\input{preamble} % OK, start here. % \begin{document} \title{\'Etale Cohomology} \maketitle \phantomsection \label{section-phantom} \tableofcontents \section{Introduction} \label{section-introduction} \noindent This chapter is the first in a series of chapter on the \'etale cohomology of schemes. In this chapter we discuss the very basics of the \'etale topology and cohomology of abelian sheaves in this topology. Many of the topics discussed may be safely skipped on a first reading; please see the advice in the next section as to how to decide what to skip. \medskip\noindent The initial version of this chapter was formed by the notes of the first part of a course on \'etale cohomology taught by Johan de Jong at Columbia University in the Fall of 2009. The original note takers were Thibaut Pugin, Zachary Maddock and Min Lee. The second part of the course can be found in the chapter on the trace formula, see The Trace Formula, Section \ref{trace-section-introduction}. \section{Which sections to skip on a first reading?} \label{section-skip} \noindent We want to use the material in this chapter for the development of theory related to algebraic spaces, Deligne-Mumford stacks, algebraic stacks, etc. Thus we have added some pretty technical material to the original exposition of \'etale cohomology for schemes. The reader can recognize this material by the frequency of the word ``topos'', or by discussions related to set theory, or by proofs dealing with very general properties of morphisms of schemes. Some of these discussions can be skipped on a first reading. \medskip\noindent In particular, we suggest that the reader skip the following sections: \begin{enumerate} \item Comparing big and small topoi, Section \ref{section-compare}. \item Recovering morphisms, Section \ref{section-morphisms}. \item Push and pull, Section \ref{section-monomorphisms}. \item Property (A), Section \ref{section-A}. \item Property (B), Section \ref{section-B}. \item Property (C), Section \ref{section-C}. \item Topological invariance of the small \'etale site, Section \ref{section-topological-invariance}. \item Integral universally injective morphisms, Section \ref{section-integral-universally-injective}. \item Big sites and pushforward, Section \ref{section-big}. \item Exactness of big lower shriek, Section \ref{section-exactness-lower-shriek}. \end{enumerate} Besides these sections there are some sporadic results that may be skipped that the reader can recognize by the keywords given above. %9.08.09 \section{Prologue} \label{section-prologue} \noindent These lectures are about another cohomology theory. The first thing to remark is that the Zariski topology is not entirely satisfactory. One of the main reasons that it fails to give the results that we would want is that if $X$ is a complex variety and $\mathcal{F}$ is a constant sheaf then $$ H^i(X, \mathcal{F}) = 0, \quad \text{ for all } i > 0. $$ The reason for that is the following. In an irreducible scheme (a variety in particular), any two nonempty open subsets meet, and so the restriction mappings of a constant sheaf are surjective. We say that the sheaf is {\it flasque}. In this case, all higher {\v C}ech cohomology groups vanish, and so do all higher Zariski cohomology groups. In other words, there are ``not enough'' open sets in the Zariski topology to detect this higher cohomology. \medskip\noindent On the other hand, if $X$ is a smooth projective complex variety, then $$ H_{Betti}^{2 \dim X}(X (\mathbf{C}), \Lambda) = \Lambda \quad \text{ for } \Lambda = \mathbf{Z}, \ \mathbf{Z}/n\mathbf{Z}, $$ where $X(\mathbf{C})$ means the set of complex points of $X$. This is a feature that would be nice to replicate in algebraic geometry. In positive characteristic in particular. \section{The \'etale topology} \label{section-etale-topology} \noindent It is very hard to simply ``add'' extra open sets to refine the Zariski topology. One efficient way to define a topology is to consider not only open sets, but also some schemes that lie over them. To define the \'etale topology, one considers all morphisms $\varphi : U \to X$ which are \'etale. If $X$ is a smooth projective variety over $\mathbf{C}$, then this means \begin{enumerate} \item $U$ is a disjoint union of smooth varieties, and \item $\varphi$ is (analytically) locally an isomorphism. \end{enumerate} The word ``analytically'' refers to the usual (transcendental) topology over $\mathbf{C}$. So the second condition means that the derivative of $\varphi$ has full rank everywhere (and in particular all the components of $U$ have the same dimension as $X$). \medskip\noindent A double cover -- loosely defined as a finite degree $2$ map between varieties -- for example $$ \Spec(\mathbf{C}[t]) \longrightarrow \Spec(\mathbf{C}[t]), \quad t \longmapsto t^2 $$ will not be an \'etale morphism if it has a fibre consisting of a single point. In the example this happens when $t = 0$. For a finite map between varieties over $\mathbf{C}$ to be \'etale all the fibers should have the same number of points. Removing the point $t = 0$ from the source of the map in the example will make the morphism \'etale. But we can remove other points from the source of the morphism also, and the morphism will still be \'etale. To consider the \'etale topology, we have to look at all such morphisms. Unlike the Zariski topology, these need not be merely open subsets of $X$, even though their images always are. \begin{definition} \label{definition-etale-covering-initial} A family of morphisms $\{ \varphi_i : U_i \to X\}_{i \in I}$ is called an {\it \'etale covering} if each $\varphi_i$ is an \'etale morphism and their images cover $X$, i.e., $X = \bigcup_{i \in I} \varphi_i(U_i)$. \end{definition} \noindent This ``defines'' the \'etale topology. In other words, we can now say what the sheaves are. An {\it \'etale sheaf} $\mathcal{F}$ of sets (resp.\ abelian groups, vector spaces, etc) on $X$ is the data: \begin{enumerate} \item for each \'etale morphism $\varphi : U \to X$ a set (resp.\ abelian group, vector space, etc) $\mathcal{F}(U)$, \item for each pair $U, \ U'$ of \'etale schemes over $X$, and each morphism $U \to U'$ over $X$ (which is automatically \'etale) a restriction map $\rho^{U'}_U : \mathcal{F}(U') \to \mathcal{F}(U)$ \end{enumerate} These data have to satisfy the condition that $\rho^U_U = \text{id}$ in case of the identity morphism $U \to U$ and that $\rho^{U'}_U \circ \rho^{U''}_{U'} = \rho^{U''}_U$ when we have morphisms $U \to U' \to U''$ of schemes \'etale over $X$ as well as the following {\it sheaf axiom}: \begin{itemize} \item[(*)] for every \'etale covering $\{ \varphi_i : U_i \to U\}_{i \in I}$, the diagram $$ \xymatrix{ \emptyset \ar[r] & \mathcal{F} (U) \ar[r] & \Pi_{i \in I} \mathcal{F} (U_i) \ar@<1ex>[r] \ar@<-1ex>[r] & \Pi_{i, j \in I} \mathcal{F} (U_i \times_U U_j) } $$ is exact in the category of sets (resp.\ abelian groups, vector spaces, etc). \end{itemize} \begin{remark} \label{remark-i-is-j} In the last statement, it is essential not to forget the case where $i = j$ which is in general a highly nontrivial condition (unlike in the Zariski topology). In fact, frequently important coverings have only one element. \end{remark} \noindent Since the identity is an \'etale morphism, we can compute the global sections of an \'etale sheaf, and cohomology will simply be the corresponding right-derived functors. In other words, once more theory has been developed and statements have been made precise, there will be no obstacle to defining cohomology. \section{Feats of the \'etale topology} \label{section-feats} \noindent For a natural number $n \in \mathbf{N} = \{1, 2, 3, 4, \ldots\}$ it is true that $$ H_\etale^2 (\mathbf{P}^1_\mathbf{C}, \mathbf{Z}/n\mathbf{Z}) = \mathbf{Z}/n\mathbf{Z}. $$ More generally, if $X$ is a complex variety, then its \'etale Betti numbers with coefficients in a finite field agree with the usual Betti numbers of $X(\mathbf{C})$, i.e., $$ \dim_{\mathbf{F}_q} H_\etale^{2i} (X, \mathbf{F}_q) = \dim_{\mathbf{F}_q} H_{Betti}^{2i} (X(\mathbf{C}), \mathbf{F}_q). $$ This is extremely satisfactory. However, these equalities only hold for torsion coefficients, not in general. For integer coefficients, one has $$ H_\etale^2 (\mathbf{P}^1_\mathbf{C}, \mathbf{Z}) = 0. $$ By contrast $H_{Betti}^2(\mathbf{P}^1(\mathbf{C}), \mathbf{Z}) = \mathbf{Z}$ as the topological space $\mathbf{P}^1(\mathbf{C})$ is homeomorphic to a $2$-sphere. There are ways to get back to nontorsion coefficients from torsion ones by a limit procedure which we will come to shortly. \section{A computation} \label{section-computation} \noindent How do we compute the cohomology of $\mathbf{P}^1_\mathbf{C}$ with coefficients $\Lambda = \mathbf{Z}/n\mathbf{Z}$? We use {\v C}ech cohomology. A covering of $\mathbf{P}^1_\mathbf{C}$ is given by the two standard opens $U_0, U_1$, which are both isomorphic to $\mathbf{A}^1_\mathbf{C}$, and whose intersection is isomorphic to $\mathbf{A}^1_\mathbf{C} \setminus \{0\} = \mathbf{G}_{m, \mathbf{C}}$. It turns out that the Mayer-Vietoris sequence holds in \'etale cohomology. This gives an exact sequence $$ H_\etale^{i-1}(U_0\cap U_1, \Lambda) \to H_\etale^i(\mathbf{P}^1_C, \Lambda) \to H_\etale^i(U_0, \Lambda) \oplus H_\etale^i(U_1, \Lambda) \to H_\etale^i(U_0\cap U_1, \Lambda). $$ To get the answer we expect, we would need to show that the direct sum in the third term vanishes. In fact, it is true that, as for the usual topology, $$ H_\etale^q (\mathbf{A}^1_\mathbf{C}, \Lambda) = 0 \quad \text{ for } q \geq 1, $$ and $$ H_\etale^q (\mathbf{A}^1_\mathbf{C} \setminus \{0\}, \Lambda) = \left\{ \begin{matrix} \Lambda & \text{ if }q = 1\text{, and} \\ 0 & \text{ for }q \geq 2. \end{matrix} \right. $$ These results are already quite hard (what is an elementary proof?). Let us explain how we would compute this once the machinery of \'etale cohomology is at our disposal. \medskip\noindent {\bf Higher cohomology.} This is taken care of by the following general fact: if $X$ is an affine curve over $\mathbf{C}$, then $$ H_\etale^q (X, \mathbf{Z}/n\mathbf{Z}) = 0 \quad \text{ for } q \geq 2. $$ This is proved by considering the generic point of the curve and doing some Galois cohomology. So we only have to worry about the cohomology in degree 1. \medskip\noindent {\bf Cohomology in degree 1.} We use the following identifications: \begin{eqnarray*} H_\etale^1 (X, \mathbf{Z}/n\mathbf{Z}) = \left\{ \begin{matrix} \text{sheaves of sets }\mathcal{F}\text{ on the \'etale site }X_\etale \text{ endowed with an} \\ \text{action }\mathbf{Z}/n\mathbf{Z} \times \mathcal{F} \to \mathcal{F} \text{ such that }\mathcal{F}\text{ is a }\mathbf{Z}/n\mathbf{Z}\text{-torsor.} \end{matrix} \right\} \Big/ \cong \\ = \left\{ \begin{matrix} \text{morphisms }Y \to X\text{ which are finite \'etale together} \\ \text{ with a free }\mathbf{Z}/n\mathbf{Z}\text{ action such that } X = Y/(\mathbf{Z}/n\mathbf{Z}). \end{matrix} \right\} \Big/ \cong. \end{eqnarray*} The first identification is very general (it is true for any cohomology theory on a site) and has nothing to do with the \'etale topology. The second identification is a consequence of descent theory. The last set describes a collection of geometric objects on which we can get our hands. \medskip\noindent The curve $\mathbf{A}^1_\mathbf{C}$ has no nontrivial finite \'etale covering and hence $H_\etale^1 (\mathbf{A}^1_\mathbf{C}, \mathbf{Z}/n\mathbf{Z}) = 0$. This can be seen either topologically or by using the argument in the next paragraph. \medskip\noindent Let us describe the finite \'etale coverings $\varphi : Y \to \mathbf{A}^1_\mathbf{C} \setminus \{0\}$. It suffices to consider the case where $Y$ is connected, which we assume. We are going to find out what $Y$ can be by applying the Riemann-Hurwitz formula (of course this is a bit silly, and you can go ahead and skip the next section if you like). Say that this morphism is $n$ to 1, and consider a projective compactification $$ \xymatrix{ {Y\ } \ar@{^{(}->}[r] \ar[d]^\varphi & {\bar Y} \ar[d]^{\bar\varphi} \\ {\mathbf{A}^1_\mathbf{C} \setminus \{0\}} \ar@{^{(}->}[r] & {\mathbf{P}^1_\mathbf{C}} } $$ Even though $\varphi$ is \'etale and does not ramify, $\bar{\varphi}$ may ramify at 0 and $\infty$. Say that the preimages of 0 are the points $y_1, \ldots, y_r$ with indices of ramification $e_1, \ldots e_r$, and that the preimages of $\infty$ are the points $y_1', \ldots, y_s'$ with indices of ramification $d_1, \ldots d_s$. In particular, $\sum e_i = n = \sum d_j$. Applying the Riemann-Hurwitz formula, we get $$ 2 g_Y - 2 = -2n + \sum (e_i - 1) + \sum (d_j - 1) $$ and therefore $g_Y = 0$, $r = s = 1$ and $e_1 = d_1 = n$. Hence $Y \cong {\mathbf{A}^1_\mathbf{C} \setminus \{0\}}$, and it is easy to see that $\varphi(z) = \lambda z^n$ for some $\lambda \in \mathbf{C}^*$. After reparametrizing $Y$ we may assume $\lambda = 1$. Thus our covering is given by taking the $n$th root of the coordinate on $\mathbf{A}^1_{\mathbf{C}} \setminus \{0\}$. \medskip\noindent Remember that we need to classify the coverings of ${\mathbf{A}^1_\mathbf{C} \setminus \{0\}}$ together with free $\mathbf{Z}/n\mathbf{Z}$-actions on them. In our case any such action corresponds to an automorphism of $Y$ sending $z$ to $\zeta_n z$, where $\zeta_n$ is a primitive $n$th root of unity. There are $\phi(n)$ such actions (here $\phi(n)$ means the Euler function). Thus there are exactly $\phi(n)$ connected finite \'etale coverings with a given free $\mathbf{Z}/n\mathbf{Z}$-action, each corresponding to a primitive $n$th root of unity. We leave it to the reader to see that the disconnected finite \'etale degree $n$ coverings of $\mathbf{A}^1_{\mathbf{C}} \setminus \{0\}$ with a given free $\mathbf{Z}/n\mathbf{Z}$-action correspond one-to-one with $n$th roots of $1$ which are not primitive. In other words, this computation shows that $$ H_\etale^1 (\mathbf{A}^1_\mathbf{C} \setminus \{0\}, \mathbf{Z}/n\mathbf{Z}) = \Hom(\mu_n(\mathbf{C}), \mathbf{Z}/n\mathbf{Z}) \cong \mathbf{Z}/n\mathbf{Z}. $$ The first identification is canonical, the second isn't, see Remark \ref{remark-normalize-H1-Gm}. Since the proof of Riemann-Hurwitz does not use the computation of cohomology, the above actually constitutes a proof (provided we fill in the details on vanishing, etc). \section{Nontorsion coefficients} \label{section-nontorsion} \noindent To study nontorsion coefficients, one makes the following definition: $$ H_\etale^i (X, \mathbf{Q}_\ell) := \left( \lim_n H_\etale^i(X, \mathbf{Z}/\ell^n\mathbf{Z}) \right) \otimes_{\mathbf{Z}_\ell} \mathbf{Q}_\ell. $$ The symbol $\lim_n$ denote the {\it limit} of the system of cohomology groups $H_\etale^i(X, \mathbf{Z}/\ell^n\mathbf{Z})$ indexed by $n$, see Categories, Section \ref{categories-section-posets-limits}. Thus we will need to study systems of sheaves satisfying some compatibility conditions. \section{Sheaf theory} \label{section-sheaf-theory} %9.10.09 \noindent At this point we start talking about sites and sheaves in earnest. There is an amazing amount of useful abstract material that could fit in the next few sections. Some of this material is worked out in earlier chapters, such as the chapter on sites, modules on sites, and cohomology on sites. We try to refrain from adding too much material here, just enough so the material later in this chapter makes sense. \section{Presheaves} \label{section-presheaves} \noindent A reference for this section is Sites, Section \ref{sites-section-presheaves}. \begin{definition} \label{definition-presheaf} Let $\mathcal{C}$ be a category. A {\it presheaf of sets} (respectively, an {\it abelian presheaf}) on $\mathcal{C}$ is a functor $\mathcal{C}^{opp} \to \textit{Sets}$ (resp.\ $\textit{Ab}$). \end{definition} \noindent {\bf Terminology.} If $U \in \Ob(\mathcal{C})$, then elements of $\mathcal{F}(U)$ are called {\it sections} of $\mathcal{F}$ over $U$. For $\varphi : V \to U$ in $\mathcal{C}$, the map $\mathcal{F}(\varphi) : \mathcal{F}(U) \to \mathcal{F}(V)$ is called the {\it restriction map} and is often denoted $s \mapsto s|_V$ or sometimes $s \mapsto \varphi^*s$. The notation $s|_V$ is ambiguous since the restriction map depends on $\varphi$, but it is a standard abuse of notation. We also use the notation $\Gamma(U, \mathcal{F}) = \mathcal{F}(U)$. \medskip\noindent Saying that $\mathcal{F}$ is a functor means that if $W \to V \to U$ are morphisms in $\mathcal{C}$ and $s \in \Gamma(U, \mathcal{F})$ then $(s|_V)|_W = s |_W$, with the abuse of notation just seen. Moreover, the restriction mappings corresponding to the identity morphisms $\text{id}_U : U \to U$ are the identity. \medskip\noindent The category of presheaves of sets (respectively of abelian presheaves) on $\mathcal{C}$ is denoted $\textit{PSh} (\mathcal{C})$ (resp. $\textit{PAb} (\mathcal{C})$). It is the category of functors from $\mathcal{C}^{opp}$ to $\textit{Sets}$ (resp. $\textit{Ab}$), which is to say that the morphisms of presheaves are natural transformations of functors. We only consider the categories $\textit{PSh}(\mathcal{C})$ and $\textit{PAb}(\mathcal{C})$ when the category $\mathcal{C}$ is small. (Our convention is that a category is small unless otherwise mentioned, and if it isn't small it should be listed in Categories, Remark \ref{categories-remark-big-categories}.) \begin{example} \label{example-representable-presheaf} Given an object $X \in \Ob(\mathcal{C})$, we consider the functor $$ \begin{matrix} h_X : & \mathcal{C}^{opp} & \longrightarrow & \textit{Sets} \\ & U & \longmapsto & h_X(U) = \Mor_\mathcal{C}(U, X) \\ & V \xrightarrow{\varphi} U & \longmapsto & \varphi \circ - : h_X(U) \to h_X(V). \end{matrix} $$ It is a presheaf, called the {\it representable presheaf associated to $X$.} It is not true that representable presheaves are sheaves in every topology on every site. \end{example} \begin{lemma}[Yoneda] \label{lemma-yoneda} \begin{slogan} Morphisms between objects are in bijection with natural transformations between the functors they represent. \end{slogan} Let $\mathcal{C}$ be a category, and $X, Y \in \Ob(\mathcal{C})$. There is a natural bijection $$ \begin{matrix} \Mor_\mathcal{C}(X, Y) & \longrightarrow & \Mor_{\textit{PSh}(\mathcal{C})} (h_X, h_Y) \\ \psi & \longmapsto & h_\psi = \psi \circ - : h_X \to h_Y. \end{matrix} $$ \end{lemma} \begin{proof} See Categories, Lemma \ref{categories-lemma-yoneda}. \end{proof} \section{Sites} \label{section-sites} \begin{definition} \label{definition-family-morphisms-fixed-target} Let $\mathcal{C}$ be a category. A {\it family of morphisms with fixed target} $\mathcal{U} = \{\varphi_i : U_i \to U\}_{i\in I}$ is the data of \begin{enumerate} \item an object $U \in \mathcal{C}$, \item a set $I$ (possibly empty), and \item for all $i\in I$, a morphism $\varphi_i : U_i \to U$ of $\mathcal{C}$ with target $U$. \end{enumerate} \end{definition} \noindent There is a notion of a {\it morphism of families of morphisms with fixed target}. A special case of that is the notion of a {\it refinement}. A reference for this material is Sites, Section \ref{sites-section-refinements}. \begin{definition} \label{definition-site} A {\it site}\footnote{What we call a site is a called a category endowed with a pretopology in \cite[Expos\'e II, D\'efinition 1.3]{SGA4}. In \cite{ArtinTopologies} it is called a category with a Grothendieck topology.} consists of a category $\mathcal{C}$ and a set $\text{Cov}(\mathcal{C})$ consisting of families of morphisms with fixed target called {\it coverings}, such that \begin{enumerate} \item (isomorphism) if $\varphi : V \to U$ is an isomorphism in $\mathcal{C}$, then $\{\varphi : V \to U\}$ is a covering, \item (locality) if $\{\varphi_i : U_i \to U\}_{i\in I}$ is a covering and for all $i \in I$ we are given a covering $\{\psi_{ij} : U_{ij} \to U_i \}_{j\in I_i}$, then $$ \{ \varphi_i \circ \psi_{ij} : U_{ij} \to U \}_{(i, j)\in \prod_{i\in I} \{i\} \times I_i} $$ is also a covering, and \item (base change) if $\{U_i \to U\}_{i\in I}$ is a covering and $V \to U$ is a morphism in $\mathcal{C}$, then \begin{enumerate} \item for all $i \in I$ the fibre product $U_i \times_U V$ exists in $\mathcal{C}$, and \item $\{U_i \times_U V \to V\}_{i\in I}$ is a covering. \end{enumerate} \end{enumerate} \end{definition} \noindent For us the category underlying a site is always ``small'', i.e., its collection of objects form a set, and the collection of coverings of a site is a set as well (as in the definition above). We will mostly, in this chapter, leave out the arguments that cut down the collection of objects and coverings to a set. For further discussion, see Sites, Remark \ref{sites-remark-no-big-sites}. \begin{example} \label{example-site-topological-space} If $X$ is a topological space, then it has an associated site $X_{Zar}$ defined as follows: the objects of $X_{Zar}$ are the open subsets of $X$, the morphisms between these are the inclusion mappings, and the coverings are the usual topological (surjective) coverings. Observe that if $U, V \subset W \subset X$ are open subsets then $U \times_W V = U \cap V$ exists: this category has fiber products. All the verifications are trivial and everything works as expected. \end{example} \section{Sheaves} \label{section-sheaves} \begin{definition} \label{definition-sheaf} A presheaf $\mathcal{F}$ of sets (resp. abelian presheaf) on a site $\mathcal{C}$ is said to be a {\it separated presheaf} if for all coverings $\{\varphi_i : U_i \to U\}_{i\in I} \in \text{Cov} (\mathcal{C})$ the map $$ \mathcal{F}(U) \longrightarrow \prod\nolimits_{i\in I} \mathcal{F}(U_i) $$ is injective. Here the map is $s \mapsto (s|_{U_i})_{i\in I}$. The presheaf $\mathcal{F}$ is a {\it sheaf} if for all coverings $\{\varphi_i : U_i \to U\}_{i\in I} \in \text{Cov} (\mathcal{C})$, the diagram \begin{equation} \label{equation-sheaf-axiom} \xymatrix{ \mathcal{F}(U) \ar[r] & \prod_{i\in I} \mathcal{F}(U_i) \ar@<1ex>[r] \ar@<-1ex>[r] & \prod_{i, j \in I} \mathcal{F}(U_i \times_U U_j), } \end{equation} where the first map is $s \mapsto (s|_{U_i})_{i\in I}$ and the two maps on the right are $(s_i)_{i\in I} \mapsto (s_i |_{U_i \times_U U_j})$ and $(s_i)_{i\in I} \mapsto (s_j |_{U_i \times_U U_j})$, is an equalizer diagram in the category of sets (resp.\ abelian groups). \end{definition} \begin{remark} \label{remark-empty-covering} For the empty covering (where $I = \emptyset$), this implies that $\mathcal{F}(\emptyset)$ is an empty product, which is a final object in the corresponding category (a singleton, for both $\textit{Sets}$ and $\textit{Ab}$). \end{remark} \begin{example} \label{example-sheaf-site-space} Working this out for the site $X_{Zar}$ associated to a topological space, see Example \ref{example-site-topological-space}, gives the usual notion of sheaves. \end{example} \begin{definition} \label{definition-category-sheaves} We denote $\Sh(\mathcal{C})$ (resp.\ $\textit{Ab}(\mathcal{C})$) the full subcategory of $\textit{PSh}(\mathcal{C})$ (resp.\ $\textit{PAb}(\mathcal{C})$) whose objects are sheaves. This is the {\it category of sheaves of sets} (resp.