isomorphism. \end{lemma} \begin{proof} All of the schemes we will encounter during the rest of the proof are going to be of finite type over the Noetherian scheme $S$ and hence Noetherian (see Morphisms, Lemma \ref{morphisms-lemma-finite-type-noetherian}). All morphisms between them will automatically be quasi-compact, locally of finite type and quasi-separated, see Morphisms, Lemma \ref{morphisms-lemma-permanence-finite-type} and Properties, Lemmas \ref{properties-lemma-locally-Noetherian-quasi-separated} and \ref{properties-lemma-morphism-Noetherian-schemes-quasi-compact}. \medskip\noindent The scheme $X$ has only finitely many irreducible components (Properties, Lemma \ref{properties-lemma-Noetherian-irreducible-components}). Say $X = X_1 \cup \ldots \cup X_r$ is the decomposition of $X$ into irreducible components. Let $\eta_i \in X_i$ be the generic point. For every point $x \in X$ there exists an affine open $U_x \subset X$ which contains $x$ and each of the generic points $\eta_i$. See Properties, Lemma \ref{properties-lemma-point-and-maximal-points-affine}. Since $X$ is quasi-compact, we can find a finite affine open covering $X = U_1 \cup \ldots \cup U_m$ such that each $U_i$ contains $\eta_1, \ldots, \eta_r$. In particular we conclude that the open $U = U_1 \cap \ldots \cap U_m \subset X$ is a dense open. This and the fact that the $U_i$ are affine opens covering $X$ are all that we will use below. \medskip\noindent Let $X^* \subset X$ be the scheme theoretic closure of $U \to X$, see Morphisms, Definition \ref{morphisms-definition-scheme-theoretic-image}. Let $U_i^* = X^* \cap U_i$. Note that $U_i^*$ is a closed subscheme of $U_i$. Hence $U_i^*$ is affine. Since $U$ is dense in $X$ the morphism $X^* \to X$ is a surjective closed immersion. It is an isomorphism over $U$. Hence we may replace $X$ by $X^*$ and $U_i$ by $U_i^*$ and assume that $U$ is scheme theoretically dense in $X$, see Morphisms, Definition \ref{morphisms-definition-scheme-theoretically-dense}. \medskip\noindent By Morphisms, Lemma \ref{morphisms-lemma-quasi-projective-finite-type-over-S} we can find an immersion $j_i : U_i \to \mathbf{P}_S^{n_i}$ for each $i$. By Morphisms, Lemma \ref{morphisms-lemma-quasi-compact-immersion} we can find closed subschemes $Z_i \subset \mathbf{P}_S^{n_i}$ such that $j_i : U_i \to Z_i$ is a scheme theoretically dense open immersion. Note that $Z_i \to S$ is proper, see Morphisms, Lemma \ref{morphisms-lemma-locally-projective-proper}. Consider the morphism $$ j = (j_1|_U, \ldots, j_m|_U) : U \longrightarrow \mathbf{P}_S^{n_1} \times_S \ldots \times_S \mathbf{P}_S^{n_m}. $$ By the lemma cited above we can find a closed subscheme $Z$ of $\mathbf{P}_S^{n_1} \times_S \ldots \times_S \mathbf{P}_S^{n_m}$ such that $j : U \to Z$ is an open immersion and such that $U$ is scheme theoretically dense in $Z$. The morphism $Z \to S$ is proper. Consider the $i$th projection $$ \text{pr}_i|_Z : Z \longrightarrow \mathbf{P}^{n_i}_S. $$ This morphism factors through $Z_i$ (see Morphisms, Lemma \ref{morphisms-lemma-factor-factor}). Denote $p_i : Z \to Z_i$ the induced morphism. This is a proper morphism, see Morphisms, Lemma \ref{morphisms-lemma-image-proper-scheme-closed} for example. At this point we have that $U \subset U_i \subset Z_i$ are scheme theoretically dense open immersions. Moreover, we can think of $Z$ as the scheme theoretic image of the ``diagonal'' morphism $U \to Z_1 \times_S \ldots \times_S Z_m$. \medskip\noindent Set $V_i = p_i^{-1}(U_i)$. Note that $p_i|_{V_i} : V_i \to U_i$ is proper. Set $X' = V_1 \cup \ldots \cup V_m$. By construction $X'$ has an immersion into the scheme $\mathbf{P}^{n_1}_S \times_S \ldots \times_S \mathbf{P}^{n_m}_S$. Thus by the Segre embedding (see Constructions, Lemma \ref{constructions-lemma-segre-embedding}) we see that $X'$ has an immersion into a projective space over $S$. \medskip\noindent We claim that the morphisms $p_i|_{V_i}: V_i \to U_i$ glue to a morphism $X' \to X$. Namely, it is clear that $p_i|_U$ is the identity map from $U$ to $U$. Since $U \subset X'$ is scheme theoretically dense by construction, it is also scheme theoretically dense in the open subscheme $V_i \cap V_j$. Thus we see that $p_i|_{V_i \cap V_j} = p_j|_{V_i \cap V_j}$ as morphisms into the separated $S$-scheme $X$, see Morphisms, Lemma \ref{morphisms-lemma-equality-of-morphisms}. We denote the resulting morphism $\pi : X' \to X$. \medskip\noindent We claim that $\pi^{-1}(U_i) = V_i$. Since $\pi|_{V_i} = p_i|_{V_i}$ it follows that $V_i \subset \pi^{-1}(U_i)$. Consider the diagram $$ \xymatrix{ V_i \ar[r] \ar[rd]_{p_i|_{V_i}} & \pi^{-1}(U_i) \ar[d] \\ & U_i } $$ Since $V_i \to U_i$ is proper we see that the image of the horizontal arrow is closed, see Morphisms, Lemma \ref{morphisms-lemma-image-proper-scheme-closed}. Since $V_i \subset \pi^{-1}(U_i)$ is scheme theoretically dense (as it contains $U$) we conclude that $V_i = \pi^{-1}(U_i)$ as claimed. \medskip\noindent This shows that $\pi^{-1}(U_i) \to U_i$ is identified with the proper morphism $p_i|_{V_i} : V_i \to U_i$. Hence we see that $X$ has a finite affine covering $X = \bigcup U_i$ such that the restriction of $\pi$ is proper on each member of the covering. Thus by Morphisms, Lemma \ref{morphisms-lemma-proper-local-on-the-base} we see that $\pi$ is proper. \medskip\noindent Finally we have to show that $\pi^{-1}(U) = U$. To see this we argue in the same way as above using the diagram $$ \xymatrix{ U \ar[r] \ar[rd] & \pi^{-1}(U) \ar[d] \\ & U } $$ and using that $\text{id}_U : U \to U$ is proper and that $U$ is scheme theoretically dense in $\pi^{-1}(U)$. \end{proof} \begin{remark} \label{remark-chow-Noetherian} In the situation of Chow's Lemma \ref{lemma-chow-Noetherian}: \begin{enumerate} \item The morphism $\pi$ is actually H-projective (hence projective, see Morphisms, Lemma \ref{morphisms-lemma-H-projective}) since the morphism $X' \to \mathbf{P}^n_S \times_S X = \mathbf{P}^n_X$ is a closed immersion (use the fact that $\pi$ is proper, see Morphisms, Lemma \ref{morphisms-lemma-image-proper-scheme-closed}). \item We may assume that $\pi^{-1}(U)$ is scheme theoretically dense in $X'$. Namely, we can simply replace $X'$ by the scheme theoretic closure of $\pi^{-1}(U)$. In this case we can think of $U$ as a scheme theoretically dense open subscheme of $X'$. See Morphisms, Section \ref{morphisms-section-scheme-theoretic-image}. \item If $X$ is reduced then we may choose $X'$ reduced. This is clear from (2). \end{enumerate} \end{remark} \section{Higher direct images of coherent sheaves} \label{section-proper-pushforward} \noindent In this section we prove the fundamental fact that the higher direct images of a coherent sheaf under a proper morphism are coherent. \begin{proposition} \label{proposition-proper-pushforward-coherent} \begin{reference} \cite[III Theorem 3.2.1]{EGA} \end{reference} Let $S$ be a locally Noetherian scheme. Let $f : X \to S$ be a proper morphism. Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. Then $R^if_*\mathcal{F}$ is a coherent $\mathcal{O}_S$-module for all $i \geq 0$. \end{proposition} \begin{proof} Since the problem is local on $S$ we may assume that $S$ is a Noetherian scheme. Since a proper morphism is of finite type we see that in this case $X$ is a Noetherian scheme also. Consider the property $\mathcal{P}$ of coherent sheaves on $X$ defined by the rule $$ \mathcal{P}(\mathcal{F}) \Leftrightarrow R^pf_*\mathcal{F}\text{ is coherent for all }p \geq 0 $$ We are going to use the result of Lemma \ref{lemma-property} to prove that $\mathcal{P}$ holds for every coherent sheaf on $X$. \medskip\noindent Let $$ 0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0 $$ be a short exact sequence of coherent sheaves on $X$. Consider the long exact sequence of higher direct images $$ R^{p - 1}f_*\mathcal{F}_3 \to R^pf_*\mathcal{F}_1 \to R^pf_*\mathcal{F}_2 \to R^pf_*\mathcal{F}_3 \to R^{p + 1}f_*\mathcal{F}_1 $$ Then it is clear that if 2-out-of-3 of the sheaves $\mathcal{F}_i$ have property $\mathcal{P}$, then the higher direct images of the third are sandwiched in this exact complex between two coherent sheaves. Hence these higher direct images are also coherent by Lemma \ref{lemma-coherent-abelian-Noetherian} and \ref{lemma-coherent-Noetherian-quasi-coherent-sub-quotient}. Hence property $\mathcal{P}$ holds for the third as well. \medskip\noindent Let $Z \subset X$ be an integral closed subscheme. We have to find a coherent sheaf $\mathcal{F}$ on $X$ whose support is contained in $Z$, whose stalk at the generic point $\xi$ of $Z$ is a $1$-dimensional vector space over $\kappa(\xi)$ such that $\mathcal{P}$ holds for $\mathcal{F}$. Denote $g = f|_Z : Z \to S$ the restriction of $f$. Suppose we can find a coherent sheaf $\mathcal{G}$ on $Z$ such that (a) $\mathcal{G}_\xi$ is a $1$-dimensional vector space over $\kappa(\xi)$, (b) $R^pg_*\mathcal{G} = 0$ for $p > 0$, and (c) $g_*\mathcal{G}$ is coherent. Then we can consider $\mathcal{F} = (Z \to X)_*\mathcal{G}$. As $Z \to X$ is a closed immersion we see that $(Z \to X)_*\mathcal{G}$ is coherent on $X$ and $R^p(Z \to X)_*\mathcal{G} = 0$ for $p > 0$ (Lemma \ref{lemma-finite-pushforward-coherent}). Hence by the relative Leray spectral sequence (Cohomology, Lemma \ref{cohomology-lemma-relative-Leray}) we will have $R^pf_*\mathcal{F} = R^pg_*\mathcal{G} = 0$ for $p > 0$ and $f_*\mathcal{F} = g_*\mathcal{G}$ is coherent. Finally $\mathcal{F}_\xi = ((Z \to X)_*\mathcal{G})_\xi = \mathcal{G}_\xi$ which verifies the condition on the stalk at $\xi$. Hence everything depends on finding a coherent sheaf $\mathcal{G}$ on $Z$ which has properties (a), (b), and (c). \medskip\noindent We can apply Chow's Lemma \ref{lemma-chow-Noetherian} to the morphism $Z \to S$. Thus we get a diagram $$ \xymatrix{ Z \ar[rd]_g & Z' \ar[d]^-{g'} \ar[l]^\pi \ar[r]_i & \mathbf{P}^m_S \ar[dl] \\ & S & } $$ as in the statement of Chow's lemma. Also, let $U \subset Z$ be the dense open subscheme such that $\pi^{-1}(U) \to U$ is an isomorphism. By the discussion in Remark \ref{remark-chow-Noetherian} we see that $i' = (i, \pi) : Z' \to \mathbf{P}^m_Z$ is a closed immersion. Hence $$ \mathcal{L} = i^*\mathcal{O}_{\mathbf{P}^m_S}(1) \cong (i')^*\mathcal{O}_{\mathbf{P}^m_Z}(1) $$ is $g'$-relatively ample and $\pi$-relatively ample (for example by Morphisms, Lemma \ref{morphisms-lemma-characterize-ample-on-finite-type}). Hence by Lemma \ref{lemma-kill-by-twisting} there exists an $n \geq 0$ such that both $R^p\pi_*\mathcal{L}^{\otimes n} = 0$ for all $p > 0$ and $R^p(g')_*\mathcal{L}^{\otimes n} = 0$ for all $p > 0$. Set $\mathcal{G} = \pi_*\mathcal{L}^{\otimes n}$. Property (a) holds because $\pi_*\mathcal{L}^{\otimes n}|_U$ is an invertible sheaf (as $\pi^{-1}(U) \to U$ is an isomorphism). Properties (b) and (c) hold because by the relative Leray spectral sequence (Cohomology, Lemma \ref{cohomology-lemma-relative-Leray}) we have $$ E_2^{p, q} = R^pg_* R^q\pi_*\mathcal{L}^{\otimes n} \Rightarrow R^{p + q}(g')_*\mathcal{L}^{\otimes n} $$ and by choice of $n$ the only nonzero terms in $E_2^{p, q}$ are those with $q = 0$ and the only nonzero terms of $R^{p + q}(g')_*\mathcal{L}^{\otimes n}$ are those with $p = q = 0$. This implies that $R^pg_*\mathcal{G} = 0$ for $p > 0$ and that $g_*\mathcal{G} = (g')_*\mathcal{L}^{\otimes n}$. Finally, applying the previous Lemma \ref{lemma-locally-projective-pushforward} we see that $g_*\mathcal{G} = (g')_*\mathcal{L}^{\otimes n}$ is coherent as desired. \end{proof} \begin{lemma} \label{lemma-proper-over-affine-cohomology-finite} Let $S = \Spec(A)$ with $A$ a Noetherian ring. Let $f : X \to S$ be a proper morphism. Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. Then $H^i(X, \mathcal{F})$ is finite $A$-module for all $i \geq 0$. \end{lemma} \begin{proof} This is just the affine case of Proposition \ref{proposition-proper-pushforward-coherent}. Namely, by Lemmas \ref{lemma-quasi-coherence-higher-direct-images} and \ref{lemma-quasi-coherence-higher-direct-images-application} we know that $R^if_*\mathcal{F}$ is the quasi-coherent sheaf associated to the $A$-module $H^i(X, \mathcal{F})$ and by Lemma \ref{lemma-coherent-Noetherian} this is a coherent sheaf if and only if $H^i(X, \mathcal{F})$ is an $A$-module of finite type. \end{proof} \begin{lemma} \label{lemma-graded-finiteness} Let $A$ be a Noetherian ring. Let $B$ be a finitely generated graded $A$-algebra. Let $f : X \to \Spec(A)$ be a proper morphism. Set $\mathcal{B} = f^*\widetilde B$. Let $\mathcal{F}$ be a quasi-coherent graded $\mathcal{B}$-module of finite type. \begin{enumerate} \item For every $p \geq 0$ the graded $B$-module $H^p(X, \mathcal{F})$ is a finite $B$-module. \item If $\mathcal{L}$ is an ample invertible $\mathcal{O}_X$-module, then there exists an integer $d_0$ such that $H^p(X, \mathcal{F} \otimes \mathcal{L}^{\otimes d}) = 0$ for all $p > 0$ and $d \geq d_0$. \end{enumerate} \end{lemma} \begin{proof} To prove this we consider the fibre product diagram $$ \xymatrix{ X' = \Spec(B) \times_{\Spec(A)} X \ar[r]_-\pi \ar[d]_{f'} & X \ar[d]^f \\ \Spec(B) \ar[r] & \Spec(A) } $$ Note that $f'$ is a proper morphism, see Morphisms, Lemma \ref{morphisms-lemma-base-change-proper}. Also, $B$ is a finitely generated $A$-algebra, and hence Noetherian (Algebra, Lemma \ref{algebra-lemma-Noetherian-permanence}). This implies that $X'$ is a Noetherian scheme (Morphisms, Lemma \ref{morphisms-lemma-finite-type-noetherian}). Note that $X'$ is the relative spectrum of the quasi-coherent $\mathcal{O}_X$-algebra $\mathcal{B}$ by Constructions, Lemma \ref{constructions-lemma-spec-properties}. Since $\mathcal{F}$ is a quasi-coherent $\mathcal{B}$-module we see that there is a unique quasi-coherent $\mathcal{O}_{X'}$-module $\mathcal{F}'$ such that $\pi_*\mathcal{F}' = \mathcal{F}$, see Morphisms, Lemma \ref{morphisms-lemma-affine-equivalence-modules} Since $\mathcal{F}$ is finite type as a $\mathcal{B}$-module we conclude that $\mathcal{F}'$ is a finite type $\mathcal{O}_{X'}$-module (details omitted). In other words, $\mathcal{F}'$ is a coherent $\mathcal{O}_{X'}$-module (Lemma \ref{lemma-coherent-Noetherian}). Since the morphism $\pi : X' \to X$ is affine we have $$ H^p(X, \mathcal{F}) = H^p(X', \mathcal{F}') $$ by Lemma \ref{lemma-relative-affine-cohomology}. Thus (1) follows from Lemma \ref{lemma-proper-over-affine-cohomology-finite}. Given $\mathcal{L}$ as in (2) we set $\mathcal{L}' = \pi^*\mathcal{L}$. Note that $\mathcal{L}'$ is ample on $X'$ by Morphisms, Lemma \ref{morphisms-lemma-pullback-ample-tensor-relatively-ample}. By the projection formula (Cohomology, Lemma \ref{cohomology-lemma-projection-formula}) we have $\pi_*(\mathcal{F}' \otimes \mathcal{L}') = \mathcal{F} \otimes \mathcal{L}$. Thus part (2) follows by the same reasoning as above from Lemma \ref{lemma-kill-by-twisting}. \end{proof} \section{The theorem on formal functions} \label{section-theorem-formal-functions} \noindent In this section we study the behaviour of cohomology of sequences of sheaves either of the form $\{I^n\mathcal{F}\}_{n \geq 0}$ or of the form $\{\mathcal{F}/I^n\mathcal{F}\}_{n \geq 0}$ as $n$ varies. \medskip\noindent Here and below we use the following notation. Given a morphism of schemes $f : X \to Y$, a quasi-coherent sheaf $\mathcal{F}$ on $X$, and a quasi-coherent sheaf of ideals $\mathcal{I} \subset \mathcal{O}_Y$ we denote $\mathcal{I}^n\mathcal{F}$ the quasi-coherent subsheaf generated by products of local sections of $f^{-1}(\mathcal{I}^n)$ and $\mathcal{F}$. In a formula $$ \mathcal{I}^n\mathcal{F} = \Im\left( f^*(\mathcal{I}^n) \otimes_{\mathcal{O}_X} \mathcal{F} \longrightarrow \mathcal{F} \right). $$ Note that there are natural maps $$ f^{-1}(\mathcal{I}^n) \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{I}^m\mathcal{F} \longrightarrow f^*(\mathcal{I}^n) \otimes_{\mathcal{O}_X} \mathcal{I}^m\mathcal{F} \longrightarrow \mathcal{I}^{n + m}\mathcal{F} $$ Hence a section of $\mathcal{I}^n$ will give rise to a map $R^pf_*(\mathcal{I}^m\mathcal{F}) \to R^pf_*(\mathcal{I}^{n + m}\mathcal{F})$ by functoriality of higher direct images. Localizing and then sheafifying we see that there are $\mathcal{O}_Y$-module maps $$ \mathcal{I}^n \otimes_{\mathcal{O}_Y} R^pf_*(\mathcal{I}^m\mathcal{F}) \longrightarrow R^pf_*(\mathcal{I}^{n + m}\mathcal{F}). $$ In other words we see that $\bigoplus_{n \geq 0} R^pf_*(\mathcal{I}^n\mathcal{F})$ is a graded $\bigoplus_{n \geq 0} \mathcal{I}^n$-module. \medskip\noindent If $Y = \Spec(A)$ and $\mathcal{I} = \widetilde{I}$ we denote $\mathcal{I}^n\mathcal{F}$ simply $I^n\mathcal{F}$. The maps introduced above give $M = \bigoplus H^p(X, I^n\mathcal{F})$ the structure of a graded $S = \bigoplus I^n$-module. If $f$ is proper, $A$ is Noetherian and $\mathcal{F}$ is coherent, then this turns out to be a module of finite type. \begin{lemma} \label{lemma-cohomology-powers-ideal-times-F} \begin{reference} \cite[III Cor 3.3.2]{EGA} \end{reference} Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Set $B = \bigoplus_{n \geq 0} I^n$. Let $f : X \to \Spec(A)$ be a proper morphism. Let $\mathcal{F}$ be a coherent sheaf on $X$. Then for every $p \geq 0$ the graded $B$-module $\bigoplus_{n \geq 0} H^p(X, I^n\mathcal{F})$ is a finite $B$-module. \end{lemma} \begin{proof} Let $\mathcal{B} = \bigoplus I^n\mathcal{O}_X = f^*\widetilde{B}$. Then $\bigoplus I^n\mathcal{F}$ is a finite type graded $\mathcal{B}$-module. Hence the result follows from Lemma \ref{lemma-graded-finiteness} part (1). \end{proof} \begin{lemma} \label{lemma-cohomology-powers-ideal-times-sheaf} Given a morphism of schemes $f : X \to Y$, a quasi-coherent sheaf $\mathcal{F}$ on $X$, and a quasi-coherent sheaf of ideals $\mathcal{I} \subset \mathcal{O}_Y$. Assume $Y$ locally Noetherian, $f$ proper, and $\mathcal{F}$ coherent. Then $$ \mathcal{M} = \bigoplus\nolimits_{n \geq 0} R^pf_*(\mathcal{I}^n\mathcal{F}) $$ is a graded $\mathcal{A} = \bigoplus_{n \geq 0} \mathcal{I}^n$-module which is quasi-coherent and of finite type. \end{lemma} \begin{proof} The statement is local on $Y$, hence this reduces to the case where $Y$ is affine. In the affine case the result follows from Lemma \ref{lemma-cohomology-powers-ideal-times-F}. Details omitted. \end{proof} \begin{lemma} \label{lemma-cohomology-powers-ideal-application} Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Let $f : X \to \Spec(A)$ be a proper morphism. Let $\mathcal{F}$ be a coherent sheaf on $X$. Then for every $p \geq 0$ there exists an integer $c \geq 0$ such that \begin{enumerate} \item the multiplication map $I^{n - c} \otimes H^p(X, I^c\mathcal{F}) \to H^p(X, I^n\mathcal{F})$ is surjective for all $n \geq c$, \item the image of $H^p(X, I^{n + m}\mathcal{F}) \to H^p(X, I^n\mathcal{F})$ is contained in the submodule $I^{m - e} H^p(X, I^n\mathcal{F})$ where $e = \max(0, c - n)$ for $n + m \geq c$, $n, m \geq 0$, \item we have $$ \Ker(H^p(X, I^n\mathcal{F}) \to H^p(X, \mathcal{F})) = \Ker(H^p(X, I^n\mathcal{F}) \to H^p(X, I^{n - c}\mathcal{F})) $$ for $n \geq c$, \item there are maps $I^nH^p(X, \mathcal{F}) \to H^p(X, I^{n - c}\mathcal{F})$ for $n \geq c$ such that the compositions $$ H^p(X, I^n\mathcal{F}) \to I^{n - c}H^p(X, \mathcal{F}) \to H^p(X, I^{n - 2c}\mathcal{F}) $$ and $$ I^nH^p(X, \mathcal{F}) \to H^p(X, I^{n - c}\mathcal{F}) \to I^{n - 2c}H^p(X, \mathcal{F}) $$ for $n \geq 2c$ are the canonical ones, and \item the inverse systems $(H^p(X, I^n\mathcal{F}))$ and $(I^nH^p(X, \mathcal{F}))$ are pro-isomorphic. \end{enumerate} \end{lemma} \begin{proof} Write $M_n = H^p(X, I^n\mathcal{F})$ for $n \geq 1$ and $M_0 = H^p(X, \mathcal{F})$ so that we have maps $\ldots \to M_3 \to M_2 \to M_1 \to M_0$. Setting $B = \bigoplus_{n \geq 0} I^n$, then $M = \bigoplus_{n \geq 0} M_n$ is a finite graded $B$-module, see Lemma \ref{lemma-cohomology-powers-ideal-times-F}. Observe that the products $B_n \otimes M_m \to M_{m + n}$, $a \otimes m \mapsto a \cdot m$ are compatible with the maps in our inverse system in the sense that the diagrams $$ \xymatrix{ B_n \otimes_A M_m \ar[r] \ar[d] & M_{n + m} \ar[d] \\ B_n \otimes_A M_{m'} \ar[r] & M_{n + m'} } $$ commute for $n, m' \geq 0$ and $m \geq m'$. \medskip\noindent Proof of (1). Choose $d_1, \ldots, d_t \geq 0$ and $x_i \in M_{d_i}$ such that $M$ is generated by $x_1, \ldots, x_t$ over $B$. For any $c \geq \max\{d_i\}$ we conclude that $B_{n - c} \cdot M_c = M_n$ for $n \geq c$ and we conclude (1) is true. \medskip\noindent Proof of (2). Let $c$ be as in the proof of (1). Let $n + m \geq c$. We have $M_{n + m} = B_{n + m - c} \cdot M_c$. If $c > n$ then we use $M_c \to M_n$ and the compatibility of products with transition maps pointed out above to conclude that the image of $M_{n + m} \to M_n$ is contained in $I^{n + m - c}M_n$. If $c \leq n$, then we write $M_{n + m} = B_m \cdot B_{n - c} \cdot M_c = B_m \cdot M_n$ to see that the image is contained in $I^m M_n$. This proves (2). \medskip\noindent Let $K_n \subset M_n$ be the kernel of the map $M_n \to M_0$. The compatibility of products with transition maps pointed out above shows that $K = \bigoplus K_n \subset M$ is a graded $B$-submodule. As $B$ is Noetherian and $M$ is a finitely generated graded $B$-module, this shows that $K$ is a finitely generated graded $B$-module. Choose $d'_1, \ldots, d'_{t'} \geq 0$ and $y_i \in K_{d'_i}$ such that $K$ is generated by $y_1, \ldots, y_{t'}$ over $B$. Set $c = \max(d'_i, d'_j)$. Since $y_i \in \Ker(M_{d'_i} \to M_0)$ we see that $B_n \cdot y_i \subset \Ker(M_{n + d'_i} \to M_n)$. In this way we see that $K_n = \Ker(M_n \to M_{n - c})$ for $n \geq c$. This proves (3). \medskip\noindent Consider the following commutative solid diagram $$ \xymatrix{ I^n \otimes_A M_0 \ar[r] \ar[d] & I^nM_0 \ar[r] \ar@{..>}[d] & M_0 \ar[d] \\ M_n \ar[r] & M_{n - c} \ar[r] & M_0 } $$ Since the kernel of the surjective arrow $I^n \otimes_A M_0 \to I^nM_0$ maps into $K_n$ by the above we obtain the dotted arrow and the composition $I^nM_0 \to M_{n - c} \to M_0$ is the canonical map. Then clearly the composition $I^nM_0 \to M_{n - c} \to I^{n - 2c}M_0$ is the canonical map for $n \geq 2c$. Consider the composition $M_n \to I^{n - c}M_0 \to M_{n - 2c}$. The first map sends an element of the form $a \cdot m$ with $a \in I^{n - c}$ and $m \in M_c$ to $a m'$ where $m'$ is the image of $m$ in $M_0$. Then the second map sends this to $a \cdot m'$ in $M_{n - 2c}$ and we see (4) is true. \medskip\noindent Part (5) is an immediate consequence of (4) and the definition of morphisms of pro-objects. \end{proof} \noindent In the situation of Lemmas \ref{lemma-cohomology-powers-ideal-times-F} and \ref{lemma-cohomology-powers-ideal-application} consider the inverse system $$ \mathcal{F}/I\mathcal{F} \leftarrow \mathcal{F}/I^2\mathcal{F} \leftarrow \mathcal{F}/I^3\mathcal{F} \leftarrow \ldots $$ We would like to know what happens to the cohomology groups. Here is a first result. \begin{lemma} \label{lemma-ML-cohomology-powers-ideal} Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Let $f : X \to \Spec(A)$ be a proper morphism. Let $\mathcal{F}$ be a coherent sheaf on $X$. Fix $p \geq 0$. There exists a $c \geq 0$ such that \begin{enumerate} \item for all $n \geq c$ we have $$ \Ker(H^p(X, \mathcal{F}) \to H^p(X, \mathcal{F}/I^n\mathcal{F})) \subset I^{n - c}H^p(X, \mathcal{F}). $$ \item the inverse system $$ \left(H^p(X, \mathcal{F}/I^n\mathcal{F})\right)_{n \in \mathbf{N}} $$ satisfies the Mittag-Leffler condition (see Homology, Definition \ref{homology-definition-Mittag-Leffler}), and \item we have $$ \Im(H^p(X, \mathcal{F}/I^k\mathcal{F}) \to H^p(X, \mathcal{F}/I^n\mathcal{F})) = \Im(H^p(X, \mathcal{F}) \to H^p(X, \mathcal{F}/I^n\mathcal{F})) $$ for all $k \geq n + c$. \end{enumerate} \end{lemma} \begin{proof} Let $c = \max\{c_p, c_{p + 1}\}$, where $c_p, c_{p + 1}$ are the integers found in Lemma \ref{lemma-cohomology-powers-ideal-application} for $H^p$ and $H^{p + 1}$. \medskip\noindent Let us prove part (1). Consider the short exact sequence $$ 0 \to I^n\mathcal{F} \to \mathcal{F} \to \mathcal{F}/I^n\mathcal{F} \to 0 $$ From the long exact cohomology sequence we see that $$ \Ker( H^p(X, \mathcal{F}) \to H^p(X, \mathcal{F}/I^n\mathcal{F}) ) = \Im( H^p(X, I^n\mathcal{F}) \to H^p(X, \mathcal{F}) ) $$ Hence by Lemma \ref{lemma-cohomology-powers-ideal-application} part (2) we see that this is contained in $I^{n - c}H^p(X, \mathcal{F})$ for $n \geq c$. \medskip\noindent Note that part (3) implies part (2) by definition of the Mittag-Leffler systems. \medskip\noindent Let us prove part (3). Fix an $n$. Consider the commutative diagram $$ \xymatrix{ 0 \ar[r] & I^n\mathcal{F} \ar[r] & \mathcal{F} \ar[r] & \mathcal{F}/I^n\mathcal{F} \ar[r] & 0 \\ 0 \ar[r] & I^{n + m}\mathcal{F} \ar[r] \ar[u] & \mathcal{F} \ar[r] \ar[u] & \mathcal{F}/I^{n + m}\mathcal{F} \ar[r] \ar[u] & 0 } $$ This gives rise to the following commutative diagram $$ \xymatrix{ H^p(X, \mathcal{F}) \ar[r] & H^p(X, \mathcal{F}/I^n\mathcal{F}) \ar[r]_\delta & H^{p + 1}(X, I^n\mathcal{F}) \ar[r] & H^{p + 1}(X, \mathcal{F}) \\ H^p(X, \mathcal{F}) \ar[r] \ar[u]^1 & H^p(X, \mathcal{F}/I^{n + m}\mathcal{F}) \ar[r] \ar[u]^\gamma & H^{p + 1}(X, I^{n + m}\mathcal{F}) \ar[u]^\alpha \ar[r]^-\beta & H^{p + 1}(X, \mathcal{F}) \ar[u]_1 } $$ with exact rows. By Lemma \ref{lemma-cohomology-powers-ideal-application} part (4) the kernel of $\beta$ is equal to the kernel of $\alpha$ for $m \geq c$. By a diagram chase this shows that the image of $\gamma$ is contained in the kernel of $\delta$ which shows that part (3) is true (set $k = n + m$ to get it). \end{proof} \begin{theorem}[Theorem on formal functions] \label{theorem-formal-functions} Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Let $f : X \to \Spec(A)$ be a proper morphism. Let $\mathcal{F}$ be a coherent sheaf on $X$. Fix $p \geq 0$. The system of maps $$ H^p(X, \mathcal{F})/I^nH^p(X, \mathcal{F}) \longrightarrow H^p(X, \mathcal{F}/I^n\mathcal{F}) $$ define an isomorphism of limits $$ H^p(X, \mathcal{F})^\wedge \longrightarrow \lim_n H^p(X, \mathcal{F}/I^n\mathcal{F}) $$ where the left hand side is the completion of the $A$-module $H^p(X, \mathcal{F})$ with respect to the ideal $I$, see Algebra, Section \ref{algebra-section-completion}. Moreover, this is in fact a homeomorphism for the limit topologies. \end{theorem} \begin{proof} This follows from Lemma \ref{lemma-ML-cohomology-powers-ideal} as follows. Set $M = H^p(X, \mathcal{F})$, $M_n = H^p(X, \mathcal{F}/I^n\mathcal{F})$, and denote $N_n = \Im(M \to M_n)$. By Lemma \ref{lemma-ML-cohomology-powers-ideal} parts (2) and (3) we see that $(M_n)$ is a Mittag-Leffler system with $N_n \subset M_n$ equal to the image of $M_k$ for all $k \gg n$. It follows that $\lim M_n = \lim N_n$ as topological modules (with limit topologies). On the other hand, the $N_n$ form an inverse system of quotients of the module $M$ and hence $\lim N_n$ is the completion of $M$ with respect to the topology given by the kernels $K_n = \Ker(M \to N_n)$. By Lemma \ref{lemma-ML-cohomology-powers-ideal} part (1) we have $K_n \subset I^{n - c}M$ and since $N_n \subset M_n$ is annihilated by $I^n$ we have $I^n M \subset K_n$. Thus the topology defined using the submodules $K_n$ as a fundamental system of open neighbourhoods of $0$ is the same as the $I$-adic topology and we find that the induced map $M^\wedge = \lim M/I^nM \to \lim N_n = \lim M_n$ is an isomorphism of topological modules\footnote{ To be sure, the limit topology on $M^\wedge$ is the same as its $I$-adic topology as follows from Algebra, Lemma \ref{algebra-lemma-hathat-finitely-generated}. See More on Algebra, Section \ref{more-algebra-section-topological-ring}.}. \end{proof} \begin{lemma} \label{lemma-spell-out-theorem-formal-functions} Let $A$ be a ring. Let $I \subset A$ be an ideal. Assume $A$ is Noetherian and complete with respect to $I$. Let $f : X \to \Spec(A)$ be a proper morphism. Let $\mathcal{F}$ be a coherent sheaf on $X$. Then $$ H^p(X, \mathcal{F}) = \lim_n H^p(X, \mathcal{F}/I^n\mathcal{F}) $$ for all $p \geq 0$. \end{lemma} \begin{proof} This is a reformulation of the theorem on formal functions (Theorem \ref{theorem-formal-functions}) in the case of a complete Noetherian base ring. Namely, in this case the $A$-module $H^p(X, \mathcal{F})$ is finite (Lemma \ref{lemma-proper-over-affine-cohomology-finite}) hence $I$-adically complete (Algebra, Lemma \ref{algebra-lemma-completion-tensor}) and we see that completion on the left hand side is not necessary. \end{proof} \begin{lemma} \label{lemma-formal-functions-stalk} Given a morphism of schemes $f : X \to Y$ and a quasi-coherent sheaf $\mathcal{F}$ on $X$. Assume \begin{enumerate} \item $Y$ locally Noetherian, \item $f$ proper, and \item $\mathcal{F}$ coherent. \end{enumerate} Let $y \in Y$ be a point. Consider the infinitesimal neighbourhoods $$ \xymatrix{ X_n = \Spec(\mathcal{O}_{Y, y}/\mathfrak m_y^n) \times_Y X \ar[r]_-{i_n} \ar[d]_{f_n} & X \ar[d]^f \\ \Spec(\mathcal{O}_{Y, y}/\mathfrak m_y^n) \ar[r]^-{c_n} & Y } $$ of the fibre $X_1 = X_y$ and set $\mathcal{F}_n = i_n^*\mathcal{F}$. Then we have $$ \left(R^pf_*\mathcal{F}\right)_y^\wedge \cong \lim_n H^p(X_n, \mathcal{F}_n) $$ as $\mathcal{O}_{Y, y}^\wedge$-modules. \end{lemma} \begin{proof} This is just a reformulation of a special case of the theorem on formal functions, Theorem \ref{theorem-formal-functions}. Let us spell it out. Note that $\mathcal{O}_{Y, y}$ is a Noetherian local ring. Consider the canonical morphism $c : \Spec(\mathcal{O}_{Y, y}) \to Y$, see Schemes, Equation (\ref{schemes-equation-canonical-morphism}). This is a flat morphism as it identifies local rings. Denote momentarily $f' : X' \to \Spec(\mathcal{O}_{Y, y})$ the base change of $f$ to this local ring. We see that $c^*R^pf_*\mathcal{F} = R^pf'_*\mathcal{F}'$ by Lemma \ref{lemma-flat-base-change-cohomology}. Moreover, the infinitesimal neighbourhoods of the fibre $X_y$ and $X'_y$ are identified (verification omitted; hint: the morphisms $c_n$ factor through $c$). \medskip\noindent Hence we may assume that $Y = \Spec(A)$ is the spectrum of a Noetherian local ring $A$ with maximal ideal $\mathfrak m$ and that $y \in Y$ corresponds to the closed point (i.e., to $\mathfrak m$). In particular it follows that $$ \left(R^pf_*\mathcal{F}\right)_y = \Gamma(Y, R^pf_*\mathcal{F}) = H^p(X, \mathcal{F}). $$ \medskip\noindent In this case also, the morphisms $c_n$ are each closed immersions. Hence their base changes $i_n$ are closed immersions as well. Note that $i_{n, *}\mathcal{F}_n = i_{n, *}i_n^*\mathcal{F} = \mathcal{F}/\mathfrak m^n\mathcal{F}$. By the Leray spectral sequence for $i_n$, and Lemma \ref{lemma-finite-pushforward-coherent} we see that $$ H^p(X_n, \mathcal{F}_n) = H^p(X, i_{n, *}\mathcal{F}_n) = H^p(X, \mathcal{F}/\mathfrak m^n\mathcal{F}) $$ Hence we may indeed apply the theorem on formal functions to compute the limit in the statement of the lemma and we win. \end{proof} \noindent Here is a lemma which we will generalize later to fibres of dimension $ > 0$, namely the next lemma. \begin{lemma} \label{lemma-higher-direct-images-zero-finite-fibre} Let $f : X \to Y$ be a morphism of schemes. Let $y \in Y$. Assume \begin{enumerate} \item $Y$ locally Noetherian, \item $f$ is proper, and \item $f^{-1}(\{y\})$ is finite. \end{enumerate} Then for any coherent sheaf $\mathcal{F}$ on $X$ we have $(R^pf_*\mathcal{F})_y = 0$ for all $p > 0$. \end{lemma} \begin{proof} The fibre $X_y$ is finite, and by Morphisms, Lemma \ref{morphisms-lemma-finite-fibre} it is a finite discrete space. Moreover, the underlying topological space of each infinitesimal neighbourhood $X_n$ is the same. Hence each of the schemes $X_n$ is affine according to Schemes, Lemma \ref{schemes-lemma-scheme-finite-discrete-affine}. Hence it follows that $H^p(X_n, \mathcal{F}_n) = 0$ for all $p > 0$. Hence we see that $(R^pf_*\mathcal{F})_y^\wedge = 0$ by Lemma \ref{lemma-formal-functions-stalk}. Note that $R^pf_*\mathcal{F}$ is coherent by Proposition \ref{proposition-proper-pushforward-coherent} and hence $R^pf_*\mathcal{F}_y$ is a finite $\mathcal{O}_{Y, y}$-module. By Nakayama's lemma (Algebra, Lemma \ref{algebra-lemma-NAK}) if the completion of a finite module over a local ring is zero, then the module is zero. Whence $(R^pf_*\mathcal{F})_y = 0$. \end{proof} \begin{lemma} \label{lemma-higher-direct-images-zero-above-dimension-fibre} Let $f : X \to Y$ be a morphism of schemes. Let $y \in Y$. Assume \begin{enumerate} \item $Y$ locally Noetherian, \item $f$ is proper, and \item $\dim(X_y) = d$. \end{enumerate} Then for any coherent sheaf $\mathcal{F}$ on $X$ we have $(R^pf_*\mathcal{F})_y = 0$ for all $p > d$. \end{lemma} \begin{proof} The fibre $X_y$ is of finite type over $\Spec(\kappa(y))$. Hence $X_y$ is a Noetherian scheme by Morphisms, Lemma \ref{morphisms-lemma-finite-type-noetherian}. Hence the underlying topological space of $X_y$ is Noetherian, see Properties, Lemma \ref{properties-lemma-Noetherian-topology}. Moreover, the underlying topological space of each infinitesimal neighbourhood $X_n$ is the same as that of $X_y$. Hence $H^p(X_n, \mathcal{F}_n) = 0$ for all $p > d$ by Cohomology, Proposition \ref{cohomology-proposition-vanishing-Noetherian}. Hence we see that $(R^pf_*\mathcal{F})_y^\wedge = 0$ by Lemma \ref{lemma-formal-functions-stalk} for $p > d$. Note that $R^pf_*\mathcal{F}$ is coherent by Proposition \ref{proposition-proper-pushforward-coherent} and hence $R^pf_*\mathcal{F}_y$ is a finite $\mathcal{O}_{Y, y}$-module. By Nakayama's lemma (Algebra, Lemma \ref{algebra-lemma-NAK}) if the completion of a finite module over a local ring is zero, then the module is zero. Whence $(R^pf_*\mathcal{F})_y = 0$. \end{proof} \section{Applications of the theorem on formal functions} \label{section-applications-formal-functions} \noindent We will add more here as needed. For the moment we need the following characterization of finite morphisms in the Noetherian case. \begin{lemma} \label{lemma-characterize-finite} (For a more general version see More on Morphisms, Lemma \ref{more-morphisms-lemma-characterize-finite}.) Let $f : X \to S$ be a morphism of schemes. Assume $S$ is locally Noetherian. The following are equivalent \begin{enumerate} \item $f$ is finite, and \item $f$ is proper with finite fibres. \end{enumerate} \end{lemma} \begin{proof} A finite morphism is proper according to Morphisms, Lemma \ref{morphisms-lemma-finite-proper}. A finite morphism is quasi-finite according to Morphisms, Lemma \ref{morphisms-lemma-finite-quasi-finite}. A quasi-finite morphism has finite fibres, see Morphisms, Lemma \ref{morphisms-lemma-quasi-finite}. Hence a finite morphism is proper and has finite fibres. \medskip\noindent Assume $f$ is proper with finite fibres. We want to show $f$ is finite. In fact it suffices to prove $f$ is affine. Namely, if $f$ is affine, then it follows that $f$ is integral by Morphisms, Lemma \ref{morphisms-lemma-integral-universally-closed} whereupon it follows from Morphisms, Lemma \ref{morphisms-lemma-finite-integral} that $f$ is finite. \medskip\noindent To show that $f$ is affine we may assume that $S$ is affine, and our goal is to show that $X$ is affine too. Since $f$ is proper we see that $X$ is separated and quasi-compact. Hence we may use the criterion of Lemma \ref{lemma-quasi-separated-h1-zero-covering} to prove that $X$ is affine. To see this let $\mathcal{I} \subset \mathcal{O}_X$ be a finite type ideal sheaf. In particular $\mathcal{I}$ is a coherent sheaf on $X$. By Lemma \ref{lemma-higher-direct-images-zero-finite-fibre} we conclude that $R^1f_*\mathcal{I}_s = 0$ for all $s \in S$. In other words, $R^1f_*\mathcal{I} = 0$. Hence we see from the Leray Spectral Sequence for $f$ that $H^1(X , \mathcal{I}) = H^1(S, f_*\mathcal{I})$. Since $S$ is affine, and $f_*\mathcal{I}$ is quasi-coherent (Schemes, Lemma \ref{schemes-lemma-push-forward-quasi-coherent}) we conclude $H^1(S, f_*\mathcal{I}) = 0$ from Lemma \ref{lemma-quasi-coherent-affine-cohomology-zero} as desired. Hence $H^1(X, \mathcal{I}) = 0$ as desired. \end{proof} \noindent As a consequence we have the following useful result. \begin{lemma} \label{lemma-proper-finite-fibre-finite-in-neighbourhood} \begin{slogan} A proper morphism is finite in a neighbourhood of a finite fiber. \end{slogan} (For a more general version see More on Morphisms, Lemma \ref{more-morphisms-lemma-proper-finite-fibre-finite-in-neighbourhood}.) Let $f : X \to S$ be a morphism of schemes. Let $s \in S$. Assume \begin{enumerate} \item $S$ is locally Noetherian, \item $f$ is proper, and \item $f^{-1}(\{s\})$ is a finite set. \end{enumerate} Then there exists an open neighbourhood $V \subset S$ of $s$ such that $f|_{f^{-1}(V)} : f^{-1}(V) \to V$ is finite. \end{lemma} \begin{proof} The morphism $f$ is quasi-finite at all the points of $f^{-1}(\{s\})$ by Morphisms, Lemma \ref{morphisms-lemma-finite-fibre}. By Morphisms, Lemma \ref{morphisms-lemma-quasi-finite-points-open} the set of points at which $f$ is quasi-finite is an open $U \subset X$. Let $Z = X \setminus U$. Then $s \not \in f(Z)$. Since $f$ is proper the set $f(Z) \subset S$ is closed. Choose any open neighbourhood $V \subset S$ of $s$ with $Z \cap V = \emptyset$. Then $f^{-1}(V) \to V$ is locally quasi-finite and proper. Hence it is quasi-finite (Morphisms, Lemma \ref{morphisms-lemma-quasi-finite-locally-quasi-compact}), hence has finite fibres (Morphisms, Lemma \ref{morphisms-lemma-quasi-finite}), hence is finite by Lemma \ref{lemma-characterize-finite}. \end{proof} \begin{lemma} \label{lemma-ample-on-fibre} Let $f : X \to Y$ be a proper morphism of schemes with $Y$ Noetherian. Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module. Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. Let $y \in Y$ be a point such that $\mathcal{L}_y$ is ample on $X_y$. Then there exists a $d_0$ such that for all $d \geq d_0$ we have $$ R^pf_*(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes d})_y = 0 \text{ for }p > 0 $$ and the map $$ f_*(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes d})_y \longrightarrow H^0(X_y, \mathcal{F}_y \otimes_{\mathcal{O}_{X_y}} \mathcal{L}_y^{\otimes d}) $$ is surjective. \end{lemma} \begin{proof} Note that $\mathcal{O}_{Y, y}$ is a Noetherian local ring. Consider the canonical morphism $c : \Spec(\mathcal{O}_{Y, y}) \to Y$, see Schemes, Equation (\ref{schemes-equation-canonical-morphism}). This is a flat morphism as it identifies local rings. Denote momentarily $f' : X' \to \Spec(\mathcal{O}_{Y, y})$ the base change of $f$ to this local ring. We see that $c^*R^pf_*\mathcal{F} = R^pf'_*\mathcal{F}'$ by Lemma \ref{lemma-flat-base-change-cohomology}. Moreover, the fibres $X_y$ and $X'_y$ are identified. Hence we may assume that $Y = \Spec(A)$ is the spectrum of a Noetherian local ring $(A, \mathfrak m, \kappa)$ and $y \in Y$ corresponds to $\mathfrak m$. In this case $R^pf_*(\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes d})_y = H^p(X, \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes d})$ for all $p \geq 0$. Denote $f_y : X_y \to \Spec(\kappa)$ the projection. \medskip\noindent Let $B = \text{Gr}_\mathfrak m(A) = \bigoplus_{n \geq 0} \mathfrak m^n/\mathfrak m^{n + 1}$. Consider the sheaf $\mathcal{B} = f_y^*\widetilde{B}$ of quasi-coherent graded $\mathcal{O}_{X_y}$-algebras. We will use notation as in Section \ref{section-theorem-formal-functions} with $I$ replaced by $\mathfrak m$. Since $X_y$ is the closed subscheme of $X$ cut out by $\mathfrak m\mathcal{O}_X$ we may think of $\mathfrak m^n\mathcal{F}/\mathfrak m^{n + 1}\mathcal{F}$ as a coherent $\mathcal{O}_{X_y}$-module, see Lemma \ref{lemma-i-star-equivalence}. Then $\bigoplus_{n \geq 0} \mathfrak m^n\mathcal{F}/\mathfrak m^{n + 1}\mathcal{F}$ is a quasi-coherent graded $\mathcal{B}$-module of finite type because it is generated in degree zero over $\mathcal{B}$ abd because the degree zero part is $\mathcal{F}_y = \mathcal{F}/\mathfrak m \mathcal{F}$ which is a coherent $\mathcal{O}_{X_y}$-module. Hence by Lemma \ref{lemma-graded-finiteness} part (2) we see that $$ H^p(X_y, \mathfrak m^n \mathcal{F}/ \mathfrak m^{n + 1}\mathcal{F} \otimes_{\mathcal{O}_{X_y}} \mathcal{L}_y^{\otimes d}) = 0 $$ for all $p > 0$, $d \geq d_0$, and $n \geq 0$. By Lemma \ref{lemma-relative-affine-cohomology} this is the same as the statement that $ H^p(X, \mathfrak m^n \mathcal{F}/ \mathfrak m^{n + 1}\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes d}) = 0 $ for all $p > 0$, $d \geq d_0$, and $n \geq 0$. \medskip\noindent Consider the short exact sequences $$ 0 \to \mathfrak m^n\mathcal{F}/\mathfrak m^{n + 1} \mathcal{F} \to \mathcal{F}/\mathfrak m^{n + 1} \mathcal{F} \to \mathcal{F}/\mathfrak m^n \mathcal{F} \to 0 $$ of coherent $\mathcal{O}_X$-modules. Tensoring with $\mathcal{L}^{\otimes d}$ is an exact functor and we obtain short exact sequences $$ 0 \to \mathfrak m^n\mathcal{F}/\mathfrak m^{n + 1} \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes d} \to \mathcal{F}/\mathfrak m^{n + 1} \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes d} \to \mathcal{F}/\mathfrak m^n \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes d} \to 0 $$ Using the long exact cohomology sequence and the vanishing above we conclude (using induction) that \begin{enumerate} \item $H^p(X, \mathcal{F}/\mathfrak m^n \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes d}) = 0$ for all $p > 0$, $d \geq d_0$, and $n \geq 0$, and \item $H^0(X, \mathcal{F}/\mathfrak m^n \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes d}) \to H^0(X_y, \mathcal{F}_y \otimes_{\mathcal{O}_{X_y}} \mathcal{L}_y^{\otimes d})$ is surjective for all $d \geq d_0$ and $n \geq 1$. \end{enumerate} By the theorem on formal functions (Theorem \ref{theorem-formal-functions}) we find that the $\mathfrak m$-adic completion of $H^p(X, \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes d})$ is zero for all $d \geq d_0$ and $p > 0$. Since $H^p(X, \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes d})$ is a finite $A$-module by Lemma \ref{lemma-proper-over-affine-cohomology-finite} it follows from Nakayama's lemma (Algebra, Lemma \ref{algebra-lemma-NAK}) that $H^p(X, \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes d})$ is zero for all $d \geq d_0$ and $p > 0$. For $p = 0$ we deduce from Lemma \ref{lemma-ML-cohomology-powers-ideal} part (3) that $H^0(X, \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes d}) \to H^0(X_y, \mathcal{F}_y \otimes_{\mathcal{O}_{X_y}} \mathcal{L}_y^{\otimes d})$ is surjective, which gives the final statement of the lemma. \end{proof} \begin{lemma} \label{lemma-ample-in-neighbourhood} (For a more general version see More on Morphisms, Lemma \ref{more-morphisms-lemma-ample-in-neighbourhood}.) Let $f : X \to Y$ be a proper morphism of schemes with $Y$ Noetherian. Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module. Let $y \in Y$ be a point such that $\mathcal{L}_y$ is ample on $X_y$. Then there is an open neighbourhood $V \subset Y$ of $y$ such that $\mathcal{L}|_{f^{-1}(V)}$ is ample on $f^{-1}(V)/V$. \end{lemma} \begin{proof} Pick $d_0$ as in Lemma \ref{lemma-ample-on-fibre} for $\mathcal{F} = \mathcal{O}_X$. Pick $d \geq d_0$ so that we can find $r \geq 0$ and sections $s_{y, 0}, \ldots, s_{y, r} \in H^0(X_y, \mathcal{L}_y^{\otimes d})$ which define a closed immersion $$ \varphi_y = \varphi_{\mathcal{L}_y^{\otimes d}, (s_{y, 0}, \ldots, s_{y, r})} : X_y \to \mathbf{P}^r_{\kappa(y)}. $$ This is possible by Morphisms, Lemma \ref{morphisms-lemma-finite-type-over-affine-ample-very-ample} but we also use Morphisms, Lemma \ref{morphisms-lemma-image-proper-scheme-closed} to see that $\varphi_y$ is a closed immersion and Constructions, Section \ref{constructions-section-projective-space} for the description of morphisms into projective space in terms of invertible sheaves and sections. By our choice of $d_0$, after replacing $Y$ by an open neighbourhood of $y$, we can choose $s_0, \ldots, s_r \in H^0(X, \mathcal{L}^{\otimes d})$ mapping to $s_{y, 0}, \ldots, s_{y, r}$. Let $X_{s_i} \subset X$ be the open subset where $s_i$ is a generator of $\mathcal{L}^{\otimes d}$. Since the $s_{y, i}$ generate $\mathcal{L}_y^{\otimes d}$ we see that $X_y \subset U = \bigcup X_{s_i}$. Since $X \to Y$ is closed, we see that there is an open neighbourhood $y \in V \subset Y$ such that $f^{-1}(V) \subset U$. After replacing $Y$ by $V$ we may assume that the $s_i$ generate $\mathcal{L}^{\otimes d}$. Thus we obtain a morphism $$ \varphi = \varphi_{\mathcal{L}^{\otimes d}, (s_0, \ldots, s_r)} : X \longrightarrow \mathbf{P}^r_Y $$ with $\mathcal{L}^{\otimes d} \cong \varphi^*\mathcal{O}_{\mathbf{P}^r_Y}(1)$ whose base change to $y$ gives $\varphi_y$. \medskip\noindent We will finish the proof by a sleight of hand; the ``correct'' proof proceeds by directly showing that $\varphi$ is a closed immersion after base changing to an open neighbourhood of $y$. Namely, by Lemma \ref{lemma-proper-finite-fibre-finite-in-neighbourhood} we see that $\varphi$ is a finite over an open neighbourhood of the fibre $\mathbf{P}^r_{\kappa(y)}$ of $\mathbf{P}^r_Y \to Y$ above $y$. Using that $\mathbf{P}^r_Y \to Y$ is closed, after shrinking $Y$ we may assume that $\varphi$ is finite. Then $\mathcal{L}^{\otimes d} \cong \varphi^*\mathcal{O}_{\mathbf{P}^r_Y}(1)$ is ample by the very general Morphisms, Lemma \ref{morphisms-lemma-pullback-ample-tensor-relatively-ample}. \end{proof} \section{Cohomology and base change, III} \label{section-cohomology-and-base-change-perfect} \noindent In this section we prove the simplest case of a very general phenomenon that will be discussed in Derived Categories of Schemes, Section \ref{perfect-section-cohomology-and-base-change-perfect}. Please see Remark \ref{remark-explain-perfect-direct-image} for a translation of the following lemma into algebra. \begin{lemma} \label{lemma-perfect-direct-image} Let $A$ be a Noetherian ring and set $S = \Spec(A)$. Let $f : X \to S$ be a proper morphism of schemes. Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module flat over $S$. Then \begin{enumerate} \item $R\Gamma(X, \mathcal{F})$ is a perfect object of $D(A)$, and \item for any ring map $A \to A'$ the base change map $$ R\Gamma(X, \mathcal{F}) \otimes_A^{\mathbf{L}} A' \longrightarrow R\Gamma(X_{A'}, \mathcal{F}_{A'}) $$ is an isomorphism. \end{enumerate} \end{lemma} \begin{proof} Choose a finite affine open covering $X = \bigcup_{i = 1, \ldots, n} U_i$. By Lemmas \ref{lemma-separated-case-relative-cech} and \ref{lemma-base-change-complex} the {\v C}ech complex $K^\bullet = {\check C}^\bullet(\mathcal{U}, \mathcal{F})$ satisfies $$ K^\bullet \otimes_A A' = R\Gamma(X_{A'}, \mathcal{F}_{A'}) $$ for all ring maps $A \to A'$. Let $K_{alt}^\bullet = {\check C}_{alt}^\bullet(\mathcal{U}, \mathcal{F})$ be the alternating {\v C}ech complex. By Cohomology, Lemma \ref{cohomology-lemma-alternating-usual} there is a homotopy equivalence $K_{alt}^\bullet \to K^\bullet$ of $A$-modules. In particular, we have $$ K_{alt}^\bullet \otimes_A A' = R\Gamma(X_{A'}, \mathcal{F}_{A'}) $$ as well. Since $\mathcal{F}$ is flat over $A$ we see that each $K_{alt}^n$ is flat over $A$ (see Morphisms, Lemma \ref{morphisms-lemma-flat-module-characterize}). Since moreover $K_{alt}^\bullet$ is bounded above (this is why we switched to the alternating {\v C}ech complex) $K_{alt}^\bullet \otimes_A A' = K_{alt}^\bullet \otimes_A^{\mathbf{L}} A'$ by the definition of derived tensor products (see More on Algebra, Section \ref{more-algebra-section-derived-tensor-product}). By Lemma \ref{lemma-proper-over-affine-cohomology-finite} the cohomology groups $H^i(K_{alt}^\bullet)$ are finite $A$-modules. As $K_{alt}^\bullet$ is bounded, we conclude that $K_{alt}^\bullet$ is pseudo-coherent, see More on Algebra, Lemma \ref{more-algebra-lemma-Noetherian-pseudo-coherent}. Given any $A$-module $M$ set $A' = A \oplus M$ where $M$ is a square zero ideal, i.e., $(a, m) \cdot (a', m') = (aa', am' + a'm)$. By the above we see that $K_{alt}^\bullet \otimes_A^\mathbf{L} A'$ has cohomology in degrees $0, \ldots, n$. Hence $K_{alt}^\bullet \otimes_A^\mathbf{L} M$ has cohomology in degrees $0, \ldots, n$. Hence $K_{alt}^\bullet$ has finite Tor dimension, see More on Algebra, Definition \ref{more-algebra-definition-tor-amplitude}. We win by More on Algebra, Lemma \ref{more-algebra-lemma-perfect}. \end{proof} \begin{remark} \label{remark-explain-perfect-direct-image} A consequence of Lemma \ref{lemma-perfect-direct-image} is that there exists a finite complex of finite projective $A$-modules $M^\bullet$ such that we have $$ H^i(X_{A'}, \mathcal{F}_{A'}) = H^i(M^\bullet \otimes_A A') $$ functorially in $A'$. The condition that $\mathcal{F}$ is flat over $A$ is essential, see \cite{Hartshorne}. \end{remark} \section{Coherent formal modules} \label{section-coherent-formal} \noindent As we do not yet have the theory of formal schemes to our disposal, we develop a bit of language that replaces the notion of a ``coherent module on a Noetherian adic formal scheme''. \medskip\noindent Let $X$ be a Noetherian scheme and let $\mathcal{I} \subset \mathcal{O}_X$ be a quasi-coherent sheaf of ideals. We will consider inverse systems $(\mathcal{F}_n)$ of coherent $\mathcal{O}_X$-modules such that \begin{enumerate} \item $\mathcal{F}_n$ is annihilated by $\mathcal{I}^n$, and \item the transition maps induce isomorphisms $\mathcal{F}_{n + 1}/\mathcal{I}^n\mathcal{F}_{n + 1} \to \mathcal{F}_n$. \end{enumerate} A morphism of such inverse systems is defined as usual. Let us denote the category of these inverse systems with $\textit{Coh}(X, \mathcal{I})$. We are going to proceed by proving a bunch of lemmas about objects in this category. In fact, most of the lemmas that follow are straightforward consequences of the following description of the category in the affine case. \begin{lemma} \label{lemma-inverse-systems-affine} If $X = \Spec(A)$ is the spectrum of a Noetherian ring and $\mathcal{I}$ is the quasi-coherent sheaf of ideals associated to the ideal $I \subset A$, then $\textit{Coh}(X, \mathcal{I})$ is equivalent to the category of finite $A^\wedge$-modules where $A^\wedge$ is the completion of $A$ with respect to $I$. \end{lemma} \begin{proof} Let $\text{Mod}^{fg}_{A, I}$ be the category of inverse systems $(M_n)$ of finite $A$-modules satisfying: (1) $M_n$ is annihilated by $I^n$ and (2) $M_{n + 1}/I^nM_{n + 1} = M_n$. By the correspondence between coherent sheaves on $X$ and finite $A$-modules (Lemma \ref{lemma-coherent-Noetherian}) it suffices to show $\text{Mod}^{fg}_{A, I}$ is equivalent to the category of finite $A^\wedge$-modules. To see this it suffices to prove that given an object $(M_n)$ of $\text{Mod}^{fg}_{A, I}$ the module $$ M = \lim M_n $$ is a finite $A^\wedge$-module and that $M/I^nM = M_n$. As the transition maps are surjective, we see that $M \to M_1$ is surjective. Pick $x_1, \ldots, x_t \in M$ which map to generators of $M_1$. This induces a map of systems $(A/I^n)^{\oplus t} \to M_n$. By Nakayama's lemma (Algebra, Lemma \ref{algebra-lemma-NAK}) these maps are surjective. Let $K_n \subset (A/I^n)^{\oplus t}$ be the kernel. Property (2) implies that $K_{n + 1} \to K_n$ is surjective, in particular the system $(K_n)$ satisfies the Mittag-Leffler condition. By Homology, Lemma \ref{homology-lemma-Mittag-Leffler} we obtain an exact sequence $0 \to K \to (A^\wedge)^{\oplus t} \to M \to 0$ with $K = \lim K_n$. Hence $M$ is a finite $A^\wedge$-module. As $K \to K_n$ is surjective it follows that $$ M/I^nM = \Coker(K \to (A/I^n)^{\oplus t}) = (A/I^n)^{\oplus t}/K_n = M_n $$ as desired. \end{proof} \begin{lemma} \label{lemma-inverse-systems-abelian} Let $X$ be a Noetherian scheme and let $\mathcal{I} \subset \mathcal{O}_X$ be a quasi-coherent sheaf of ideals. \begin{enumerate} \item The category $\textit{Coh}(X, \mathcal{I})$ is abelian. \item For $U \subset X$ open the restriction functor $\textit{Coh}(X, \mathcal{I}) \to \textit{Coh}(U, \mathcal{I}|_U)$ is exact. \item Exactness in $\textit{Coh}(X, \mathcal{I})$ may be checked by restricting to the members of an open covering of $X$. \end{enumerate} \end{lemma} \begin{proof} Let $\alpha =(\alpha_n) : (\mathcal{F}_n) \to (\mathcal{G}_n)$ be a morphism of $\textit{Coh}(X, \mathcal{I})$. The cokernel of $\alpha$ is the inverse system $(\Coker(\alpha_n))$ (details omitted). To describe the kernel let $$ \mathcal{K}'_{l, m} = \Im(\Ker(\alpha_l) \to \mathcal{F}_m) $$ for $l \geq m$. We claim: \begin{enumerate} \item[(a)] the inverse system $(\mathcal{K}'_{l, m})_{l \geq m}$ is eventually constant, say with value $\mathcal{K}'_m$, \item[(b)] the system $(\mathcal{K}'_m/\mathcal{I}^n\mathcal{K}'_m)_{m \geq n}$ is eventually constant, say with value $\mathcal{K}_n$, \item[(c)] the system $(\mathcal{K}_n)$ forms an object of $\textit{Coh}(X, \mathcal{I})$, and \item[(d)] this object is the kernel of $\alpha$. \end{enumerate} To see (a), (b), and (c) we may work affine locally, say $X = \Spec(A)$ and $\mathcal{I}$ corresponds to the ideal $I \subset A$. By Lemma \ref{lemma-inverse-systems-affine} $\alpha$ corresponds to a map $f : M \to N$ of finite $A^\wedge$-modules. Denote $K = \Ker(f)$. Note that $A^\wedge$ is a Noetherian ring (Algebra, Lemma \ref{algebra-lemma-completion-Noetherian-Noetherian}). Choose an integer $c \geq 0$ such that $K \cap I^n M \subset I^{n - c}K$ for $n \geq c$ (Algebra, Lemma \ref{algebra-lemma-Artin-Rees}) and which satisfies Algebra, Lemma \ref{algebra-lemma-map-AR} for the map $f$ and the ideal $I^\wedge = IA^\wedge$. Then $\mathcal{K}'_{l, m}$ corresponds to the $A$-module $$ K'_{l, m} = \frac{a^{-1}(I^lN) + I^mM}{I^mM} = \frac{K + I^{l - c}f^{-1}(I^cN) + I^mM}{I^mM} = \frac{K + I^mM}{I^mM} $$ where the last equality holds if $l \geq m + c$. So $\mathcal{K}'_m$ corresponds to the $A$-module $K/K \cap I^mM$ and $\mathcal{K}'_m/\mathcal{I}^n\mathcal{K}'_m$ corresponds to $$ \frac{K}{K \cap I^mM + I^nK} = \frac{K}{I^nK} $$ for $m \geq n + c$ by our choice of $c$ above. Hence $\mathcal{K}_n$ corresponds to $K/I^nK$. \medskip\noindent We prove (d). It is clear from the description on affines above that the composition $(\mathcal{K}_n) \to (\mathcal{F}_n) \to (\mathcal{G}_n)$ is zero. Let $\beta : (\mathcal{H}_n) \to (\mathcal{F}_n)$ be a morphism such that $\alpha \circ \beta = 0$. Then $\mathcal{H}_l \to \mathcal{F}_l$ maps into $\Ker(\alpha_l)$. Since $\mathcal{H}_m = \mathcal{H}_l/\mathcal{I}^m\mathcal{H}_l$ for $l \geq m$ we obtain a system of maps $\mathcal{H}_m \to \mathcal{K}'_{l, m}$. Thus a map $\mathcal{H}_m \to \mathcal{K}_m'$. Since $\mathcal{H}_n = \mathcal{H}_m/\mathcal{I}^n\mathcal{H}_m$ we obtain a system of maps $\mathcal{H}_n \to \mathcal{K}'_m/\mathcal{I}^n\mathcal{K}'_m$ and hence a map $\mathcal{H}_n \to \mathcal{K}_n$ as desired. \medskip\noindent To finish the proof of (1) we still have to show that $\Coim = \Im$ in $\textit{Coh}(X, \mathcal{I})$. We have seen above that taking kernels and cokernels commutes, over affines, with the description of $\textit{Coh}(X, \mathcal{I})$ as a category of modules. Since $\Im = \Coim$ holds in the category of modules this gives $\Coim = \Im$ in $\textit{Coh}(X, \mathcal{I})$. Parts (2) and (3) of the lemma are immediate from our construction of kernels and cokernels. \end{proof} \begin{lemma} \label{lemma-inverse-systems-surjective} Let $X$ be a Noetherian scheme and let $\mathcal{I} \subset \mathcal{O}_X$ be a quasi-coherent sheaf of ideals. A map $(\mathcal{F}_n) \to (\mathcal{G}_n)$ is surjective in $\textit{Coh}(X, \mathcal{I})$ if and only if $\mathcal{F}_1 \to \mathcal{G}_1$ is surjective. \end{lemma} \begin{proof} Omitted. Hint: Look on affine opens, use Lemma \ref{lemma-inverse-systems-affine}, and use Algebra, Lemma \ref{algebra-lemma-NAK}. \end{proof} \noindent Let $X$ be a Noetherian scheme and let $\mathcal{I} \subset \mathcal{O}_X$ be a quasi-coherent sheaf of ideals. There is a functor \begin{equation} \label{equation-completion-functor} \textit{Coh}(\mathcal{O}_X) \longrightarrow \textit{Coh}(X, \mathcal{I}), \quad \mathcal{F} \longmapsto \mathcal{F}^\wedge \end{equation} which associates to the coherent $\mathcal{O}_X$-module $\mathcal{F}$ the object $\mathcal{F}^\wedge = (\mathcal{F}/\mathcal{I}^n\mathcal{F})$ of $\textit{Coh}(X, \mathcal{I})$. \begin{lemma} \label{lemma-exact} The functor (\ref{equation-completion-functor}) is exact. \end{lemma} \begin{proof} It suffices to check this locally on $X$. Hence we may assume $X$ is affine, i.e., we have a situation as in Lemma \ref{lemma-inverse-systems-affine}. The functor is the functor $\text{Mod}^{fg}_A \to \text{Mod}^{fg}_{A^\wedge}$ which associates to a finite $A$-module $M$ the completion $M^\wedge$. Thus the result follows from Algebra, Lemma \ref{algebra-lemma-completion-flat}. \end{proof} \begin{lemma} \label{lemma-completion-internal-hom} Let $X$ be a Noetherian scheme and let $\mathcal{I} \subset \mathcal{O}_X$ be a quasi-coherent sheaf of ideals. Let $\mathcal{F}$, $\mathcal{G}$ be coherent $\mathcal{O}_X$-modules. Set $\mathcal{H} = \SheafHom_{\mathcal{O}_X}(\mathcal{G}, \mathcal{F})$. Then $$ \lim H^0(X, \mathcal{H}/\mathcal{I}^n\mathcal{H}) = \Mor_{\textit{Coh}(X, \mathcal{I})} (\mathcal{G}^\wedge, \mathcal{F}^\wedge). $$ \end{lemma} \begin{proof} To prove this we may work affine locally on $X$. Hence we may assume $X = \Spec(A)$ and $\mathcal{F}$, $\mathcal{G}$ given by finite $A$-module $M$ and $N$. Then $\mathcal{H}$ corresponds to the finite $A$-module $H = \Hom_A(M, N)$. The statement of the lemma becomes the statement $$ H^\wedge = \Hom_{A^\wedge}(M^\wedge, N^\wedge) $$ via the equivalence of Lemma \ref{lemma-inverse-systems-affine}. By Algebra, Lemma \ref{algebra-lemma-completion-flat} (used 3 times) we have $$ H^\wedge = \Hom_A(M, N) \otimes_A A^\wedge = \Hom_{A^\wedge}(M \otimes_A A^\wedge, N \otimes_A A^\wedge) = \Hom_{A^\wedge}(M^\wedge, N^\wedge) $$ where the second equality uses that $A^\wedge$ is flat over $A$ (see More on Algebra, Lemma \ref{more-algebra-lemma-pseudo-coherence-and-base-change-ext}). The lemma follows. \end{proof} \noindent Let $X$ be a Noetherian scheme. Let $\mathcal{I} \subset \mathcal{O}_X$ be a quasi-coherent sheaf of ideals. We say an object $(\mathcal{F}_n)$ of $\textit{Coh}(X, \mathcal{I})$ is {\it $\mathcal{I}$-power torsion} or is {\it annihilated by a power of $\mathcal{I}$} if there exists a $c \geq 1$ such that $\mathcal{F}_n = \mathcal{F}_c$ for all $n \geq c$. If this is the case we will say that $(\mathcal{F}_n)$ is {\it annihilated by $\mathcal{I}^c$}. If $X = \Spec(A)$ is affine, then, via the equivalence of Lemma \ref{lemma-inverse-systems-affine}, these objects corresponds exactly to the finite $A$-modules annihilated by a power of $I$ or by $I^c$. \begin{lemma} \label{lemma-existence-easy} Let $X$ be a Noetherian scheme and let $\mathcal{I} \subset \mathcal{O}_X$ be a quasi-coherent sheaf of ideals. Let $\mathcal{G}$ be a coherent $\mathcal{O}_X$-module. Let $(\mathcal{F}_n)$ an object of $\textit{Coh}(X, \mathcal{I})$. \begin{enumerate} \item If $\alpha : (\mathcal{F}_n) \to \mathcal{G}^\wedge$ is a map whose kernel and cokernel are annihilated by a power of $\mathcal{I}$, then there exists a unique (up to unique isomorphism) triple $(\mathcal{F}, a, \beta)$ where \begin{enumerate} \item $\mathcal{F}$ is a coherent $\mathcal{O}_X$-module, \item $a : \mathcal{F} \to \mathcal{G}$ is an $\mathcal{O}_X$-module map whose kernel and cokernel are annihilated by a power of $\mathcal{I}$, \item $\beta : (\mathcal{F}_n) \to \mathcal{F}^\wedge$ is an isomorphism, and \item $\alpha = a^\wedge \circ \beta$. \end{enumerate} \item If $\alpha : \mathcal{G}^\wedge \to (\mathcal{F}_n)$ is a map whose kernel and cokernel are annihilated by a power of $\mathcal{I}$, then there exists a unique (up to unique isomorphism) triple $(\mathcal{F}, a, \beta)$ where \begin{enumerate} \item $\mathcal{F}$ is a coherent $\mathcal{O}_X$-module, \item $a : \mathcal{G} \to \mathcal{F}$ is an $\mathcal{O}_X$-module map whose kernel and cokernel are annihilated by a power of $\mathcal{I}$, \item $\beta : \mathcal{F}^\wedge \to (\mathcal{F}_n)$ is an isomorphism, and \item $\alpha = \beta \circ a^\wedge$. \end{enumerate} \end{enumerate} \end{lemma} \begin{proof} Proof of (1). The uniqueness implies it suffices to construct $(\mathcal{F}, a, \beta)$ Zariski locally on $X$. Thus we may assume $X = \Spec(A)$ and $\mathcal{I}$ corresponds to the ideal $I \subset A$. In this situation Lemma \ref{lemma-inverse-systems-affine} applies. Let $M'$ be the finite $A^\wedge$-module corresponding to $(\mathcal{F}_n)$. Let $N$ be the finite $A$-module corresponding to $\mathcal{G}$. Then $\alpha$ corresponds to a map $$ \varphi : M' \longrightarrow N^\wedge $$ whose kernel and cokernel are annihilated by $I^t$ for some $t$. Recall that $N^\wedge = N \otimes_A A^\wedge$ (Algebra, Lemma \ref{algebra-lemma-completion-tensor}). By More on Algebra, Lemma \ref{more-algebra-lemma-application-formal-glueing} there is an $A$-module map $\psi : M \to N$ whose kernel and cokernel are $I$-power torsion and an isomorphism $M \otimes_A A^\wedge = M'$ compatible with $\varphi$. As $N$ and $M'$ are finite modules, we conclude that $M$ is a finite $A$-module, see More on Algebra, Remark \ref{more-algebra-remark-formal-glueing-algebras}. Hence $M \otimes_A A^\wedge = M^\wedge$. We omit the verification that the triple $(M, N \to M, M^\wedge \to M')$ so obtained is unique up to unique isomorphism. \medskip\noindent The proof of (2) is exactly the same and we omit it. \end{proof} \begin{lemma} \label{lemma-torsion-hom-ext} Let $X$ be a Noetherian scheme and let $\mathcal{I} \subset \mathcal{O}_X$ be a quasi-coherent sheaf of ideals. Any object of $\textit{Coh}(X, \mathcal{I})$ which is annihilated by a power of $\mathcal{I}$ is in the essential image of (\ref{equation-completion-functor}). Moreover, if $\mathcal{F}$, $\mathcal{G}$ are in $\textit{Coh}(\mathcal{O}_X)$ and either $\mathcal{F}$ or $\mathcal{G}$ is annihilated by a power of $\mathcal{I}$, then the maps $$ \xymatrix{ \Hom_X(\mathcal{F}, \mathcal{G}) \ar[d] & \Ext_X(\mathcal{F}, \mathcal{G}) \ar[d] \\ \Hom_{\textit{Coh}(X, \mathcal{I})}(\mathcal{F}^\wedge, \mathcal{G}^\wedge) & \Ext_{\textit{Coh}(X, \mathcal{I})}(\mathcal{F}^\wedge, \mathcal{G}^\wedge) } $$ are isomorphisms. \end{lemma} \begin{proof} Suppose $(\mathcal{F}_n)$ is an object of $\textit{Coh}(X, \mathcal{I})$ which is annihilated by $\mathcal{I}^c$ for some $c \geq 1$. Then $\mathcal{F}_n \to \mathcal{F}_c$ is an isomorphism for $n \geq c$. Hence if we set $\mathcal{F} = \mathcal{F}_c$, then we see that $\mathcal{F}^\wedge \cong (\mathcal{F}_n)$. This proves the first assertion. \medskip\noindent Let $\mathcal{F}$, $\mathcal{G}$ be objects of $\textit{Coh}(\mathcal{O}_X)$ such that either $\mathcal{F}$ or $\mathcal{G}$ is annihilated by $\mathcal{I}^c$ for some $c \geq 1$. Then $\mathcal{H} = \SheafHom_{\mathcal{O}_X}(\mathcal{G}, \mathcal{F})$ is a