\ {\it abelian sheaves}) on $\mathcal{C}$. \end{definition} \section{The example of G-sets} \label{section-G-sets} \noindent Let $G$ be a group and define a site $\mathcal{T}_G$ as follows: the underlying category is the category of $G$-sets, i.e., its objects are sets endowed with a left $G$-action and the morphisms are equivariant maps; and the coverings of $\mathcal{T}_G$ are the families $\{\varphi_i : U_i \to U\}_{i\in I}$ satisfying $U = \bigcup_{i\in I} \varphi_i(U_i)$. \medskip\noindent There is a special object in the site $\mathcal{T}_G$, namely the $G$-set $G$ endowed with its natural action by left translations. We denote it ${}_G G$. Observe that there is a natural group isomorphism $$ \begin{matrix} \rho : & G^{opp} & \longrightarrow & \text{Aut}_{G\textit{-Sets}}({}_G G) \\ & g & \longmapsto & (h \mapsto hg). \end{matrix} $$ In particular, for any presheaf $\mathcal{F}$, the set $\mathcal{F}({}_G G)$ inherits a $G$-action via $\rho$. (Note that by contravariance of $\mathcal{F}$, the set $\mathcal{F}({}_G G)$ is again a left $G$-set.) In fact, the functor $$ \begin{matrix} \Sh(\mathcal{T}_G) & \longrightarrow & G\textit{-Sets} \\ \mathcal{F} & \longmapsto & \mathcal{F}({}_G G) \end{matrix} $$ is an equivalence of categories. Its quasi-inverse is the functor $X \mapsto h_X$. Without giving the complete proof (which can be found in Sites, Section \ref{sites-section-example-sheaf-G-sets}) let us try to explain why this is true. \begin{enumerate} \item If $S$ is a $G$-set, we can decompose it into orbits $S = \coprod_{i\in I} O_i$. The sheaf axiom for the covering $\{O_i \to S\}_{i\in I}$ says that $$ \xymatrix{ \mathcal{F}(S) \ar[r] & \prod_{i\in I} \mathcal{F}(O_i) \ar@<1ex>[r] \ar@<-1ex>[r] & \prod_{i, j \in I} \mathcal{F}(O_i \times_S O_j) } $$ is an equalizer. Observing that fibered products in $G\textit{-Sets}$ are induced from fibered products in $\textit{Sets}$, and using the fact that $\mathcal{F}(\emptyset)$ is a $G$-singleton, we get that $$ \prod_{i, j \in I} \mathcal{F}(O_i \times_S O_j) = \prod_{i \in I} \mathcal{F}(O_i) $$ and the two maps above are in fact the same. Therefore the sheaf axiom merely says that $\mathcal{F}(S) = \prod_{i\in I} \mathcal{F}(O_i)$. \item If $S$ is the $G$-set $S= G/H$ and $\mathcal{F}$ is a sheaf on $\mathcal{T}_G$, then we claim that $$ \mathcal{F}(G/H) = \mathcal{F}({}_G G)^H $$ and in particular $\mathcal{F}(\{*\}) = \mathcal{F}({}_G G)^G$. To see this, let's use the sheaf axiom for the covering $\{ {}_G G \to G/H \}$ of $S$. We have \begin{eqnarray*} {}_G G \times_{G/H} {}_G G & \cong & G \times H \\ (g_1, g_2) & \longmapsto & (g_1, g_1 g_2^{-1}) \end{eqnarray*} is a disjoint union of copies of ${}_G G$ (as a $G$-set). Hence the sheaf axiom reads $$ \xymatrix{ \mathcal{F} (G/H) \ar[r] & \mathcal{F}({}_G G) \ar@<1ex>[r] \ar@<-1ex>[r] & \prod_{h\in H} \mathcal{F}({}_G G) } $$ where the two maps on the right are $s \mapsto (s)_{h \in H}$ and $s \mapsto (hs)_{h \in H}$. Therefore $\mathcal{F}(G/H) = \mathcal{F}({}_G G)^H$ as claimed. \end{enumerate} This doesn't quite prove the claimed equivalence of categories, but it shows at least that a sheaf $\mathcal{F}$ is entirely determined by its sections over ${}_G G$. Details (and set theoretical remarks) can be found in Sites, Section \ref{sites-section-example-sheaf-G-sets}. \section{Sheafification} \label{section-sheafification} \begin{definition} \label{definition-0-cech} Let $\mathcal{F}$ be a presheaf on the site $\mathcal{C}$ and $\mathcal{U} = \{U_i \to U\} \in \text{Cov} (\mathcal{C})$. We define the {\it zeroth {\v C}ech cohomology group} of $\mathcal{F}$ with respect to $\mathcal{U}$ by $$ \check H^0 (\mathcal{U}, \mathcal{F}) = \left\{ (s_i)_{i\in I} \in \prod\nolimits_{i\in I }\mathcal{F}(U_i) \text{ such that } s_i|_{U_i \times_U U_j} = s_j |_{U_i \times_U U_j} \right\}. $$ \end{definition} \noindent There is a canonical map $\mathcal{F}(U) \to \check H^0 (\mathcal{U}, \mathcal{F})$, $s \mapsto (s |_{U_i})_{i\in I}$. We say that a {\it morphism of coverings} from a covering $\mathcal{V} = \{V_j \to V\}_{j \in J}$ to $\mathcal{U}$ is a triple $(\chi, \alpha, \chi_j)$, where $\chi : V \to U$ is a morphism, $\alpha : J \to I$ is a map of sets, and for all $j \in J$ the morphism $\chi_j$ fits into a commutative diagram $$ \xymatrix{ V_j \ar[rr]_{\chi_j} \ar[d] & & U_{\alpha(j)} \ar[d] \\ V \ar[rr]^\chi & & U. } $$ Given the data $\chi, \alpha, \{\chi_j\}_{j \in J}$ we define \begin{eqnarray*} \check H^0(\mathcal{U}, \mathcal{F}) & \longrightarrow & \check H^0(\mathcal{V}, \mathcal{F}) \\ (s_i)_{i\in I} & \longmapsto & \left(\chi_j^*\left(s_{\alpha(j)}\right)\right)_{j\in J}. \end{eqnarray*} We then claim that \begin{enumerate} \item the map is well-defined, and \item depends only on $\chi$ and is independent of the choice of $\alpha, \{\chi_j\}_{j \in J}$. \end{enumerate} We omit the proof of the first fact. To see part (2), consider another triple $(\psi, \beta, \psi_j)$ with $\chi = \psi$. Then we have the commutative diagram $$ \xymatrix{ V_j \ar[rrr]_{(\chi_j, \psi_j)} \ar[dd] & & & U_{\alpha(j)} \times_U U_{\beta(j)} \ar[dl] \ar[dr] \\ & & U_{\alpha(j)} \ar[dr] & & U_{\beta(j)} \ar[dl] \\ V \ar[rrr]^{\chi = \psi} & & & U. } $$ Given a section $s \in \mathcal{F}(\mathcal{U})$, its image in $\mathcal{F}(V_j)$ under the map given by $(\chi, \alpha, \{\chi_j\}_{j \in J})$ is $\chi_j^*s_{\alpha(j)}$, and its image under the map given by $(\psi, \beta, \{\psi_j\}_{j \in J})$ is $\psi_j^*s_{\beta(j)}$. These two are equal since by assumption $s \in \check H^0(\mathcal{U}, \mathcal{F})$ and hence both are equal to the pullback of the common value $$ s_{\alpha(j)}|_{U_{\alpha(j)} \times_U U_{\beta(j)}} = s_{\beta(j)}|_{U_{\alpha(j)} \times_U U_{\beta(j)}} $$ pulled back by the map $(\chi_j, \psi_j)$ in the diagram. \begin{theorem} \label{theorem-sheafification} Let $\mathcal{C}$ be a site and $\mathcal{F}$ a presheaf on $\mathcal{C}$. \begin{enumerate} \item The rule $$ U \mapsto \mathcal{F}^+(U) := \colim_{\mathcal{U} \text{ covering of }U} \check H^0(\mathcal{U}, \mathcal{F}) $$ is a presheaf. And the colimit is a directed one. \item There is a canonical map of presheaves $\mathcal{F} \to \mathcal{F}^+$. \item If $\mathcal{F}$ is a separated presheaf then $\mathcal{F}^+$ is a sheaf and the map in (2) is injective. \item $\mathcal{F}^+$ is a separated presheaf. \item $\mathcal{F}^\# = (\mathcal{F}^+)^+$ is a sheaf, and the canonical map induces a functorial isomorphism $$ \Hom_{\textit{PSh}(\mathcal{C})}(\mathcal{F}, \mathcal{G}) = \Hom_{\Sh(\mathcal{C})}(\mathcal{F}^\#, \mathcal{G}) $$ for any $\mathcal{G} \in \Sh(\mathcal{C})$. \end{enumerate} \end{theorem} \begin{proof} See Sites, Theorem \ref{sites-theorem-plus}. \end{proof} \noindent In other words, this means that the natural map $\mathcal{F} \to \mathcal{F}^\#$ is a left adjoint to the forgetful functor $\Sh(\mathcal{C}) \to \textit{PSh}(\mathcal{C})$. \section{Cohomology} \label{section-cohomology} \noindent The following is the basic result that makes it possible to define cohomology for abelian sheaves on sites. \begin{theorem} \label{theorem-enough-injectives} The category of abelian sheaves on a site is an abelian category which has enough injectives. \end{theorem} \begin{proof} See Modules on Sites, Lemma \ref{sites-modules-lemma-abelian-abelian} and Injectives, Theorem \ref{injectives-theorem-sheaves-injectives}. \end{proof} \noindent So we can define cohomology as the right-derived functors of the sections functor: if $U \in \Ob(\mathcal{C})$ and $\mathcal{F} \in \textit{Ab}(\mathcal{C})$, $$ H^p(U, \mathcal{F}) := R^p\Gamma(U, \mathcal{F}) = H^p(\Gamma(U, \mathcal{I}^\bullet)) $$ where $\mathcal{F} \to \mathcal{I}^\bullet$ is an injective resolution. To do this, we should check that the functor $\Gamma(U, -)$ is left exact. This is true and is part of why the category $\textit{Ab}(\mathcal{C})$ is abelian, see Modules on Sites, Lemma \ref{sites-modules-lemma-abelian-abelian}. For more general discussion of cohomology on sites (including the global sections functor and its right derived functors), see Cohomology on Sites, Section \ref{sites-cohomology-section-cohomology-sheaves}. \section{The fpqc topology} \label{section-fpqc} %9.15.09 \noindent Before doing \'etale cohomology we study a bit the fpqc topology, since it works well for quasi-coherent sheaves. \begin{definition} \label{definition-fpqc-covering} Let $T$ be a scheme. An {\it fpqc covering} of $T$ is a family $\{ \varphi_i : T_i \to T\}_{i \in I}$ such that \begin{enumerate} \item each $\varphi_i$ is a flat morphism and $\bigcup_{i\in I} \varphi_i(T_i) = T$, and \item for each affine open $U \subset T$ there exists a finite set $K$, a map $\mathbf{i} : K \to I$ and affine opens $U_{\mathbf{i}(k)} \subset T_{\mathbf{i}(k)}$ such that $U = \bigcup_{k \in K} \varphi_{\mathbf{i}(k)}(U_{\mathbf{i}(k)})$. \end{enumerate} \end{definition} \begin{remark} \label{remark-fpqc} The first condition corresponds to fp, which stands for {\it fid\`element plat}, faithfully flat in french, and the second to qc, {\it quasi-compact}. The second part of the first condition is unnecessary when the second condition holds. \end{remark} \begin{example} \label{example-fpqc-coverings} Examples of fpqc coverings. \begin{enumerate} \item Any Zariski open covering of $T$ is an fpqc covering. \item A family $\{\Spec(B) \to \Spec(A)\}$ is an fpqc covering if and only if $A \to B$ is a faithfully flat ring map. \item If $f: X \to Y$ is flat, surjective and quasi-compact, then $\{ f: X\to Y\}$ is an fpqc covering. \item The morphism $\varphi : \coprod_{x \in \mathbf{A}^1_k} \Spec(\mathcal{O}_{\mathbf{A}^1_k, x}) \to \mathbf{A}^1_k$, where $k$ is a field, is flat and surjective. It is not quasi-compact, and in fact the family $\{\varphi\}$ is not an fpqc covering. \item Write $\mathbf{A}^2_k = \Spec(k[x, y])$. Denote $i_x : D(x) \to \mathbf{A}^2_k$ and $i_y : D(y) \to \mathbf{A}^2_k$ the standard opens. Then the families $\{i_x, i_y, \Spec(k[[x, y]]) \to \mathbf{A}^2_k\}$ and $\{i_x, i_y, \Spec(\mathcal{O}_{\mathbf{A}^2_k, 0}) \to \mathbf{A}^2_k\}$ are fpqc coverings. \end{enumerate} \end{example} \begin{lemma} \label{lemma-site-fpqc} The collection of fpqc coverings on the category of schemes satisfies the axioms of site. \end{lemma} \begin{proof} See Topologies, Lemma \ref{topologies-lemma-fpqc}. \end{proof} \noindent It seems that this lemma allows us to define the fpqc site of the category of schemes. However, there is a set theoretical problem that comes up when considering the fpqc topology, see Topologies, Section \ref{topologies-section-fpqc}. It comes from our requirement that sites are ``small'', but that no small category of schemes can contain a cofinal system of fpqc coverings of a given nonempty scheme. Although this does not strictly speaking prevent us from defining ``partial'' fpqc sites, it does not seem prudent to do so. The work-around is to allow the notion of a sheaf for the fpqc topology (see below) but to prohibit considering the category of all fpqc sheaves. \begin{definition} \label{definition-sheaf-property-fpqc} Let $S$ be a scheme. The category of schemes over $S$ is denoted $\Sch/S$. Consider a functor $\mathcal{F} : (\Sch/S)^{opp} \to \textit{Sets}$, in other words a presheaf of sets. We say $\mathcal{F}$ {\it satisfies the sheaf property for the fpqc topology} if for every fpqc covering $\{U_i \to U\}_{i \in I}$ of schemes over $S$ the diagram (\ref{equation-sheaf-axiom}) is an equalizer diagram. \end{definition} \noindent We similarly say that $\mathcal{F}$ {\it satisfies the sheaf property for the Zariski topology} if for every open covering $U = \bigcup_{i \in I} U_i$ the diagram (\ref{equation-sheaf-axiom}) is an equalizer diagram. See Schemes, Definition \ref{schemes-definition-representable-by-open-immersions}. Clearly, this is equivalent to saying that for every scheme $T$ over $S$ the restriction of $\mathcal{F}$ to the opens of $T$ is a (usual) sheaf. \begin{lemma} \label{lemma-fpqc-sheaves} Let $\mathcal{F}$ be a presheaf on $\Sch/S$. Then $\mathcal{F}$ satisfies the sheaf property for the fpqc topology if and only if \begin{enumerate} \item $\mathcal{F}$ satisfies the sheaf property with respect to the Zariski topology, and \item for every faithfully flat morphism $\Spec(B) \to \Spec(A)$ of affine schemes over $S$, the sheaf axiom holds for the covering $\{\Spec(B) \to \Spec(A)\}$. Namely, this means that $$ \xymatrix{ \mathcal{F}(\Spec(A)) \ar[r] & \mathcal{F}(\Spec(B)) \ar@<1ex>[r] \ar@<-1ex>[r] & \mathcal{F}(\Spec(B \otimes_A B)) } $$ is an equalizer diagram. \end{enumerate} \end{lemma} \begin{proof} See Topologies, Lemma \ref{topologies-lemma-sheaf-property-fpqc}. \end{proof} \noindent An alternative way to think of a presheaf $\mathcal{F}$ on $\Sch/S$ which satisfies the sheaf condition for the fpqc topology is as the following data: \begin{enumerate} \item for each $T/S$, a usual (i.e., Zariski) sheaf $\mathcal{F}_T$ on $T_{Zar}$, \item for every map $f : T' \to T$ over $S$, a restriction mapping $f^{-1}\mathcal{F}_T \to \mathcal{F}_{T'}$ \end{enumerate} such that \begin{enumerate} \item[(a)] the restriction mappings are functorial, \item[(b)] if $f : T' \to T$ is an open immersion then the restriction mapping $f^{-1}\mathcal{F}_T \to \mathcal{F}_{T'}$ is an isomorphism, and \item[(c)] for every faithfully flat morphism $\Spec(B) \to \Spec(A)$ over $S$, the diagram $$ \xymatrix{ \mathcal{F}_{\Spec(A)}(\Spec(A)) \ar[r] & \mathcal{F}_{\Spec(B)}(\Spec(B)) \ar@<1ex>[r] \ar@<-1ex>[r] & \mathcal{F}_{\Spec(B \otimes_A B)}(\Spec(B \otimes_A B)) } $$ is an equalizer. \end{enumerate} Data (1) and (2) and conditions (a), (b) give the data of a presheaf on $\Sch/S$ satisfying the sheaf condition for the Zariski topology. By Lemma \ref{lemma-fpqc-sheaves} condition (c) then suffices to get the sheaf condition for the fpqc topology. \begin{example} \label{example-quasi-coherent} Consider the presheaf $$ \begin{matrix} \mathcal{F} : & (\Sch/S)^{opp} & \longrightarrow & \textit{Ab} \\ & T/S & \longmapsto & \Gamma(T, \Omega_{T/S}). \end{matrix} $$ The compatibility of differentials with localization implies that $\mathcal{F}$ is a sheaf on the Zariski site. However, it does not satisfy the sheaf condition for the fpqc topology. Namely, consider the case $S = \Spec(\mathbf{F}_p)$ and the morphism $$ \varphi : V = \Spec(\mathbf{F}_p[v]) \to U = \Spec(\mathbf{F}_p[u]) $$ given by mapping $u$ to $v^p$. The family $\{\varphi\}$ is an fpqc covering, yet the restriction mapping $\mathcal{F}(U) \to \mathcal{F}(V)$ sends the generator $\text{d}u$ to $\text{d}(v^p) = 0$, so it is the zero map, and the diagram $$ \xymatrix{ \mathcal{F}(U) \ar[r]^{0} & \mathcal{F}(V) \ar@<1ex>[r] \ar@<-1ex>[r] & \mathcal{F}(V \times_U V) } $$ is not an equalizer. We will see later that $\mathcal{F}$ does in fact give rise to a sheaf on the \'etale and smooth sites. \end{example} \begin{lemma} \label{lemma-representable-sheaf-fpqc} Any representable presheaf on $\Sch/S$ satisfies the sheaf condition for the fpqc topology. \end{lemma} \begin{proof} See Descent, Lemma \ref{descent-lemma-fpqc-universal-effective-epimorphisms}. \end{proof} \noindent We will return to this later, since the proof of this fact uses descent for quasi-coherent sheaves, which we will discuss in the next section. A fancy way of expressing the lemma is to say that {\it the fpqc topology is weaker than the canonical topology}, or that the fpqc topology is {\it subcanonical}. In the setting of sites this is discussed in Sites, Section \ref{sites-section-representable-sheaves}. \begin{remark} \label{remark-fpqc-finest} The fpqc is finer than the Zariski, \'etale, smooth, syntomic, and fppf topologies. Hence any presheaf satisfying the sheaf condition for the fpqc topology will be a sheaf on the Zariski, \'etale, smooth, syntomic, and fppf sites. In particular representable presheaves will be sheaves on the \'etale site of a scheme for example. \end{remark} \begin{example} \label{example-additive-group-sheaf} Let $S$ be a scheme. Consider the additive group scheme $\mathbf{G}_{a, S} = \mathbf{A}^1_S$ over $S$, see Groupoids, Example \ref{groupoids-example-additive-group}. The associated representable presheaf is given by $$ h_{\mathbf{G}_{a, S}}(T) = \Mor_S(T, \mathbf{G}_{a, S}) = \Gamma(T, \mathcal{O}_T). $$ By the above we now know that this is a presheaf of sets which satisfies the sheaf condition for the fpqc topology. On the other hand, it is clearly a presheaf of rings as well. Hence we can think of this as a functor $$ \begin{matrix} \mathcal{O} : & (\Sch/S)^{opp} & \longrightarrow & \textit{Rings} \\ & T/S & \longmapsto & \Gamma(T, \mathcal{O}_T) \end{matrix} $$ which satisfies the sheaf condition for the fpqc topology. Correspondingly there is a notion of $\mathcal{O}$-module, and so on and so forth. \end{example} \section{Faithfully flat descent} \label{section-fpqc-descent} \noindent In this section we discuss faithfully flat descent for quasi-coherent modules. More precisely, we will prove quasi-coherent modules satisfy effective descent with respect to fpqc coverings. \begin{definition} \label{definition-descent-datum} Let $\mathcal{U} = \{ t_i : T_i \to T\}_{i \in I}$ be a family of morphisms of schemes with fixed target. A {\it descent datum} for quasi-coherent sheaves with respect to $\mathcal{U}$ is a collection $((\mathcal{F}_i)_{i \in I}, (\varphi_{ij})_{i, j \in I})$ where \begin{enumerate} \item $\mathcal{F}_i$ is a quasi-coherent sheaf on $T_i$, and \item $\varphi_{ij} : \text{pr}_0^* \mathcal{F}_i \to \text{pr}_1^* \mathcal{F}_j$ is an isomorphism of modules on $T_i \times_T T_j$, \end{enumerate} such that the {\it cocycle condition} holds: the diagrams $$ \xymatrix{ \text{pr}_0^*\mathcal{F}_i \ar[dr]_{\text{pr}_{02}^*\varphi_{ik}} \ar[rr]^{\text{pr}_{01}^*\varphi_{ij}} & & \text{pr}_1^*\mathcal{F}_j \ar[dl]^{\text{pr}_{12}^*\varphi_{jk}} \\ & \text{pr}_2^*\mathcal{F}_k } $$ commute on $T_i \times_T T_j \times_T T_k$. This descent datum is called {\it effective} if there exist a quasi-coherent sheaf $\mathcal{F}$ over $T$ and $\mathcal{O}_{T_i}$-module isomorphisms $\varphi_i : t_i^* \mathcal{F} \cong \mathcal{F}_i$ compatible with the maps $\varphi_{ij}$, namely $$ \varphi_{ij} = \text{pr}_1^* (\varphi_j) \circ \text{pr}_0^* (\varphi_i)^{-1}. $$ \end{definition} \noindent In this and the next section we discuss some ingredients of the proof of the following theorem, as well as some related material. \begin{theorem} \label{theorem-descent-quasi-coherent} If $\mathcal{V} = \{T_i \to T\}_{i\in I}$ is an fpqc covering, then all descent data for quasi-coherent sheaves with respect to $\mathcal{V}$ are effective. \end{theorem} \begin{proof} See Descent, Proposition \ref{descent-proposition-fpqc-descent-quasi-coherent}. \end{proof} \noindent In other words, the fibered category of quasi-coherent sheaves is a stack on the fpqc site. The proof of the theorem is in two steps. The first one is to realize that for Zariski coverings this is easy (or well-known) using standard glueing of sheaves (see Sheaves, Section \ref{sheaves-section-glueing-sheaves}) and the locality of quasi-coherence. The second step is the case of an fpqc covering of the form $\{\Spec(B) \to \Spec(A)\}$ where $A \to B$ is a faithfully flat ring map. This is a lemma in algebra, which we now present. \medskip\noindent {\bf Descent of modules.} If $A \to B$ is a ring map, we consider the complex $$ (B/A)_\bullet : B \to B \otimes_A B \to B \otimes_A B \otimes_A B \to \ldots $$ where $B$ is in degree 0, $B \otimes_A B$ in degree 1, etc, and the maps are given by \begin{eqnarray*} b & \mapsto & 1 \otimes b - b \otimes 1, \\ b_0 \otimes b_1 & \mapsto & 1 \otimes b_0 \otimes b_1 - b_0 \otimes 1 \otimes b_1 + b_0 \otimes b_1 \otimes 1, \\ & \text{etc.} \end{eqnarray*} \begin{lemma} \label{lemma-algebra-descent} If $A \to B$ is faithfully flat, then the complex $(B/A)_\bullet$ is exact in positive degrees, and $H^0((B/A)_\bullet) = A$. \end{lemma} \begin{proof} See Descent, Lemma \ref{descent-lemma-ff-exact}. \end{proof} \noindent Grothendieck proves this in three steps. Firstly, he assumes that the map $A \to B$ has a section, and constructs an explicit homotopy to the complex where $A$ is the only nonzero term, in degree 0. Secondly, he observes that to prove the result, it suffices to do so after a faithfully flat base change $A \to A'$, replacing $B$ with $B' = B \otimes_A A'$. Thirdly, he applies the faithfully flat base change $A \to A' = B$ and remark that the map $A' = B \to B' = B \otimes_A B$ has a natural section. \medskip\noindent The same strategy proves the following lemma. \begin{lemma} \label{lemma-descent-modules} If $A \to B$ is faithfully flat and $M$ is an $A$-module, then the complex $(B/A)_\bullet \otimes_A M$ is exact in positive degrees, and $H^0((B/A)_\bullet \otimes_A M) = M$. \end{lemma} \begin{proof} See Descent, Lemma \ref{descent-lemma-ff-exact}. \end{proof} \begin{definition} \label{definition-descent-datum-modules} Let $A \to B$ be a ring map and $N$ a $B$-module. A {\it descent datum} for $N$ with respect to $A \to B$ is an isomorphism $\varphi : N \otimes_A B \cong B \otimes_A N$ of $B \otimes_A B$-modules such that the diagram of $B \otimes_A B \otimes_A B$-modules $$ \xymatrix{ {N \otimes_A B \otimes_A B} \ar[dr]_{\varphi_{02}} \ar[rr]^{\varphi_{01}} & & {B \otimes_A N \otimes_A B} \ar[dl]^{\varphi_{12}} \\ & {B \otimes_A B \otimes_A N} } $$ commutes where $\varphi_{01} = \varphi \otimes \text{id}_B$ and similarly for $\varphi_{12}$ and $\varphi_{02}$. \end{definition} \noindent If $N' = B \otimes_A M$ for some $A$-module M, then it has a canonical descent datum given by the map $$ \begin{matrix} \varphi_\text{can}: & N' \otimes_A B & \to & B \otimes_A N' \\ & b_0 \otimes m \otimes b_1 & \mapsto & b_0 \otimes b_1 \otimes m. \end{matrix} $$ \begin{definition} \label{definition-effective-modules} A descent datum $(N, \varphi)$ is called {\it effective} if there exists an $A$-module $M$ such that $(N, \varphi) \cong (B \otimes_A M, \varphi_\text{can})$, with the obvious notion of isomorphism of descent data. \end{definition} \noindent Theorem \ref{theorem-descent-quasi-coherent} is a consequence the following result. \begin{theorem} \label{theorem-descent-modules} If $A \to B$ is faithfully flat then descent data with respect to $A\to B$ are effective. \end{theorem} \begin{proof} See Descent, Proposition \ref{descent-proposition-descent-module}. See also Descent, Remark \ref{descent-remark-homotopy-equivalent-cosimplicial-algebras} for an alternative view of the proof. \end{proof} \begin{remarks} \label{remarks-theorem-modules-exactness} The results on descent of modules have several applications: \begin{enumerate} \item The exactness of the {\v C}ech complex in positive degrees for the covering $\{\Spec(B) \to \Spec(A)\}$ where $A \to B$ is faithfully flat. This will give some vanishing of cohomology. \item If $(N, \varphi)$ is a descent datum with respect to a faithfully flat map $A \to B$, then the corresponding $A$-module is given by $$ M = \Ker \left( \begin{matrix} N & \longrightarrow & B \otimes_A N \\ n & \longmapsto & 1 \otimes n - \varphi(n \otimes 1) \end{matrix} \right). $$ See Descent, Proposition \ref{descent-proposition-descent-module}. \end{enumerate} \end{remarks} %9.17.09 \section{Quasi-coherent sheaves} \label{section-quasi-coherent} \noindent We can apply the descent of modules to study quasi-coherent sheaves. \begin{proposition} \label{proposition-quasi-coherent-sheaf-fpqc} For any quasi-coherent sheaf $\mathcal{F}$ on $S$ the presheaf $$ \begin{matrix} \mathcal{F}^a : & \Sch/S & \to & \textit{Ab}\\ & (f: T \to S) & \mapsto & \Gamma(T, f^*\mathcal{F}) \end{matrix} $$ is an $\mathcal{O}$-module which satisfies the sheaf condition for the fpqc topology. \end{proposition} \begin{proof} This is proved in Descent, Lemma \ref{descent-lemma-sheaf-condition-holds}. We indicate the proof here. As established in Lemma \ref{lemma-fpqc-sheaves}, it is enough to check the sheaf property on Zariski coverings and faithfully flat morphisms of affine schemes. The sheaf property for Zariski coverings is standard scheme theory, since $\Gamma(U, i^\ast \mathcal{F}) = \mathcal{F}(U)$ when $i : U \hookrightarrow S$ is an open immersion. \medskip\noindent For $\left\{\Spec(B)\to \Spec(A)\right\}$ with $A\to B$ faithfully flat and $\mathcal{F}|_{\Spec(A)} = \widetilde{M}$ this corresponds to the fact that $M = H^0\left((B/A)_\bullet \otimes_A M \right)$, i.e., that \begin{align*} 0 \to M \to B \otimes_A M \to B \otimes_A B \otimes_A M \end{align*} is exact by Lemma \ref{lemma-descent-modules}. \end{proof} \noindent There is an abstract notion of a quasi-coherent sheaf on a ringed site. We briefly introduce this here. For more information please consult Modules on Sites, Section \ref{sites-modules-section-local}. Let $\mathcal{C}$ be a category, and let $U$ be an object of $\mathcal{C}$. Then $\mathcal{C}/U$ indicates the category of objects over $U$, see Categories, Example \ref{categories-example-category-over-X}. If $\mathcal{C}$ is a site, then $\mathcal{C}/U$ is a site as well, namely the coverings of $V/U$ are families $\{V_i/U \to V/U\}$ of morphisms of $\mathcal{C}/U$ with fixed target such that $\{V_i \to V\}$ is a covering of $\mathcal{C}$. Moreover, given any sheaf $\mathcal{F}$ on $\mathcal{C}$ the {\it restriction} $\mathcal{F}|_{\mathcal{C}/U}$ (defined in the obvious manner) is a sheaf as well. See Sites, Section \ref{sites-section-localize} for details. \begin{definition} \label{definition-ringed-site} Let $\mathcal{C}$ be a {\it ringed site}, i.e., a site endowed with a sheaf of rings $\mathcal{O}$. A sheaf of $\mathcal{O}$-modules $\mathcal{F}$ on $\mathcal{C}$ is called {\it quasi-coherent} if for all $U \in \Ob(\mathcal{C})$ there exists a covering $\{U_i \to U\}_{i\in I}$ of $\mathcal{C}$ such that the restriction $\mathcal{F}|_{\mathcal{C}/U_i}$ is isomorphic to the cokernel of an $\mathcal{O}$-linear map of free $\mathcal{O}$-modules $$ \bigoplus\nolimits_{k \in K} \mathcal{O}|_{\mathcal{C}/U_i} \longrightarrow \bigoplus\nolimits_{l \in L} \mathcal{O}|_{\mathcal{C}/U_i}. $$ The direct sum over $K$ is the sheaf associated to the presheaf $V \mapsto \bigoplus_{k \in K} \mathcal{O}(V)$ and similarly for the other. \end{definition} \noindent Although it is useful to be able to give a general definition as above this notion is not well behaved in general. \begin{remark} \label{remark-final-object} In the case where $\mathcal{C}$ has a final object, e.g.\ $S$, it suffices to check the condition of the definition for $U = S$ in the above statement. See Modules on Sites, Lemma \ref{sites-modules-lemma-local-final-object}. \end{remark} \begin{theorem}[Meta theorem on quasi-coherent sheaves] \label{theorem-quasi-coherent} Let $S$ be a scheme. Let $\mathcal{C}$ be a site. Assume that \begin{enumerate} \item the underlying category $\mathcal{C}$ is a full subcategory of $\Sch/S$, \item any Zariski covering of $T \in \Ob(\mathcal{C})$ can be refined by a covering of $\mathcal{C}$, \item $S/S$ is an object of $\mathcal{C}$, \item every covering of $\mathcal{C}$ is an fpqc covering of schemes. \end{enumerate} Then the presheaf $\mathcal{O}$ is a sheaf on $\mathcal{C}$ and any quasi-coherent $\mathcal{O}$-module on $(\mathcal{C}, \mathcal{O})$ is of the form $\mathcal{F}^a$ for some quasi-coherent sheaf $\mathcal{F}$ on $S$. \end{theorem} \begin{proof} After some formal arguments this is exactly Theorem \ref{theorem-descent-quasi-coherent}. Details omitted. In Descent, Proposition \ref{descent-proposition-equivalence-quasi-coherent} we prove a more precise version of the theorem for the big Zariski, fppf, \'etale, smooth, and syntomic sites of $S$, as well as the small Zariski and \'etale sites of $S$. \end{proof} \noindent In other words, there is no difference between quasi-coherent modules on the scheme $S$ and quasi-coherent $\mathcal{O}$-modules on sites $\mathcal{C}$ as in the theorem. More precise statements for the big and small sites $(\Sch/S)_{fppf}$, $S_\etale$, etc can be found in Descent, Sections \ref{descent-section-quasi-coherent-sheaves}, \ref{descent-section-quasi-coherent-cohomology}, and \ref{descent-section-quasi-coherent-sheaves-bis}. In this chapter we will sometimes refer to a ``site as in Theorem \ref{theorem-quasi-coherent}'' in order to conveniently state results which hold in any of those situations. \section{{\v C}ech cohomology} \label{section-cech-cohomology} \noindent Our next goal is to use descent theory to show that $H^i(\mathcal{C}, \mathcal{F}^a) = H_{Zar}^i(S, \mathcal{F})$ for all quasi-coherent sheaves $\mathcal{F}$ on $S$, and any site $\mathcal{C}$ as in Theorem \ref{theorem-quasi-coherent}. To this end, we introduce {\v C}ech cohomology on sites. See \cite{ArtinTopologies} and Cohomology on Sites, Sections \ref{sites-cohomology-section-cech}, \ref{sites-cohomology-section-cech-functor} and \ref{sites-cohomology-section-cech-cohomology-cohomology} for more details. \begin{definition} \label{definition-cech-complex} Let $\mathcal{C}$ be a category, $\mathcal{U} = \{U_i \to U\}_{i \in I}$ a family of morphisms of $\mathcal{C}$ with fixed target, and $\mathcal{F} \in \textit{PAb}(\mathcal{C})$ an abelian presheaf. We define the {\it {\v C}ech complex} $\check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F})$ by $$ \prod_{i_0\in I} \mathcal{F}(U_{i_0}) \to \prod_{i_0, i_1\in I} \mathcal{F}(U_{i_0} \times_U U_{i_1}) \to \prod_{i_0, i_1, i_2 \in I} \mathcal{F}(U_{i_0} \times_U U_{i_1} \times_U U_{i_2}) \to \ldots $$ where the first term is in degree 0, and the maps are the usual ones. Again, it is essential to allow the case $i_0 = i_1$ etc. The {\it {\v C}ech cohomology groups} are defined by $$ \check{H}^p(\mathcal{U}, \mathcal{F}) = H^p(\check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F})). $$ \end{definition} \begin{lemma} \label{lemma-cech-presheaves} The functor $\check{\mathcal{C}}^\bullet(\mathcal{U}, -)$ is exact on the category $\textit{PAb}(\mathcal{C})$. \end{lemma} \noindent In other words, if $0\to \mathcal{F}_1\to \mathcal{F}_2\to \mathcal{F}_3\to 0$ is a short exact sequence of presheaves of abelian groups, then $$ 0 \to \check{\mathcal{C}}^\bullet\left(\mathcal{U}, \mathcal{F}_1\right) \to\check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F}_2) \to \check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F}_3)\to 0 $$ is a short exact sequence of complexes. \begin{proof} This follows at once from the definition of a short exact sequence of presheaves. Namely, as the category of abelian presheaves is the category of functors on some category with values in $\textit{Ab}$, it is automatically an abelian category: a sequence $\mathcal{F}_1\to \mathcal{F}_2\to \mathcal{F}_3$ is exact in $\textit{PAb}$ if and only if for all $U \in \Ob(\mathcal{C})$, the sequence $\mathcal{F}_1(U) \to \mathcal{F}_2(U) \to \mathcal{F}_3(U)$ is exact in $\textit{Ab}$. So the complex above is merely a product of short exact sequences in each degree. See also Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-cech-exact-presheaves}. \end{proof} \noindent This shows that $\check{H}^\bullet(\mathcal{U}, -)$ is a $\delta$-functor. We now proceed to show that it is a universal $\delta$-functor. We thus need to show that it is an {\it effaceable} functor. We start by recalling the Yoneda lemma. \begin{lemma}[Yoneda Lemma] \label{lemma-yoneda-presheaf} For any presheaf $\mathcal{F}$ on a category $\mathcal{C}$ there is a functorial isomorphism $$ \Hom_{\textit{PSh}(\mathcal{C})}(h_U, \mathcal{F}) = \mathcal{F}(U). $$ \end{lemma} \begin{proof} See Categories, Lemma \ref{categories-lemma-yoneda}. \end{proof} \noindent Given a set $E$ we denote (in this section) $\mathbf{Z}[E]$ the free abelian group on $E$. In a formula $\mathbf{Z}[E] = \bigoplus_{e \in E} \mathbf{Z}$, i.e., $\mathbf{Z}[E]$ is a free $\mathbf{Z}$-module having a basis consisting of the elements of $E$. Using this notation we introduce the free abelian presheaf on a presheaf of sets. \begin{definition} \label{definition-free-abelian-presheaf} Let $\mathcal{C}$ be a category. Given a presheaf of sets $\mathcal{G}$, we define the {\it free abelian presheaf on $\mathcal{G}$}, denoted $\mathbf{Z}_\mathcal{G}$, by the rule $$ \mathbf{Z}_\mathcal{G}(U) = \mathbf{Z}[\mathcal{G}(U)] $$ for $U \in \Ob(\mathcal{C})$ with restriction maps induced by the restriction maps of $\mathcal{G}$. In the special case $\mathcal{G} = h_U$ we write simply $\mathbf{Z}_U = \mathbf{Z}_{h_U}$. \end{definition} \noindent The functor $\mathcal{G} \mapsto \mathbf{Z}_\mathcal{G}$ is left adjoint to the forgetful functor $\textit{PAb}(\mathcal{C}) \to \textit{PSh}(\mathcal{C})$. Thus, for any presheaf $\mathcal{F}$, there is a canonical isomorphism $$ \Hom_{\textit{PAb}(\mathcal{C})}(\mathbf{Z}_U, \mathcal{F}) = \Hom_{\textit{PSh}(\mathcal{C})}(h_U, \mathcal{F}) = \mathcal{F}(U) $$ the last equality by the Yoneda lemma. In particular, we have the following result. \begin{lemma} \label{lemma-cech-complex-describe} The {\v C}ech complex $\check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F})$ can be described explicitly as follows \begin{eqnarray*} \check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F}) & = & \left( \prod_{i_0 \in I} \Hom_{\textit{PAb}(\mathcal{C})}(\mathbf{Z}_{U_{i_0}}, \mathcal{F}) \to \prod_{i_0, i_1 \in I} \Hom_{\textit{PAb}(\mathcal{C})}( \mathbf{Z}_{U_{i_0} \times_U U_{i_1}}, \mathcal{F}) \to \ldots \right) \\ & = & \Hom_{\textit{PAb}(\mathcal{C})}\left( \left( \bigoplus_{i_0 \in I} \mathbf{Z}_{U_{i_0}} \leftarrow \bigoplus_{i_0, i_1 \in I} \mathbf{Z}_{U_{i_0} \times_U U_{i_1}} \leftarrow \ldots \right), \mathcal{F}\right) \end{eqnarray*} \end{lemma} \begin{proof} This follows from the formula above. See Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-cech-map-into}. \end{proof} \noindent This reduces us to studying only the complex in the first argument of the last $\Hom$. \begin{lemma} \label{lemma-exact} The complex of abelian presheaves \begin{align*} \mathbf{Z}_\mathcal{U}^\bullet \quad : \quad \bigoplus_{i_0 \in I} \mathbf{Z}_{U_{i_0}} \leftarrow \bigoplus_{i_0, i_1 \in I} \mathbf{Z}_{U_{i_0} \times_U U_{i_1}} \leftarrow \bigoplus_{i_0, i_1, i_2 \in I} \mathbf{Z}_{U_{i_0} \times_U U_{i_1} \times_U U_{i_2}} \leftarrow \ldots \end{align*} is exact in all degrees except $0$ in $\textit{PAb}(\mathcal{C})$. \end{lemma} \begin{proof} For any $V\in \Ob(\mathcal{C})$ the complex of abelian groups $\mathbf{Z}_\mathcal{U}^\bullet(V)$ is $$ \begin{matrix} \mathbf{Z}\left[ \coprod_{i_0\in I} \Mor_\mathcal{C}(V, U_{i_0})\right] \leftarrow \mathbf{Z}\left[ \coprod_{i_0, i_1 \in I} \Mor_\mathcal{C}(V, U_{i_0} \times_U U_{i_1})\right] \leftarrow \ldots = \\ \bigoplus_{\varphi : V \to U} \left( \mathbf{Z}\left[\coprod_{i_0 \in I} \Mor_\varphi(V, U_{i_0})\right] \leftarrow \mathbf{Z}\left[\coprod_{i_0, i_1\in I} \Mor_\varphi(V, U_{i_0}) \times \Mor_\varphi(V, U_{i_1})\right] \leftarrow \ldots \right) \end{matrix} $$ where $$ \Mor_{\varphi}(V, U_i) = \{ V \to U_i \text{ such that } V \to U_i \to U \text{ equals } \varphi \}. $$ Set $S_\varphi = \coprod_{i\in I} \Mor_\varphi(V, U_i)$, so that $$ \mathbf{Z}_\mathcal{U}^\bullet(V) = \bigoplus_{\varphi : V \to U} \left( \mathbf{Z}[S_\varphi] \leftarrow \mathbf{Z}[S_\varphi \times S_\varphi] \leftarrow \mathbf{Z}[S_\varphi \times S_\varphi \times S_\varphi] \leftarrow \ldots \right). $$ Thus it suffices to show that for each $S = S_\varphi$, the complex \begin{align*} \mathbf{Z}[S] \leftarrow \mathbf{Z}[S \times S] \leftarrow \mathbf{Z}[S \times S \times S] \leftarrow \ldots \end{align*} is exact in negative degrees. To see this, we can give an explicit homotopy. Fix $s\in S$ and define $K: n_{(s_0, \ldots, s_p)} \mapsto n_{(s, s_0, \ldots, s_p)}.$ One easily checks that $K$ is a nullhomotopy for the operator $$ \delta : \eta_{(s_0, \ldots, s_p)} \mapsto \sum\nolimits_{i = 0}^p (-1)^p \eta_{(s_0, \ldots, \hat s_i, \ldots, s_p)}. $$ See Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-homology-complex} for more details. \end{proof} \begin{lemma} \label{lemma-hom-injective} Let $\mathcal{C}$ be a category. If $\mathcal{I}$ is an injective object of $\textit{PAb}(\mathcal{C})$ and $\mathcal{U}$ is a family of morphisms with fixed target in $\mathcal{C}$, then $\check H^p(\mathcal{U}, \mathcal{I}) = 0$ for all $p > 0$. \end{lemma} \begin{proof} The {\v C}ech complex is the result of applying the functor $\Hom_{\textit{PAb}(\mathcal{C})}(-, \mathcal{I}) $ to the complex $ \mathbf{Z}^\bullet_\mathcal{U} $, i.e., $$ \check H^p(\mathcal{U}, \mathcal{I}) = H^p (\Hom_{\textit{PAb}(\mathcal{C})} (\mathbf{Z}^\bullet_\mathcal{U}, \mathcal{I})). $$ But we have just seen that $\mathbf{Z}^\bullet_\mathcal{U}$ is exact in negative degrees, and the functor $\Hom_{\textit{PAb}(\mathcal{C})}(-, \mathcal{I})$ is exact, hence $\Hom_{\textit{PAb}(\mathcal{C})} (\mathbf{Z}^\bullet_\mathcal{U}, \mathcal{I})$ is exact in positive degrees. \end{proof} \begin{theorem} \label{theorem-cech-derived} On $\textit{PAb}(\mathcal{C})$ the functors $\check{H}^p(\mathcal{U}, -)$ are the right derived functors of $\check{H}^0(\mathcal{U}, -)$. \end{theorem} \begin{proof} By the Lemma \ref{lemma-hom-injective}, the functors $\check H^p(\mathcal{U}, -)$ are universal $\delta$-functors since they are effaceable. So are the right derived functors of $\check H^0(\mathcal{U}, -)$. Since they agree in degree $0$, they agree by the universal property of universal $\delta$-functors. For more details see Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-cech-cohomology-derived-presheaves}. \end{proof} \begin{remark} \label{remark-presheaves-no-topology} Observe that all of the preceding statements are about presheaves so we haven't made use of the topology yet. \end{remark} \section{The {\v C}ech-to-cohomology spectral sequence} \label{section-cech-ss} \noindent This spectral sequence is fundamental in proving foundational results on cohomology of sheaves. \begin{lemma} \label{lemma-forget-injectives} The forgetful functor $\textit{Ab}(\mathcal{C})\to \textit{PAb}(\mathcal{C})$ transforms injectives into injectives. \end{lemma} \begin{proof} This is formal using the fact that the forgetful functor has a left adjoint, namely sheafification, which is an exact functor. For more details see Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-injective-abelian-sheaf-injective-presheaf}. \end{proof} \begin{theorem} \label{theorem-cech-ss} Let $\mathcal{C}$ be a site. For any covering $\mathcal{U} = \{U_i \to U\}_{i \in I}$ of $U \in \Ob(\mathcal{C})$ and any abelian sheaf $\mathcal{F}$ on $\mathcal{C}$ there is a spectral sequence $$ E_2^{p, q} = \check H^p(\mathcal{U}, \underline{H}^q(\mathcal{F})) \Rightarrow H^{p+q}(U, \mathcal{F}), $$ where $\underline{H}^q(\mathcal{F})$ is the abelian presheaf $V \mapsto H^q(V, \mathcal{F})$. \end{theorem} \begin{proof} Choose an injective resolution $\mathcal{F}\to \mathcal{I}^\bullet$ in $\textit{Ab}(\mathcal{C})$, and consider the double complex $\check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{I}^\bullet)$ and the maps $$ \xymatrix{ \Gamma(U, I^\bullet) \ar[r] & \check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{I}^\bullet) \\ & \check{\mathcal{C}}^\bullet(\mathcal{U}, \mathcal{F}) \ar[u] } $$ Here the horizontal map is the natural map $\Gamma(U, I^\bullet) \to \check{\mathcal{C}}^0(\mathcal{U}, \mathcal{I}^\bullet)$ to the left column, and the vertical map is induced by $\mathcal{F}\to \mathcal{I}^0$ and lands in the bottom row. By assumption, $\mathcal{I}^\bullet$ is a complex of injectives in $\textit{Ab}(\mathcal{C})$, hence by Lemma \ref{lemma-forget-injectives}, it is a complex of injectives in $\textit{PAb}(\mathcal{C})$. Thus, the rows of the double complex are exact in positive degrees (Lemma \ref{lemma-hom-injective}), and the kernel of $\check{\mathcal{C}}^0(\mathcal{U}, \mathcal{I}^\bullet) \to \check{\mathcal{C}}^1(\mathcal{U}, \mathcal{I}^\bullet)$ is equal to $\Gamma(U, \mathcal{I}^\bullet)$, since $\mathcal{I}^\bullet$ is a complex of sheaves. In particular, the cohomology of the total complex is the standard cohomology of the global sections functor $H^0(U, \mathcal{F})$. \medskip\noindent For the vertical direction, the $q$th cohomology group of the $p$th column is $$ \prod_{i_0, \ldots, i_p} H^q(U_{i_0} \times_U \ldots \times_U U_{i_p}, \mathcal{F}) = \prod_{i_0, \ldots, i_p} \underline{H}^q(\mathcal{F})(U_{i_0} \times_U \ldots \times_U U_{i_p}) $$ in the entry $E_1^{p, q}$. So this is a standard double complex spectral sequence, and the $E_2$-page is as prescribed. For more details see Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-cech-spectral-sequence}. \end{proof} \begin{remark} \label{remark-grothendieck-ss} This is a Grothendieck spectral sequence for the composition of functors $$ \textit{Ab}(\mathcal{C}) \longrightarrow \textit{PAb}(\mathcal{C}) \xrightarrow{\check H^0} \textit{Ab}. $$ \end{remark} \section{Big and small sites of schemes} \label{section-big-small} \noindent Let $S$ be a scheme. Let $\tau$ be one of the topologies we will be discussing. Thus $\tau \in \{fppf, syntomic, smooth, \etale, Zariski\}$. Of course if you are only interested in the \'etale topology, then you can simply assume $\tau = \etale$ throughout. Moreover, we will discuss \'etale morphisms, \'etale coverings, and \'etale sites in more detail starting in Section \ref{section-etale-site}. In order to proceed with the discussion of cohomology of quasi-coherent sheaves it is convenient to introduce the big $\tau$-site and in case $\tau \in \{\etale, Zariski\}$, the small $\tau$-site of $S$. In order to do this we first introduce the notion of a $\tau$-covering. \begin{definition} \label{definition-tau-covering} (See Topologies, Definitions \ref{topologies-definition-fppf-covering}, \ref{topologies-definition-syntomic-covering}, \ref{topologies-definition-smooth-covering}, \ref{topologies-definition-etale-covering}, and \ref{topologies-definition-zariski-covering}.) Let $\tau \in \{fppf, syntomic, smooth, \etale, Zariski\}$. A family of morphisms of schemes $\{f_i : T_i \to T\}_{i \in I}$ with fixed target is called a {\it $\tau$-covering} if and only if each $f_i$ is flat of finite presentation, syntomic, smooth, \'etale, resp.\ an open immersion, and we have $\bigcup f_i(T_i) = T$. \end{definition} \noindent The class of all $\tau$-coverings satisfies the axioms (1), (2) and (3) of Definition \ref{definition-site} (our definition of a site), see Topologies, Lemmas \ref{topologies-lemma-fppf}, \ref{topologies-lemma-syntomic}, \ref{topologies-lemma-smooth}, \ref{topologies-lemma-etale}, and \ref{topologies-lemma-zariski}. \medskip\noindent Let us introduce the sites we will be working with. Contrary to what happens in \cite{SGA4}, we do not want to choose a universe. Instead we pick a ``partial universe'' (which is a suitably large set as in Sets, Section \ref{sets-section-sets-hierarchy}), and consider all schemes contained in this set. Of course we make sure that our favorite base scheme $S$ is contained in the partial universe. Having picked the underlying category we pick a suitably large set of $\tau$-coverings which turns this into a site. The details are in the chapter on topologies on schemes; there is a lot of freedom in the choices made, but in the end the actual choices made will not affect the \'etale (or other) cohomology of $S$ (just as in \cite{SGA4} the actual choice of universe doesn't matter at the end). Moreover, the way the material is written the reader who is happy using strongly inaccessible cardinals (i.e., universes) can do so as a substitute. \begin{definition} \label{definition-tau-site} Let $S$ be a scheme. Let $\tau \in \{fppf, syntomic, smooth, \etale, \linebreak[0] Zariski\}$. \begin{enumerate} \item A {\it big $\tau$-site of $S$} is any of the sites $(\Sch/S)_\tau$ constructed as explained above and in more detail in Topologies, Definitions \ref{topologies-definition-big-small-fppf}, \ref{topologies-definition-big-small-syntomic}, \ref{topologies-definition-big-small-smooth}, \ref{topologies-definition-big-small-etale}, and \ref{topologies-definition-big-small-Zariski}. \item If $\tau \in \{\etale, Zariski\}$, then the {\it small $\tau$-site of $S$} is the full subcategory $S_\tau$ of $(\Sch/S)_\tau$ whose objects are schemes $T$ over $S$ whose structure morphism $T \to S$ is \'etale, resp.\ an open immersion. A covering in $S_\tau$ is a covering $\{U_i \to U\}$ in $(\Sch/S)_\tau$ such that $U$ is an object of $S_\tau$. \end{enumerate} \end{definition} \noindent The underlying category of the site $(\Sch/S)_\tau$ has reasonable ``closure'' properties, i.e., given a scheme $T$ in it any locally closed subscheme of $T$ is isomorphic to an object of $(\Sch/S)_\tau$. Other such closure properties are: closed under fibre products of schemes, taking countable disjoint unions, taking finite type schemes over a given scheme, given an affine scheme $\Spec(R)$ one can complete, localize, or take the quotient of $R$ by an ideal while staying inside the category, etc. On the other hand, for example arbitrary disjoint unions of schemes in $(\Sch/S)_\tau$ will take you outside of it. Also note that, given an object $T$ of $(\Sch/S)_\tau$ there will exist $\tau$-coverings $\{T_i \to T\}_{i \in I}$ (as in Definition \ref{definition-tau-covering}) which are not coverings in $(\Sch/S)_\tau$ for example because the schemes $T_i$ are not objects of the category $(\Sch/S)_\tau$. But our choice of the sites $(\Sch/S)_\tau$ is such that there always does exist a covering $\{U_j \to T\}_{j \in J}$ of $(\Sch/S)_\tau$ which refines the covering $\{T_i \to T\}_{i \in I}$, see Topologies, Lemmas \ref{topologies-lemma-fppf-induced}, \ref{topologies-lemma-syntomic-induced}, \ref{topologies-lemma-smooth-induced}, \ref{topologies-lemma-etale-induced}, and \ref{topologies-lemma-zariski-induced}. We will mostly ignore these issues in this chapter. \medskip\noindent If $\mathcal{F}$ is a sheaf on $(\Sch/S)_\tau$ or $S_\tau$, then we denote $$ H^p_\tau(U, \mathcal{F}), \text{ in particular } H^p_\tau(S, \mathcal{F}) $$ the cohomology groups of $\mathcal{F}$ over the object $U$ of the site, see Section \ref{section-cohomology}. Thus we have $H^p_{fppf}(S, \mathcal{F})$, $H^p_{syntomic}(S, \mathcal{F})$, $H^p_{smooth}(S, \mathcal{F})$, $H^p_\etale(S, \mathcal{F})$, and $H^p_{Zar}(S, \mathcal{F})$. The last two are potentially ambiguous since they might refer to either the big or small \'etale or Zariski site. However, this ambiguity is harmless by the following lemma. \begin{lemma} \label{lemma-compare-cohomology-big-small} Let $\tau \in \{\etale, Zariski\}$. If $\mathcal{F}$ is an abelian sheaf defined on $(\Sch/S)_\tau$, then the cohomology groups of $\mathcal{F}$ over $S$ agree with the cohomology groups of $\mathcal{F}|_{S_\tau}$ over $S$. \end{lemma} \begin{proof} By Topologies, Lemmas \ref{topologies-lemma-at-the-bottom} and \ref{topologies-lemma-at-the-bottom-etale} the functors $S_\tau \to (\Sch/S)_\tau$ satisfy the hypotheses of Sites, Lemma \ref{sites-lemma-bigger-site}. Hence our lemma follows from Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-cohomology-bigger-site}. \end{proof} \noindent The category of sheaves on the big or small \'etale site of $S$ depends only on the full subcategory of $(\Sch/S)_\etale$ or $S_\etale$ consisting of affines and one only needs to consider the standard \'etale coverings between them (as defined below). This gives rise to sites $(\textit{Aff}/S)_\etale$ and $S_{affine, \etale}$, see Topologies, Definition \ref{topologies-definition-big-small-etale}. The comparison results are proven in Topologies, Lemmas \ref{topologies-lemma-affine-big-site-etale} and \ref{topologies-lemma-alternative}. Here is our definition of standard coverings in some of the topologies we will consider in this chapter. \begin{definition} \label{definition-standard-tau} (See Topologies, Definitions \ref{topologies-definition-standard-fppf}, \ref{topologies-definition-standard-syntomic}, \ref{topologies-definition-standard-smooth}, \ref{topologies-definition-standard-etale}, and \ref{topologies-definition-standard-Zariski}.) Let $\tau \in \{fppf, syntomic, smooth, \etale, Zariski\}$. Let $T$ be an affine scheme. A {\it standard $\tau$-covering} of $T$ is a family $\{f_j : U_j \to T\}_{j = 1, \ldots, m}$ with each $U_j$ is affine, and each $f_j$ flat and of finite presentation, standard syntomic, standard smooth, \'etale, resp.