coherent $\mathcal{O}_X$-module annihilated by $\mathcal{I}^c$. Hence we see that $$ \Hom_X(\mathcal{G}, \mathcal{F}) = H^0(X, \mathcal{H}) = \lim H^0(X, \mathcal{H}/\mathcal{I}^n\mathcal{H}) = \Mor_{\textit{Coh}(X, \mathcal{I})} (\mathcal{G}^\wedge, \mathcal{F}^\wedge). $$ see Lemma \ref{lemma-completion-internal-hom}. This proves the statement on homomorphisms. \medskip\noindent The notation $\Ext$ refers to extensions as defined in Homology, Section \ref{homology-section-extensions}. The injectivity of the map on $\Ext$'s follows immediately from the bijectivity of the map on $\Hom$'s. For surjectivity, assume $\mathcal{F}$ is annihilated by a power of $I$. Then part (1) of Lemma \ref{lemma-existence-easy} shows that given an extension $$ 0 \to \mathcal{G}^\wedge \to (\mathcal{E}_n) \to \mathcal{F}^\wedge \to 0 $$ in $\textit{Coh}(U, I\mathcal{O}_U)$ the morphism $\mathcal{G}^\wedge \to (\mathcal{E}_n)$ is isomorphic to $\mathcal{G} \to \mathcal{E}^\wedge$ for some $\mathcal{G} \to \mathcal{E}$ in $\textit{Coh}(\mathcal{O}_U)$. Similarly in the other case. \end{proof} \begin{lemma} \label{lemma-finite-over-rees-algebra} Let $X$ be a Noetherian scheme and let $\mathcal{I} \subset \mathcal{O}_X$ be a quasi-coherent sheaf of ideals. If $(\mathcal{F}_n)$ is an object of $\textit{Coh}(X, \mathcal{I})$ then $\bigoplus \Ker(\mathcal{F}_{n + 1} \to \mathcal{F}_n)$ is a finite type, graded, quasi-coherent $\bigoplus \mathcal{I}^n/\mathcal{I}^{n + 1}$-module. \end{lemma} \begin{proof} The question is local on $X$ hence we may assume $X$ is affine, i.e., we have a situation as in Lemma \ref{lemma-inverse-systems-affine}. In this case, if $(\mathcal{F}_n)$ corresponds to the finite $A^\wedge$ module $M$, then $\bigoplus \Ker(\mathcal{F}_{n + 1} \to \mathcal{F}_n)$ corresponds to $\bigoplus I^nM/I^{n + 1}M$ which is clearly a finite module over $\bigoplus I^n/I^{n + 1}$. \end{proof} \begin{lemma} \label{lemma-inverse-systems-pullback} Let $f : X \to Y$ be a morphism of Noetherian schemes. Let $\mathcal{J} \subset \mathcal{O}_Y$ be a quasi-coherent sheaf of ideals and set $\mathcal{I} = f^{-1}\mathcal{J} \mathcal{O}_X$. Then there is a right exact functor $$ f^* : \textit{Coh}(Y, \mathcal{J}) \longrightarrow \textit{Coh}(X, \mathcal{I}) $$ which sends $(\mathcal{G}_n)$ to $(f^*\mathcal{G}_n)$. If $f$ is flat, then $f^*$ is an exact functor. \end{lemma} \begin{proof} Since $f^* : \textit{Coh}(\mathcal{O}_Y) \to \textit{Coh}(\mathcal{O}_X)$ is right exact we have $$ f^*\mathcal{G}_n = f^*(\mathcal{G}_{n + 1}/\mathcal{I}^n\mathcal{G}_{n + 1}) = f^*\mathcal{G}_{n + 1}/f^{-1}\mathcal{I}^nf^*\mathcal{G}_{n + 1} = f^*\mathcal{G}_{n + 1}/\mathcal{J}^nf^*\mathcal{G}_{n + 1} $$ hence the pullback of a system is a system. The construction of cokernels in the proof of Lemma \ref{lemma-inverse-systems-abelian} shows that $f^* : \textit{Coh}(Y, \mathcal{J}) \to \textit{Coh}(X, \mathcal{I})$ is always right exact. If $f$ is flat, then $f^* : \textit{Coh}(\mathcal{O}_Y) \to \textit{Coh}(\mathcal{O}_X)$ is an exact functor. It follows from the construction of kernels in the proof of Lemma \ref{lemma-inverse-systems-abelian} that in this case $f^* : \textit{Coh}(Y, \mathcal{J}) \to \textit{Coh}(X, \mathcal{I})$ also transforms kernels into kernels. \end{proof} \begin{lemma} \label{lemma-inverse-systems-pullback-equivalence} Let $f : X' \to X$ be a morphism of Noetherian schemes. Let $Z \subset X$ be a closed subscheme and denote $Z' = f^{-1}Z$ the scheme theoretic inverse image. Let $\mathcal{I} \subset \mathcal{O}_X$, $\mathcal{I}' \subset \mathcal{O}_{X'}$ be the corresponding quasi-coherent sheaves of ideals. If $f$ is flat and the induced morphism $Z' \to Z$ is an isomorphism, then the pullback functor $f^* : \textit{Coh}(X, \mathcal{I}) \to \textit{Coh}(X', \mathcal{I}')$ (Lemma \ref{lemma-inverse-systems-pullback}) is an equivalence. \end{lemma} \begin{proof} If $X$ and $X'$ are affine, then this follows immediately from More on Algebra, Lemma \ref{more-algebra-lemma-neighbourhood-equivalence}. To prove it in general we let $Z_n \subset X$, $Z'_n \subset X'$ be the $n$th infinitesimal neighbourhoods of $Z$, $Z'$. The induced morphism $Z_n \to Z'_n$ is a homeomorphism on underlying topological spaces. On the other hand, if $z' \in Z'$ maps to $z \in Z$, then the ring map $\mathcal{O}_{X, z} \to \mathcal{O}_{X', z'}$ is flat and induces an isomorphism $\mathcal{O}_{X, z}/\mathcal{I}_z \to \mathcal{O}_{X', z'}/\mathcal{I}'_{z'}$. Hence it induces an isomorphism $\mathcal{O}_{X, z}/\mathcal{I}_z^n \to \mathcal{O}_{X', z'}/(\mathcal{I}'_{z'})^n$ for all $n \geq 1$ for example by More on Algebra, Lemma \ref{more-algebra-lemma-neighbourhood-isomorphism}. Thus $Z'_n \to Z_n$ is an isomorphism of schemes. Thus $f^*$ induces an equivalence between the category of coherent $\mathcal{O}_X$-modules annihilated by $\mathcal{I}^n$ and the category of coherent $\mathcal{O}_{X'}$-modules annihilated by $(\mathcal{I}')^n$, see Lemma \ref{lemma-i-star-equivalence}. This clearly implies the lemma. \end{proof} \begin{lemma} \label{lemma-inverse-systems-ideals-equivalence} Let $X$ be a Noetherian scheme. Let $\mathcal{I}, \mathcal{J} \subset \mathcal{O}_X$ be quasi-coherent sheaves of ideals. If $V(\mathcal{I}) = V(\mathcal{J})$ is the same closed subset of $X$, then $\textit{Coh}(X, \mathcal{I})$ and $\textit{Coh}(X, \mathcal{J})$ are equivalent. \end{lemma} \begin{proof} First, assume $X = \Spec(A)$ is affine. Let $I, J \subset A$ be the ideals corresponding to $\mathcal{I}, \mathcal{J}$. Then $V(I) = V(J)$ implies we have $I^c \subset J$ and $J^d \subset I$ for some $c, d \geq 1$ by elementary properties of the Zariski topology (see Algebra, Section \ref{algebra-section-spectrum-ring} and Lemma \ref{algebra-lemma-Noetherian-power}). Hence the $I$-adic and $J$-adic completions of $A$ agree, see Algebra, Lemma \ref{algebra-lemma-change-ideal-completion}. Thus the equivalence follows from Lemma \ref{lemma-inverse-systems-affine} in this case. \medskip\noindent In general, using what we said above and the fact that $X$ is quasi-compact, to choose $c, d \geq 1$ such that $\mathcal{I}^c \subset \mathcal{J}$ and $\mathcal{J}^d \subset \mathcal{I}$. Then given an object $(\mathcal{F}_n)$ in $\textit{Coh}(X, \mathcal{I})$ we claim that the inverse system $$ (\mathcal{F}_{cn}/\mathcal{J}^n\mathcal{F}_{cn}) $$ is in $\textit{Coh}(X, \mathcal{J})$. This may be checked on the members of an affine covering; we omit the details. In the same manner we can construct an object of $\textit{Coh}(X, \mathcal{I})$ starting with an object of $\textit{Coh}(X, \mathcal{J})$. We omit the verification that these constructions define mutually quasi-inverse functors. \end{proof} \section{Grothendieck's existence theorem, I} \label{section-existence} \noindent In this section we discuss Grothendieck's existence theorem for the projective case. We will use the notion of coherent formal modules developed in Section \ref{section-coherent-formal}. The reader who is familiar with formal schemes is encouraged to read the statement and proof of the theorem in \cite{EGA}. \begin{lemma} \label{lemma-fully-faithful} Let $A$ be Noetherian ring complete with respect to an ideal $I$. Let $f : X \to \Spec(A)$ be a proper morphism. Let $\mathcal{I} = I\mathcal{O}_X$. Then the functor (\ref{equation-completion-functor}) is fully faithful. \end{lemma} \begin{proof} Let $\mathcal{F}$, $\mathcal{G}$ be coherent $\mathcal{O}_X$-modules. Then $\mathcal{H} = \SheafHom_{\mathcal{O}_X}(\mathcal{G}, \mathcal{F})$ is a coherent $\mathcal{O}_X$-module, see Modules, Lemma \ref{modules-lemma-internal-hom-locally-kernel-direct-sum}. By Lemma \ref{lemma-completion-internal-hom} the map $$ \lim_n H^0(X, \mathcal{H}/\mathcal{I}^n\mathcal{H}) \to \Mor_{\textit{Coh}(X, \mathcal{I})} (\mathcal{G}^\wedge, \mathcal{F}^\wedge) $$ is bijective. Hence fully faithfulness of (\ref{equation-completion-functor}) follows from the theorem on formal functions (Lemma \ref{lemma-spell-out-theorem-formal-functions}) for the coherent sheaf $\mathcal{H}$. \end{proof} \begin{lemma} \label{lemma-vanishing-projective} Let $A$ be Noetherian ring and $I \subset A$ an ideal. Let $f : X \to \Spec(A)$ be a proper morphism and let $\mathcal{L}$ be an $f$-ample invertible sheaf. Let $\mathcal{I} = I\mathcal{O}_X$. Let $(\mathcal{F}_n)$ be an object of $\textit{Coh}(X, \mathcal{I})$. Then there exists an integer $d_0$ such that $$ H^1(X, \Ker(\mathcal{F}_{n + 1} \to \mathcal{F}_n) \otimes \mathcal{L}^{\otimes d} ) = 0 $$ for all $n \geq 0$ and all $d \geq d_0$. \end{lemma} \begin{proof} Set $B = \bigoplus I^n/I^{n + 1}$ and $\mathcal{B} = \bigoplus \mathcal{I}^n/\mathcal{I}^{n + 1} = f^*\widetilde{B}$. By Lemma \ref{lemma-finite-over-rees-algebra} the graded quasi-coherent $\mathcal{B}$-module $\mathcal{G} = \bigoplus \Ker(\mathcal{F}_{n + 1} \to \mathcal{F}_n)$ is of finite type. Hence the lemma follows from Lemma \ref{lemma-graded-finiteness} part (2). \end{proof} \begin{lemma} \label{lemma-existence-projective} Let $A$ be Noetherian ring complete with respect to an ideal $I$. Let $f : X \to \Spec(A)$ be a projective morphism. Let $\mathcal{I} = I\mathcal{O}_X$. Then the functor (\ref{equation-completion-functor}) is an equivalence. \end{lemma} \begin{proof} We have already seen that (\ref{equation-completion-functor}) is fully faithful in Lemma \ref{lemma-fully-faithful}. Thus it suffices to show that the functor is essentially surjective. \medskip\noindent We first show that every object $(\mathcal{F}_n)$ of $\textit{Coh}(X, \mathcal{I})$ is the quotient of an object in the image of (\ref{equation-completion-functor}). Let $\mathcal{L}$ be an $f$-ample invertible sheaf on $X$. Choose $d_0$ as in Lemma \ref{lemma-vanishing-projective}. Choose a $d \geq d_0$ such that $\mathcal{F}_1 \otimes \mathcal{L}^{\otimes d}$ is globally generated by some sections $s_{1, 1}, \ldots, s_{t, 1}$. Since the transition maps of the system $$ H^0(X, \mathcal{F}_{n + 1} \otimes \mathcal{L}^{\otimes d}) \longrightarrow H^0(X, \mathcal{F}_n \otimes \mathcal{L}^{\otimes d}) $$ are surjective by the vanishing of $H^1$ we can lift $s_{1, 1}, \ldots, s_{t, 1}$ to a compatible system of global sections $s_{1, n}, \ldots, s_{t, n}$ of $\mathcal{F}_n \otimes \mathcal{L}^{\otimes d}$. These determine a compatible system of maps $$ (s_{1, n}, \ldots, s_{t, n}) : (\mathcal{L}^{\otimes -d})^{\oplus t} \longrightarrow \mathcal{F}_n $$ Using Lemma \ref{lemma-inverse-systems-surjective} we deduce that we have a surjective map $$ \left((\mathcal{L}^{\otimes -d})^{\oplus t}\right)^\wedge \longrightarrow (\mathcal{F}_n) $$ as desired. \medskip\noindent The result of the previous paragraph and the fact that $\textit{Coh}(X, \mathcal{I})$ is abelian (Lemma \ref{lemma-inverse-systems-abelian}) implies that every object of $\textit{Coh}(X, \mathcal{I})$ is a cokernel of a map between objects coming from $\textit{Coh}(\mathcal{O}_X)$. As (\ref{equation-completion-functor}) is fully faithful and exact by Lemmas \ref{lemma-fully-faithful} and \ref{lemma-exact} we conclude. \end{proof} \section{Grothendieck's existence theorem, II} \label{section-existence-proper} \noindent In this section we discuss Grothendieck's existence theorem in the proper case. Before we give the statement and proof, we need to develop a bit more theory regarding the categories $\textit{Coh}(X, \mathcal{I})$ of coherent formal modules introduced in Section \ref{section-coherent-formal}. \begin{remark} \label{remark-inverse-systems-kernel-cokernel-annihilated-by} Let $X$ be a Noetherian scheme and let $\mathcal{I}, \mathcal{K} \subset \mathcal{O}_X$ be quasi-coherent sheaves of ideals. Let $\alpha : (\mathcal{F}_n) \to (\mathcal{G}_n)$ be a morphism of $\textit{Coh}(X, \mathcal{I})$. Given an affine open $\Spec(A) = U \subset X$ with $\mathcal{I}|_U, \mathcal{K}|_U$ corresponding to ideals $I, K \subset A$ denote $\alpha_U : M \to N$ of finite $A^\wedge$-modules which corresponds to $\alpha|_U$ via Lemma \ref{lemma-inverse-systems-affine}. We claim the following are equivalent \begin{enumerate} \item there exists an integer $t \geq 1$ such that $\Ker(\alpha_n)$ and $\Coker(\alpha_n)$ are annihilated by $\mathcal{K}^t$ for all $n \geq 1$, \item for any affine open $\Spec(A) = U \subset X$ as above the modules $\Ker(\alpha_U)$ and $\Coker(\alpha_U)$ are annihilated by $K^t$ for some integer $t \geq 1$, and \item there exists a finite affine open covering $X = \bigcup U_i$ such that the conclusion of (2) holds for $\alpha_{U_i}$. \end{enumerate} If these equivalent conditions hold we will say that $\alpha$ is a {\it map whose kernel and cokernel are annihilated by a power of $\mathcal{K}$}. To see the equivalence we use the following commutative algebra fact: suppose given an exact sequence $$ 0 \to T \to M \to N \to Q \to 0 $$ of $A$-modules with $T$ and $Q$ annihilated by $K^t$ for some ideal $K \subset A$. Then for every $f, g \in K^t$ there exists a canonical map $"fg": N \to M$ such that $M \to N \to M$ is equal to multiplication by $fg$. Namely, for $y \in N$ we can pick $x \in M$ mapping to $fy$ in $N$ and then we can set $"fg"(y) = gx$. Thus it is clear that $\Ker(M/JM \to N/JN)$ and $\Coker(M/JM \to N/JN)$ are annihilated by $K^{2t}$ for any ideal $J \subset A$. \medskip\noindent Applying the commutative algebra fact to $\alpha_{U_i}$ and $J = I^n$ we see that (3) implies (1). Conversely, suppose (1) holds and $M \to N$ is equal to $\alpha_U$. Then there is a $t \geq 1$ such that $\Ker(M/I^nM \to N/I^nN)$ and $\Coker(M/I^nM \to N/I^nN)$ are annihilated by $K^t$ for all $n$. We obtain maps $"fg" : N/I^nN \to M/I^nM$ which in the limit induce a map $N \to M$ as $N$ and $M$ are $I$-adically complete. Since the composition with $N \to M \to N$ is multiplication by $fg$ we conclude that $fg$ annihilates $T$ and $Q$. In other words $T$ and $Q$ are annihilated by $K^{2t}$ as desired. \end{remark} \begin{lemma} \label{lemma-existence-tricky} Let $X$ be a Noetherian scheme. Let $\mathcal{I}, \mathcal{K} \subset \mathcal{O}_X$ be quasi-coherent sheaves of ideals. Let $X_e \subset X$ be the closed subscheme cut out by $\mathcal{K}^e$. Let $\mathcal{I}_e = \mathcal{I}\mathcal{O}_{X_e}$. Let $(\mathcal{F}_n)$ be an object of $\textit{Coh}(X, \mathcal{I})$. Assume \begin{enumerate} \item the functor $\textit{Coh}(\mathcal{O}_{X_e}) \to \textit{Coh}(X_e, \mathcal{I}_e)$ is an equivalence for all $e \geq 1$, and \item there exists a coherent sheaf $\mathcal{H}$ on $X$ and a map $\alpha : (\mathcal{F}_n) \to \mathcal{H}^\wedge$ whose kernel and cokernel are annihilated by a power of $\mathcal{K}$. \end{enumerate} Then $(\mathcal{F}_n)$ is in the essential image of (\ref{equation-completion-functor}). \end{lemma} \begin{proof} During this proof we will use without further mention that for a closed immersion $i : Z \to X$ the functor $i_*$ gives an equivalence between the category of coherent modules on $Z$ and coherent modules on $X$ annihilated by the ideal sheaf of $Z$, see Lemma \ref{lemma-i-star-equivalence}. In particular we may identify $\textit{Coh}(\mathcal{O}_{X_e})$ with the category of coherent $\mathcal{O}_X$-modules annihilated by $\mathcal{K}^e$ and $\textit{Coh}(X_e, \mathcal{I}_e)$ as the full subcategory of $\textit{Coh}(X, \mathcal{I})$ of objects annihilated by $\mathcal{K}^e$. Moreover (1) tells us these two categories are equivalent under the completion functor (\ref{equation-completion-functor}). \medskip\noindent Applying this equivalence we get a coherent $\mathcal{O}_X$-module $\mathcal{G}_e$ annihilated by $\mathcal{K}^e$ corresponding to the system $(\mathcal{F}_n/\mathcal{K}^e\mathcal{F}_n)$ of $\textit{Coh}(X, \mathcal{I})$. The maps $\mathcal{F}_n/\mathcal{K}^{e + 