\ the immersion of a standard principal open in $T$ and $T = \bigcup f_j(U_j)$. \end{definition} \begin{lemma} \label{lemma-tau-affine} Let $\tau \in \{fppf, syntomic, smooth, \etale, Zariski\}$. Any $\tau$-covering of an affine scheme can be refined by a standard $\tau$-covering. \end{lemma} \begin{proof} See Topologies, Lemmas \ref{topologies-lemma-fppf-affine}, \ref{topologies-lemma-syntomic-affine}, \ref{topologies-lemma-smooth-affine}, \ref{topologies-lemma-etale-affine}, and \ref{topologies-lemma-zariski-affine}. \end{proof} \noindent For completeness we state and prove the invariance under choice of partial universe of the cohomology groups we are considering. We will prove invariance of the small \'etale topos in Lemma \ref{lemma-etale-topos-independent-partial-universe} below. For notation and terminology used in this lemma we refer to Topologies, Section \ref{topologies-section-change-alpha}. \begin{lemma} \label{lemma-cohomology-enlarge-partial-universe} Let $\tau \in \{fppf, syntomic, smooth, \etale, Zariski\}$. Let $S$ be a scheme. Let $(\Sch/S)_\tau$ and $(\Sch'/S)_\tau$ be two big $\tau$-sites of $S$, and assume that the first is contained in the second. In this case \begin{enumerate} \item for any abelian sheaf $\mathcal{F}'$ defined on $(\Sch'/S)_\tau$ and any object $U$ of $(\Sch/S)_\tau$ we have $$ H^p_\tau(U, \mathcal{F}'|_{(\Sch/S)_\tau}) = H^p_\tau(U, \mathcal{F}') $$ In words: the cohomology of $\mathcal{F}'$ over $U$ computed in the bigger site agrees with the cohomology of $\mathcal{F}'$ restricted to the smaller site over $U$. \item for any abelian sheaf $\mathcal{F}$ on $(\Sch/S)_\tau$ there is an abelian sheaf $\mathcal{F}'$ on $(\Sch/S)_\tau'$ whose restriction to $(\Sch/S)_\tau$ is isomorphic to $\mathcal{F}$. \end{enumerate} \end{lemma} \begin{proof} By Topologies, Lemma \ref{topologies-lemma-change-alpha} the inclusion functor $(\Sch/S)_\tau \to (\Sch'/S)_\tau$ satisfies the assumptions of Sites, Lemma \ref{sites-lemma-bigger-site}. This implies (2) and (1) follows from Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-cohomology-bigger-site}. \end{proof} \section{The \'etale topos} \label{section-etale-topos} \noindent A {\it topos} is the category of sheaves of sets on a site, see Sites, Definition \ref{sites-definition-topos}. Hence it is customary to refer to the use the phrase ``\'etale topos of a scheme'' to refer to the category of sheaves on the small \'etale site of a scheme. Here is the formal definition. \begin{definition} \label{definition-etale-topos} Let $S$ be a scheme. \begin{enumerate} \item The {\it \'etale topos}, or the {\it small \'etale topos} of $S$ is the category $\Sh(S_\etale)$ of sheaves of sets on the small \'etale site of $S$. \item The {\it Zariski topos}, or the {\it small Zariski topos} of $S$ is the category $\Sh(S_{Zar})$ of sheaves of sets on the small Zariski site of $S$. \item For $\tau \in \{fppf, syntomic, smooth, \etale, Zariski\}$ a {\it big $\tau$-topos} is the category of sheaves of set on a big $\tau$-topos of $S$. \end{enumerate} \end{definition} \noindent Note that the small Zariski topos of $S$ is simply the category of sheaves of sets on the underlying topological space of $S$, see Topologies, Lemma \ref{topologies-lemma-Zariski-usual}. Whereas the small \'etale topos does not depend on the choices made in the construction of the small \'etale site, in general the big topoi do depend on those choices. \medskip\noindent It turns out that the big or small \'etale topos only depends on the full subcategory of $(\Sch/S)_\etale$ or $S_\etale$ consisting of affines, see Topologies, Lemmas \ref{topologies-lemma-affine-big-site-etale} and \ref{topologies-lemma-alternative}. We will use this for example in the proof of the following lemma. \begin{lemma} \label{lemma-etale-topos-independent-partial-universe} Let $S$ be a scheme. The \'etale topos of $S$ is independent (up to canonical equivalence) of the construction of the small \'etale site in Definition \ref{definition-tau-site}. \end{lemma} \begin{proof} We have to show, given two big \'etale sites $\Sch_\etale$ and $\Sch_\etale'$ containing $S$, then $\Sh(S_\etale) \cong \Sh(S_\etale')$ with obvious notation. By Topologies, Lemma \ref{topologies-lemma-contained-in} we may assume $\Sch_\etale \subset \Sch_\etale'$. By Sets, Lemma \ref{sets-lemma-what-is-in-it} any affine scheme \'etale over $S$ is isomorphic to an object of both $\Sch_\etale$ and $\Sch_\etale'$. Thus the induced functor $S_{affine, \etale} \to S_{affine, \etale}'$ is an equivalence. Moreover, it is clear that both this functor and a quasi-inverse map transform standard \'etale coverings into standard \'etale coverings. Hence the result follows from Topologies, Lemma \ref{topologies-lemma-alternative}. \end{proof} \section{Cohomology of quasi-coherent sheaves} \label{section-cohomology-quasi-coherent} %9.22.09 \noindent We start with a simple lemma (which holds in greater generality than stated). It says that the {\v C}ech complex of a standard covering is equal to the {\v C}ech complex of an fpqc covering of the form $\{\Spec(B) \to \Spec(A)\}$ with $A \to B$ faithfully flat. \begin{lemma} \label{lemma-cech-complex} Let $\tau \in \{fppf, syntomic, smooth, \etale, Zariski\}$. Let $S$ be a scheme. Let $\mathcal{F}$ be an abelian sheaf on $(\Sch/S)_\tau$, or on $S_\tau$ in case $\tau = \etale$, and let $\mathcal{U} = \{U_i \to U\}_{i \in I}$ be a standard $\tau$-covering of this site. Let $V = \coprod_{i \in I} U_i$. Then \begin{enumerate} \item $V$ is an affine scheme, \item $\mathcal{V} = \{V \to U\}$ is an fpqc covering and also a $\tau$-covering unless $\tau = Zariski$, \item the {\v C}ech complexes $\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F})$ and $\check{\mathcal{C}}^\bullet (\mathcal{V}, \mathcal{F})$ agree. \end{enumerate} \end{lemma} \begin{proof} The defintion of a standard $\tau$-covering is given in Topologies, Definition \ref{topologies-definition-standard-Zariski}, \ref{topologies-definition-standard-etale}, \ref{topologies-definition-standard-smooth}, \ref{topologies-definition-standard-syntomic}, and \ref{topologies-definition-standard-fppf}. By definition each of the schemes $U_i$ is affine and $I$ is a finite set. Hence $V$ is an affine scheme. It is clear that $V \to U$ is flat and surjective, hence $\mathcal{V}$ is an fpqc covering, see Example \ref{example-fpqc-coverings}. Excepting the Zariski case, the covering $\mathcal{V}$ is also a $\tau$-covering, see Topologies, Definition \ref{topologies-definition-etale-covering}, \ref{topologies-definition-smooth-covering}, \ref{topologies-definition-syntomic-covering}, and \ref{topologies-definition-fppf-covering}. \medskip\noindent Note that $\mathcal{U}$ is a refinement of $\mathcal{V}$ and hence there is a map of {\v C}ech complexes $\check{\mathcal{C}}^\bullet (\mathcal{V}, \mathcal{F}) \to \check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F})$, see Cohomology on Sites, Equation (\ref{sites-cohomology-equation-map-cech-complexes}). Next, we observe that if $T = \coprod_{j \in J} T_j$ is a disjoint union of schemes in the site on which $\mathcal{F}$ is defined then the family of morphisms with fixed target $\{T_j \to T\}_{j \in J}$ is a Zariski covering, and so \begin{equation} \label{equation-sheaf-coprod} \mathcal{F}(T) = \mathcal{F}(\coprod\nolimits_{j \in J} T_j) = \prod\nolimits_{j \in J} \mathcal{F}(T_j) \end{equation} by the sheaf condition of $\mathcal{F}$. This implies the map of {\v C}ech complexes above is an isomorphism in each degree because $$ V \times_U \ldots \times_U V = \coprod\nolimits_{i_0, \ldots i_p} U_{i_0} \times_U \ldots \times_U U_{i_p} $$ as schemes. \end{proof} \noindent Note that Equality (\ref{equation-sheaf-coprod}) is false for a general presheaf. Even for sheaves it does not hold on any site, since coproducts may not lead to coverings, and may not be disjoint. But it does for all the usual ones (at least all the ones we will study). \begin{remark} \label{remark-refinement} In the statement of Lemma \ref{lemma-cech-complex} the covering $\mathcal{U}$ is a refinement of $\mathcal{V}$ but not the other way around. Coverings of the form $\{V \to U\}$ do not form an initial subcategory of the category of all coverings of $U$. Yet it is still true that we can compute {\v C}ech cohomology $\check H^n(U, \mathcal{F})$ (which is defined as the colimit over the opposite of the category of coverings $\mathcal{U}$ of $U$ of the {\v C}ech cohomology groups of $\mathcal{F}$ with respect to $\mathcal{U}$) in terms of the coverings $\{V \to U\}$. We will formulate a precise lemma (it only works for sheaves) and add it here if we ever need it. \end{remark} \begin{lemma}[Locality of cohomology] \label{lemma-locality-cohomology} Let $\mathcal{C}$ be a site, $\mathcal{F}$ an abelian sheaf on $\mathcal{C}$, $U$ an object of $\mathcal{C}$, $p > 0$ an integer and $\xi \in H^p(U, \mathcal{F})$. Then there exists a covering $\mathcal{U} = \{U_i \to U\}_{i \in I}$ of $U$ in $\mathcal{C}$ such that $\xi |_{U_i} = 0$ for all $i \in I$. \end{lemma} \begin{proof} Choose an injective resolution $\mathcal{F} \to \mathcal{I}^\bullet$. Then $\xi$ is represented by a cocycle $\tilde{\xi} \in \mathcal{I}^p(U)$ with $d^p(\tilde{\xi}) = 0$. By assumption, the sequence $\mathcal{I}^{p - 1} \to \mathcal{I}^p \to \mathcal{I}^{p + 1}$ in exact in $\textit{Ab}(\mathcal{C})$, which means that there exists a covering $\mathcal{U} = \{U_i \to U\}_{i \in I}$ such that $\tilde{\xi}|_{U_i} = d^{p - 1}(\xi_i)$ for some $\xi_i \in \mathcal{I}^{p-1}(U_i)$. Since the cohomology class $\xi|_{U_i}$ is represented by the cocycle $\tilde{\xi}|_{U_i}$ which is a coboundary, it vanishes. For more details see Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-kill-cohomology-class-on-covering}. \end{proof} \begin{theorem} \label{theorem-zariski-fpqc-quasi-coherent} Let $S$ be a scheme and $\mathcal{F}$ a quasi-coherent $\mathcal{O}_S$-module. Let $\mathcal{C}$ be either $(\Sch/S)_\tau$ for $\tau \in \{fppf, syntomic, smooth, \etale, Zariski\}$ or $S_\etale$. Then $$ H^p(S, \mathcal{F}) = H^p_\tau(S, \mathcal{F}^a) $$ for all $p \geq 0$ where \begin{enumerate} \item the left hand side indicates the usual cohomology of the sheaf $\mathcal{F}$ on the underlying topological space of the scheme $S$, and \item the right hand side indicates cohomology of the abelian sheaf $\mathcal{F}^a$ (see Proposition \ref{proposition-quasi-coherent-sheaf-fpqc}) on the site $\mathcal{C}$. \end{enumerate} \end{theorem} \begin{proof} We are going to show that $H^p(U, f^*\mathcal{F}) = H^p_\tau(U, \mathcal{F}^a)$ for any object $f : U \to S$ of the site $\mathcal{C}$. The result is true for $p = 0$ by the sheaf property. \medskip\noindent Assume that $U$ is affine. Then we want to prove that $H^p_\tau(U, \mathcal{F}^a) = 0$ for all $p > 0$. We use induction on $p$. \begin{enumerate} \item[p = 1] Pick $\xi \in H^1_\tau(U, \mathcal{F}^a)$. By Lemma \ref{lemma-locality-cohomology}, there exists an fpqc covering $\mathcal{U} = \{U_i \to U\}_{i \in I}$ such that $\xi|_{U_i} = 0$ for all $i \in I$. Up to refining $\mathcal{U}$, we may assume that $\mathcal{U}$ is a standard $\tau$-covering. Applying the spectral sequence of Theorem \ref{theorem-cech-ss}, we see that $\xi$ comes from a cohomology class $\check \xi \in \check H^1(\mathcal{U}, \mathcal{F}^a)$. Consider the covering $\mathcal{V} = \{\coprod_{i\in I} U_i \to U\}$. By Lemma \ref{lemma-cech-complex}, $\check H^\bullet(\mathcal{U}, \mathcal{F}^a) = \check H^\bullet(\mathcal{V}, \mathcal{F}^a)$. On the other hand, since $\mathcal{V}$ is a covering of the form $\{\Spec(B) \to \Spec(A)\}$ and $f^*\mathcal{F} = \widetilde{M}$ for some $A$-module $M$, we see the {\v C}ech complex $\check{\mathcal{C}}^\bullet(\mathcal{V}, \mathcal{F})$ is none other than the complex $(B/A)_\bullet \otimes_A M$. Now by Lemma \ref{lemma-descent-modules}, $H^p((B/A)_\bullet \otimes_A M) = 0$ for $p > 0$, hence $\check \xi = 0$ and so $\xi = 0$. \item[p > 1] Pick $\xi \in H^p_\tau(U, \mathcal{F}^a)$. By Lemma \ref{lemma-locality-cohomology}, there exists an fpqc covering $\mathcal{U} = \{U_i \to U\}_{i \in I}$ such that $\xi|_{U_i} = 0$ for all $i \in I$. Up to refining $\mathcal{U}$, we may assume that $\mathcal{U}$ is a standard $\tau$-covering. We apply the spectral sequence of Theorem \ref{theorem-cech-ss}. Observe that the intersections $U_{i_0} \times_U \ldots \times_U U_{i_p}$ are affine, so that by induction hypothesis the cohomology groups $$ E_2^{p, q} = \check H^p(\mathcal{U}, \underline{H}^q(\mathcal{F}^a)) $$ vanish for all $0 < q < p$. We see that $\xi$ must come from a $\check \xi \in \check H^p(\mathcal{U}, \mathcal{F}^a)$. Replacing $\mathcal{U}$ with the covering $\mathcal{V}$ containing only one morphism and using Lemma \ref{lemma-descent-modules} again, we see that the {\v C}ech cohomology class $\check \xi$ must be zero, hence $\xi = 0$. \end{enumerate} Next, assume that $U$ is separated. Choose an affine open covering $U = \bigcup_{i \in I} U_i$ of $U$. The family $\mathcal{U} = \{U_i \to U\}_{i \in I}$ is then an fpqc covering, and all the intersections $U_{i_0} \times_U \ldots \times_U U_{i_p}$ are affine since $U$ is separated. So all rows of the spectral sequence of Theorem \ref{theorem-cech-ss} are zero, except the zeroth row. Therefore $$ H^p_\tau(U, \mathcal{F}^a) = \check H^p(\mathcal{U}, \mathcal{F}^a) = \check H^p(\mathcal{U}, \mathcal{F}) = H^p(U, \mathcal{F}) $$ where the last equality results from standard scheme theory, see Cohomology of Schemes, Lemma \ref{coherent-lemma-cech-cohomology-quasi-coherent}. \medskip\noindent The general case is technical and (to extend the proof as given here) requires a discussion about maps of spectral sequences, so we won't treat it. It follows from Descent, Proposition \ref{descent-proposition-same-cohomology-quasi-coherent} (whose proof takes a slightly different approach) combined with Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-cohomology-of-open}. \end{proof} \begin{remark} \label{remark-right-derived-global-sections} Comment on Theorem \ref{theorem-zariski-fpqc-quasi-coherent}. Since $S$ is a final object in the category $\mathcal{C}$, the cohomology groups on the right-hand side are merely the right derived functors of the global sections functor. In fact the proof shows that $H^p(U, f^*\mathcal{F}) = H^p_\tau(U, \mathcal{F}^a)$ for any object $f : U \to S$ of the site $\mathcal{C}$. \end{remark} \section{Examples of sheaves} \label{section-examples-sheaves} \noindent Let $S$ and $\tau$ be as in Section \ref{section-big-small}. We have already seen that any representable presheaf is a sheaf on $(\Sch/S)_\tau$ or $S_\tau$, see Lemma \ref{lemma-representable-sheaf-fpqc} and Remark \ref{remark-fpqc-finest}. Here are some special cases. \begin{definition} \label{definition-additive-sheaf} On any of the sites $(\Sch/S)_\tau$ or $S_\tau$ of Section \ref{section-big-small}. \begin{enumerate} \item The sheaf $T \mapsto \Gamma(T, \mathcal{O}_T)$ is denoted $\mathcal{O}_S$, or $\mathbf{G}_a$, or $\mathbf{G}_{a, S}$ if we want to indicate the base scheme. \item Similarly, the sheaf $T \mapsto \Gamma(T, \mathcal{O}^*_T)$ is denoted $\mathcal{O}_S^*$, or $\mathbf{G}_m$, or $\mathbf{G}_{m, S}$ if we want to indicate the base scheme. \item The {\it constant sheaf} $\underline{\mathbf{Z}/n\mathbf{Z}}$ on any site is the sheafification of the constant presheaf $U \mapsto \mathbf{Z}/n\mathbf{Z}$. \end{enumerate} \end{definition} \noindent The first is a sheaf by Theorem \ref{theorem-quasi-coherent} for example. The second is a sub presheaf of the first, which is easily seen to be a sheaf itself. The third is a sheaf by definition. Note that each of these sheaves is representable. The first and second by the schemes $\mathbf{G}_{a, S}$ and $\mathbf{G}_{m, S}$, see Groupoids, Section \ref{groupoids-section-group-schemes}. The third by the finite \'etale group scheme $\mathbf{Z}/n\mathbf{Z}_S$ sometimes denoted $(\mathbf{Z}/n\mathbf{Z})_S$ which is just $n$ copies of $S$ endowed with the obvious group scheme structure over $S$, see Groupoids, Example \ref{groupoids-example-constant-group} and the following remark. \begin{remark} \label{remark-constant-locally-constant-maps} Let $G$ be an abstract group. On any of the sites $(\Sch/S)_\tau$ or $S_\tau$ of Section \ref{section-big-small} the sheafification $\underline{G}$ of the constant presheaf associated to $G$ in the {\it Zariski topology} of the site already gives $$ \Gamma(U, \underline{G}) = \{\text{Zariski locally constant maps }U \to G\} $$ This Zariski sheaf is representable by the group scheme $G_S$ according to Groupoids, Example \ref{groupoids-example-constant-group}. By Lemma \ref{lemma-representable-sheaf-fpqc} any representable presheaf satisfies the sheaf condition for the $\tau$-topology as well, and hence we conclude that the Zariski sheafification $\underline{G}$ above is also the $\tau$-sheafification. \end{remark} \begin{definition} \label{definition-structure-sheaf} Let $S$ be a scheme. The {\it structure sheaf} of $S$ is the sheaf of rings $\mathcal{O}_S$ on any of the sites $S_{Zar}$, $S_\etale$, or $(\Sch/S)_\tau$ discussed above. \end{definition} \noindent If there is some possible confusion as to which site we are working on then we will indicate this by using indices. For example we may use $\mathcal{O}_{S_\etale}$ to stress the fact that we are working on the small \'etale site of $S$. \begin{remark} \label{remark-special-case-fpqc-cohomology-quasi-coherent} In the terminology introduced above a special case of Theorem \ref{theorem-zariski-fpqc-quasi-coherent} is $$ H_{fppf}^p(X, \mathbf{G}_a) = H_\etale^p(X, \mathbf{G}_a) = H_{Zar}^p(X, \mathbf{G}_a) = H^p(X, \mathcal{O}_X) $$ for all $p \geq 0$. Moreover, we could use the notation $H^p_{fppf}(X, \mathcal{O}_X)$ to indicate the cohomology of the structure sheaf on the big fppf site of $X$. \end{remark} \section{Picard groups} \label{section-picard-groups} \noindent The following theorem is sometimes called ``Hilbert 90''. \begin{theorem} \label{theorem-picard-group} For any scheme $X$ we have canonical identifications \begin{align*} H_{fppf}^1(X, \mathbf{G}_m) & = H^1_{syntomic}(X, \mathbf{G}_m) \\ & = H^1_{smooth}(X, \mathbf{G}_m) \\ & = H_\etale^1(X, \mathbf{G}_m) \\ & = H^1_{Zar}(X, \mathbf{G}_m) \\ & = \Pic(X) \\ & = H^1(X, \mathcal{O}_X^*) \end{align*} \end{theorem} \begin{proof} Let $\tau$ be one of the topologies considered in Section \ref{section-big-small}. By Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-h1-invertible} we see that $H^1_\tau(X, \mathbf{G}_m) = H^1_\tau(X, \mathcal{O}_\tau^*) = \Pic(\mathcal{O}_\tau)$ where $\mathcal{O}_\tau$ is the structure sheaf of the site $(\Sch/X)_\tau$. Now an invertible $\mathcal{O}_\tau$-module is a quasi-coherent $\mathcal{O}_\tau$-module. By Theorem \ref{theorem-quasi-coherent} or the more precise Descent, Proposition \ref{descent-proposition-equivalence-quasi-coherent} we see that $\Pic(\mathcal{O}_\tau) = \Pic(X)$. The last equality is proved in the same way. \end{proof} \section{The \'etale site} \label{section-etale-site} \noindent At this point we start exploring the \'etale site of a scheme in more detail. As a first step we discuss a little the notion of an \'etale morphism. \section{\'Etale morphisms} \label{section-etale-morphism} \noindent For more details, see Morphisms, Section \ref{morphisms-section-etale} for the formal definition and \'Etale Morphisms, Sections \ref{etale-section-etale-morphisms}, \ref{etale-section-structure-etale-map}, \ref{etale-section-etale-smooth}, \ref{etale-section-topological-etale}, \ref{etale-section-functorial-etale}, and \ref{etale-section-properties-permanence} for a survey of interesting properties of \'etale morphisms. \medskip\noindent Recall that an algebra $A$ over an algebraically closed field $k$ is {\it smooth} if it is of finite type and the module of differentials $\Omega_{A/k}$ is finite locally free of rank equal to the dimension. A scheme $X$ over $k$ is {\it smooth} over $k$ if it is locally of finite type and each affine open is the spectrum of a smooth $k$-algebra. If $k$ is not algebraically closed then a $k$-algebra $A$ is a smooth $k$-algebra if $A \otimes_k \overline{k}$ is a smooth $\overline{k}$-algebra. A ring map $A \to B$ is smooth if it is flat, finitely presented, and for all primes $\mathfrak p \subset A$ the fibre ring $\kappa(\mathfrak p) \otimes_A B$ is smooth over the residue field $\kappa(\mathfrak p)$. More generally, a morphism of schemes is {\it smooth} if it is flat, locally of finite presentation, and the geometric fibers are smooth. \medskip\noindent For these facts please see Morphisms, Section \ref{morphisms-section-smooth}. Using this we may define an \'etale morphism as follows. \begin{definition} \label{definition-etale-morphism} A morphism of schemes is {\it \'etale} if it is smooth of relative dimension 0. \end{definition} \noindent In particular, a morphism of schemes $X \to S$ is \'etale if it is smooth and $\Omega_{X/S} = 0$. \begin{proposition} \label{proposition-etale-morphisms} Facts on \'etale morphisms. \begin{enumerate} \item Let $k$ be a field. A morphism of schemes $U \to \Spec(k)$ is \'etale if and only if $U \cong \coprod_{i \in I} \Spec(k_i)$ such that for each $i \in I$ the ring $k_i$ is a field which is a finite separable extension of $k$. \item Let $\varphi : U \to S$ be a morphism of schemes. The following conditions are equivalent: \begin{enumerate} \item $\varphi$ is \'etale, \item $\varphi$ is locally finitely presented, flat, and all its fibres are \'etale, \item $\varphi$ is flat, unramified and locally of finite presentation. \end{enumerate} \item A ring map $A \to B$ is \'etale if and only if $B \cong A[x_1, \ldots, x_n]/(f_1, \ldots, f_n)$ such that $\Delta = \det \left( \frac{\partial f_i}{\partial x_j} \right)$ is invertible in $B$. \item The base change of an \'etale morphism is \'etale. \item Compositions of \'etale morphisms are \'etale. \item Fibre products and products of \'etale morphisms are \'etale. \item An \'etale morphism has relative dimension 0. \item Let $Y \to X$ be an \'etale morphism. If $X$ is reduced (respectively regular) then so is $Y$. \item \'Etale morphisms are open. \item If $X \to S$ and $Y \to S$ are \'etale, then any $S$-morphism $X \to Y$ is also \'etale. \end{enumerate} \end{proposition} \begin{proof} We have proved these facts (and more) in the preceding chapters. Here is a list of references: (1) Morphisms, Lemma \ref{morphisms-lemma-etale-over-field}. (2) Morphisms, Lemmas \ref{morphisms-lemma-etale-flat-etale-fibres} and \ref{morphisms-lemma-flat-unramified-etale}. (3) Algebra, Lemma \ref{algebra-lemma-etale-standard-smooth}. (4) Morphisms, Lemma \ref{morphisms-lemma-base-change-etale}. (5) Morphisms, Lemma \ref{morphisms-lemma-composition-etale}. (6) Follows formally from (4) and (5). (7) Morphisms, Lemmas \ref{morphisms-lemma-etale-locally-quasi-finite} and \ref{morphisms-lemma-locally-quasi-finite-rel-dimension-0}. (8) See Algebra, Lemmas \ref{algebra-lemma-reduced-goes-up} and \ref{algebra-lemma-Rk-goes-up}, see also more results of this kind in \'Etale Morphisms, Section \ref{etale-section-properties-permanence}. (9) See Morphisms, Lemma \ref{morphisms-lemma-fppf-open} and \ref{morphisms-lemma-etale-flat}. (10) See Morphisms, Lemma \ref{morphisms-lemma-etale-permanence}. \end{proof} \begin{definition} \label{definition-standard-etale} A ring map $A \to B$ is called {\it standard \'etale} if $B \cong \left(A[t]/(f)\right)_g$ with $f, g \in A[t]$, with $f$ monic, and $\text{d}f/\text{d}t$ invertible in $B$. \end{definition} \noindent It is true that a standard \'etale ring map is \'etale. Namely, suppose that $B = \left(A[t]/(f)\right)_g$ with $f, g \in A[t]$, with $f$ monic, and $\text{d}f/\text{d}t$ invertible in $B$. Then $A[t]/(f)$ is a finite free $A$-module of rank equal to the degree of the monic polynomial $f$. Hence $B$, as a localization of this free algebra is finitely presented and flat over $A$. To finish the proof that $B$ is \'etale it suffices to show that the fibre rings $$ \kappa(\mathfrak p) \otimes_A B \cong \kappa(\mathfrak p) \otimes_A (A[t]/(f))_g \cong \kappa(\mathfrak p)[t, 1/\overline{g}]/(\overline{f}) $$ are finite products of finite separable field extensions. Here $\overline{f}, \overline{g} \in \kappa(\mathfrak p)[t]$ are the images of $f$ and $g$. Let $$ \overline{f} = \overline{f}_1 \ldots \overline{f}_a \overline{f}_{a + 1}^{e_1} \ldots \overline{f}_{a + b}^{e_b} $$ be the factorization of $\overline{f}$ into powers of pairwise distinct irreducible monic factors $\overline{f}_i$ with $e_1, \ldots, e_b > 0$. By assumption $\text{d}\overline{f}/\text{d}t$ is invertible in $\kappa(\mathfrak p)[t, 1/\overline{g}]$. Hence we see that at least all the $\overline{f}_i$, $i > a$ are invertible. We conclude that $$ \kappa(\mathfrak p)[t, 1/\overline{g}]/(\overline{f}) \cong \prod\nolimits_{i \in I} \kappa(\mathfrak p)[t]/(\overline{f}_i) $$ where $I \subset \{1, \ldots, a\}$ is the subset of indices $i$ such that $\overline{f}_i$ does not divide $\overline{g}$. Moreover, the image of $\text{d}\overline{f}/\text{d}t$ in the factor $\kappa(\mathfrak p)[t]/(\overline{f}_i)$ is clearly equal to a unit times $\text{d}\overline{f}_i/\text{d}t$. Hence we conclude that $\kappa_i = \kappa(\mathfrak p)[t]/(\overline{f}_i)$ is a finite field extension of $\kappa(\mathfrak p)$ generated by one element whose minimal polynomial is separable, i.e., the field extension $\kappa_i/\kappa(\mathfrak p)$ is finite separable as desired. \medskip\noindent It turns out that any \'etale ring map is locally standard \'etale. To formulate this we introduce the following notation. A ring map $A \to B$ is {\it \'etale at a prime $\mathfrak q$} of $B$ if there exists $h \in B$, $h \not \in \mathfrak q$ such that $A \to B_h$ is \'etale. Here is the result. \begin{theorem} \label{theorem-standard-etale} A ring map $A \to B$ is \'etale at a prime $\mathfrak q$ if and only if there exists $g \in B$, $g \not \in \mathfrak q$ such that $B_g$ is standard \'etale over $A$. \end{theorem} \begin{proof} See Algebra, Proposition \ref{algebra-proposition-etale-locally-standard}. \end{proof} \section{\'Etale coverings} \label{section-etale-covering} \noindent We recall the definition. \begin{definition} \label{definition-etale-covering} An {\it \'etale covering} of a scheme $U$ is a family of morphisms of schemes $\{\varphi_i : U_i \to U\}_{i \in I}$ such that \begin{enumerate} \item each $\varphi_i$ is an \'etale morphism, \item the $U_i$ cover $U$, i.e., $U = \bigcup_{i\in I}\varphi_i(U_i)$. \end{enumerate} \end{definition} \begin{lemma} \label{lemma-etale-fpqc} Any \'etale covering is an fpqc covering. \end{lemma} \begin{proof} (See also Topologies, Lemma \ref{topologies-lemma-zariski-etale-smooth-syntomic-fppf-fpqc}.) Let $\{\varphi_i : U_i \to U\}_{i \in I}$ be an \'etale covering. Since an \'etale morphism is flat, and the elements of the covering should cover its target, the property fp (faithfully flat) is satisfied. To check the property qc (quasi-compact), let $V \subset U$ be an affine open, and write $\varphi_i^{-1}(V) = \bigcup_{j \in J_i} V_{ij}$ for some affine opens $V_{ij} \subset U_i$. Since $\varphi_i$ is open (as \'etale morphisms are open), we see that $V = \bigcup_{i\in I} \bigcup_{j \in J_i} \varphi_i(V_{ij})$ is an open covering of $V$. Further, since $V$ is quasi-compact, this covering has a finite refinement. \end{proof} \noindent So any statement which is true for fpqc coverings remains true {\it a fortiori} for \'etale coverings. For instance, the \'etale site is subcanonical. \begin{definition} \label{definition-big-etale-site} (For more details see Section \ref{section-big-small}, or Topologies, Section \ref{topologies-section-etale}.) Let $S$ be a scheme. The {\it big \'etale site over $S$} is the site $(\Sch/S)_\etale$, see Definition \ref{definition-tau-site}. The {\it small \'etale site over $S$} is the site $S_\etale$, see Definition \ref{definition-tau-site}. We define similarly the {\it big} and {\it small Zariski sites} on $S$, denoted $(\Sch/S)_{Zar}$ and $S_{Zar}$. \end{definition} \noindent Loosely speaking the big \'etale