1}\mathcal{F}_n \to \mathcal{F}_n/\mathcal{K}^e\mathcal{F}_n$ correspond to canonical maps $\mathcal{G}_{e + 1} \to \mathcal{G}_e$ which induce isomorphisms $\mathcal{G}_{e + 1}/\mathcal{K}^e\mathcal{G}_{e + 1} \to \mathcal{G}_e$. Hence $(\mathcal{G}_e)$ is an object of $\textit{Coh}(X, \mathcal{K})$. The map $\alpha$ induces a system of maps $$ \mathcal{F}_n/\mathcal{K}^e\mathcal{F}_n \longrightarrow \mathcal{H}/(\mathcal{I}^n + \mathcal{K}^e)\mathcal{H} $$ whence maps $\mathcal{G}_e \to \mathcal{H}/\mathcal{K}^e\mathcal{H}$ (by the equivalence of categories again). Let $t \geq 1$ be an integer, which exists by assumption (2), such that $\mathcal{K}^t$ annihilates the kernel and cokernel of all the maps $\mathcal{F}_n \to \mathcal{H}/\mathcal{I}^n\mathcal{H}$. Then $\mathcal{K}^{2t}$ annihilates the kernel and cokernel of the maps $\mathcal{F}_n/\mathcal{K}^e\mathcal{F}_n \to \mathcal{H}/(\mathcal{I}^n + \mathcal{K}^e)\mathcal{H}$, see Remark \ref{remark-inverse-systems-kernel-cokernel-annihilated-by}. Whereupon we conclude that $\mathcal{K}^{4t}$ annihilates the kernel and the cokernel of the maps $$ \mathcal{G}_e \longrightarrow \mathcal{H}/\mathcal{K}^e\mathcal{H}, $$ see Remark \ref{remark-inverse-systems-kernel-cokernel-annihilated-by}. We apply Lemma \ref{lemma-existence-easy} to obtain a coherent $\mathcal{O}_X$-module $\mathcal{F}$, a map $a : \mathcal{F} \to \mathcal{H}$ and an isomorphism $\beta : (\mathcal{G}_e) \to (\mathcal{F}/\mathcal{K}^e\mathcal{F})$ in $\textit{Coh}(X, \mathcal{K})$. Working backwards, for a given $n$ the triple $(\mathcal{F}/\mathcal{I}^n\mathcal{F}, a \bmod \mathcal{I}^n, \beta \bmod \mathcal{I}^n)$ is a triple as in the lemma for the morphism $\alpha_n \bmod \mathcal{K}^e : (\mathcal{F}_n/\mathcal{K}^e\mathcal{F}_n) \to (\mathcal{H}/(\mathcal{I}^n + \mathcal{K}^e)\mathcal{H})$ of $\textit{Coh}(X, \mathcal{K})$. Thus the uniqueness in Lemma \ref{lemma-existence-easy} gives a canonical isomorphism $\mathcal{F}/\mathcal{I}^n\mathcal{F} \to \mathcal{F}_n$ compatible with all the morphisms in sight. This finishes the proof of the lemma. \end{proof} \begin{lemma} \label{lemma-inverse-systems-push-pull} Let $Y$ be a Noetherian scheme. Let $\mathcal{J}, \mathcal{K} \subset \mathcal{O}_Y$ be quasi-coherent sheaves of ideals. Let $f : X \to Y$ be a proper morphism which is an isomorphism over $V = Y \setminus V(\mathcal{K})$. Set $\mathcal{I} = f^{-1}\mathcal{J} \mathcal{O}_X$. Let $(\mathcal{G}_n)$ be an object of $\textit{Coh}(Y, \mathcal{J})$, let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module, and let $\beta : (f^*\mathcal{G}_n) \to \mathcal{F}^\wedge$ be an isomorphism in $\textit{Coh}(X, \mathcal{I})$. Then there exists a map $$ \alpha : (\mathcal{G}_n) \longrightarrow (f_*\mathcal{F})^\wedge $$ in $\textit{Coh}(Y, \mathcal{J})$ whose kernel and cokernel are annihilated by a power of $\mathcal{K}$. \end{lemma} \begin{proof} Since $f$ is a proper morphism we see that $f_*\mathcal{F}$ is a coherent $\mathcal{O}_Y$-module (Proposition \ref{proposition-proper-pushforward-coherent}). Thus the statement of the lemma makes sense. Consider the compositions $$ \gamma_n : \mathcal{G}_n \to f_*f^*\mathcal{G}_n \to f_*(\mathcal{F}/\mathcal{I}^n\mathcal{F}). $$ Here the first map is the adjunction map and the second is $f_*\beta_n$. We claim that there exists a unique $\alpha$ as in the lemma such that the compositions $$ \mathcal{G}_n \xrightarrow{\alpha_n} f_*\mathcal{F}/\mathcal{J}^nf_*\mathcal{F} \to f_*(\mathcal{F}/\mathcal{I}^n\mathcal{F}) $$ equal $\gamma_n$ for all $n$. Because of the uniqueness we may assume that $Y = \Spec(B)$ is affine. Let $J \subset B$ corresponds to the ideal $\mathcal{J}$. Set $$ M_n = H^0(X, \mathcal{F}/\mathcal{I}^n\mathcal{F}) \quad\text{and}\quad M = H^0(X, \mathcal{F}) $$ By Lemma \ref{lemma-ML-cohomology-powers-ideal} and Theorem \ref{theorem-formal-functions} the inverse limit of the modules $M_n$ equals the completion $M^\wedge = \lim M/J^nM$. Set $N_n = H^0(Y, \mathcal{G}_n)$ and $N = \lim N_n$. Via the equivalence of categories of Lemma \ref{lemma-inverse-systems-affine} the finite $B^\wedge$ modules $N$ and $M^\wedge$ correspond to $(\mathcal{G}_n)$ and $f_*\mathcal{F}^\wedge$. It follows from this that $\alpha$ has to be the morphism of $\textit{Coh}(Y, \mathcal{J})$ corresponding to the homomorphism $$ \lim \gamma_n : N = \lim_n N_n \longrightarrow \lim M_n = M^\wedge $$ of finite $B^\wedge$-modules. \medskip\noindent We still have to show that the kernel and cokernel of $\alpha$ are annihilated by a power of $\mathcal{K}$. Set $Y' = \Spec(B^\wedge)$ and $X' = Y' \times_Y X$. Let $\mathcal{K}'$, $\mathcal{J}'$, $\mathcal{G}'_n$ and $\mathcal{I}'$, $\mathcal{F}'$ be the pullback of $\mathcal{K}$, $\mathcal{J}$, $\mathcal{G}_n$ and $\mathcal{I}$, $\mathcal{F}$, to $Y'$ and $X'$. The projection morphism $f' : X' \to Y'$ is the base change of $f$ by $Y' \to Y$. Note that $Y' \to Y$ is a flat morphism of schemes as $B \to B^\wedge$ is flat by Algebra, Lemma \ref{algebra-lemma-completion-flat}. Hence $f'_*\mathcal{F}'$, resp.\ $f'_*(f')^*\mathcal{G}_n'$ is the pullback of $f_*\mathcal{F}$, resp.\ $f_*f^*\mathcal{G}_n$ to $Y'$ by Lemma \ref{lemma-flat-base-change-cohomology}. The uniqueness of our construction shows the pullback of $\alpha$ to $Y'$ is the corresponding map $\alpha'$ constructed for the situation on $Y'$. Moreover, to check that the kernel and cokernel of $\alpha$ are annihilated by $\mathcal{K}^t$ it suffices to check that the kernel and cokernel of $\alpha'$ are annihilated by $(\mathcal{K}')^t$. Namely, to see this we need to check this for kernels and cokernels of the maps $\alpha_n$ and $\alpha'_n$ (see Remark \ref{remark-inverse-systems-kernel-cokernel-annihilated-by}) and the ring map $B \to B^\wedge$ induces an equivalence of categories between modules annihilated by $J^n$ and $(J')^n$, see More on Algebra, Lemma \ref{more-algebra-lemma-neighbourhood-equivalence}. Thus we may assume $B$ is complete with respect to $J$. \medskip\noindent Assume $Y = \Spec(B)$ is affine, $\mathcal{J}$ corresponds to the ideal $J \subset B$, and $B$ is complete with respect to $J$. In this case $(\mathcal{G}_n)$ is in the essential image of the functor $\textit{Coh}(\mathcal{O}_Y) \to \textit{Coh}(Y, \mathcal{J})$. Say $\mathcal{G}$ is a coherent $\mathcal{O}_Y$-module such that $(\mathcal{G}_n) = \mathcal{G}^\wedge$. Note that $f^*(\mathcal{G}^\wedge) = (f^*\mathcal{G})^\wedge$. Hence Lemma \ref{lemma-fully-faithful} tells us that $\beta$ comes from an isomorphism $b : f^*\mathcal{G} \to \mathcal{F}$ and $\alpha$ is the completion functor applied to $$ \mathcal{G} \to f_*f^*\mathcal{G} \cong f_*\mathcal{F} $$ Hence we are trying to verify that the kernel and cokernel of the adjunction map $c : \mathcal{G} \to f_*f^*\mathcal{G}$ are annihilated by a power of $\mathcal{K}$. However, since the restriction $f|_{f^{-1}(V)} : f^{-1}(V) \to V$ is an isomorphism we see that $c|_V$ is an isomorphism. Thus the coherent sheaves $\Ker(c)$ and $\Coker(c)$ are supported on $V(\mathcal{K})$ hence are annihilated by a power of $\mathcal{K}$ (Lemma \ref{lemma-power-ideal-kills-sheaf}) as desired. \end{proof} \noindent The following proposition is the form of Grothendieck's existence theorem which is most often used in practice. \begin{proposition} \label{proposition-existence-proper} Let $A$ be a Noetherian ring complete with respect to an ideal $I$. Let $f : X \to \Spec(A)$ be a proper morphism of schemes. Set $\mathcal{I} = I\mathcal{O}_X$. Then the functor (\ref{equation-completion-functor}) is an equivalence. \end{proposition} \begin{proof} We have already seen that (\ref{equation-completion-functor}) is fully faithful in Lemma \ref{lemma-fully-faithful}. Thus it suffices to show that the functor is essentially surjective. \medskip\noindent Consider the collection $\Xi$ of quasi-coherent sheaves of ideals $\mathcal{K} \subset \mathcal{O}_X$ such that every object $(\mathcal{F}_n)$ annihilated by $\mathcal{K}$ is in the essential image. We want to show $(0)$ is in $\Xi$. If not, then since $X$ is Noetherian there exists a maximal quasi-coherent sheaf of ideals $\mathcal{K}$ not in $\Xi$, see Lemma \ref{lemma-acc-coherent}. After replacing $X$ by the closed subscheme of $X$ corresponding to $\mathcal{K}$ we may assume that every nonzero $\mathcal{K}$ is in $\Xi$. (This uses the correspondence by coherent modules annihilated by $\mathcal{K}$ and coherent modules on the closed subscheme corresponding to $\mathcal{K}$, see Lemma \ref{lemma-i-star-equivalence}.) Let $(\mathcal{F}_n)$ be an object of $\textit{Coh}(X, \mathcal{I})$. We will show that this object is in the essential image of the functor (\ref{equation-completion-functor}), thereby completion the proof of the proposition. \medskip\noindent Apply Chow's lemma (Lemma \ref{lemma-chow-Noetherian}) to find a proper surjective morphism $f : X' \to X$ which is an isomorphism over a dense open $U \subset X$ such that $X'$ is projective over $A$. Let $\mathcal{K}$ be the quasi-coherent sheaf of ideals cutting out the reduced complement $X \setminus U$. By the projective case of Grothendieck's existence theorem (Lemma \ref{lemma-existence-projective}) there exists a coherent module $\mathcal{F}'$ on $X'$ such that $(\mathcal{F}')^\wedge \cong (f^*\mathcal{F}_n)$. By Proposition \ref{proposition-proper-pushforward-coherent} the $\mathcal{O}_X$-module $\mathcal{H} = f_*\mathcal{F}'$ is coherent and by Lemma \ref{lemma-inverse-systems-push-pull} there exists a morphism $(\mathcal{F}_n) \to \mathcal{H}^\wedge$ of $\textit{Coh}(X, \mathcal{I})$ whose kernel and cokernel are annihilated by a power of $\mathcal{K}$. The powers $\mathcal{K}^e$ are all in $\Xi$ so that (\ref{equation-completion-functor}) is an equivalence for the closed subschemes $X_e = V(\mathcal{K}^e)$. We conclude by Lemma \ref{lemma-existence-tricky}. \end{proof} \section{Being proper over a base} \label{section-proper-over-base} \noindent This is just a short section to point out some useful features of closed subsets proper over a base and finite type, quasi-coherent modules with support proper over a base. \begin{lemma} \label{lemma-closed-proper-over-base} Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let $Z \subset X$ be a closed subset. The following are equivalent \begin{enumerate} \item the morphism $Z \to S$ is proper if $Z$ is endowed with the reduced induced closed subscheme structure (Schemes, Definition \ref{schemes-definition-reduced-induced-scheme}), \item for some closed subscheme structure on $Z$ the morphism $Z \to S$ is proper, \item for any closed subscheme structure on $Z$ the morphism $Z \to S$ is proper. \end{enumerate} \end{lemma} \begin{proof} The implications (3) $\Rightarrow$ (1) and (1) $\Rightarrow$ (2) are immediate. Thus it suffices to prove that (2) implies (3). We urge the reader to find their own proof of this fact. Let $Z'$ and $Z''$ be closed subscheme structures on $Z$ such that $Z' \to S$ is proper. We have to show that $Z'' \to S$ is proper. Let $Z''' = Z' \cup Z''$ be the scheme theoretic union, see Morphisms, Definition \ref{morphisms-definition-scheme-theoretic-intersection-union}. Then $Z'''$ is another closed subscheme structure on $Z$. This follows for example from the description of scheme theoretic unions in Morphisms, Lemma \ref{morphisms-lemma-scheme-theoretic-union}. Since $Z'' \to Z'''$ is a closed immersion it suffices to prove that $Z''' \to S$ is proper (see Morphisms, Lemmas \ref{morphisms-lemma-closed-immersion-proper} and \ref{morphisms-lemma-composition-proper}). The morphism $Z' \to Z'''$ is a bijective closed immersion and in particular surjective and universally closed. Then the fact that $Z' \to S$ is separated implies that $Z''' \to S$ is separated, see Morphisms, Lemma \ref{morphisms-lemma-image-universally-closed-separated}. Moreover $Z''' \to S$ is locally of finite type as $X \to S$ is locally of finite type (Morphisms, Lemmas \ref{morphisms-lemma-immersion-locally-finite-type} and \ref{morphisms-lemma-composition-finite-type}). Since $Z' \to S$ is quasi-compact and $Z' \to Z'''$ is a homeomorphism we see that $Z''' \to S$ is quasi-compact. Finally, since $Z' \to S$ is universally closed, we see that the same thing is true for $Z''' \to S$ by Morphisms, Lemma \ref{morphisms-lemma-image-proper-is-proper}. This finishes the proof. \end{proof} \begin{definition} \label{definition-proper-over-base} Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let $Z \subset X$ be a closed subset. We say {\it $Z$ is proper over $S$} if the equivalent conditions of Lemma \ref{lemma-closed-proper-over-base} are satisfied. \end{definition} \noindent The lemma used in the definition above is false if the morphism $f : X \to S$ is not locally of finite type. Therefore we urge the reader not to use this terminology if $f$ is not locally of finite type. \begin{lemma} \label{lemma-closed-closed-proper-over-base} Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let $Y \subset Z \subset X$ be closed subsets. If $Z$ is proper over $S$, then the same is true for $Y$. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma} \label{lemma-base-change-closed-proper-over-base} Consider a cartesian diagram of schemes $$ \xymatrix{ X' \ar[d]_{f'} \ar[r]_{g'} & X \ar[d]^f \\ S' \ar[r]^g & S } $$ with $f$ locally of finite type. If $Z$ is a closed subset of $X$ proper over $S$, then $(g')^{-1}(Z)$ is a closed subset of $X'$ proper over $S'$. \end{lemma} \begin{proof} Observe that the statement makes sense as $f'$ is locally of finite type by Morphisms, Lemma \ref{morphisms-lemma-base-change-finite-type}. Endow $Z$ with the reduced induced closed subscheme structure. Denote $Z' = (g')^{-1}(Z)$ the scheme theoretic inverse image (Schemes, Definition \ref{schemes-definition-inverse-image-closed-subscheme}). Then $Z' = X' \times_X Z = (S' \times_S X) \times_X Z = S' \times_S Z$ is proper over $S'$ as a base change of $Z$ over $S$ (Morphisms, Lemma \ref{morphisms-lemma-base-change-proper}). \end{proof} \begin{lemma} \label{lemma-functoriality-closed-proper-over-base} Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of schemes which are locally of finite type over $S$. \begin{enumerate} \item If $Y$ is separated over $S$ and $Z \subset X$ is a closed subset proper over $S$, then $f(Z)$ is a closed subset of $Y$ proper over $S$. \item If $f$ is universally closed and $Z \subset X$ is a closed subset proper over $S$, then $f(Z)$ is a closed subset of $Y$ proper over $S$. \item If $f$ is proper and $Z \subset Y$ is a closed subset proper over $S$, then $f^{-1}(Z)$ is a closed subset of $X$ proper over $S$. \end{enumerate} \end{lemma} \begin{proof} Proof of (1). Assume $Y$ is separated over $S$ and $Z \subset X$ is a closed subset proper over $S$. Endow $Z$ with the reduced induced closed subscheme structure and apply Morphisms, Lemma \ref{morphisms-lemma-scheme-theoretic-image-is-proper} to $Z \to Y$ over $S$ to conclude. \medskip\noindent Proof of (2). Assume $f$ is universally closed and $Z \subset X$ is a closed subset proper over $S$. Endow $Z$ and $Z' = f(Z)$ with their reduced induced closed subscheme structures. We obtain an induced morphism $Z \to Z'$. Denote $Z'' = f^{-1}(Z')$ the scheme theoretic inverse image (Schemes, Definition \ref{schemes-definition-inverse-image-closed-subscheme}). Then $Z'' \to Z'$ is universally closed as a base change of $f$ (Morphisms, Lemma \ref{morphisms-lemma-base-change-proper}). Hence $Z \to Z'$ is universally closed as a composition of the closed immersion $Z \to Z''$ and $Z'' \to Z'$ (Morphisms, Lemmas \ref{morphisms-lemma-closed-immersion-proper} and \ref{morphisms-lemma-composition-proper}). We conclude that $Z' \to S$ is separated