site of $S$ is made up out of schemes over $S$ and coverings the \'etale coverings. The small \'etale site of $S$ is made up out of schemes \'etale over $S$ with coverings the \'etale coverings. Actually any morphism between objects of $S_\etale$ is \'etale, in virtue of Proposition \ref{proposition-etale-morphisms}, hence to check that $\{U_i \to U\}_{i \in I}$ in $S_\etale$ is a covering it suffices to check that $\coprod U_i \to U$ is surjective. \medskip\noindent The small \'etale site has fewer objects than the big \'etale site, it contains only the ``opens'' of the \'etale topology on $S$. It is a full subcategory of the big \'etale site, and its topology is induced from the topology on the big site. Hence it is true that the restriction functor from the big \'etale site to the small one is exact and maps injectives to injectives. This has the following consequence. \begin{proposition} \label{proposition-cohomology-restrict-small-site} Let $S$ be a scheme and $\mathcal{F}$ an abelian sheaf on $(\Sch/S)_\etale$. Then $\mathcal{F}|_{S_\etale}$ is a sheaf on $S_\etale$ and $$ H^p_\etale(S, \mathcal{F}|_{S_\etale}) = H^p_\etale(S, \mathcal{F}) $$ for all $p \geq 0$. \end{proposition} \begin{proof} This is a special case of Lemma \ref{lemma-compare-cohomology-big-small}. \end{proof} \noindent In accordance with the general notation introduced in Section \ref{section-big-small} we write $H_\etale^p(S, \mathcal{F})$ for the above cohomology group. %9.24.09 \section{Kummer theory} \label{section-kummer} \noindent Let $n \in \mathbf{N}$ and consider the functor $\mu_n$ defined by $$ \begin{matrix} \Sch^{opp} & \longrightarrow & \textit{Ab} \\ S & \longmapsto & \mu_n(S) = \{t \in \Gamma(S, \mathcal{O}_S^*) \mid t^n = 1 \}. \end{matrix} $$ By Groupoids, Example \ref{groupoids-example-roots-of-unity} this is a representable functor, and the scheme representing it is denoted $\mu_n$ also. By Lemma \ref{lemma-representable-sheaf-fpqc} this functor satisfies the sheaf condition for the fpqc topology (in particular, it also satisfies the sheaf condition for the \'etale, Zariski, etc topology). \begin{lemma} \label{lemma-kummer-sequence} If $n\in \mathcal{O}_S^*$ then $$ 0 \to \mu_{n, S} \to \mathbf{G}_{m, S} \xrightarrow{(\cdot)^n} \mathbf{G}_{m, S} \to 0 $$ is a short exact sequence of sheaves on both the small and big \'etale site of $S$. \end{lemma} \begin{proof} By definition the sheaf $\mu_{n, S}$ is the kernel of the map $(\cdot)^n$. Hence it suffices to show that the last map is surjective. Let $U$ be a scheme over $S$. Let $f \in \mathbf{G}_m(U) = \Gamma(U, \mathcal{O}_U^*)$. We need to show that we can find an \'etale cover of $U$ over the members of which the restriction of $f$ is an $n$th power. Set $$ U' = \underline{\Spec}_U(\mathcal{O}_U[T]/(T^n-f)) \xrightarrow{\pi} U. $$ (See Constructions, Section \ref{constructions-section-spec-via-glueing} or \ref{constructions-section-spec} for a discussion of the relative spectrum.) Let $\Spec(A) \subset U$ be an affine open, and say $f|_{\Spec(A)}$ corresponds to the unit $a \in A^*$. Then $\pi^{-1}(\Spec(A)) = \Spec(B)$ with $B = A[T]/(T^n - a)$. The ring map $A \to B$ is finite free of rank $n$, hence it is faithfully flat, and hence we conclude that $\Spec(B) \to \Spec(A)$ is surjective. Since this holds for every affine open in $U$ we conclude that $\pi$ is surjective. In addition, $n$ and $T^{n - 1}$ are invertible in $B$, so $nT^{n-1} \in B^*$ and the ring map $A \to B$ is standard \'etale, in particular \'etale. Since this holds for every affine open of $U$ we conclude that $\pi$ is \'etale. Hence $\mathcal{U} = \{\pi : U' \to U\}$ is an \'etale covering. Moreover, $f|_{U'} = (f')^n$ where $f'$ is the class of $T$ in $\Gamma(U', \mathcal{O}_{U'}^*)$, so $\mathcal{U}$ has the desired property. \end{proof} \begin{remark} \label{remark-no-kummer-sequence-zariski} Lemma \ref{lemma-kummer-sequence} is false when ``\'etale'' is replaced with ``Zariski''. Since the \'etale topology is coarser than the smooth topology, see Topologies, Lemma \ref{topologies-lemma-zariski-etale-smooth} it follows that the sequence is also exact in the smooth topology. \end{remark} \noindent By Theorem \ref{theorem-picard-group} and Lemma \ref{lemma-kummer-sequence} and general properties of cohomology we obtain the long exact cohomology sequence $$ \xymatrix{ 0 \ar[r] & H_\etale^0(S, \mu_{n, S}) \ar[r] & \Gamma(S, \mathcal{O}_S^*) \ar[r]^{(\cdot)^n} & \Gamma(S, \mathcal{O}_S^*) \ar@(rd, ul)[rdllllr] \\ & H_\etale^1(S, \mu_{n, S}) \ar[r] & \Pic(S) \ar[r]^{(\cdot)^n} & \Pic(S) \ar@(rd, ul)[rdllllr] \\ & H_\etale^2(S, \mu_{n, S}) \ar[r] & \ldots } $$ at least if $n$ is invertible on $S$. When $n$ is not invertible on $S$ we can apply the following lemma. \begin{lemma} \label{lemma-kummer-sequence-syntomic} For any $n \in \mathbf{N}$ the sequence $$ 0 \to \mu_{n, S} \to \mathbf{G}_{m, S} \xrightarrow{(\cdot)^n} \mathbf{G}_{m, S} \to 0 $$ is a short exact sequence of sheaves on the site $(\Sch/S)_{fppf}$ and $(\Sch/S)_{syntomic}$. \end{lemma} \begin{proof} By definition the sheaf $\mu_{n, S}$ is the kernel of the map $(\cdot)^n$. Hence it suffices to show that the last map is surjective. Since the syntomic topology is weaker than the fppf topology, see Topologies, Lemma \ref{topologies-lemma-zariski-etale-smooth-syntomic-fppf}, it suffices to prove this for the syntomic topology. Let $U$ be a scheme over $S$. Let $f \in \mathbf{G}_m(U) = \Gamma(U, \mathcal{O}_U^*)$. We need to show that we can find a syntomic cover of $U$ over the members of which the restriction of $f$ is an $n$th power. Set $$ U' = \underline{\Spec}_U(\mathcal{O}_U[T]/(T^n-f)) \xrightarrow{\pi} U. $$ (See Constructions, Section \ref{constructions-section-spec-via-glueing} or \ref{constructions-section-spec} for a discussion of the relative spectrum.) Let $\Spec(A) \subset U$ be an affine open, and say $f|_{\Spec(A)}$ corresponds to the unit $a \in A^*$. Then $\pi^{-1}(\Spec(A)) = \Spec(B)$ with $B = A[T]/(T^n - a)$. The ring map $A \to B$ is finite free of rank $n$, hence it is faithfully flat, and hence we conclude that $\Spec(B) \to \Spec(A)$ is surjective. Since this holds for every affine open in $U$ we conclude that $\pi$ is surjective. In addition, $B$ is a global relative complete intersection over $A$, so the ring map $A \to B$ is standard syntomic, in particular syntomic. Since this holds for every affine open of $U$ we conclude that $\pi$ is syntomic. Hence $\mathcal{U} = \{\pi : U' \to U\}$ is a syntomic covering. Moreover, $f|_{U'} = (f')^n$ where $f'$ is the class of $T$ in $\Gamma(U', \mathcal{O}_{U'}^*)$, so $\mathcal{U}$ has the desired property. \end{proof} \begin{remark} \label{remark-no-kummer-sequence-smooth-etale-zariski} Lemma \ref{lemma-kummer-sequence-syntomic} is false for the smooth, \'etale, or Zariski topology. \end{remark} \noindent By Theorem \ref{theorem-picard-group} and Lemma \ref{lemma-kummer-sequence-syntomic} and general properties of cohomology we obtain the long exact cohomology sequence $$ \xymatrix{ 0 \ar[r] & H_{fppf}^0(S, \mu_{n, S}) \ar[r] & \Gamma(S, \mathcal{O}_S^*) \ar[r]^{(\cdot)^n} & \Gamma(S, \mathcal{O}_S^*) \ar@(rd, ul)[rdllllr] \\ & H_{fppf}^1(S, \mu_{n, S}) \ar[r] & \Pic(S) \ar[r]^{(\cdot)^n} & \Pic(S) \ar@(rd, ul)[rdllllr] \\ & H_{fppf}^2(S, \mu_{n, S}) \ar[r] & \ldots } $$ for any scheme $S$ and any integer $n$. Of course there is a similar sequence with syntomic cohomology. \medskip\noindent Let $n \in \mathbf{N}$ and let $S$ be any scheme. There is another more direct way to describe the first cohomology group with values in $\mu_n$. Consider pairs $(\mathcal{L}, \alpha)$ where $\mathcal{L}$ is an invertible sheaf on $S$ and $\alpha : \mathcal{L}^{\otimes n} \to \mathcal{O}_S$ is a trivialization of the $n$th tensor power of $\mathcal{L}$. Let $(\mathcal{L}', \alpha')$ be a second such pair. An isomorphism $\varphi : (\mathcal{L}, \alpha) \to (\mathcal{L}', \alpha')$ is an isomorphism $\varphi : \mathcal{L} \to \mathcal{L}'$ of invertible sheaves such that the diagram $$ \xymatrix{ \mathcal{L}^{\otimes n} \ar[d]_{\varphi^{\otimes n}} \ar[r]_\alpha & \mathcal{O}_S \ar[d]^1 \\ (\mathcal{L}')^{\otimes n} \ar[r]^{\alpha'} & \mathcal{O}_S \\ } $$ commutes. Thus we have \begin{equation} \label{equation-isomorphisms-pairs} \mathit{Isom}_S((\mathcal{L}, \alpha), (\mathcal{L}', \alpha')) = \left\{ \begin{matrix} \emptyset & \text{if} & \text{they are not isomorphic} \\ H^0(S, \mu_{n, S})\cdot \varphi & \text{if} & \varphi \text{ isomorphism of pairs} \end{matrix} \right. \end{equation} Moreover, given two pairs $(\mathcal{L}, \alpha)$, $(\mathcal{L}', \alpha')$ the tensor product $$ (\mathcal{L}, \alpha) \otimes (\mathcal{L}', \alpha') = (\mathcal{L} \otimes \mathcal{L}', \alpha \otimes \alpha') $$ is another pair. The pair $(\mathcal{O}_S, 1)$ is an identity for this tensor product operation, and an inverse is given by $$ (\mathcal{L}, \alpha)^{-1} = (\mathcal{L}^{\otimes -1}, \alpha^{\otimes -1}). $$ Hence the collection of isomorphism classes of pairs forms an abelian group. Note that $$ (\mathcal{L}, \alpha)^{\otimes n} = (\mathcal{L}^{\otimes n}, \alpha^{\otimes n}) \xrightarrow{\alpha} (\mathcal{O}_S, 1) $$ is an isomorphism hence every element of this group has order dividing $n$. We warn the reader that this group is in general {\bf not} the $n$-torsion in $\Pic(S)$. \begin{lemma} \label{lemma-describe-h1-mun} Let $S$ be a scheme. There is a canonical identification $$ H_\etale^1(S, \mu_n) = \text{group of pairs }(\mathcal{L}, \alpha)\text{ up to isomorphism as above} $$ if $n$ is invertible on $S$. In general we have $$ H_{fppf}^1(S, \mu_n) = \text{group of pairs }(\mathcal{L}, \alpha)\text{ up to isomorphism as above}. $$ The same result holds with fppf replaced by syntomic. \end{lemma} \begin{proof} We first prove the second isomorphism. Let $(\mathcal{L}, \alpha)$ be a pair as above. Choose an affine open covering $S = \bigcup U_i$ such that $\mathcal{L}|_{U_i} \cong \mathcal{O}_{U_i}$. Say $s_i \in \mathcal{L}(U_i)$ is a generator. Then $\alpha(s_i^{\otimes n}) = f_i \in \mathcal{O}_S^*(U_i)$. Writing $U_i = \Spec(A_i)$ we see there exists a global relative complete intersection $A_i \to B_i = A_i[T]/(T^n - f_i)$ such that $f_i$ maps to an $n$th power in $B_i$. In other words, setting $V_i = \Spec(B_i)$ we obtain a syntomic covering $\mathcal{V} = \{V_i \to S\}_{i \in I}$ and trivializations $\varphi_i : (\mathcal{L}, \alpha)|_{V_i} \to (\mathcal{O}_{V_i}, 1)$. \medskip\noindent We will use this result (the existence of the covering $\mathcal{V}$) to associate to this pair a cohomology class in $H^1_{syntomic}(S, \mu_{n, S})$. We give two (equivalent) constructions. \medskip\noindent First construction: using {\v C}ech cohomology. Over the double overlaps $V_i \times_S V_j$ we have the isomorphism $$ (\mathcal{O}_{V_i \times_S V_j}, 1) \xrightarrow{\text{pr}_0^*\varphi_i^{-1}} (\mathcal{L}|_{V_i \times_S V_j}, \alpha|_{V_i \times_S V_j}) \xrightarrow{\text{pr}_1^*\varphi_j} (\mathcal{O}_{V_i \times_S V_j}, 1) $$ of pairs. By (\ref{equation-isomorphisms-pairs}) this is given by an element $\zeta_{ij} \in \mu_n(V_i \times_S V_j)$. We omit the verification that these $\zeta_{ij}$'s give a $1$-cocycle, i.e., give an element $(\zeta_{i_0i_1}) \in \check C(\mathcal{V}, \mu_n)$ with $d(\zeta_{i_0i_1}) = 0$. Thus its class is an element in $\check H^1(\mathcal{V}, \mu_n)$ and by Theorem \ref{theorem-cech-ss} it maps to a cohomology class in $H^1_{syntomic}(S, \mu_{n, S})$. \medskip\noindent Second construction: Using torsors. Consider the presheaf $$ \mu_n(\mathcal{L}, \alpha) : U \longmapsto \mathit{Isom}_U((\mathcal{O}_U, 1), (\mathcal{L}, \alpha)|_U) $$ on $(\Sch/S)_{syntomic}$. We may view this as a subpresheaf of $\SheafHom_\mathcal{O}(\mathcal{O}, \mathcal{L})$ (internal hom sheaf, see Modules on Sites, Section \ref{sites-modules-section-internal-hom}). Since the conditions defining this subpresheaf are local, we see that it is a sheaf. By (\ref{equation-isomorphisms-pairs}) this sheaf has a free action of the sheaf $\mu_{n, S}$. Hence the only thing we have to check is that it locally has sections. This is true because of the existence of the trivializing cover $\mathcal{V}$. Hence $\mu_n(\mathcal{L}, \alpha)$ is a $\mu_{n, S}$-torsor and by Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-torsors-h1} we obtain a corresponding element of $H^1_{syntomic}(S, \mu_{n, S})$. \medskip\noindent Ok, now we have to still show the following \begin{enumerate} \item The two constructions give the same cohomology class. \item Isomorphic pairs give rise to the same cohomology class. \item The cohomology class of $(\mathcal{L}, \alpha) \otimes (\mathcal{L}', \alpha')$ is the sum of the cohomology classes of $(\mathcal{L}, \alpha)$ and $(\mathcal{L}', \alpha')$. \item If the cohomology class is trivial, then the pair is trivial. \item Any element of $H^1_{syntomic}(S, \mu_{n, S})$ is the cohomology class of a pair. \end{enumerate} We omit the proof of (1). Part (2) is clear from the second construction, since isomorphic torsors give the same cohomology classes. Part (3) is clear from the first construction, since the resulting {\v C}ech classes add up. Part (4) is clear from the second construction since a torsor is trivial if and only if it has a global section, see Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-trivial-torsor}. \medskip\noindent Part (5) can be seen as follows (although a direct proof would be preferable). Suppose $\xi \in H^1_{syntomic}(S, \mu_{n, S})$. Then $\xi$ maps to an element $\overline{\xi} \in H^1_{syntomic}(S, \mathbf{G}_{m, S})$ with $n \overline{\xi} = 0$. By Theorem \ref{theorem-picard-group} we see that $\overline{\xi}$ corresponds to an invertible sheaf $\mathcal{L}$ whose $n$th tensor power is isomorphic to $\mathcal{O}_S$. Hence there exists a pair $(\mathcal{L}, \alpha')$ whose cohomology class $\xi'$ has the same image $\overline{\xi'}$ in $H^1_{syntomic}(S, \mathbf{G}_{m, S})$. Thus it suffices to show that $\xi - \xi'$ is the class of a pair. By construction, and the long exact cohomology sequence above, we see that $\xi - \xi' = \partial(f)$ for some $f \in H^0(S, \mathcal{O}_S^*)$. Consider the pair $(\mathcal{O}_S, f)$. We omit the verification that the cohomology class of this pair is $\partial(f)$, which finishes the proof of the first identification (with fppf replaced with syntomic). \medskip\noindent To see the first, note that if $n$ is invertible on $S$, then the covering $\mathcal{V}$ constructed in the first part of the proof is actually an \'etale covering (compare with the proof of Lemma \ref{lemma-kummer-sequence}). The rest of the proof is independent of the topology, apart from the very last argument which uses that the Kummer sequence is exact, i.e., uses Lemma \ref{lemma-kummer-sequence}. \end{proof} \section{Neighborhoods, stalks and points} \label{section-stalks} \noindent We can associate to any geometric point of $S$ a stalk functor which is exact. A map of sheaves on $S_\etale$ is an isomorphism if and only if it is an isomorphism on all these stalks. A complex of abelian sheaves is exact if and only if the complex of stalks is exact at all geometric points. Altogether this means that the small \'etale site of a scheme $S$ has enough points. It also turns out that any point of the small \'etale topos of $S$ (an abstract notion) is given by a geometric point. Thus in some sense the small \'etale topos of $S$ can be understood in terms of geometric points and neighbourhoods. \begin{definition} \label{definition-geometric-point} Let $S$ be a scheme. \begin{enumerate} \item A {\it geometric point} of $S$ is a morphism $\Spec(k) \to S$ where $k$ is algebraically closed. Such a point is usually denoted $\overline{s}$, i.e., by an overlined small case letter. We often use $\overline{s}$ to denote the scheme $\Spec(k)$ as well as the morphism, and we use $\kappa(\overline{s})$ to denote $k$. \item We say $\overline{s}$ {\it lies over} $s$ to indicate that $s \in S$ is the image of $\overline{s}$. \item An {\it \'etale neighborhood} of a geometric point $\overline{s}$ of $S$ is a commutative diagram $$ \xymatrix{ & U \ar[d]^\varphi \\ {\overline{s}} \ar[r]^{\overline{s}} \ar[ur]^{\bar u} & S } $$ where $\varphi$ is an \'etale morphism of schemes. We write $(U, \overline{u}) \to (S, \overline{s})$. \item A {\it morphism of \'etale neighborhoods} $(U, \overline{u}) \to (U', \overline{u}')$ is an $S$-morphism $h: U \to U'$ such that $\overline{u}' = h \circ \overline{u}$. \end{enumerate} \end{definition} \begin{remark} \label{remark-etale-between-etale} Since $U$ and $U'$ are \'etale over $S$, any $S$-morphism between them is also \'etale, see Proposition \ref{proposition-etale-morphisms}. In particular all morphisms of \'etale neighborhoods are \'etale. \end{remark} \begin{remark} \label{remark-etale-neighbourhoods} Let $S$ be a scheme and $s \in S$ a point. In More on Morphisms, Definition \ref{more-morphisms-definition-etale-neighbourhood} we defined the notion of an \'etale neighbourhood $(U, u) \to (S, s)$ of $(S, s)$. If $\overline{s}$ is a geometric point of $S$ lying over $s$, then any \'etale neighbourhood $(U, \overline{u}) \to (S, \overline{s})$ gives rise to an \'etale neighbourhood $(U, u)$ of $(S, s)$ by taking $u \in U$ to be the unique point of $U$ such that $\overline{u}$ lies over $u$. Conversely, given an \'etale neighbourhood $(U, u)$ of $(S, s)$ the residue field extension $\kappa(u)/\kappa(s)$ is finite separable (see Proposition \ref{proposition-etale-morphisms}) and hence we can find an embedding $\kappa(u) \subset \kappa(\overline{s})$ over $\kappa(s)$. In other words, we can find a geometric point $\overline{u}$ of $U$ lying over $u$ such that $(U, \overline{u})$ is an \'etale neighbourhood of $(S, \overline{s})$. We will use these observations to go between the two types of \'etale neighbourhoods. \end{remark} \begin{lemma} \label{lemma-cofinal-etale} Let $S$ be a scheme, and let $\overline{s}$ be a geometric point of $S$. The category of \'etale neighborhoods is cofiltered. More precisely: \begin{enumerate} \item Let $(U_i, \overline{u}_i)_{i = 1, 2}$ be two \'etale neighborhoods of $\overline{s}$ in $S$. Then there exists a third \'etale neighborhood $(U, \overline{u})$ and morphisms $(U, \overline{u}) \to (U_i, \overline{u}_i)$, $i = 1, 2$. \item Let $h_1, h_2: (U, \overline{u}) \to (U', \overline{u}')$ be two morphisms between \'etale neighborhoods of $\overline{s}$. Then there exist an \'etale neighborhood $(U'', \overline{u}'')$ and a morphism $h : (U'', \overline{u}'') \to (U, \overline{u})$ which equalizes $h_1$ and $h_2$, i.e., such that $h_1 \circ h = h_2 \circ h$. \end{enumerate} \end{lemma} \begin{proof} For part (1), consider the fibre product $U = U_1 \times_S U_2$. It is \'etale over both $U_1$ and $U_2$ because \'etale morphisms are preserved under base change, see Proposition \ref{proposition-etale-morphisms}. The map $\overline{s} \to U$ defined by $(\overline{u}_1, \overline{u}_2)$ gives it the structure of an \'etale neighborhood mapping to both $U_1$ and $U_2$. For part (2), define $U''$ as the fibre product $$ \xymatrix{ U'' \ar[r] \ar[d] & U \ar[d]^{(h_1, h_2)} \\ U' \ar[r]^-\Delta & U' \times_S U'. } $$ Since $\overline{u}$ and $\overline{u}'$ agree over $S$ with $\overline{s}$, we see that $\overline{u}'' = (\overline{u}, \overline{u}')$ is a geometric point of $U''$. In particular $U'' \not = \emptyset$. Moreover, since $U'$ is \'etale over $S$, so is the fibre product $U'\times_S U'$ (see Proposition \ref{proposition-etale-morphisms}). Hence the vertical arrow $(h_1, h_2)$ is \'etale by Remark \ref{remark-etale-between-etale} above. Therefore $U''$ is \'etale over $U'$ by base change, and hence also \'etale over $S$ (because compositions of \'etale morphisms are \'etale). Thus $(U'', \overline{u}'')$ is a solution to the problem. \end{proof} \begin{lemma} \label{lemma-geometric-lift-to-cover} Let $S$ be a scheme. Let $\overline{s}$ be a geometric point of $S$. Let $(U, \overline{u})$ be an \'etale neighborhood of $\overline{s}$. Let $\mathcal{U} = \{\varphi_i : U_i \to U \}_{i\in I}$ be an \'etale covering. Then there exist $i \in I$ and $\overline{u}_i : \overline{s} \to U_i$ such that $\varphi_i : (U_i, \overline{u}_i) \to (U, \overline{u})$ is a morphism of \'etale neighborhoods. \end{lemma} \begin{proof} As $U = \bigcup_{i\in I} \varphi_i(U_i)$, the fibre product $\overline{s} \times_{\overline{u}, U, \varphi_i} U_i$ is not empty for some $i$. Then look at the cartesian diagram $$ \xymatrix{ \overline{s} \times_{\overline{u}, U, \varphi_i} U_i \ar[d]^{\text{pr}_1} \ar[r]_-{\text{pr}_2} & U_i \ar[d]^{\varphi_i} \\ \Spec(k) = \overline{s} \ar@/^1pc/[u]^\sigma \ar[r]^-{\overline{u}} & U } $$ The projection $\text{pr}_1$ is the base change of an \'etale morphisms so it is \'etale, see Proposition \ref{proposition-etale-morphisms}. Therefore, $\overline{s} \times_{\overline{u}, U, \varphi_i} U_i$ is a disjoint union of finite separable extensions of $k$, by Proposition \ref{proposition-etale-morphisms}. Here $\overline{s} = \Spec(k)$. But $k$ is algebraically closed, so all these extensions are trivial, and there exists a section $\sigma$ of $\text{pr}_1$. The composition $\text{pr}_2 \circ \sigma$ gives a map compatible with $\overline{u}$. \end{proof} \begin{definition} \label{definition-stalk} Let $S$ be a scheme. Let $\mathcal{F}$ be a presheaf on $S_\etale$. Let $\overline{s}$ be a geometric point of $S$. The {\it stalk} of $\mathcal{F}$ at $\overline{s}$ is $$ \mathcal{F}_{\overline{s}} = \colim_{(U, \overline{u})} \mathcal{F}(U) $$ where $(U, \overline{u})$ runs over all \'etale neighborhoods of $\overline{s}$ in $S$. \end{definition} \noindent By Lemma \ref{lemma-cofinal-etale}, this colimit is over a filtered index category, namely the opposite of the category of \'etale neighbourhoods. In other words, an element of $\mathcal{F}_{\overline{s}}$ can be thought of as a triple $(U, \overline{u}, \sigma)$ where $\sigma \in \mathcal{F}(U)$. Two triples $(U, \overline{u}, \sigma)$, $(U', \overline{u}', \sigma')$ define the same element of the stalk if there exists a third \'etale neighbourhood $(U'', \overline{u}'')$ and morphisms of \'etale neighbourhoods $h : (U'', \overline{u}'') \to (U, \overline{u})$, $h' : (U'', \overline{u}'') \to (U', \overline{u}')$ such that $h^*\sigma = (h')^*\sigma'$ in $\mathcal{F}(U'')$. See Categories, Section \ref{categories-section-directed-colimits}. \begin{lemma} \label{lemma-stalk-gives-point} Let $S$ be a scheme. Let $\overline{s}$ be a geometric point of $S$. Consider the functor \begin{align*} u : S_\etale & \longrightarrow \textit{Sets}, \\ U & \longmapsto |U_{\overline{s}}| = \{\overline{u} \text{ such that }(U, \overline{u}) \text{ is an \'etale neighbourhood of }\overline{s}\}. \end{align*} Here $|U_{\overline{s}}|$ denotes the underlying set of the geometric fibre. Then $u$ defines a point $p$ of the site $S_\etale$ (Sites, Definition \ref{sites-definition-point}) and its associated stalk functor $\mathcal{F} \mapsto \mathcal{F}_p$ (Sites, Equation \ref{sites-equation-stalk}) is the functor $\mathcal{F} \mapsto \mathcal{F}_{\overline{s}}$ defined above. \end{lemma} \begin{proof} In the proof of Lemma \ref{lemma-geometric-lift-to-cover} we have seen that the scheme $U_{\overline{s}}$ is a disjoint union of schemes isomorphic to $\overline{s}$. Thus we can also think of $|U_{\overline{s}}|$ as the set of geometric points of $U$ lying over $\overline{s}$, i.e., as the collection of morphisms $\overline{u} : \overline{s} \to U$ fitting into the diagram of Definition \ref{definition-geometric-point}. From this it follows that $u(S)$ is a singleton, and that $u(U \times_V W) = u(U) \times_{u(V)} u(W)$ whenever $U \to V$ and $W \to V$ are morphisms in $S_\etale$. And, given a covering $\{U_i \to U\}_{i \in I}$ in $S_\etale$ we see that $\coprod u(U_i) \to u(U)$ is surjective by Lemma \ref{lemma-geometric-lift-to-cover}. Hence Sites, Proposition \ref{sites-proposition-point-limits} applies, so $p$ is a point of the site $S_\etale$. Finally, our functor $\mathcal{F} \mapsto \mathcal{F}_{\overline{s}}$ is given by exactly the same colimit as the functor $\mathcal{F} \mapsto \mathcal{F}_p$ associated to $p$ in Sites, Equation \ref{sites-equation-stalk} which proves the final assertion. \end{proof} \begin{remark} \label{remark-map-stalks} Let $S$ be a scheme and let $\overline{s} : \Spec(k) \to S$ and $\overline{s}' : \Spec(k') \to S$ be two geometric points of $S$. A {\it morphism $a : \overline{s} \to \overline{s}'$ of geometric points} is simply a morphism $a : \Spec(k) \to \Spec(k')$ such that $\overline{s}' \circ a = \overline{s}$. Given such a morphism we obtain a functor from the category of \'etale neighbourhoods of $\overline{s}'$ to the category of \'etale neighbourhoods of $\overline{s}$ by the rule $(U, \overline{u}') \mapsto (U, \overline{u}' \circ a)$. Hence we obtain a canonical map $$ \mathcal{F}_{\overline{s}'} = \colim_{(U, \overline{u}')} \mathcal{F}(U) \longrightarrow \colim_{(U, \overline{u})} \mathcal{F}(U) = \mathcal{F}_{\overline{s}} $$ from Categories, Lemma \ref{categories-lemma-functorial-colimit}. Using the description of elements of stalks as triples this maps the element of $\mathcal{F}_{\overline{s}'}$ represented by the triple $(U, \overline{u}', \sigma)$ to the element of $\mathcal{F}_{\overline{s}}$ represented by the triple $(U, \overline{u}' \circ a, \sigma)$. Since the functor above is clearly an equivalence we conclude that this canonical map is an isomorphism of stalk functors. \medskip\noindent Let us make sure we have the map of stalks corresponding to $a$ pointing in the correct direction. Note that the above means, according to Sites, Definition \ref{sites-definition-morphism-points}, that $a$ defines a morphism $a : p \to p'$ between the points $p, p'$ of the site $S_\etale$ associated to $\overline{s}, \overline{s}'$ by Lemma \ref{lemma-stalk-gives-point}. There are more general morphisms of points (corresponding to specializations of points of $S$) which we will describe later, and which will not be isomorphisms, see Section \ref{section-specialization}. \end{remark} \begin{lemma} \label{lemma-stalk-exact} Let $S$ be a scheme. Let $\overline{s}$ be a geometric point of $S$. \begin{enumerate} \item The stalk functor $\textit{PAb}(S_\etale) \to \textit{Ab}$, $\mathcal{F} \mapsto \mathcal{F}_{\overline{s}}$ is exact. \item We have $(\mathcal{F}^\#)_{\overline{s}} = \mathcal{F}_{\overline{s}}$ for any presheaf of sets $\mathcal{F}$ on $S_\etale$. \item The functor $\textit{Ab}(S_\etale) \to \textit{Ab}$, $\mathcal{F} \mapsto \mathcal{F}_{\overline{s}}$ is exact. \item Similarly the functors $\textit{PSh}(S_\etale) \to \textit{Sets}$ and $\Sh(S_\etale) \to \textit{Sets}$ given by the stalk functor $\mathcal{F} \mapsto \mathcal{F}_{\overline{x}}$ are exact (see Categories, Definition \ref{categories-definition-exact}) and commute with arbitrary colimits. \end{enumerate} \end{lemma} \begin{proof} Before we indicate how to prove this by direct arguments we note that the result follows from the general material in Modules on Sites, Section \ref{sites-modules-section-stalks}. This is true because $\mathcal{F} \mapsto \mathcal{F}_{\overline{s}}$ comes from a point of the small \'etale site of $S$, see Lemma \ref{lemma-stalk-gives-point}. We will only give a direct proof of (1), (2) and (3), and omit a direct proof of (4). \medskip\noindent Exactness as a functor on $\textit{PAb}(S_\etale)$ is formal from the fact that directed colimits commute with all colimits and with finite limits. The identification of the stalks in (2) is via the map $$ \kappa : \mathcal{F}_{\overline{s}} \longrightarrow (\mathcal{F}^\#)_{\overline{s}} $$ induced by the natural morphism $\mathcal{F}\to \mathcal{F}^\#$, see Theorem \ref{theorem-sheafification}. We claim that this map is an isomorphism of abelian groups. We will show injectivity and omit the proof of surjectivity. \medskip\noindent Let $\sigma\in \mathcal{F}_{\overline{s}}$. There exists an \'etale neighborhood $(U, \overline{u})\to (S, \overline{s})$ such that $\sigma$ is the image of some section $s \in \mathcal{F}(U)$. If $\kappa(\sigma) = 0$ in $(\mathcal{F}^\#)_{\overline{s}}$ then there exists a morphism of \'etale neighborhoods $(U', \overline{u}')\to (U, \overline{u})$ such that $s|_{U'}$ is zero in $\mathcal{F}^\#(U')$. It follows there exists an \'etale covering $\{U_i'\to U'\}_{i\in I}$ such that $s|_{U_i'}=0$ in $\mathcal{F}(U_i')$ for all $i$. By Lemma \ref{lemma-geometric-lift-to-cover} there exist $i \in I$ and a morphism $\overline{u}_i': \overline{s} \to U_i'$ such that $(U_i', \overline{u}_i') \to (U', \overline{u}')\to (U, \overline{u})$ are morphisms of \'etale neighborhoods. Hence $\sigma = 0$ since $(U_i', \overline{u}_i') \to (U, \overline{u})$ is a morphism of \'etale neighbourhoods such that we have $s|_{U'_i}=0$. This proves $\kappa$ is injective. \medskip\noindent To show that the functor $\textit{Ab}(S_\etale) \to \textit{Ab}$ is exact, consider any short exact sequence in $\textit{Ab}(S_\etale)$: $ 0\to \mathcal{F}\to \mathcal{G}\to \mathcal H \to 0. $ This gives us the exact sequence of presheaves $$ 0 \to \mathcal{F} \to \mathcal{G} \to \mathcal H \to \mathcal H/^p\mathcal{G} \to 0, $$ where $/^p$ denotes the quotient in $\textit{PAb}(S_\etale)$. Taking stalks at $\overline{s}$, we see that $(\mathcal H /^p\mathcal{G})_{\bar{s}} = (\mathcal H /\mathcal{G})_{\bar{s}} = 0$, since the sheafification of $\mathcal H/^p\mathcal{G}$ is $0$. Therefore, $$ 0\to \mathcal{F}_{\overline{s}} \to \mathcal{G}_{\overline{s}} \to \mathcal{H}_{\overline{s}} \to 0 = (\mathcal H/^p\mathcal{G})_{\overline{s}} $$ is exact, since taking stalks is exact as a functor from presheaves. \end{proof} \begin{theorem} \label{theorem-exactness-stalks} Let $S$ be a scheme. A map $a : \mathcal{F} \to \mathcal{G}$ of sheaves of sets is injective (resp.\ surjective) if and only if the map on stalks $a_{\overline{s}} : \mathcal{F}_{\overline{s}} \to \mathcal{G}_{\overline{s}}$ is injective (resp.\ surjective) for all geometric points of $S$. A sequence of abelian sheaves on $S_\etale$ is exact if and only if it is exact on all stalks at geometric points of $S$. \end{theorem} \begin{proof} The necessity of exactness on stalks follows from Lemma \ref{lemma-stalk-exact}. For the converse, it suffices to show that a map of sheaves is surjective (respectively injective) if and only if it is surjective (respectively injective) on all stalks. We prove this in the case of surjectivity, and omit the proof in the case of injectivity. \medskip\noindent Let $\alpha : \mathcal{F} \to \mathcal{G}$ be a map of sheaves such that $\mathcal{F}_{\overline{s}} \to \mathcal{G}_{\overline{s}}$ is surjective for all geometric points. Fix $U \in \Ob(S_\etale)$ and $s \in \mathcal{G}(U)$. For every $u \in U$ choose some $\overline{u} \to U$ lying over $u$ and an \'etale neighborhood $(V_u , \overline{v}_u) \to (U, \overline{u})$ such that $s|_{V_u} = \alpha(s_{V_u})$ for some $s_{V_u} \in \mathcal{F}(V_u)$. This is possible since $\alpha$ is surjective on stalks. Then $\{V_u \to U\}_{u \in U}$ is an \'etale covering on which the restrictions of $s$ are in the image of the map $\alpha$. Thus, $\alpha$ is surjective, see Sites, Section \ref{sites-section-sheaves-injective}. \end{proof} \begin{remarks} \label{remarks-enough-points} On points of the geometric sites. \begin{enumerate} \item Theorem \ref{theorem-exactness-stalks} says that the family of points of $S_\etale$ given by the geometric points of $S$ (Lemma \ref{lemma-stalk-gives-point}) is conservative, see Sites, Definition \ref{sites-definition-enough-points}. In particular $S_\etale$ has enough points. \item Suppose $\mathcal{F}$ is a sheaf on the big \'etale site \label{item-stalks-big} of $S$. Let $T \to S$ be an object of the big \'etale site of $S$, and let $\overline{t}$ be a geometric point of $T$. Then we define $\mathcal{F}_{\overline{t}}$ as the stalk of the restriction $\mathcal{F}|_{T_\etale}$ of $\mathcal{F}$ to the small \'etale site of $T$. In other words, we can define the stalk of $\mathcal{F}$ at any geometric point of any scheme $T/S \in \Ob((\Sch/S)_\etale)$. \item The big \'etale site of $S$ also has enough points, by considering all geometric points of all objects of this site, see (\ref{item-stalks-big}). \end{enumerate} \end{remarks} \noindent The following lemma should be skipped on a first reading. \begin{lemma} \label{lemma-points-small-etale-site} Let $S$ be a scheme. \begin{enumerate} \item Let $p$ be a point of the small \'etale site $S_\etale$ of $S$ given by a functor $u : S_\etale \to \textit{Sets}$. Then there exists a geometric point $\overline{s}$ of $S$ such that $p$ is isomorphic to the point of $S_\etale$ associated to $\overline{s}$ in Lemma \ref{lemma-stalk-gives-point}. \item Let $p : \Sh(pt) \to \Sh(S_\etale)$ be a point of the small \'etale topos of $S$. Then $p$ comes from a geometric point of $S$, i.e., the stalk functor $\mathcal{F} \mapsto \mathcal{F}_p$ is isomorphic to a stalk functor as defined in Definition \ref{definition-stalk}. \end{enumerate} \end{lemma} \begin{proof} By Sites, Lemma \ref{sites-lemma-point-site-topos} there is a one to one correspondence between points of the site and points of the associated topos, hence it suffices to prove (1). By Sites, Proposition \ref{sites-proposition-point-limits} the functor $u$ has the following properties: (a) $u(S) = \{*\}$, (b) $u(U \times_V W) = u(U) \times_{u(V)} u(W)$, and (c) if $\{U_i \to U\}$ is an \'etale covering, then $\coprod u(U_i) \to u(U)$ is surjective. In particular, if $U' \subset U$ is an open subscheme, then $u(U') \subset u(U)$. Moreover, by Sites, Lemma \ref{sites-lemma-point-site-topos} we can write $u(U) = p^{-1}(h_U^\#)$, in other words $u(U)$ is the stalk of the representable sheaf $h_U$. If $U = V \amalg W$, then we see that $h_U = (h_V \amalg h_W)^\#$ and we get $u(U) = u(V) \amalg u(W)$ since $p^{-1}$ is exact. \medskip\noindent Consider the restriction of $u$ to $S_{Zar}$. By Sites, Examples \ref{sites-example-point-topological} and \ref{sites-example-point-topology} there exists a unique point $s \in S$ such that for $S' \subset S$ open we have $u(S') = \{*\}$ if $s \in S'$ and $u(S') = \emptyset$ if $s \not \in S'$. Note that if $\varphi : U \to S$ is an object of $S_\etale$ then $\varphi(U) \subset S$ is open (see Proposition \ref{proposition-etale-morphisms}) and $\{U \to \varphi(U)\}$ is an \'etale covering. Hence we conclude that $u(U) = \emptyset \Leftrightarrow s \in \varphi(U)$. \medskip\noindent Pick a geometric point $\overline{s} : \overline{s} \to S$ lying over $s$, see Definition \ref{definition-geometric-point} for customary abuse of notation. Suppose that $\varphi : U \to S$ is an object of $S_\etale$ with $U$ affine. Note that $\varphi$ is separated, and that the fibre $U_s$ of $\varphi$ over $s$ is an affine scheme over $\Spec(\kappa(s))$ which is the spectrum of a finite product of finite separable extensions $k_i$ of $\kappa(s)$. Hence we may apply \'Etale Morphisms, Lemma \ref{etale-lemma-etale-etale-local-technical} to get an \'etale neighbourhood $(V, \overline{v})$ of $(S, \overline{s})$ such that $$ U \times_S V = U_1 \amalg \ldots \amalg U_n \amalg W $$ with $U_i \to V$ an isomorphism and $W$ having no point lying over $\overline{v}$. Thus we conclude that $$ u(U) \times u(V) = u(U \times_S V) = u(U_1) \amalg \ldots \amalg u(U_n) \amalg u(W) $$ and of course also $u(U_i) = u(V)$. After shrinking $V$ a bit we can assume that $V$ has exactly one point lying over $s$, and hence $W$ has no point lying over $s$. By the above this then gives $u(W) = \emptyset$. Hence we obtain $$ u(U) \times u(V) = u(U_1) \amalg \ldots \amalg u(U_n) = \coprod\nolimits_{i = 1, \ldots, n} u(V) $$ Note that $u(V) \not = \emptyset$ as $s$ is in the image of $V \to S$. In particular, we see that in this situation $u(U)$ is a finite set with $n$ elements. \medskip\noindent Consider the limit $$ \lim_{(V, \overline{v})} u(V) $$ over the category of \'etale neighbourhoods $(V, \overline{v})$ of $\overline{s}$. It is clear that we get the same value when taking the limit over the subcategory of $(V, \overline{v})$ with $V$ affine. By the previous paragraph (applied with the roles of $V$ and $U$ switched) we see that in this case $u(V)$ is always a finite nonempty set. Moreover, the limit is cofiltered, see Lemma \ref{lemma-cofinal-etale}. Hence by Categories, Section \ref{categories-section-codirected-limits} the limit is nonempty. Pick an element $x$ from this limit. This means we obtain a $x_{V, \overline{v}} \in u(V)$ for every \'etale neighbourhood $(V, \overline{v})$ of $(S, \overline{s})$ such that for every morphism of \'etale neighbourhoods $\varphi : (V', \overline{v}') \to (V, \overline{v})$ we have $u(\varphi)(x_{V', \overline{v}'}) = x_{V, \overline{v}}$. \medskip\noindent We will use the choice of $x$ to construct a functorial bijective map $$ c : |U_{\overline{s}}| \longrightarrow u(U) $$ for $U \in \Ob(S_\etale)$ which will conclude the proof. See Lemma \ref{lemma-stalk-gives-point} and its proof for a description of $|U_{\overline{s}}|$. First we claim that it suffices to construct the map for $U$ affine. We omit the proof of this claim. Assume $U \to S$ in $S_\etale$ with $U$ affine, and let $\overline{u} : \overline{s} \to U$ be an element of $|U_{\overline{s}}|$. Choose a $(V, \overline{v})$ such that $U \times_S V$ decomposes as in the third paragraph of the proof. Then the pair $(\overline{u}, \overline{v})$ gives a geometric point of $U \times_S V$ lying over $\overline{v}$ and determines one of the components $U_i$ of $U \times_S V$. More precisely, there exists a section $\sigma : V \to U \times_S V$ of the projection $\text{pr}_U$ such that $(\overline{u}, \overline{v}) = \sigma \circ \overline{v}$. Set $c(\overline{u}) = u(\text{pr}_U)(u(\sigma)(x_{V, \overline{v}})) \in u(U)$. We have to check this is independent of the choice of $(V, \overline{v})$. By Lemma \ref{lemma-cofinal-etale} the category of \'etale neighbourhoods is cofiltered. Hence it suffice to show that given a morphism of \'etale neighbourhood $\varphi : (V', \overline{v}') \to (V, \overline{v})$ and a choice of a section $\sigma' : V' \to U \times_S V'$ of the projection such that $(\overline{u}, \overline{v'}) = \sigma' \circ \overline{v}'$ we have $u(\sigma')(x_{V', \overline{v}'}) = u(\sigma)(x_{V, \overline{v}})$. Consider the diagram $$ \xymatrix{ V' \ar[d]^{\sigma'} \ar[r]_\varphi & V \ar[d]^\sigma \\ U \times_S V' \ar[r]^{1 \times \varphi} & U \times_S V } $$ Now, it may not be the case that this diagram commutes. The reason is that the schemes $V'$ and $V$ may not be connected, and hence the decompositions used to construct $\sigma'$ and $\sigma$ above may not be unique. But we do know that $\sigma \circ \varphi \circ \overline{v}' = (1 \times \varphi) \circ \sigma' \circ \overline{v}'$ by construction. Hence, since $U \times_S V$ is \'etale over $S$, there exists an open neighbourhood $V'' \subset V'$ of $\overline{v'}$ such that the diagram does commute when restricted to $V''$, see Morphisms, Lemma \ref{morphisms-lemma-value-at-one-point}. This means we may extend the diagram above to $$ \xymatrix{ V'' \ar[r] \ar[d]^{\sigma'|_{V''}} & V' \ar[d]^{\sigma'} \ar[r]_\varphi & V \ar[d]^\sigma \\ U \times_S V'' \ar[r] & U \times_S V' \ar[r]^{1 \times \varphi} & U \times_S V } $$ such that the left square and the outer rectangle commute. Since $u$ is a functor this implies that $x_{V'', \overline{v}'}$ maps to the same element in $u(U \times_S V)$ no matter which route we take through the diagram. On the other hand, it maps to the elements $x_{V', \overline{v}'}$ and $x_{V, \overline{v}}$ in $u(V')$ and $u(V)$. This implies the desired equality $u(\sigma')(x_{V', \overline{v}'}) = u(\sigma)(x_{V, \overline{v}})$. \medskip\noindent In a similar manner one proves that the construction $c : |U_{\overline{s}}| \to u(U)$ is functorial in $U$; details omitted. And finally, by the results of the third paragraph it is clear that the map $c$ is bijective which ends the proof of the lemma. \end{proof} \section{Points in other topologies} \label{section-points-topologies} \noindent In this section we briefly discuss the existence of points for some sites other than the \'etale site of a scheme. We refer to Sites, Section \ref{sites-section-sites-enough-points} and Topologies, Section \ref{topologies-section-procedure} ff for the terminology used in this section. All of the geometric sites have enough points. \begin{lemma} \label{lemma-points-fppf} Let $S$ be a scheme. All of the following sites have enough points $S_{affine, Zar}$, $S_{Zar}$, $S_{affine, \etale}$, $S_\etale$, $(\Sch/S)_{Zar}$, $(\textit{Aff}/S)_{Zar}$, $(\Sch/S)_\etale$, $(\textit{Aff}/S)_\etale$, $(\Sch/S)_{smooth}$, $(\textit{Aff}/S)_{smooth}$, $(\Sch/S)_{syntomic}$, $(\textit{Aff}/S)_{syntomic}$, $(\Sch/S)_{fppf}$, and $(\textit{Aff}/S)_{fppf}$. \end{lemma} \begin{proof} For each of the big sites the associated topos is equivalent to the topos defined by the site $(\textit{Aff}/S)_\tau$, see Topologies, Lemmas \ref{topologies-lemma-affine-big-site-Zariski}, \ref{topologies-lemma-affine-big-site-etale}, \ref{topologies-lemma-affine-big-site-smooth}, \ref{topologies-lemma-affine-big-site-syntomic}, and \ref{topologies-lemma-affine-big-site-fppf}. The result for the sites $(\textit{Aff}/S)_\tau$ follows immediately from Deligne's result Sites, Lemma \ref{sites-lemma-criterion-points}. \medskip\noindent The result for $S_{Zar}$ is clear. The result for $S_{affine, Zar}$ follows from Deligne's result. The result for $S_\etale$ either follows from (the proof of) Theorem \ref{theorem-exactness-stalks} or from Topologies, Lemma \ref{topologies-lemma-alternative} and Deligne's result applied to $S_{affine, \etale}$. \end{proof} \noindent The lemma above guarantees the existence of points, but it doesn't tell us what these points look like. We can explicitly construct {\it some} points as follows. Suppose $\overline{s} : \Spec(k) \to S$ is a geometric point with $k$ algebraically closed. Consider the functor $$ u : (\Sch/S)_{fppf} \longrightarrow \textit{Sets}, \quad u(U) = U(k) = \Mor_S(\Spec(k), U). $$ Note that $U \mapsto U(k)$ commutes with finite limits as $S(k) = \{\overline{s}\}$ and $(U_1 \times_U U_2)(k) = U_1(k) \times_{U(k)} U_2(k)$. Moreover, if $\{U_i \to U\}$ is an fppf covering, then $\coprod U_i(k) \to U(k)$ is surjective. By Sites, Proposition \ref{sites-proposition-point-limits} we see that $u$ defines a point $p$ of $(\Sch/S)_{fppf}$ with stalks $$ \mathcal{F}_p = \colim_{(U, x)} \mathcal{F}(U) $$ where the colimit is over pairs $U \to S$, $x \in U(k)$ as usual. But... this category has an initial object, namely $(\Spec(k), \text{id})$, hence we see that $$ \mathcal{F}_p = \mathcal{F}(\Spec(k)) $$ which isn't terribly interesting! In fact, in general these points won't form a conservative family of points. A more interesting type of point is described in the following remark. \begin{remark} \label{remark-points-fppf-site} \begin{reference} This is discussed in \cite{Schroeer}. \end{reference} Let $S = \Spec(A)$ be an affine scheme. Let $(p, u)$ be a point of the site $(\textit{Aff}/S)_{fppf}$, see Sites, Sections \ref{sites-section-points} and \ref{sites-section-construct-points}. Let $B = \mathcal{O}_p$ be the stalk of the structure sheaf at the point $p$. Recall that $$ B = \colim_{(U, x)} \mathcal{O}(U) = \colim_{(\Spec(C), x_C)} C $$ where $x_C \in u(\Spec(C))$. It can happen that $\Spec(B)$ is an object of $(\textit{Aff}/S)_{fppf}$ and that there is an element $x_B \in u(\Spec(B))$ mapping to the compatible system $x_C$. In this case the system of neighbourhoods has an initial object and it follows that $\mathcal{F}_p = \mathcal{F}(\Spec(B))$ for any sheaf $\mathcal{F}$ on $(\textit{Aff}/S)_{fppf}$. It is straightforward to see that if $\mathcal{F} \mapsto \mathcal{F}(\Spec(B))$ defines a point of $\Sh((\textit{Aff}/S)_{fppf})$, then $B$ has to be a local $A$-algebra such that for every faithfully flat, finitely presented ring map $B \to B'$ there is a section $B' \to B$. Conversely, for any such $A$-algebra $B$ the functor $\mathcal{F} \mapsto \mathcal{F}(\Spec(B))$ is the stalk functor of a point. Details omitted. It is not clear what a general point of the site $(\textit{Aff}/S)_{fppf}$ looks like. \end{remark} \section{Supports of abelian sheaves} \label{section-support} \noindent First we talk about supports of local sections. \begin{lemma} \label{lemma-support-subsheaf-final} Let $S$ be a scheme. Let $\mathcal{F}$ be a subsheaf of the final object of the \'etale topos of $S$ (see Sites, Example \ref{sites-example-singleton-sheaf}). Then there exists a unique open $W \subset S$ such that $\mathcal{F} = h_W$. \end{lemma} \begin{proof} The condition means that $\mathcal{F}(U)$ is a singleton or empty for all $\varphi : U \to S$ in $\Ob(S_\etale)$. In particular local sections always glue. If $\mathcal{F}(U) \not = \emptyset$, then $\mathcal{F}(\varphi(U)) \not = \emptyset$ because $\{\varphi : U \to \varphi(U)\}$ is a covering. Hence we can take $W = \bigcup_{\varphi : U \to S, \mathcal{F}(U) \not = \emptyset} \varphi(U)$. \end{proof} \begin{lemma} \label{lemma-zero-over-image} Let $S$ be a scheme. Let $\mathcal{F}$ be an abelian sheaf on $S_\etale$. Let $\sigma \in \mathcal{F}(U)$ be a local section. There exists an open subset $W \subset U$ such that \begin{enumerate} \item $W \subset U$ is the largest Zariski open subset of $U$ such that $\sigma|_W = 0$, \item for every $\varphi : V \to U$ in $S_\etale$ we have $$ \sigma|_V = 0 \Leftrightarrow \varphi(V) \subset W, $$ \item for every geometric point $\overline{u}$ of $U$ we have $$ (U, \overline{u}, \sigma) = 0\text{ in }\mathcal{F}_{\overline{s}} \Leftrightarrow \overline{u} \in W $$ where $\overline{s} = (U \to S) \circ \overline{u}$. \end{enumerate} \end{lemma} \begin{proof} Since $\mathcal{F}$ is a sheaf in the \'etale topology the restriction of $\mathcal{F}$ to $U_{Zar}$ is a sheaf on $U$ in the Zariski topology. Hence there exists a Zariski open $W$ having property (1), see Modules, Lemma \ref{modules-lemma-support-section-closed}. Let $\varphi : V \to U$ be an arrow of $S_\etale$. Note that $\varphi(V) \subset U$ is an open subset and that $\{V \to \varphi(V)\}$ is an \'etale covering. Hence if $\sigma|_V = 0$, then by the sheaf condition for $\mathcal{F}$ we see that $\sigma|_{\varphi(V)} = 0$. This proves (2). To prove (3) we have to show that if $(U, \overline{u}, \sigma)$ defines the zero element of $\mathcal{F}_{\overline{s}}$, then $\overline{u} \in W$. This is true because the assumption means there exists a morphism of \'etale neighbourhoods $(V, \overline{v}) \to (U, \overline{u})$ such that $\sigma|_V = 0$. Hence by (2) we see that $V \to U$ maps into $W$, and hence $\overline{u} \in W$. \end{proof} \noindent Let $S$ be a scheme. Let $s \in S$. Let $\mathcal{F}$ be a sheaf on $S_\etale$. By Remark \ref{remark-map-stalks} the isomorphism class of the stalk of the sheaf $\mathcal{F}$ at a geometric points lying over $s$ is well defined. \begin{definition} \label{definition-support} Let $S$ be a scheme. Let $\mathcal{F}$ be an abelian sheaf on $S_\etale$. \begin{enumerate} \item The {\it support of $\mathcal{F}$} is the set of points $s \in S$ such that $\mathcal{F}_{\overline{s}} \not = 0$ for any (some) geometric point $\overline{s}$ lying over $s$. \item Let $\sigma \in \mathcal{F}(U)$ be a section. The {\it support of $\sigma$} is the closed subset $U \setminus W$, where $W \subset U$ is the largest open subset of $U$ on which $\sigma$ restricts to zero (see Lemma \ref{lemma-zero-over-image}). \end{enumerate} \end{definition} \noindent In general the support of an abelian sheaf is not closed. For example, suppose that $S = \Spec(\mathbf{A}^1_{\mathbf{C}})$. Let $i_t : \Spec(\mathbf{C}) \to S$ be the inclusion of the point $t \in \mathbf{C}$. We will see later that $\mathbf{F}_t = i_{t, *}(\mathbf{Z}/2\mathbf{Z})$ is an abelian sheaf whose support is exactly $\{t\}$, see Section \ref{section-closed-immersions}. Then $$ \bigoplus\nolimits_{n \in \mathbf{N}} \mathcal{F}_n $$ is an abelian sheaf with support $\{1, 2, 3, \ldots\} \subset S$. This is true because taking stalks commutes with colimits, see Lemma \ref{lemma-stalk-exact}. Thus an example of an abelian sheaf whose support is not closed. Here are some basic facts on supports of sheaves and sections. \begin{lemma} \label{lemma-support-section-closed} Let $S$ be a scheme. Let $\mathcal{F}$ be an abelian sheaf on $S_\etale$. Let $U \in \Ob(S_\etale)$ and $\sigma \in \mathcal{F}(U)$. \begin{enumerate} \item The support of $\sigma$ is closed in $U$. \item The support of $\sigma + \sigma'$ is contained in the union of the supports of $\sigma, \sigma' \in \mathcal{F}(U)$. \item If $\varphi : \mathcal{F} \to \mathcal{G}$ is a map of abelian sheaves on $S_\etale$, then the support of $\varphi(\sigma)$ is contained in the support of $\sigma \in \mathcal{F}(U)$. \item The support of $\mathcal{F}$ is the union of the images of the supports of all local sections of $\mathcal{F}$. \item If $\mathcal{F} \to \mathcal{G}$ is surjective then the support of $\mathcal{G}$ is a subset of the support of $\mathcal{F}$. \item If $\mathcal{F} \to \mathcal{G}$ is injective then the support of $\mathcal{F}$ is a subset of the support of $\mathcal{G}$. \end{enumerate} \end{lemma} \begin{proof} Part (1) holds by definition. Parts (2) and (3) hold because they holds for the restriction of $\mathcal{F}$ and $\mathcal{G}$ to $U_{Zar}$, see Modules, Lemma \ref{modules-lemma-support-section-closed}. Part (4) is a direct consequence of Lemma \ref{lemma-zero-over-image} part (3). Parts (5) and (6) follow from the other parts. \end{proof} \begin{lemma} \label{lemma-support-sheaf-rings-closed} The