by Morphisms, Lemma \ref{morphisms-lemma-image-universally-closed-separated}. Since $Z \to S$ is quasi-compact and $Z \to Z'$ is surjective we see that $Z' \to S$ is quasi-compact. Since $Z' \to S$ is the composition of $Z' \to Y$ and $Y \to S$ we see that $Z' \to S$ is locally of finite type (Morphisms, Lemmas \ref{morphisms-lemma-immersion-locally-finite-type} and \ref{morphisms-lemma-composition-finite-type}). Finally, since $Z \to S$ is universally closed, we see that the same thing is true for $Z' \to S$ by Morphisms, Lemma \ref{morphisms-lemma-image-proper-is-proper}. This finishes the proof. \medskip\noindent Proof of (3). Assume $f$ is proper and $Z \subset Y$ is a closed subset proper over $S$. Endow $Z$ with the reduced induced closed subscheme structure. Denote $Z' = f^{-1}(Z)$ the scheme theoretic inverse image (Schemes, Definition \ref{schemes-definition-inverse-image-closed-subscheme}). Then $Z' \to Z$ is proper as a base change of $f$ (Morphisms, Lemma \ref{morphisms-lemma-base-change-proper}). Whence $Z' \to S$ is proper as the composition of $Z' \to Z$ and $Z \to S$ (Morphisms, Lemma \ref{morphisms-lemma-composition-proper}). This finishes the proof. \end{proof} \begin{lemma} \label{lemma-union-closed-proper-over-base} Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let $Z_i \subset X$, $i = 1, \ldots, n$ be closed subsets. If $Z_i$, $i = 1, \ldots, n$ are proper over $S$, then the same is true for $Z_1 \cup \ldots \cup Z_n$. \end{lemma} \begin{proof} Endow $Z_i$ with their reduced induced closed subscheme structures. The morphism $$ Z_1 \amalg \ldots \amalg Z_n \longrightarrow X $$ is finite by Morphisms, Lemmas \ref{morphisms-lemma-closed-immersion-finite} and \ref{morphisms-lemma-finite-union-finite}. As finite morphisms are universally closed (Morphisms, Lemma \ref{morphisms-lemma-finite-proper}) and since $Z_1 \amalg \ldots \amalg Z_n$ is proper over $S$ we conclude by Lemma \ref{lemma-functoriality-closed-proper-over-base} part (2) that the image $Z_1 \cup \ldots \cup Z_n$ is proper over $S$. \end{proof} \noindent Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let $\mathcal{F}$ be a finite type, quasi-coherent $\mathcal{O}_X$-module. Then the support $\text{Supp}(\mathcal{F})$ of $\mathcal{F}$ is a closed subset of $X$, see Morphisms, Lemma \ref{morphisms-lemma-support-finite-type}. Hence it makes sense to say ``the support of $\mathcal{F}$ is proper over $S$''. \begin{lemma} \label{lemma-module-support-proper-over-base} Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let $\mathcal{F}$ be a finite type, quasi-coherent $\mathcal{O}_X$-module. The following are equivalent \begin{enumerate} \item the support of $\mathcal{F}$ is proper over $S$, \item the scheme theoretic support of $\mathcal{F}$ (Morphisms, Definition \ref{morphisms-definition-scheme-theoretic-support}) is proper over $S$, and \item there exists a closed subscheme $Z \subset X$ and a finite type, quasi-coherent $\mathcal{O}_Z$-module $\mathcal{G}$ such that (a) $Z \to S$ is proper, and (b) $(Z \to X)_*\mathcal{G} = \mathcal{F}$. \end{enumerate} \end{lemma} \begin{proof} The support $\text{Supp}(\mathcal{F})$ of $\mathcal{F}$ is a closed subset of $X$, see Morphisms, Lemma \ref{morphisms-lemma-support-finite-type}. Hence we can apply Definition \ref{definition-proper-over-base}. Since the scheme theoretic support of $\mathcal{F}$ is a closed subscheme whose underlying closed subset is $\text{Supp}(\mathcal{F})$ we see that (1) and (2) are equivalent by Definition \ref{definition-proper-over-base}. It is clear that (2) implies (3). Conversely, if (3) is true, then $\text{Supp}(\mathcal{F}) \subset Z$ (an inclusion of closed subsets of $X$) and hence $\text{Supp}(\mathcal{F})$ is proper over $S$ for example by Lemma \ref{lemma-closed-closed-proper-over-base}. \end{proof} \begin{lemma} \label{lemma-base-change-module-support-proper-over-base} Consider a cartesian diagram of schemes $$ \xymatrix{ X' \ar[d]_{f'} \ar[r]_{g'} & X \ar[d]^f \\ S' \ar[r]^g & S } $$ with $f$ locally of finite type. Let $\mathcal{F}$ be a finite type, quasi-coherent $\mathcal{O}_X$-module. If the support of $\mathcal{F}$ is proper over $S$, then the support of $(g')^*\mathcal{F}$ is proper over $S'$. \end{lemma} \begin{proof} Observe that the statement makes sense because $(g')*\mathcal{F}$ is of finite type by Modules, Lemma \ref{modules-lemma-pullback-finite-type}. We have $\text{Supp}((g')^*\mathcal{F}) = (g')^{-1}(\text{Supp}(\mathcal{F}))$ by Morphisms, Lemma \ref{morphisms-lemma-support-finite-type}. Thus the lemma follows from Lemma \ref{lemma-base-change-closed-proper-over-base}. \end{proof} \begin{lemma} \label{lemma-cat-module-support-proper-over-base} Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let $\mathcal{F}$, $\mathcal{G}$ be finite type, quasi-coherent $\mathcal{O}_X$-module. \begin{enumerate} \item If the supports of $\mathcal{F}$, $\mathcal{G}$ are proper over $S$, then the same is true for $\mathcal{F} \oplus \mathcal{G}$, for any extension of $\mathcal{G}$ by $\mathcal{F}$, for $\Im(u)$ and $\Coker(u)$ given any $\mathcal{O}_X$-module map $u : \mathcal{F} \to \mathcal{G}$, and for any quasi-coherent quotient of $\mathcal{F}$ or $\mathcal{G}$. \item If $S$ is locally Noetherian, then the category of coherent $\mathcal{O}_X$-modules with support proper over $S$ is a Serre subcategory (Homology, Definition \ref{homology-definition-serre-subcategory}) of the abelian category of coherent $\mathcal{O}_X$-modules. \end{enumerate} \end{lemma} \begin{proof} Proof of (1). Let $Z$, $Z'$ be the support of $\mathcal{F}$ and $\mathcal{G}$. Then all the sheaves mentioned in (1) have support contained in $Z \cup Z'$. Thus the assertion itself is clear from Lemmas \ref{lemma-closed-closed-proper-over-base} and \ref{lemma-union-closed-proper-over-base} provided we check that these sheaves are finite type and quasi-coherent. For quasi-coherence we refer the reader to Schemes, Section \ref{schemes-section-quasi-coherent}. For ``finite type'' we suggest the reader take a look at Modules, Section \ref{modules-section-finite-type}. \medskip\noindent Proof of (2). The proof is the same as the proof of (1). Note that the assertions make sense as $X$ is locally Noetherian by Morphisms, Lemma \ref{morphisms-lemma-finite-type-noetherian} and by the description of the category of coherent modules in Section \ref{section-coherent-sheaves}. \end{proof} \begin{lemma} \label{lemma-support-proper-over-base-pushforward} Let $S$ be a locally Noetherian scheme. Let $f : X \to S$ be a morphism of schemes which is locally of finite type. Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module with support proper over $S$. Then $R^pf_*\mathcal{F}$ is a coherent $\mathcal{O}_S$-module for all $p \geq 0$. \end{lemma} \begin{proof} By Lemma \ref{lemma-module-support-proper-over-base} there exists a closed immersion $i : Z \to X$ and a finite type, quasi-coherent $\mathcal{O}_Z$-module $\mathcal{G}$ such that (a) $g = f \circ i : Z \to S$ is proper, and (b) $i_*\mathcal{G} = \mathcal{F}$. We see that $R^pg_*\mathcal{G}$ is coherent on $S$ by Proposition \ref{proposition-proper-pushforward-coherent}. On the other hand, $R^qi_*\mathcal{G} = 0$ for $q > 0$ (Lemma \ref{lemma-finite-pushforward-coherent}). By Cohomology, Lemma \ref{cohomology-lemma-relative-Leray} we get $R^pf_*\mathcal{F} = R^pg_*\mathcal{G}$ which concludes the proof. \end{proof} \begin{lemma} \label{lemma-systems-with-proper-support} Let $S$ be a Noetherian scheme. Let $f : X \to S$ be a finite type morphism. Let $\mathcal{I} \subset \mathcal{O}_X$ be a quasi-coherent sheaf of ideals. The following are Serre subcategories of $\textit{Coh}(X, \mathcal{I})$ \begin{enumerate} \item the full subcategory of $\textit{Coh}(X, \mathcal{I})$ consisting of those objects $(\mathcal{F}_n)$ such that the support of $\mathcal{F}_1$ is proper over $S$, \item the full subcategory of $\textit{Coh}(X, \mathcal{I})$ consisting of those objects $(\mathcal{F}_n)$ such that there exists a closed subscheme $Z \subset X$ proper over $S$ with $\mathcal{I}_Z \mathcal{F}_n = 0$ for all $n \geq 1$. \end{enumerate} \end{lemma} \begin{proof} We will use the criterion of Homology, Lemma \ref{homology-lemma-characterize-serre-subcategory}. Moreover, we will use that if $0 \to (\mathcal{G}_n) \to (\mathcal{F}_n) \to (\mathcal{H}_n) \to 0$ is a short exact sequence of $\textit{Coh}(X, \mathcal{I})$, then (a) $\mathcal{G}_n \to \mathcal{F}_n \to \mathcal{H}_n \to 0$ is exact for all $n \geq 1$ and (b) $\mathcal{G}_n$ is a quotient of $\Ker(\mathcal{F}_m \to \mathcal{H}_m)$ for some $m \geq n$. See proof of Lemma \ref{lemma-inverse-systems-abelian}. \medskip\noindent Proof of (1). Let $(\mathcal{F}_n)$ be an object of $\textit{Coh}(X, \mathcal{I})$. Then $\text{Supp}(\mathcal{F}_n) = \text{Supp}(\mathcal{F}_1)$ for all $n \geq 1$. Hence by remarks (a) and (b) above we see that for any short exact sequence $0 \to (\mathcal{G}_n) \to (\mathcal{F}_n) \to (\mathcal{H}_n) \to 0$ of $\textit{Coh}(X, \mathcal{I})$ we have $\text{Supp}(\mathcal{G}_1) \cup \text{Supp}(\mathcal{H}_1) = \text{Supp}(\mathcal{F}_1)$. This proves that the category defined in (1) is a Serre subcategory of $\textit{Coh}(X, \mathcal{I})$. \medskip\noindent Proof of (2). Here we argue the same way. Let $0 \to (\mathcal{G}_n) \to (\mathcal{F}_n) \to (\mathcal{H}_n) \to 0$ be a short exact sequence of $\textit{Coh}(X, \mathcal{I})$. If $Z \subset X$ is a closed subscheme and $\mathcal{I}_Z$ annihilates $\mathcal{F}_n$ for all $n$, then $\mathcal{I}_Z$ annihilates $\mathcal{G}_n$ and $\mathcal{H}_n$ for all $n$ by (a) and (b) above. Hence if $Z \to S$ is proper, then we conclude that the category defined in (2) is closed under taking sub and quotient objects inside of $\textit{Coh}(X, \mathcal{I})$. Finally, suppose that $Z \subset X$ and $Y \subset X$ are closed subschemes proper over $S$ such that $\mathcal{I}_Z \mathcal{G}_n = 0$ and $\mathcal{I}_Y \mathcal{H}_n = 0$ for all $n \geq 1$. Then it follows from (a) above that $\mathcal{I}_{Z \cup Y} = \mathcal{I}_Z \cdot \mathcal{I}_Y$ annihilates $\mathcal{F}_n$ for all $n$. By Lemma \ref{lemma-union-closed-proper-over-base} (and via Definition \ref{definition-proper-over-base} which tells us we may choose an arbitrary scheme structure used on the union) we see that $Z \cup Y \to S$ is proper and the proof is complete. \end{proof} \section{Grothendieck's existence theorem, III} \label{section-existence-proper-support} \noindent To state the general version of Grothendieck's existence theorem we introduce a bit more notation. Let $A$ be a Noetherian ring complete with respect to an ideal $I$. Let $f : X \to \Spec(A)$ be a separated finite type morphism of schemes. Set $\mathcal{I} = I\mathcal{O}_X$. In this situation we let $$ \textit{Coh}_{\text{support proper over } A}(\mathcal{O}_X) $$ be the full subcategory of $\textit{Coh}(\mathcal{O}_X)$ consisting of those coherent $\mathcal{O}_X$-modules whose support is proper over $\Spec(A)$. This is a Serre subcategory of $\textit{Coh}(\mathcal{O}_X)$, see Lemma \ref{lemma-cat-module-support-proper-over-base}. Similarly, we let $$ \textit{Coh}_{\text{support proper over } A}(X, \mathcal{I}) $$ be the full subcategory of $\textit{Coh}(X, \mathcal{I})$ consisting of those objects $(\mathcal{F}_n)$ such that the support of $\mathcal{F}_1$ is proper over $\Spec(A)$. This is a Serre subcategory of $\textit{Coh}(X, \mathcal{I})$ by Lemma \ref{lemma-systems-with-proper-support} part (1). Since the support of a quotient module is contained in the support of the module, it follows that (\ref{equation-completion-functor}) induces a functor \begin{equation} \label{equation-completion-functor-proper-over-A} \textit{Coh}_{\text{support proper over }A}(\mathcal{O}_X) \longrightarrow \textit{Coh}_{\text{support proper over }A}(X, \mathcal{I}) \end{equation} We are now ready to state the main theorem of this section. \begin{theorem}[Grothendieck's existence theorem] \label{theorem-grothendieck-existence} \begin{reference} \cite[III Theorem 5.1.5]{EGA} \end{reference} Let $A$ be a Noetherian ring complete with respect to an ideal $I$. Let $X$ be a separated, finite type scheme over $A$. Then the functor (\ref{equation-completion-functor-proper-over-A}) $$ \textit{Coh}_{\text{support proper over }A}(\mathcal{O}_X) \longrightarrow \textit{Coh}_{\text{support proper over }A}(X, \mathcal{I}) $$ is an equivalence. \end{theorem} \begin{proof} We will use the equivalence of categories of Lemma \ref{lemma-i-star-equivalence} without further mention. For a closed subscheme $Z \subset X$ proper over $A$ in this proof we will say a coherent module on $X$ is ``supported on $Z$'' if it is annihilated by the ideal sheaf of $Z$ or equivalently if it is the pushforward of a coherent module on $Z$. By Proposition \ref{proposition-existence-proper} we know that the result is true for the functor between coherent modules and systems of coherent modules supported on $Z$. Hence it suffices to show that every object of $\textit{Coh}_{\text{support proper over }A}(\mathcal{O}_X)$ and every object of $\textit{Coh}_{\text{support proper over }A}(X, \mathcal{I})$ is supported on a closed subscheme $Z \subset X$ proper over $A$. This holds by definition for objects of $\textit{Coh}_{\text{support proper over }A}(\mathcal{O}_X)$. We will prove this statement for objects of $\textit{Coh}_{\text{support proper over }A}(X, \mathcal{I})$ using the method of proof of Proposition \ref{proposition-existence-proper}. We urge the reader to read that proof first. \medskip\noindent Consider the collection $\Xi$ of quasi-coherent sheaves of ideals $\mathcal{K} \subset \mathcal{O}_X$ such that the statement holds for every object $(\mathcal{F}_n)$ of $\textit{Coh}_{\text{support proper over }A}(X, \mathcal{I})$ annihilated by $\mathcal{K}$. We want to show $(0)$ is in $\Xi$. If not, then since $X$ is Noetherian there exists a maximal quasi-coherent sheaf of ideals $\mathcal{K}$ not in $\Xi$, see Lemma \ref{lemma-acc-coherent}. After replacing $X$ by the closed subscheme of $X$ corresponding to $\mathcal{K}$ we may assume that every nonzero $\mathcal{K}$ is in $\Xi$. Let $(\mathcal{F}_n)$ be an object of $\textit{Coh}_{\text{support proper over }A}(X, \mathcal{I})$. We will show that this object is supported on a closed subscheme $Z \subset X$ proper over $A$, thereby completing the proof of the theorem. \medskip\noindent Apply Chow's lemma (Lemma \ref{lemma-chow-Noetherian}) to find a proper surjective morphism $f : Y \to X$ which is an isomorphism over a dense open $U \subset X$ such that $Y$ is H-quasi-projective over $A$. Choose an open immersion $j : Y \to Y'$ with $Y'$ projective over $A$, see Morphisms, Lemma \ref{morphisms-lemma-H-quasi-projective-open-H-projective}. Observe that $$ \text{Supp}(f^*\mathcal{F}_n) = f^{-1}\text{Supp}(\mathcal{F}_n) = f^{-1}\text{Supp}(\mathcal{F}_1) $$ The first equality by Morphisms, Lemma \ref{morphisms-lemma-support-finite-type}. By assumption and Lemma \ref{lemma-functoriality-closed-proper-over-base} part (3) we see that $f^{-1}\text{Supp}(\mathcal{F}_1)$ is proper over $A$. Hence the image of $f^{-1}\text{Supp}(\mathcal{F}_1)$ under $j$ is closed in $Y'$ by Lemma \ref{lemma-functoriality-closed-proper-over-base} part (1). Thus $\mathcal{F}'_n = j_*f^*\mathcal{F}_n$ is coherent on $Y'$ by Lemma \ref{lemma-pushforward-coherent-on-open}. It follows that $(\mathcal{F}_n')$ is an object of $\textit{Coh}(Y', I\mathcal{O}_{Y'})$. By the projective case of Grothendieck's existence theorem (Lemma \ref{lemma-existence-projective}) there exists a coherent $\mathcal{O}_{Y'}$-module $\mathcal{F}'$ and an isomorphism $(\mathcal{F}')^\wedge \cong (\mathcal{F}'_n)$ in $\textit{Coh}(Y', I\mathcal{O}_{Y'})$. Since $\mathcal{F}'/I\mathcal{F}' = \mathcal{F}'_1$ we see that $$ \text{Supp}(\mathcal{F}') \cap V(I\mathcal{O}_{Y'}) = \text{Supp}(\mathcal{F}'_1) = j(f^{-1}\text{Supp}(\mathcal{F}_1)) $$ The structure morphism $p' : Y' \to \Spec(A)$ is proper, hence $p'(\text{Supp}(\mathcal{F}') \setminus j(Y))$ is closed in $\Spec(A)$. A nonempty closed subset of $\Spec(A)$ contains a point of $V(I)$ as $I$ is contained in the Jacobson radical of $A$ by Algebra, Lemma \ref{algebra-lemma-radical-completion}. The displayed equation shows that $\text{Supp}(\mathcal{F}') \cap (p')^{-1}V(I) \subset j(Y)$ hence we conclude that $\text{Supp}(\mathcal{F}') \subset j(Y)$. Thus $\mathcal{F}'|_Y = j^*\mathcal{F}'$ is supported on a closed subscheme $Z'$ of $Y$ proper over $A$ and $(\mathcal{F}'|_Y)^\wedge = (f^*\mathcal{F}_n)$. \medskip\noindent Let $\mathcal{K}$ be the quasi-coherent sheaf of ideals cutting out the reduced complement $X \setminus U$. By Proposition \ref{proposition-proper-pushforward-coherent} the $\mathcal{O}_X$-module $\mathcal{H} = f_*(\mathcal{F}'|_Y)$ is coherent and by Lemma \ref{lemma-inverse-systems-push-pull} there exists a morphism $\alpha : (\mathcal{F}_n) \to \mathcal{H}^\wedge$ of $\textit{Coh}(X, \mathcal{I})$ whose kernel and cokernel are annihilated by a power $\mathcal{K}^t$ of $\mathcal{K}$. We obtain an exact sequence $$ 0 \to \Ker(\alpha) \to (\mathcal{F}_n) \to \mathcal{H}^\wedge \to \Coker(\alpha) \to 0 $$ in $\textit{Coh}(X, \mathcal{I})$. If $Z_0 \subset X$ is the scheme theoretic support of $\mathcal{H}$, then it is clear that $Z_0 \subset f(Z')$ set-theoretically. Hence $Z_0$ is proper over $A$ by Lemma \ref{lemma-closed-closed-proper-over-base} and Lemma \ref{lemma-functoriality-closed-proper-over-base} part (2). Hence $\mathcal{H}^\wedge$ is in the subcategory defined in Lemma \ref{lemma-systems-with-proper-support} part (2) and a fortiori in $\textit{Coh}_{\text{support proper over }A}(X, \mathcal{I})$. We conclude that $\Ker(\alpha)$ and $\Coker(\alpha)$ are in $\textit{Coh}_{\text{support proper over }A}(X, \mathcal{I})$ by Lemma \ref{lemma-systems-with-proper-support} part (1). By induction hypothesis, more precisely because $\mathcal{K}^t$ is in $\Xi$, we see that $\Ker(\alpha)$ and $\Coker(\alpha)$ are in the subcategory defined in Lemma \ref{lemma-systems-with-proper-support} part (2). Since this is a Serre subcategory by the lemma, we conclude that the same is true for $(\mathcal{F}_n)$ which is what we wanted to show. \end{proof} \begin{remark}[Unwinding Grothendieck's existence theorem] \label{remark-reformulate-existence-theorem} Let $A$ be a Noetherian ring complete with respect to an ideal $I$. Write $S = \Spec(A)$ and $S_n = \Spec(A/I^n)$. Let $X \to S$ be a separated morphism of finite type. For $n \geq 1$ we set $X_n = X \times_S S_n$. Picture: $$ \xymatrix{ X_1 \ar[r]_{i_1} \ar[d] & X_2 \ar[r]_{i_2} \ar[d] & X_3 \ar[r] \ar[d] & \ldots & X \ar[d] \\ S_1 \ar[r] & S_2 \ar[r] & S_3 \ar[r] & \ldots & S } $$ In this situation we consider systems $(\mathcal{F}_n, \varphi_n)$ where \begin{enumerate} \item $\mathcal{F}_n$ is a coherent $\mathcal{O}_{X_n}$-module, \item $\varphi_n : i_n^*\mathcal{F}_{n + 1} \to \mathcal{F}_n$ is an isomorphism, and \item $\text{Supp}(\mathcal{F}_1)$ is proper over $S_1$. \end{enumerate} Theorem \ref{theorem-grothendieck-existence} says that the completion functor $$ \begin{matrix} \text{coherent }\mathcal{O}_X\text{-modules }\mathcal{F} \\ \text{with support proper over }A \end{matrix} \quad \longrightarrow \quad \begin{matrix} \text{systems }(\mathcal{F}_n) \\ \text{as above} \end{matrix} $$ is an equivalence of categories. In the special case that $X$ is proper over $A$ we can omit the conditions on the supports. \end{remark} \section{Grothendieck's algebraization theorem} \label{section-algebraization} \noindent Our first result is a translation of Grothendieck's existence theorem in terms of closed subschemes and finite morphisms. \begin{lemma} \label{lemma-algebraize-formal-closed-subscheme} Let $A$ be a Noetherian ring complete with respect to an ideal $I$. Write $S = \Spec(A)$ and $S_n = \Spec(A/I^n)$. Let $X \to S$ be a separated morphism of finite type. For $n \geq 1$ we set $X_n = X \times_S S_n$. Suppose given a commutative diagram $$ \xymatrix{ Z_1 \ar[r] \ar[d] & Z_2 \ar[r] \ar[d] & Z_3 \ar[r] \ar[d] & \ldots \\ X_1 \ar[r]^{i_1} & X_2 \ar[r]^{i_2} & X_3 \ar[r] & \ldots } $$ of schemes with cartesian squares. Assume that \begin{enumerate} \item $Z_1 \to X_1$ is a closed immersion, and \item $Z_1 \to S_1$ is proper. \end{enumerate} Then there exists a closed immersion of schemes $Z \to X$ such that $Z_n = Z \times_S S_n$. Moreover, $Z$ is proper over $S$. \end{lemma} \begin{proof} Let's write $j_n : Z_n \to X_n$ for the vertical morphisms. As the squares in the statement are cartesian we see that the base change of $j_n$ to $X_1$ is $j_1$. Thus Morphisms, Lemma \ref{morphisms-lemma-check-closed-infinitesimally} shows that $j_n$ is a closed immersion. Set $\mathcal{F}_n = j_{n, *}\mathcal{O}_{Z_n}$, so that $j_n^\sharp$ is a surjection $\mathcal{O}_{X_n} \to \mathcal{F}_n$. Again using that the squares are cartesian we see that the pullback of $\mathcal{F}_{n + 1}$ to $X_n$ is $\mathcal{F}_n$. Hence Grothendieck's existence theorem, as reformulated in Remark \ref{remark-reformulate-existence-theorem}, tells us there exists a map $\mathcal{O}_X \to \mathcal{F}$ of coherent $\mathcal{O}_X$-modules whose restriction to $X_n$ recovers $\mathcal{O}_{X_n} \to \mathcal{F}_n$. Moreover, the support of $\mathcal{F}$ is proper over $S$. As the completion functor is exact (Lemma \ref{lemma-exact}) we see that the cokernel $\mathcal{Q}$ of $\mathcal{O}_X \to \mathcal{F}$ has vanishing completion. Since $\mathcal{F}$ has support proper over $S$ and so does $\mathcal{Q}$ this implies that $\mathcal{Q} = 0$ for example because the functor (\ref{equation-completion-functor-proper-over-A}) is an equivalence by Grothendieck's existence theorem. Thus $\mathcal{F} = \mathcal{O}_X/\mathcal{J}$ for some quasi-coherent sheaf of ideals $\mathcal{J}$. Setting $Z = V(\mathcal{J})$ finishes the proof. \end{proof} \noindent In the following lemma it is actually enough to assume that $Y_1 \to X_1$ is finite as it will imply that $Y_n \to X_n$ is finite too (see More on Morphisms, Lemma \ref{more-morphisms-lemma-thicken-property-morphisms-cartesian}). \begin{lemma} \label{lemma-algebraize-formal-scheme-finite-over-proper} Let $A$ be a Noetherian ring complete with respect to an ideal $I$. Write $S = \Spec(A)$ and $S_n = \Spec(A/I^n)$. Let $X \to S$ be a separated morphism of finite type. For $n \geq 1$ we set $X_n = X \times_S S_n$. Suppose given a commutative diagram $$ \xymatrix{ Y_1 \ar[r] \ar[d] & Y_2 \ar[r] \ar[d] & Y_3 \ar[r] \ar[d] & \ldots \\ X_1 \ar[r]^{i_1} & X_2 \ar[r]^{i_2} & X_3 \ar[r] & \ldots } $$ of schemes with cartesian squares. Assume that \begin{enumerate} \item $Y_n \to X_n$ is a finite morphism, and \item $Y_1 \to S_1$ is proper. \end{enumerate} Then there exists a finite morphism of schemes $Y \to X$ such that $Y_n = Y \times_S S_n$. Moreover, $Y$ is proper over $S$. \end{lemma} \begin{proof} Let's write $f_n : Y_n \to X_n$ for the vertical morphisms. Set $\mathcal{F}_n = f_{n, *}\mathcal{O}_{Y_n}$. This is a coherent $\mathcal{O}_{X_n}$-module as $f_n$ is finite (Lemma \ref{lemma-finite-pushforward-coherent}). Using that the squares are cartesian we see that the pullback of $\mathcal{F}_{n + 1}$ to $X_n$ is $\mathcal{F}_n$. Hence Grothendieck's existence theorem, as reformulated in Remark \ref{remark-reformulate-existence-theorem}, tells us there exists a coherent $\mathcal{O}_X$-module $\mathcal{F}$ whose restriction to $X_n$ recovers $\mathcal{F}_n$. Moreover, the support of $\mathcal{F}$ is proper over $S$. As the completion functor is fully faithful (Theorem \ref{theorem-grothendieck-existence}) we see that the multiplication maps $\mathcal{F}_n \otimes_{\mathcal{O}_{X_n}} \mathcal{F}_n \to \mathcal{F}_n$ fit together to give an algebra structure on $\mathcal{F}$. Setting $Y = \underline{\Spec}_X(\mathcal{F})$ finishes the proof. \end{proof} \begin{lemma} \label{lemma-algebraize-morphism} Let $A$ be a Noetherian ring complete with respect to an ideal $I$. Write $S = \Spec(A)$ and $S_n = \Spec(A/I^n)$. Let $X$, $Y$ be schemes over $S$. For $n \geq 1$ we set $X_n = X \times_S S_n$ and $Y_n = Y \times_S S_n$. Suppose given a compatible system of commutative diagrams $$ \xymatrix{ & & X_{n + 1} \ar[rd] \ar[rr]_{g_{n + 1}} & & Y_{n + 1} \ar[ld] \\ X_n \ar[rru] \ar[rd] \ar[rr]_{g_n} & & Y_n \ar[rru] \ar[ld] & S_{n + 1} \\ & S_n \ar[rru] } $$ Assume that \begin{enumerate} \item $X \to S$ is proper, and \item $Y \to S$ is separated of finite type. \end{enumerate} Then there exists a unique morphism of schemes $g : X \to Y$ over $S$ such that $g_n$ is the base change of $g$ to $S_n$. \end{lemma} \begin{proof} The morphisms $(1, g_n) : X_n \to X_n \times_S Y_n$ are closed immersions because $Y_n \to S_n$ is separated (Schemes, Lemma \ref{schemes-lemma-section-immersion}). Thus by Lemma \ref{lemma-algebraize-formal-closed-subscheme} there exists a closed subscheme $Z \subset X \times_S Y$ proper over $S$ whose base change to $S_n$ recovers $X_n \subset X_n \times_S Y_n$. The first projection $p : Z \to X$ is a proper morphism (as $Z$ is proper over $S$, see Morphisms, Lemma \ref{morphisms-lemma-image-proper-scheme-closed}) whose base change to $S_n$ is an isomorphism for all $n$. In particular, $p : Z \to X$ is finite over an open neighbourhood of $X_0$ by Lemma \ref{lemma-proper-finite-fibre-finite-in-neighbourhood}. As $X$ is proper over $S$ this open neighbourhood is all of $X$ and we conclude $p : Z \to X$ is finite. Applying the equivalence of Proposition \ref{proposition-existence-proper} we see that $p_*\mathcal{O}_Z = \mathcal{O}_X$ as this is true modulo $I^n$ for all $n$. Hence $p$ is an isomorphism and we obtain the morphism $g$ as the composition $X \cong Z \to Y$. We omit the proof of uniqueness. \end{proof} \noindent In order to prove an ``abstract'' algebraization theorem we need to assume we have an ample invertible sheaf, as the result is false without such an assumption. \begin{theorem}[Grothendieck's algebraization theorem] \label{theorem-algebraization} Let $A$ be a Noetherian ring complete with respect to an ideal $I$. Set $S = \Spec(A)$ and $S_n = \Spec(A/I^n)$. Consider a commutative diagram $$ \xymatrix{ X_1 \ar[r]_{i_1} \ar[d] & X_2 \ar[r]_{i_2} \ar[d] & X_3 \ar[r] \ar[d] & \ldots \\ S_1 \ar[r] & S_2 \ar[r] & S_3 \ar[r] & \ldots } $$ of schemes with cartesian squares. Suppose given $(\mathcal{L}_n, \varphi_n)$ where each $\mathcal{L}_n$ is an invertible sheaf on $X_n$ and $\varphi_n : i_n^*\mathcal{L}_{n + 1} \to \mathcal{L}_n$ is an isomorphism. If \begin{enumerate} \item $X_1 \to S_1$ is proper, and \item $\mathcal{L}_1$ is ample on $X_1$ \end{enumerate} then there exists a proper morphism of schemes $X \to S$ and an ample invertible $\mathcal{O}_X$-module $\mathcal{L}$ and isomorphisms $X_n \cong X \times_S S_n$ and $\mathcal{L}_n \cong \mathcal{L}|_{X_n}$ compatible with the morphisms $i_n$ and $\varphi_n$. \end{theorem} \begin{proof} Since the squares in the diagram are cartesian and since the morphisms $S_n \to S_{n + 1}$ are closed immersions, we see that the morphisms $i_n$ are closed immersions too. In particular we may think of $X_m$ as a closed subscheme of $X_n$ for $m < n$. In fact $X_m$ is the closed subscheme cut out by the quasi-coherent sheaf of ideals $I^m\mathcal{O}_{X_n}$. Moreover, the underlying topological spaces of the schemes $X_1, X_2, X_3, \ldots$ are all identified, hence we may (and do) think of sheaves $\mathcal{O}_{X_n}$ as living on the same underlying topological space; similarly for coherent $\mathcal{O}_{X_n}$-modules. Set $$ \mathcal{F}_n = \Ker(\mathcal{O}_{X_{n + 1}} \to \mathcal{O}_{X_n}) $$ so that we obtain short exact sequences $$ 0 \to \mathcal{F}_n \to \mathcal{O}_{X_{n + 1}} \to \mathcal{O}_{X_n} \to 0 $$ By the above we have $\mathcal{F}_n = I^n\mathcal{O}_{X_{n + 1}}$. It follows $\mathcal{F}_n$ is a coherent sheaf on $X_{n + 1}$ annihilated by $I$, hence we may (and do) think of it as a coherent module $\mathcal{O}_{X_1}$-module. Observe that for $m > n$ the sheaf $$ I^n\mathcal{O}_{X_m}/I^{n + 1}\mathcal{O}_{X_m} $$ maps isomorphically to $\mathcal{F}_n$ under the map $\mathcal{O}_{X_m} \to \mathcal{O}_{X_{n + 1}}$. Hence given $n_1, n_2 \geq 0$ we can pick an $m > n_1 + n_2$ and consider the multiplication map $$ I^{n_1}\mathcal{O}_{X_m} \times I^{n_2}\mathcal{O}_{X_m} \longrightarrow I^{n_1 + n_2}\mathcal{O}_{X_m} \to \mathcal{F}_{n_1 + n_2} $$ This induces an $\mathcal{O}_{X_1}$-bilinear map $$ \mathcal{F}_{n_1} \times \mathcal{F}_{n_2} \longrightarrow \mathcal{F}_{n_1 + n_2} $$ which in turn defines the structure of a graded $\mathcal{O}_{X_1}$-algebra on $\mathcal{F} = \bigoplus_{n \geq 0} \mathcal{F}_n$. \medskip\noindent Set $B = \bigoplus I^n/I^{n + 1}$; this is a finitely generated graded $A/I$-algebra. Set $\mathcal{B} = (X_1 \to S_1)^*\widetilde{B}$. The discussion above provides us with a canonical surjection $$ \mathcal{B} \longrightarrow \mathcal{F} $$ of graded $\mathcal{O}_{X_1}$-algebras. In particular we see that $\mathcal{F}$ is a finite type quasi-coherent graded $\mathcal{B}$-module. By Lemma \ref{lemma-graded-finiteness} we can find an integer $d_0$ such that $H^1(X_1, \mathcal{F} \otimes \mathcal{L}^{\otimes d}) = 0$ for all $d \geq d_0$. Pick a $d \geq d_0$ such that there exist sections $s_{0, 1}, \ldots, s_{N, 1} \in \Gamma(X_1, \mathcal{L}_1^{\otimes d})$ which induce an immersion $$ \psi_1 : X_1 \to \mathbf{P}^N_{S_1} $$ over $S_1$, see Morphisms, Lemma \ref{morphisms-lemma-finite-type-over-affine-ample-very-ample}. As $X_1$ is proper over $S_1$ we see that $\psi_1$ is a closed immersion, see Morphisms, Lemma \ref{morphisms-lemma-image-proper-scheme-closed} and Schemes, Lemma \ref{schemes-lemma-immersion-when-closed}. We are going to ``lift'' $\psi_1$ to a compatible system of closed immersions of $X_n$ into $\mathbf{P}^N$. \medskip\noindent Upon tensoring the short exact sequences of the first paragraph of the proof by $\mathcal{L}_{n + 1}^{\otimes d}$ we obtain short exact sequences $$ 0 \to \mathcal{F}_n \otimes \mathcal{L}_{n + 1}^{\otimes d} \to \mathcal{L}_{n + 1}^{\otimes d} \to \mathcal{L}_{n + 1}^{\otimes d} \to 0 $$ Using the isomorphisms $\varphi_n$ we obtain isomorphisms $\mathcal{L}_{n + 1} \otimes \mathcal{O}_{X_l} = \mathcal{L}_l$ for $l \leq n$. Whence the sequence above becomes $$ 0 \to \mathcal{F}_n \otimes \mathcal{L}_1^{\otimes d} \to \mathcal{L}_{n + 1}^{\otimes d} \to \mathcal{L}_n^{\otimes d} \to 0 $$ The vanishing of $H^1(X, \mathcal{F}_n \otimes \mathcal{L}_1^{\otimes d})$ implies we can inductively lift $s_{0, 1}, \ldots, s_{N, 1} \in \Gamma(X_1, \mathcal{L}_1^{\otimes d})$ to sections $s_{0, n}, \ldots, s_{N, n} \in \Gamma(X_n, \mathcal{L}_n^{\otimes d})$. Thus we obtain a commutative diagram $$ \xymatrix{ X_1 \ar[r]_{i_1} \ar[d]_{\psi_1} & X_2 \ar[r]_{i_2} \ar[d]_{\psi_2} & X_3 \ar[r] \ar[d]_{\psi_3} & \ldots \\ \mathbf{P}^N_{S_1} \ar[r] & \mathbf{P}^N_{S_2} \ar[r] & \mathbf{P}^N_{S_3} \ar[r] & \ldots } $$ where $\psi_n = \varphi_{(\mathcal{L}_n, (s_{0, n}, \ldots, s_{N, n}))}$ in the notation of Constructions, Section \ref{constructions-section-projective-space}. As the squares in the statement of the theorem are cartesian we see that the squares in the above diagram are cartesian. We win by applying Lemma \ref{lemma-algebraize-formal-closed-subscheme}. \end{proof} \input{chapters} \bibliography{my} \bibliographystyle{amsalpha} \end{document}