support of a sheaf of rings on $S_\etale$ is closed. \end{lemma} \begin{proof} This is true because (according to our conventions) a ring is $0$ if and only if $1 = 0$, and hence the support of a sheaf of rings is the support of the unit section. \end{proof} \section{Henselian rings} \label{section-henselian-ring} \noindent We begin by stating a theorem which has already been used many times in the Stacks project. There are many versions of this result; here we just state the algebraic version. \begin{theorem} \label{theorem-quasi-finite-etale-locally} Let $A\to B$ be finite type ring map and $\mathfrak p \subset A$ a prime ideal. Then there exist an \'etale ring map $A \to A'$ and a prime $\mathfrak p' \subset A'$ lying over $\mathfrak p$ such that \begin{enumerate} \item $\kappa(\mathfrak p) = \kappa(\mathfrak p')$, \item $ B \otimes_A A' = B_1\times \ldots \times B_r \times C$, \item $ A'\to B_i$ is finite and there exists a unique prime $q_i\subset B_i$ lying over $\mathfrak p'$, and \item all irreducible components of the fibre $\Spec(C \otimes_{A'} \kappa(\mathfrak p'))$ of $C$ over $\mathfrak p'$ have dimension at least 1. \end{enumerate} \end{theorem} \begin{proof} See Algebra, Lemma \ref{algebra-lemma-etale-makes-quasi-finite-finite}, or see \cite[Th\'eor\`eme 18.12.1]{EGA4}. For a slew of versions in terms of morphisms of schemes, see More on Morphisms, Section \ref{more-morphisms-section-etale-localization}. \end{proof} \noindent Recall Hensel's lemma. There are many versions of this lemma. Here are two: \begin{enumerate} \item[(f)] if $f\in \mathbf{Z}_p[T]$ monic and $f \bmod p = g_0 h_0$ with $gcd(g_0, h_0) = 1$ then $f$ factors as $f = gh$ with $\bar g = g_0$ and $\bar h = h_0$, \item[(r)] if $f \in \mathbf{Z}_p[T]$, monic $a_0 \in \mathbf{F}_p$, $\bar f(a_0) =0$ but $\bar f'(a_0) \neq 0$ then there exists $a \in \mathbf{Z}_p$ with $f(a) = 0$ and $\bar a = a_0$. \end{enumerate} Both versions are true (we will see this later). The first version asks for lifts of factorizations into coprime parts, and the second version asks for lifts of simple roots modulo the maximal ideal. It turns out that requiring these conditions for a general local ring are equivalent, and are equivalent to many other conditions. We use the root lifting property as the definition of a henselian local ring as it is often the easiest one to check. %10.01.09 \begin{definition} \label{definition-henselian} (See Algebra, Definition \ref{algebra-definition-henselian}.) A local ring $(R, \mathfrak m, \kappa)$ is called {\it henselian} if for all $f \in R[T]$ monic, for all $a_0 \in \kappa$ such that $\bar f(a_0) = 0$ and $\bar f'(a_0) \neq 0$, there exists an $a \in R$ such that $f(a) = 0$ and $a \bmod \mathfrak m = a_0$. \end{definition} \noindent A good example of henselian local rings to keep in mind is complete local rings. Recall (Algebra, Definition \ref{algebra-definition-complete-local-ring}) that a complete local ring is a local ring $(R, \mathfrak m)$ such that $R \cong \lim_n R/\mathfrak m^n$, i.e., it is complete and separated for the $\mathfrak m$-adic topology. \begin{theorem} \label{theorem-hensel} Complete local rings are henselian. \end{theorem} \begin{proof} Newton's method. See Algebra, Lemma \ref{algebra-lemma-complete-henselian}. \end{proof} \begin{theorem} \label{theorem-henselian} Let $(R, \mathfrak m, \kappa)$ be a local ring. The following are equivalent: \begin{enumerate} \item $R$ is henselian, \item for any $f\in R[T]$ and any factorization $\bar f = g_0 h_0$ in $\kappa[T]$ with $\gcd(g_0, h_0)=1$, there exists a factorization $f = gh$ in $R[T]$ with $\bar g = g_0$ and $\bar h = h_0$, \item any finite $R$-algebra $S$ is isomorphic to a finite product of local rings finite over $R$, \item any finite type $R$-algebra $A$ is isomorphic to a product $A \cong A' \times C$ where $A' \cong A_1 \times \ldots \times A_r$ is a product of finite local $R$-algebras and all the irreducible components of $C \otimes_R \kappa$ have dimension at least 1, \item if $A$ is an \'etale $R$-algebra and $\mathfrak n$ is a maximal ideal of $A$ lying over $\mathfrak m$ such that $\kappa \cong A/\mathfrak n$, then there exists an isomorphism $\varphi : A \cong R \times A'$ such that $\varphi(\mathfrak n) = \mathfrak m \times A' \subset R \times A'$. \end{enumerate} \end{theorem} \begin{proof} This is just a subset of the results from Algebra, Lemma \ref{algebra-lemma-characterize-henselian}. Note that part (5) above corresponds to part (8) of Algebra, Lemma \ref{algebra-lemma-characterize-henselian} but is formulated slightly differently. \end{proof} \begin{lemma} \label{lemma-finite-over-henselian} If $R$ is henselian and $A$ is a finite $R$-algebra, then $A$ is a finite product of henselian local rings. \end{lemma} \begin{proof} See Algebra, Lemma \ref{algebra-lemma-finite-over-henselian}. \end{proof} \begin{definition} \label{definition-strictly-henselian} A local ring $R$ is called {\it strictly henselian} if it is henselian and its residue field is separably closed. \end{definition} \begin{example} \label{example-powerseries} In the case $R = \mathbf{C}[[t]]$, the \'etale $R$-algebras are finite products of the trivial extension $R \to R$ and the extensions $R \to R[X, X^{-1}]/(X^n-t)$. The latter ones factor through the open $D(t) \subset \Spec(R)$, so any \'etale covering can be refined by the covering $\{\text{id} : \Spec(R) \to \Spec(R)\}$. We will see below that this is a somewhat general fact on \'etale coverings of spectra of henselian rings. This will show that higher \'etale cohomology of the spectrum of a strictly henselian ring is zero. \end{example} \begin{theorem} \label{theorem-henselization} Let $(R, \mathfrak m, \kappa)$ be a local ring and $\kappa\subset\kappa^{sep}$ a separable algebraic closure. There exist canonical flat local ring maps $R \to R^h \to R^{sh}$ where \begin{enumerate} \item $R^h$, $R^{sh}$ are filtered colimits of \'etale $R$-algebras, \item $R^h$ is henselian, $R^{sh}$ is strictly henselian, \item $\mathfrak m R^h$ (resp.\ $\mathfrak m R^{sh}$) is the maximal ideal of $R^h$ (resp.\ $R^{sh}$), and \item $\kappa = R^h/\mathfrak m R^h$, and $\kappa^{sep} = R^{sh}/\mathfrak m R^{sh}$ as extensions of $\kappa$. \end{enumerate} \end{theorem} \begin{proof} The structure of $R^h$ and $R^{sh}$ is described in Algebra, Lemmas \ref{algebra-lemma-henselization} and \ref{algebra-lemma-strict-henselization}. \end{proof} \noindent The rings constructed in Theorem \ref{theorem-henselization} are called respectively the {\it henselization} and the {\it strict henselization} of the local ring $R$, see Algebra, Definition \ref{algebra-definition-henselization}. Many of the properties of $R$ are reflected in its (strict) henselization, see More on Algebra, Section \ref{more-algebra-section-permanence-henselization}. \section{Stalks of the structure sheaf} \label{section-stalks-structure-sheaf} \noindent In this section we identify the stalk of the structure sheaf at a geometric point with the strict henselization of the local ring at the corresponding ``usual'' point. \begin{lemma} \label{lemma-describe-etale-local-ring} \begin{slogan} The stalk of the structure sheaf of a scheme in the etale topology is the strict henselization. \end{slogan} Let $S$ be a scheme. Let $\overline{s}$ be a geometric point of $S$ lying over $s \in S$. Let $\kappa = \kappa(s)$ and let $\kappa \subset \kappa^{sep} \subset \kappa(\overline{s})$ denote the separable algebraic closure of $\kappa$ in $\kappa(\overline{s})$. Then there is a canonical identification $$ (\mathcal{O}_{S, s})^{sh} \cong (\mathcal{O}_S)_{\overline{s}} $$ where the left hand side is the strict henselization of the local ring $\mathcal{O}_{S, s}$ as described in Theorem \ref{theorem-henselization} and right hand side is the stalk of the structure sheaf $\mathcal{O}_S$ on $S_\etale$ at the geometric point $\overline{s}$. \end{lemma} \begin{proof} Let $\Spec(A) \subset S$ be an affine neighbourhood of $s$. Let $\mathfrak p \subset A$ be the prime ideal corresponding to $s$. With these choices we have canonical isomorphisms $\mathcal{O}_{S, s} = A_{\mathfrak p}$ and $\kappa(s) = \kappa(\mathfrak p)$. Thus we have $\kappa(\mathfrak p) \subset \kappa^{sep} \subset \kappa(\overline{s})$. Recall that $$ (\mathcal{O}_S)_{\overline{s}} = \colim_{(U, \overline{u})} \mathcal{O}(U) $$ where the limit is over the \'etale neighbourhoods of $(S, \overline{s})$. A cofinal system is given by those \'etale neighbourhoods $(U, \overline{u})$ such that $U$ is affine and $U \to S$ factors through $\Spec(A)$. In other words, we see that $$ (\mathcal{O}_S)_{\overline{s}} = \colim_{(B, \mathfrak q, \phi)} B $$ where the colimit is over \'etale $A$-algebras $B$ endowed with a prime $\mathfrak q$ lying over $\mathfrak p$ and a $\kappa(\mathfrak p)$-algebra map $\phi : \kappa(\mathfrak q) \to \kappa(\overline{s})$. Note that since $\kappa(\mathfrak q)$ is finite separable over $\kappa(\mathfrak p)$ the image of $\phi$ is contained in $\kappa^{sep}$. Via these translations the result of the lemma is equivalent to the result of Algebra, Lemma \ref{algebra-lemma-strict-henselization-different}. \end{proof} \begin{definition} \label{definition-etale-local-rings} Let $S$ be a scheme. Let $\overline{s}$ be a geometric point of $S$ lying over the point $s \in S$. \begin{enumerate} \item The {\it \'etale local ring of $S$ at $\overline{s}$} is the stalk of the structure sheaf $\mathcal{O}_S$ on $S_\etale$ at $\overline{s}$. We sometimes call this the {\it strict henselization of $\mathcal{O}_{S, s}$} relative to the geometric point $\overline{s}$. Notation used: $\mathcal{O}_{S, \overline{s}}^{sh}$. \item The {\it henselization of $\mathcal{O}_{S, s}$} is the henselization of the local ring of $S$ at $s$. See Algebra, Definition \ref{algebra-definition-henselization}, and Theorem \ref{theorem-henselization}. Notation: $\mathcal{O}_{S, s}^h$. \item The {\it strict henselization of $S$ at $\overline{s}$} is the scheme $\Spec(\mathcal{O}_{S, \overline{s}}^{sh})$. \item The {\it henselization of $S$ at $s$} is the scheme $\Spec(\mathcal{O}_{S, s}^h)$. \end{enumerate} \end{definition} \noindent Let $f : T \to S$ be a morphism of schemes. Let $\overline{t}$ be a geometric point of $T$ with image $\overline{s}$ in $S$. Let $t \in T$ and $s \in S$ be their images. Then we obtain a canonical commutative diagram $$ \xymatrix{ \Spec(\mathcal{O}^h_{T, t}) \ar[r] \ar[d] & \Spec(\mathcal{O}^{sh}_{T, \overline{t}}) \ar[r] \ar[d] & T \ar[d]^f \\ \Spec(\mathcal{O}^h_{S, s}) \ar[r] & \Spec(\mathcal{O}^{sh}_{S, \overline{s}}) \ar[r] & S } $$ of henselizations and strict henselizations of $T$ and $S$. You can prove this by choosing affine neighbourhoods of $t$ and $s$ and using the functoriality of (strict) henselizations given by Algebra, Lemmas \ref{algebra-lemma-henselian-functorial-improve} and \ref{algebra-lemma-strictly-henselian-functorial-improve}. \begin{lemma} \label{lemma-describe-henselization} Let $S$ be a scheme. Let $s \in S$. Then we have $$ \mathcal{O}_{S, s}^h = \colim_{(U, u)} \mathcal{O}(U) $$ where the colimit is over the filtered category of \'etale neighbourhoods $(U, u)$ of $(S, s)$ such that $\kappa(s) = \kappa(u)$. \end{lemma} \begin{proof} This lemma is a copy of More on Morphisms, Lemma \ref{more-morphisms-lemma-describe-henselization}. \end{proof} \begin{remark} \label{remark-henselization-Noetherian} Let $S$ be a scheme. Let $s \in S$. If $S$ is locally Noetherian then $\mathcal{O}_{S, s}^h$ is also Noetherian and it has the same completion: $$ \widehat{\mathcal{O}_{S, s}} \cong \widehat{\mathcal{O}_{S, s}^h}. $$ In particular, $\mathcal{O}_{S, s} \subset \mathcal{O}_{S, s}^h \subset \widehat{\mathcal{O}_{S, s}}$. The henselization of $\mathcal{O}_{S, s}$ is in general much smaller than its completion and inherits many of its properties. For example, if $\mathcal{O}_{S, s}$ is reduced, then so is $\mathcal{O}_{S, s}^h$, but this is not true for the completion in general. Insert future references here. \end{remark} \begin{lemma} \label{lemma-etale-site-locally-ringed} Let $S$ be a scheme. The small \'etale site $S_\etale$ endowed with its structure sheaf $\mathcal{O}_S$ is a locally ringed site, see Modules on Sites, Definition \ref{sites-modules-definition-locally-ringed}. \end{lemma} \begin{proof} This follows because the stalks $(\mathcal{O}_S)_{\overline{s}} = \mathcal{O}^{sh}_{S, \overline{s}}$ are local, and because $S_\etale$ has enough points, see Lemma \ref{lemma-describe-etale-local-ring}, Theorem \ref{theorem-exactness-stalks}, and Remarks \ref{remarks-enough-points}. See Modules on Sites, Lemmas \ref{sites-modules-lemma-locally-ringed-stalk} and \ref{sites-modules-lemma-ringed-stalk-not-zero} for the fact that this implies the small \'etale site is locally ringed. \end{proof} \section{Functoriality of small \'etale topos} \label{section-functoriality} \noindent So far we haven't yet discussed the functoriality of the \'etale site, in other words what happens when given a morphism of schemes. A precise formal discussion can be found in Topologies, Section \ref{topologies-section-etale}. In this and the next sections we discuss this material briefly specifically in the setting of small \'etale sites. \medskip\noindent Let $f : X \to Y$ be a morphism of schemes. We obtain a functor \begin{equation} \label{equation-functorial} u : Y_\etale \longrightarrow X_\etale, \quad V/Y \longmapsto X \times_Y V/X. \end{equation} This functor has the following important properties \begin{enumerate} \item $u(\text{final object}) = \text{final object}$, \item $u$ preserves fibre products, \item if $\{V_j \to V\}$ is a covering in $Y_\etale$, then $\{u(V_j) \to u(V)\}$ is a covering in $X_\etale$. \end{enumerate} Each of these is easy to check (omitted). As a consequence we obtain what is called a {\it morphism of sites} $$ f_{small} : X_\etale \longrightarrow Y_\etale, $$ see Sites, Definition \ref{sites-definition-morphism-sites} and Sites, Proposition \ref{sites-proposition-get-morphism}. It is not necessary to know about the abstract notion in detail in order to work with \'etale sheaves and \'etale cohomology. It usually suffices to know that there are functors $f_{small, *}$ (pushforward) and $f_{small}^{-1}$ (pullback) on \'etale sheaves, and to know some of their simple properties. We will discuss these properties in the next sections, but we will sometimes refer to the more abstract material for proofs since that is often the natural setting to prove them. \section{Direct images} \label{section-direct-image} \noindent Let us define the pushforward of a presheaf. \begin{definition} \label{definition-direct-image-presheaf} Let $f: X\to Y$ be a morphism of schemes. Let $\mathcal{F} $ a presheaf of sets on $X_\etale$. The {\it direct image}, or {\it pushforward} of $\mathcal{F}$ (under $f$) is $$ f_*\mathcal{F} : Y_\etale^{opp} \longrightarrow \textit{Sets}, \quad (V/Y) \longmapsto \mathcal{F}(X \times_Y V/X). $$ We sometimes write $f_* = f_{small, *}$ to distinguish from other direct image functors (such as usual Zariski pushforward or $f_{big, *}$). \end{definition} \noindent This is a well-defined \'etale presheaf since the base change of an \'etale morphism is again \'etale. A more categorical way of saying this is that $f_*\mathcal{F}$ is the composition of functors $\mathcal{F} \circ u$ where $u$ is as in Equation (\ref{equation-functorial}). This makes it clear that the construction is functorial in the presheaf $\mathcal{F}$ and hence we obtain a functor $$ f_* = f_{small, *} : \textit{PSh}(X_\etale) \longrightarrow \textit{PSh}(Y_\etale) $$ Note that if $\mathcal{F}$ is a presheaf of abelian groups, then $f_*\mathcal{F}$ is also a presheaf of abelian groups and we obtain $$ f_* = f_{small, *} : \textit{PAb}(X_\etale) \longrightarrow \textit{PAb}(Y_\etale) $$ as before (i.e., defined by exactly the same rule). \begin{remark} \label{remark-direct-image-sheaf} We claim that the direct image of a sheaf is a sheaf. Namely, if $\{V_j \to V\}$ is an \'etale covering in $Y_\etale$ then $\{X \times_Y V_j \to X \times_Y V\}$ is an \'etale covering in $X_\etale$. Hence the sheaf condition for $\mathcal{F}$ with respect to $\{X \times_Y V_i \to X \times_Y V\}$ is equivalent to the sheaf condition for $f_*\mathcal{F}$ with respect to $\{V_i \to V\}$. Thus if $\mathcal{F}$ is a sheaf, so is $f_*\mathcal{F}$. \end{remark} \begin{definition} \label{definition-direct-image-sheaf} Let $f: X\to Y$ be a morphism of schemes. Let $\mathcal{F} $ a sheaf of sets on $X_\etale$. The {\it direct image}, or {\it pushforward} of $\mathcal{F}$ (under $f$) is $$ f_*\mathcal{F} : Y_\etale^{opp} \longrightarrow \textit{Sets}, \quad (V/Y) \longmapsto \mathcal{F}(X \times_Y V/X) $$ which is a sheaf by Remark \ref{remark-direct-image-sheaf}. We sometimes write $f_* = f_{small, *}$ to distinguish from other direct image functors (such as usual Zariski pushforward or $f_{big, *}$). \end{definition} \noindent The exact same discussion as above applies and we obtain functors $$ f_* = f_{small, *} : \Sh(X_\etale) \longrightarrow \Sh(Y_\etale) $$ and $$ f_* = f_{small, *} : \textit{Ab}(X_\etale) \longrightarrow \textit{Ab}(Y_\etale) $$ called {\it direct image} again. \medskip\noindent The functor $f_*$ on abelian sheaves is left exact. (See Homology, Section \ref{homology-section-functors} for what it means for a functor between abelian categories to be left exact.) Namely, if $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3$ is exact on $X_\etale$, then for every $U/X \in \Ob(X_\etale)$ the sequence of abelian groups $0 \to \mathcal{F}_1(U) \to \mathcal{F}_2(U) \to \mathcal{F}_3(U)$ is exact. Hence for every $V/Y \in \Ob(Y_\etale)$ the sequence of abelian groups $0 \to f_*\mathcal{F}_1(V) \to f_*\mathcal{F}_2(V) \to f_*\mathcal{F}_3(V)$ is exact, because this is the previous sequence with $U = X \times_Y V$. \begin{definition} \label{definition-higher-direct-images} Let $f: X \to Y$ be a morphism of schemes. The right derived functors $\{R^pf_*\}_{p \geq 1}$ of $f_* : \textit{Ab}(X_\etale) \to \textit{Ab}(Y_\etale)$ are called {\it higher direct images}. \end{definition} \noindent The higher direct images and their derived category variants are discussed in more detail in (insert future reference here). \section{Inverse image} \label{section-inverse-image} \noindent In this section we briefly discuss pullback of sheaves on the small \'etale sites. The precise construction of this is in Topologies, Section \ref{topologies-section-etale}. \begin{definition} \label{definition-inverse-image} Let $f: X\to Y$ be a morphism of schemes. The {\it inverse image}, or {\it pullback}\footnote{We use the notation $f^{-1}$ for pullbacks of sheaves of sets or sheaves of abelian groups, and we reserve $f^*$ for pullbacks of sheaves of modules via a morphism of ringed sites/topoi.} functors are the functors $$ f^{-1} = f_{small}^{-1} : \Sh(Y_\etale) \longrightarrow \Sh(X_\etale) $$ and $$ f^{-1} = f_{small}^{-1} : \textit{Ab}(Y_\etale) \longrightarrow \textit{Ab}(X_\etale) $$ which are left adjoint to $f_* = f_{small, *}$. Thus $f^{-1}$ is characterized by the fact that $$ \Hom_{{\Sh(X_\etale)}} (f^{-1}\mathcal{G}, \mathcal{F}) = \Hom_{\Sh(Y_\etale)} (\mathcal{G}, f_*\mathcal{F}) $$ functorially, for any $\mathcal{F} \in \Sh(X_\etale)$ and $\mathcal{G} \in \Sh(Y_\etale)$. We similarly have $$ \Hom_{{\textit{Ab}(X_\etale)}} (f^{-1}\mathcal{G}, \mathcal{F}) = \Hom_{\textit{Ab}(Y_\etale)} (\mathcal{G}, f_*\mathcal{F}) $$ for $\mathcal{F} \in \textit{Ab}(X_\etale)$ and $\mathcal{G} \in \textit{Ab}(Y_\etale)$. \end{definition} \noindent It is not trivial that such an adjoint exists. On the other hand, it exists in a fairly general setting, see Remark \ref{remark-functoriality-general} below. The general machinery shows that $f^{-1}\mathcal{G}$ is the sheaf associated to the presheaf \begin{equation} \label{equation-pullback} U/X \longmapsto \colim_{U \to X \times_Y V} \mathcal{G}(V/Y) \end{equation} where the colimit is over the category of pairs $(V/Y, \varphi : U/X \to X \times_Y V/X)$. To see this apply Sites, Proposition \ref{sites-proposition-get-morphism} to the functor $u$ of Equation (\ref{equation-functorial}) and use the description of $u_s = (u_p\ )^\#$ in Sites, Sections \ref{sites-section-continuous-functors} and \ref{sites-section-functoriality-PSh}. We will occasionally use this formula for the pullback in order to prove some of its basic properties. \begin{lemma} \label{lemma-stalk-pullback} Let $f : X \to Y$ be a morphism of schemes. \begin{enumerate} \item The functor $f^{-1} : \textit{Ab}(Y_\etale) \to \textit{Ab}(X_\etale)$ is exact. \item The functor $f^{-1} : \Sh(Y_\etale) \to \Sh(X_\etale)$ is exact, i.e., it commutes with finite limits and colimits, see Categories, Definition \ref{categories-definition-exact}. \item Let $\overline{x} \to X$ be a geometric point. Let $\mathcal{G}$ be a sheaf on $Y_\etale$. Then there is a canonical identification $$ (f^{-1}\mathcal{G})_{\overline{x}} = \mathcal{G}_{\overline{y}}. $$ where $\overline{y} = f \circ \overline{x}$. \item For any $V \to Y$ \'etale we have $f^{-1}h_V = h_{X \times_Y V}$. \end{enumerate} \end{lemma} \begin{proof} The exactness of $f^{-1}$ on sheaves of sets is a consequence of Sites, Proposition \ref{sites-proposition-get-morphism} applied to our functor $u$ of Equation (\ref{equation-functorial}). In fact the exactness of pullback is part of the definition of a morphism of topoi (or sites if you like). Thus we see (2) holds. It implies part (1) since given an abelian sheaf $\mathcal{G}$ on $Y_\etale$ the underlying sheaf of sets of $f^{-1}\mathcal{F}$ is the same as $f^{-1}$ of the underlying sheaf of sets of $\mathcal{F}$, see Sites, Section \ref{sites-section-sheaves-algebraic-structures}. See also Modules on Sites, Lemma \ref{sites-modules-lemma-flat-pullback-exact}. In the literature (1) and (2) are sometimes deduced from (3) via Theorem \ref{theorem-exactness-stalks}. \medskip\noindent Part (3) is a general fact about stalks of pullbacks, see Sites, Lemma \ref{sites-lemma-point-morphism-sites}. We will also prove (3) directly as follows. Note that by Lemma \ref{lemma-stalk-exact} taking stalks commutes with sheafification. Now recall that $f^{-1}\mathcal{G}$ is the sheaf associated to the presheaf $$ U \longrightarrow \colim_{U \to X \times_Y V} \mathcal{G}(V), $$ see Equation (\ref{equation-pullback}). Thus we have \begin{align*} (f^{-1}\mathcal{G})_{\overline{x}} & = \colim_{(U, \overline{u})} f^{-1}\mathcal{G}(U) \\ & = \colim_{(U, \overline{u})} \colim_{a : U \to X \times_Y V} \mathcal{G}(V) \\ & = \colim_{(V, \overline{v})} \mathcal{G}(V) \\ & = \mathcal{G}_{\overline{y}} \end{align*} in the third equality the pair $(U, \overline{u})$ and the map $a : U \to X \times_Y V$ corresponds to the pair $(V, a \circ \overline{u})$. \medskip\noindent Part (4) can be proved in a similar manner by identifying the colimits which define $f^{-1}h_V$. Or you can use Yoneda's lemma (Categories, Lemma \ref{categories-lemma-yoneda}) and the functorial equalities $$ \Mor_{\Sh(X_\etale)}(f^{-1}h_V, \mathcal{F}) = \Mor_{\Sh(Y_\etale)}(h_V, f_*\mathcal{F}) = f_*\mathcal{F}(V) = \mathcal{F}(X \times_Y V) $$ combined with the fact that representable presheaves are sheaves. See also Sites, Lemma \ref{sites-lemma-pullback-representable-sheaf} for a completely general result. \end{proof} \noindent The pair of functors $(f_*, f^{-1})$ define a morphism of small \'etale topoi $$ f_{small} : \Sh(X_\etale) \longrightarrow \Sh(Y_\etale) $$ Many generalities on cohomology of sheaves hold for topoi and morphisms of topoi. We will try to point out when results are general and when they are specific to the \'etale topos. \begin{remark} \label{remark-functoriality-general} More generally, let $\mathcal{C}_1, \mathcal{C}_2$ be sites, and assume they have final objects and fibre products. Let $u: \mathcal{C}_2 \to \mathcal{C}_1$ be a functor satisfying: \begin{enumerate} \item if $\{V_i \to V\}$ is a covering of $\mathcal{C}_2$, then $\{u(V_i) \to u(V)\}$ is a covering of $\mathcal{C}_1$ (we say that $u$ is {\it continuous}), and \item $u$ commutes with finite limits (i.e., $u$ is left exact, i.e., $u$ preserves fibre products and final objects). \end{enumerate} Then one can define $f_*: \Sh(\mathcal{C}_1) \to \Sh(\mathcal{C}_2)$ by $ f_* \mathcal{F}(V) = \mathcal{F}(u(V))$. Moreover, there exists an exact functor $f^{-1}$ which is left adjoint to $f_*$, see Sites, Definition \ref{sites-definition-morphism-sites} and Proposition \ref{sites-proposition-get-morphism}. Warning: It is not enough to require simply that $u$ is continuous and commutes with fibre products in order to get a morphism of topoi. \end{remark} \section{Functoriality of big topoi} \label{section-functoriality-big-topoi} \noindent Given a morphism of schemes $f : X \to Y$ there are a whole host of morphisms of topoi associated to $f$, see Topologies, Section \ref{topologies-section-change-topologies} for a list. Perhaps the most used ones are the morphisms of topoi $$ f_{big} = f_{big, \tau} : \Sh((\Sch/X)_\tau) \longrightarrow \Sh((\Sch/Y)_\tau) $$ where $\tau \in \{Zariski, \etale, smooth, syntomic, fppf\}$. These each correspond to a continuous functor $$ (\Sch/Y)_\tau \longrightarrow (\Sch/X)_\tau, \quad V/Y \longmapsto X \times_Y V/X $$ which preserves final objects, fibre products and covering, and hence defines a morphism of sites $$ f_{big} : (\Sch/X)_\tau \longrightarrow (\Sch/Y)_\tau. $$ See Topologies, Sections \ref{topologies-section-zariski}, \ref{topologies-section-etale}, \ref{topologies-section-smooth}, \ref{topologies-section-syntomic}, and \ref{topologies-section-fppf}. In particular, pushforward along $f_{big}$ is given by the rule $$ (f_{big, *}\mathcal{F})(V/Y) = \mathcal{F}(X \times_Y V/X) $$ It turns out that these morphisms of topoi have an inverse image functor $f_{big}^{-1}$ which is very easy to describe. Namely, we have $$ (f_{big}^{-1}\mathcal{G})(U/X) = \mathcal{G}(U/Y) $$ where the structure morphism of $U/Y$ is the composition of the structure morphism $U \to X$ with $f$, see Topologies, Lemmas \ref{topologies-lemma-morphism-big}, \ref{topologies-lemma-morphism-big-etale}, \ref{topologies-lemma-morphism-big-smooth}, \ref{topologies-lemma-morphism-big-syntomic}, and \ref{topologies-lemma-morphism-big-fppf}. \section{Functoriality and sheaves of modules} \label{section-morphisms-modules} \noindent In this section we are going to reformulate some of the material explained in Descent, Sections \ref{descent-section-quasi-coherent-sheaves}, \ref{descent-section-quasi-coherent-cohomology}, and \ref{descent-section-quasi-coherent-sheaves-bis} in the setting of \'etale topologies. Let $f : X \to Y$ be a morphism of schemes. We have seen above, see Sections \ref{section-functoriality}, \ref{section-direct-image}, and \ref{section-inverse-image} that this induces a morphism $f_{small}$ of small \'etale sites. In Descent, Remark \ref{descent-remark-change-topologies-ringed} we have seen that $f$ also induces a natural map $$ f_{small}^\sharp : \mathcal{O}_{Y_\etale} \longrightarrow f_{small, *}\mathcal{O}_{X_\etale} $$ of sheaves of rings on $Y_\etale$ such that $(f_{small}, f_{small}^\sharp)$ is a morphism of ringed sites. See Modules on Sites, Definition \ref{sites-modules-definition-ringed-site} for the definition of a morphism of ringed sites. Let us just recall here that $f_{small}^\sharp$ is defined by the compatible system of maps $$ \text{pr}_V^\sharp : \mathcal{O}(V) \longrightarrow \mathcal{O}(X \times_Y V) $$ for $V$ varying over the objects of $Y_\etale$. \medskip\noindent It is clear that this construction is compatible with compositions of morphisms of schemes. More precisely, if $f : X \to Y$ and $g : Y \to Z$ are morphisms of schemes, then we have $$ (g_{small}, g_{small}^\sharp) \circ (f_{small}, f_{small}^\sharp) = ((g \circ f)_{small}, (g \circ f)_{small}^\sharp) $$ as morphisms of ringed topoi. Moreover, by Modules on Sites, Definition \ref{sites-modules-definition-pushforward} we see that given a morphism $f : X \to Y$ of schemes we get well defined pullback and direct image functors \begin{align*} f_{small}^* : \textit{Mod}(\mathcal{O}_{Y_\etale}) \longrightarrow \textit{Mod}(\mathcal{O}_{X_\etale}), \\ f_{small, *} : \textit{Mod}(\mathcal{O}_{X_\etale}) \longrightarrow \textit{Mod}(\mathcal{O}_{Y_\etale}) \end{align*} which are adjoint in the usual way. If $g : Y \to Z$ is another morphism of schemes, then we have $(g \circ f)_{small}^* = f_{small}^* \circ g_{small}^*$ and $(g \circ f)_{small, *} = g_{small, *} \circ f_{small, *}$ because of what we said about compositions. \medskip\noindent There is quite a bit of difference between the category of all $\mathcal{O}_X$ modules on $X$ and the category between all $\mathcal{O}_{X_\etale}$-modules on $X_\etale$. But the results of Descent, Sections \ref{descent-section-quasi-coherent-sheaves}, \ref{descent-section-quasi-coherent-cohomology}, and \ref{descent-section-quasi-coherent-sheaves-bis} tell us that there is not much difference between considering quasi-coherent modules on $S$ and quasi-coherent modules on $S_\etale$. (We have already seen this in Theorem \ref{theorem-quasi-coherent} for example.) In particular, if $f : X \to Y$ is any morphism of schemes, then the pullback functors $f_{small}^*$ and $f^*$ match for quasi-coherent sheaves, see Descent, Proposition \ref{descent-proposition-equivalence-quasi-coherent-functorial}. Moreover, the same is true for pushforward provided $f$ is quasi-compact and quasi-separated, see Descent, Lemma \ref{descent-lemma-higher-direct-images-small-etale}. \medskip\noindent A few words about functoriality of the structure sheaf on big sites. Let $f : X \to Y$ be a morphism of schemes. Choose any of the topologies $\tau \in \{Zariski,\linebreak[0] \etale,\linebreak[0] smooth,\linebreak[0] syntomic,\linebreak[0] fppf\}$. Then the morphism $f_{big} : (\Sch/X)_\tau \to (\Sch/Y)_\tau$ becomes a morphism of ringed sites by a map $$ f_{big}^\sharp : \mathcal{O}_Y \longrightarrow f_{big, *}\mathcal{O}_X $$ see Descent, Remark \ref{descent-remark-change-topologies-ringed}. In fact it is given by the same construction as in the case of small sites explained above. \section{Comparing topologies} \label{section-compare-topologies} \noindent In this section we start studying what happens when you compare sheaves with respect to different topologies. \begin{lemma} \label{lemma-where-sections-are-equal} Let $S$ be a scheme. Let $\mathcal{F}$ be a sheaf of sets on $S_\etale$. Let $s, t \in \mathcal{F}(S)$. Then there exists an open $W \subset S$ characterized by the following property: A morphism $f : T \to S$ factors through $W$ if and only if $s|_T = t|_T$ (restriction is pullback by $f_{small}$). \end{lemma} \begin{proof} Consider the presheaf which assigns to $U \in \Ob(S_\etale)$ the empty set if $s|_U \not = t|_U$ and a singleton else. It is clear that this is a subsheaf of the final object of $\Sh(S_\etale)$. By Lemma \ref{lemma-support-subsheaf-final} we find an open $W \subset S$ representing this presheaf. For a geometric point $\overline{x}$ of $S$ we see that $\overline{x} \in W$ if and only if the stalks of $s$ and $t$ at $\overline{x}$ agree. By the description of stalks of pullbacks in Lemma \ref{lemma-stalk-pullback} we see that $W$ has the desired property. \end{proof} \begin{lemma} \label{lemma-describe-pullback} Let $S$ be a scheme. Let $\tau \in \{Zariski, \etale\}$. Consider the morphism $$ \pi_S : (\Sch/S)_\tau \longrightarrow S_\tau $$ of Topologies, Lemma \ref{topologies-lemma-at-the-bottom} or \ref{topologies-lemma-at-the-bottom-etale}. Let $\mathcal{F}$ be a sheaf on $S_\tau$. Then $\pi_S^{-1}\mathcal{F}$ is given by the rule $$ (\pi_S^{-1}\mathcal{F})(T) = \Gamma(T_\tau, f_{small}^{-1}\mathcal{F}) $$ where $f : T \to S$. Moreover, $\pi_S^{-1}\mathcal{F}$ satisfies the sheaf condition with respect to fpqc coverings. \end{lemma} \begin{proof} Observe that we have a morphism $i_f : \Sh(T_\tau) \to \Sh(\Sch/S)_\tau)$ such that $\pi_S \circ i_f = f_{small}$ as morphisms $T_\tau \to S_\tau$, see Topologies, Lemmas \ref{topologies-lemma-put-in-T}, \ref{topologies-lemma-morphism-big-small}, \ref{topologies-lemma-put-in-T-etale}, and \ref{topologies-lemma-morphism-big-small-etale}. Since pullback is transitive we see that $i_f^{-1} \pi_S^{-1}\mathcal{F} = f_{small}^{-1}\mathcal{F}$ as desired. \medskip\noindent Let $\{g_i : T_i \to T\}_{i \in I}$ be an fpqc covering. The final statement means the following: Given a sheaf $\mathcal{G}$ on $T_\tau$ and given sections $s_i \in \Gamma(T_i, g_{i, small}^{-1}\mathcal{G})$ whose pullbacks to $T_i \times_T T_j$ agree, there is a unique section $s$ of $\mathcal{G}$ over $T$ whose pullback to $T_i$ agrees with $s_i$. \medskip\noindent Let $V \to T$ be an object of $T_\tau$ and let $t \in \mathcal{G}(V)$. For every $i$ there is a largest open $W_i \subset T_i \times_T V$ such that the pullbacks of $s_i$ and $t$ agree as sections of the pullback of $\mathcal{G}$ to $W_i \subset T_i \times_T V$, see Lemma \ref{lemma-where-sections-are-equal}. Because $s_i$ and $s_j$ agree over $T_i \times_T T_j$ we find that $W_i$ and $W_j$ pullback to the same open over $T_i \times_T T_j \times_T V$. By Descent, Lemma \ref{descent-lemma-open-fpqc-covering} we find an open $W \subset V$ whose inverse image to $T_i \times_T V$ recovers $W_i$. \medskip\noindent By construction of $g_{i, small}^{-1}\mathcal{G}$ there exists a $\tau$-covering $\{T_{ij} \to T_i\}_{j \in J_i}$, for each $j$ an open immersion or \'etale morphism $V_{ij} \to T$, a section $t_{ij} \in \mathcal{G}(V_{ij})$, and commutative diagrams $$ \xymatrix{ T_{ij} \ar[r] \ar[d] & V_{ij} \ar[d] \\ T_i \ar[r] & T } $$ such that $s_i|_{T_{ij}}$ is the pullback of $t_{ij}$. In other words, after replacing the covering $\{T_i \to T\}$ by $\{T_{ij} \to T\}$ we may assume there are factorizations $T_i \to V_i \to T$ with $V_i \in \Ob(T_\tau)$ and sections $t_i \in \mathcal{G}(V_i)$ pulling back to $s_i$ over $T_i$. By the result of the previous paragraph we find opens $W_i \subset V_i$ such that $t_i|_{W_i}$ ``agrees with'' every $s_j$ over $T_j \times_T W_i$. Note that $T_i \to V_i$ factors through $W_i$. Hence $\{W_i \to T\}$ is a $\tau$-covering and the lemma is proven. \end{proof} \begin{lemma} \label{lemma-sections-upstairs} Let $S$ be a scheme. Let $f : T \to S$ be a morphism such that \begin{enumerate} \item $f$ is flat and quasi-compact, and \item the geometric fibres of $f$ are connected. \end{enumerate} Let $\mathcal{F}$ be a sheaf on $S_\etale$. Then $\Gamma(S, \mathcal{F}) = \Gamma(T, f^{-1}_{small}\mathcal{F})$. \end{lemma} \begin{proof} There is a canonical map $\Gamma(S, \mathcal{F}) \to \Gamma(T, f_{small}^{-1}\mathcal{F})$. Since $f$ is surjective (because its fibres are connected) we see that this map is injective. \medskip\noindent To show that the map is surjective, let $\alpha \in \Gamma(T, f_{small}^{-1}\mathcal{F})$. Since $\{T \to S\}$ is an fpqc covering we can use Lemma \ref{lemma-describe-pullback} to see that suffices to prove that $\alpha$ pulls back to the same section over $T \times_S T$ by the two projections. Let $\overline{s} \to S$ be a geometric point. It suffices to show the agreement holds over $(T \times_S T)_{\overline{s}}$ as every geometric point of $T \times_S T$ is contained in one of these geometric fibres. In other words, we are trying to show that $\alpha|_{T_{\overline{s}}}$ pulls back to the same section over $$ (T \times_S T)_{\overline{s}} = T_{\overline{s}} \times_{\overline{s}} T_{\overline{s}} $$ by the two projections to $T_{\overline{s}}$. However, since $\mathcal{F}|_{T_{\overline{s}}}$ is the pullback of $\mathcal{F}|_{\overline{s}}$ it is a constant sheaf with value $\mathcal{F}_{\overline{s}}$. Since $T_{\overline{s}}$ is connected by assumption, any section of a constant sheaf is constant. Hence $\alpha|_{T_{\overline{s}}}$ corresponds to an element of $\mathcal{F}_{\overline{s}}$. Thus the two pullbacks to $(T \times_S T)_{\overline{s}}$ both correspond to this same element and we conclude. \end{proof} \noindent Here is a version of Lemma \ref{lemma-sections-upstairs} where we do not assume that the morphism is flat. \begin{lemma} \label{lemma-sections-upstairs-submersive} Let $S$ be a scheme. Let $f : X \to S$ be a morphism such that \begin{enumerate} \item $f$ is submersive, and \item the geometric fibres of $f$ are connected. \end{enumerate} Let $\mathcal{F}$ be a sheaf on $S_\etale$. Then $\Gamma(S, \mathcal{F}) = \Gamma(X, f^{-1}_{small}\mathcal{F})$. \end{lemma} \begin{proof} There is a canonical map $\Gamma(S, \mathcal{F}) \to \Gamma(X, f_{small}^{-1}\mathcal{F})$. Since $f$ is surjective (because its fibres are connected) we see that this map is injective. \medskip\noindent To show that the map is surjective, let $\tau \in \Gamma(X, f_{small}^{-1}\mathcal{F})$. It suffices to find an \'etale covering $\{U_i \to S\}$ and sections $\sigma_i \in \mathcal{F}(U_i)$ such that $\sigma_i$ pulls back to $\tau|_{X \times_S U_i}$. Namely, the injectivity shown above guarantees that $\sigma_i$ and $\sigma_j$ restrict to the same section of $\mathcal{F}$ over $U_i \times_S U_j$. Thus we obtain a unique section $\sigma \in \mathcal{F}(S)$ which restricts to $\sigma_i$ over $U_i$. Then the pullback of $\sigma$ to $X$ is $\tau$ because this is true locally. \medskip\noindent Let $\overline{x}$ be a geometric point of $X$ with image $\overline{s}$ in $S$. Consider the image of $\tau$ in the stalk $$ (f_{small}^{-1}\mathcal{F})_{\overline{x}} = \mathcal{F}_{\overline{s}} $$ See Lemma \ref{lemma-stalk-pullback}. We can find an \'etale neighbourhood $U \to S$ of $\overline{s}$ and a section $\sigma \in \mathcal{F}(U)$ mapping to this image in the stalk. Thus after replacing $S$ by $U$ and $X$ by $X \times_S U$ we may assume there exits a section $\sigma$ of $\mathcal{F}$ over $S$ whose image in $(f_{small}^{-1}\mathcal{F})_{\overline{x}}$ is the same as $\tau$. \medskip\noindent By Lemma \ref{lemma-where-sections-are-equal} there exists a maximal open $W \subset X$ such that $f_{small}^{-1}\sigma$ and $\tau$ agree over $W$ and the formation of $W$ commutes with further pullback. Observe that the pullback of $\mathcal{F}$ to the geometric fibre $X_{\overline{s}}$ is the pullback of $\mathcal{F}_{\overline{s}}$ viewed as a sheaf on $\overline{s}$ by $X_{\overline{s}} \to \overline{s}$. Hence we see that $\tau$ and $\sigma$ give sections of the constant sheaf with value $\mathcal{F}_{\overline{s}}$ on $X_{\overline{s}}$ which agree in one point. Since $X_{\overline{s}}$ is connected by assumption, we conclude that $W$ contains $X_s$. The same argument for different geometric fibres shows that $W$ contains every fibre it meets. Since $f$ is submersive, we conclude that $W$ is the inverse image of an open neighbourhood of $s$ in $S$. This finishes the proof. \end{proof} \begin{lemma} \label{lemma-sections-base-field-extension} Let $K/k$ be an extension of fields with $k$ separably algebraically closed. Let $S$ be a scheme over $k$. Denote $p : S_K = S \times_{\Spec(k)} \Spec(K) \to S$ the projection. Let $\mathcal{F}$ be a sheaf on $S_\etale$. Then $\Gamma(S, \mathcal{F}) = \Gamma(S_K, p^{-1}_{small}\mathcal{F})$. \end{lemma} \begin{proof} Follows from Lemma \ref{lemma-sections-upstairs}. Namely, it is clear that $p$ is flat and quasi-compact as the base change of $\Spec(K) \to \Spec(k)$. On the other hand, if $\overline{s} : \Spec(L) \to S$ is a geometric point, then the fibre of $p$ over $\overline{s}$ is the spectrum of $K \otimes_k L$ which is irreducible hence connected by Algebra, Lemma \ref{algebra-lemma-separably-closed-irreducible}. \end{proof} \section{Recovering morphisms} \label{section-morphisms} \noindent In this section we prove that the rule which associates to a scheme its locally ringed small \'etale topos is fully faithful in a suitable sense, see Theorem \ref{theorem-fully-faithful}. \begin{lemma} \label{lemma-morphism-locally-ringed} Let $f : X \to Y$ be a morphism of schemes. The morphism of ringed sites $(f_{small}, f_{small}^\sharp)$ associated to $f$ is a morphism of locally ringed sites, see Modules on Sites, Definition \ref{sites-modules-definition-morphism-locally-ringed-topoi}. \end{lemma} \begin{proof} Note that the assertion makes sense since we have seen that $(X_\etale, \mathcal{O}_{X_\etale})$ and $(Y_\etale, \mathcal{O}_{Y_\etale})$ are locally ringed sites, see Lemma \ref{lemma-etale-site-locally-ringed}. Moreover, we know that $X_\etale$ has enough points, see Theorem \ref{theorem-exactness-stalks} and Remarks \ref{remarks-enough-points}. Hence it suffices to prove that $(f_{small}, f_{small}^\sharp)$ satisfies condition (3) of Modules on Sites, Lemma \ref{sites-modules-lemma-locally-ringed-morphism}. To see this take a point $p$ of $X_\etale$. By Lemma \ref{lemma-points-small-etale-site} $p$ corresponds to a geometric point $\overline{x}$ of $X$. By Lemma \ref{lemma-stalk-pullback} the point $q = f_{small} \circ p$ corresponds to the geometric point $\overline{y} = f \circ \overline{x}$ of $Y$. Hence the assertion we have to prove is that the induced map of stalks $$ (\mathcal{O}_Y)_{\overline{y}} \longrightarrow (\mathcal{O}_X)_{\overline{x}} $$ is a local ring map. Suppose that $a \in (\mathcal{O}_Y)_{\overline{y}}$ is an element of the left hand side which maps to an element of the maximal ideal of the right hand side. Suppose that $a$ is the equivalence class of a triple $(V, \overline{v}, a)$ with $V \to Y$ \'etale, $\overline{v} : \overline{x} \to V$ over $Y$, and $a \in \mathcal{O}(V)$. It maps to the equivalence class of $(X \times_Y V, \overline{x} \times \overline{v}, \text{pr}_V^\sharp(a))$ in the local ring $(\mathcal{O}_X)_{\overline{x}}$. But it is clear that being in the maximal ideal means that pulling back $\text{pr}_V^\sharp(a)$ to an element of $\kappa(\overline{x})$ gives zero. Hence also pulling back $a$ to $\kappa(\overline{x})$ is zero. Which means that $a$ lies in the maximal ideal of $(\mathcal{O}_Y)_{\overline{y}}$. \end{proof} \begin{lemma} \label{lemma-2-morphism} Let $X$, $Y$ be schemes. Let $f : X \to Y$ be a morphism of schemes. Let $t$ be a $2$-morphism from $(f_{small}, f_{small}^\sharp)$ to itself, see Modules on Sites, Definition \ref{sites-modules-definition-2-morphism-ringed-topoi}. Then $t = \text{id}$. \end{lemma} \begin{proof} This means that $t : f^{-1}_{small} \to f^{-1}_{small}$ is a transformation of functors such that the diagram $$ \xymatrix{ f_{small}^{-1}\mathcal{O}_Y \ar[rd]_{f_{small}^\sharp} & & f_{small}^{-1}\mathcal{O}_Y \ar[ll]^t \ar[ld]^{f_{small}^\sharp} \\ & \mathcal{O}_X } $$ is commutative. Suppose $V \to Y$ is \'etale with $V$ affine. By Morphisms, Lemma \ref{morphisms-lemma-quasi-affine-finite-type-over-S} we may choose an immersion $i : V \to \mathbf{A}^n_Y$ over $Y$. In terms of sheaves this means that $i$ induces an injection $h_i : h_V \to \prod_{j = 1, \ldots, n} \mathcal{O}_Y$ of sheaves. The base change $i'$ of $i$ to $X$ is an immersion (Schemes, Lemma \ref{schemes-lemma-base-change-immersion}). Hence $i' : X \times_Y V \to \mathbf{A}^n_X$ is an immersion, which in turn means that $h_{i'} : h_{X \times_Y V} \to \prod_{j = 1, \ldots, n} \mathcal{O}_X$ is an injection of sheaves. Via the identification $f_{small}^{-1}h_V = h_{X \times_Y V}$ of Lemma \ref{lemma-stalk-pullback} the map $h_{i'}$ is equal to $$ \xymatrix{ f_{small}^{-1}h_V \ar[r]^-{f^{-1}h_i} & \prod_{j = 1, \ldots, n} f_{small}^{-1}\mathcal{O}_Y \ar[r]^{\prod f^\sharp} & \prod_{j = 1, \ldots, n} \mathcal{O}_X } $$ (verification omitted). This means that the map $t : f_{small}^{-1}h_V \to f_{small}^{-1}h_V$ fits into the commutative diagram $$ \xymatrix{ f_{small}^{-1}h_V \ar[r]^-{f^{-1}h_i} \ar[d]^t & \prod_{j = 1, \ldots, n} f_{small}^{-1}\mathcal{O}_Y \ar[r]^-{\prod f^\sharp} \ar[d]^{\prod t} & \prod_{j = 1, \ldots, n} \mathcal{O}_X \ar[d]^{\text{id}}\\ f_{small}^{-1}h_V \ar[r]^-{f^{-1}h_i} & \prod_{j = 1, \ldots, n} f_{small}^{-1}\mathcal{O}_Y \ar[r]^-{\prod f^\sharp} & \prod_{j = 1, \ldots, n} \mathcal{O}_X } $$ The commutativity of the right square holds by our assumption on $t$ explained above. Since the composition of the horizontal arrows is injective by the discussion above we conclude that the left vertical arrow is the identity map as well. Any sheaf of sets on $Y_\etale$ admits a surjection from a (huge) coproduct of sheaves of the form $h_V$ with $V$ affine (combine Topologies, Lemma \ref{topologies-lemma-alternative} with Sites, Lemma \ref{sites-lemma-sheaf-coequalizer-representable}). Thus we conclude that $t : f_{small}^{-1} \to f_{small}^{-1}$ is the identity transformation as desired. \end{proof} \begin{lemma} \label{lemma-faithful} Let $X$, $Y$ be schemes. Any two morphisms $a, b : X \to Y$ of schemes for which there exists a $2$-isomorphism $(a_{small}, a_{small}^\sharp) \cong (b_{small}, b_{small}^\sharp)$ in the $2$-category of ringed topoi are equal. \end{lemma} \begin{proof} Let us argue this carefuly since it is a bit confusing. Let $t : a_{small}^{-1} \to b_{small}^{-1}$ be the $2$-isomorphism. Consider any open $V \subset Y$. Note that $h_V$ is a subsheaf of the final sheaf $*$. Thus both $a_{small}^{-1}h_V = h_{a^{-1}(V)}$ and $b_{small}^{-1}h_V = h_{b^{-1}(V)}$ are subsheaves of the final sheaf. Thus the isomorphism $$ t : a_{small}^{-1}h_V = h_{a^{-1}(V)} \to b_{small}^{-1}h_V = h_{b^{-1}(V)} $$ has to be the identity, and $a^{-1}(V) = b^{-1}(V)$. It follows that $a$ and $b$ are equal on underlying topological spaces. Next, take a section $f \in \mathcal{O}_Y(V)$. This determines and is determined by a map of sheaves of sets $f : h_V \to \mathcal{O}_Y$. Pull this back and apply $t$ to get a commutative diagram $$ \xymatrix{ h_{b^{-1}(V)} \ar@{=}[r] & b_{small}^{-1}h_V \ar[d]^{b_{small}^{-1}(f)} & & a_{small}^{-1}h_V \ar[d]^{a_{small}^{-1}(f)} \ar[ll]^t & h_{a^{-1}(V)} \ar@{=}[l] \\ & b_{small}^{-1}\mathcal{O}_Y \ar[rd]_{b^\sharp} & & a_{small}^{-1}\mathcal{O}_Y \ar[ll]^t \ar[ld]^{a^\sharp} \\ & & \mathcal{O}_X } $$ where the triangle is commutative by definition of a $2$-isomorphism in Modules on Sites, Section \ref{sites-modules-section-2-category}. Above we have seen that the composition of the top horizontal arrows comes from the identity $a^{-1}(V) = b^{-1}(V)$. Thus the commutativity of the diagram tells us that $a_{small}^\sharp(f) = b_{small}^\sharp(f)$ in $\mathcal{O}_X(a^{-1}(V)) = \mathcal{O}_X(b^{-1}(V))$. Since this holds for every open $V$ and every $f \in \mathcal{O}_Y(V)$ we conclude that $a = b$ as morphisms of schemes. \end{proof} \begin{lemma} \label{lemma-morphism-ringed-etale-topoi-affines} Let $X$, $Y$ be affine schemes. Let $$ (g, g^\#) : (\Sh(X_\etale), \mathcal{O}_X) \longrightarrow (\Sh(Y_\etale), \mathcal{O}_Y) $$ be a morphism of locally ringed topoi. Then there exists a unique morphism of schemes $f : X \to Y$ such that $(g, g^\#)$ is $2$-isomorphic to $(f_{small}, f_{small}^\sharp)$, see Modules on Sites, Definition \ref{sites-modules-definition-2-morphism-ringed-topoi}. \end{lemma} \begin{proof} In this proof we write $\mathcal{O}_X$ for the structure sheaf of the small \'etale site $X_\etale$, and similarly for $\mathcal{O}_Y$. Say $Y = \Spec(B)$ and $X = \Spec(A)$. Since $B = \Gamma(Y_\etale, \mathcal{O}_Y)$, $A = \Gamma(X_\etale, \mathcal{O}_X)$ we see that $g^\sharp$ induces a ring map $\varphi : B \to A$. Let $f = \Spec(\varphi) : X \to Y$ be the corresponding morphism of affine schemes. We will show this $f$ does the job. \medskip\noindent Let $V \to Y$ be an affine scheme \'etale over $Y$. Thus we may write $V = \Spec(C)$ with $C$ an \'etale $B$-algebra. We can write $$ C = B[x_1, \ldots, x_n]/(P_1, \ldots, P_n) $$ with $P_i$ polynomials such that $\Delta = \det(\partial P_i/ \partial x_j)$ is invertible in $C$, see for example Algebra, Lemma \ref{algebra-lemma-etale-standard-smooth}. If $T$ is a scheme over $Y$, then a $T$-valued point of $V$ is given by $n$ sections of $\Gamma(T, \mathcal{O}_T)$ which satisfy the polynomial equations $P_1 = 0, \ldots, P_n = 0$. In other words, the sheaf $h_V$ on $Y_\etale$ is the equalizer of the two maps $$ \xymatrix{ \prod\nolimits_{i = 1, \ldots, n} \mathcal{O}_Y \ar@<1ex>[r]^a \ar@<-1ex>[r]_b & \prod\nolimits_{j = 1, \ldots, n} \mathcal{O}_Y } $$ where $b(h_1, \ldots, h_n) = 0$ and $a(h_1, \ldots, h_n) = (P_1(h_1, \ldots, h_n), \ldots, P_n(h_1, \ldots, h_n))$. Since $g^{-1}$ is exact we conclude that the top row of the following solid commutative diagram is an equalizer diagram as well: $$ \xymatrix{ g^{-1}h_V \ar[r] \ar@{..>}[d] & \prod\nolimits_{i = 1, \ldots, n} g^{-1}\mathcal{O}_Y \ar@<1ex>[r]^{g^{-1}a} \ar@<-1ex>[r]_{g^{-1}b} \ar[d]^{\prod g^\sharp} & \prod\nolimits_{j = 1, \ldots, n} g^{-1}\mathcal{O}_Y \ar[d]^{\prod g^\sharp}\\ h_{X \times_Y V} \ar[r] & \prod\nolimits_{i = 1, \ldots, n} \mathcal{O}_X \ar@<1ex>[r]^{a'} \ar@<-1ex>[r]_{b'} & \prod\nolimits_{j = 1, \ldots, n} \mathcal{O}_X \\ } $$ Here $b'$ is the zero map and $a'$ is the map defined by the images $P'_i = \varphi(P_i) \in A[x_1, \ldots, x_n]$ via the same rule $a'(h_1, \ldots, h_n) = (P'_1(h_1, \ldots, h_n), \ldots, P'_n(h_1, \ldots, h_n))$. that $a$ was defined by. The commutativity of the diagram follows from the fact that $\varphi = g^\sharp$ on global sections. The lower row is an equalizer diagram also, by exactly the same arguments as before since $X \times_Y V$ is the affine scheme $\Spec(A \otimes_B C)$ and $A \otimes_B C = A[x_1, \ldots, x_n]/(P'_1, \ldots, P'_n)$. Thus we obtain a unique dotted arrow $g^{-1}h_V \to h_{X \times_Y V}$ fitting into the diagram \medskip\noindent We claim that the map of sheaves $g^{-1}h_V \to h_{X \times_Y V}$ is an isomorphism. Since the small \'etale site of $X$ has enough points (Theorem \ref{theorem-exactness-stalks}) it suffices to prove this on stalks. Hence let $\overline{x}$ be a geometric point of $X$, and denote $p$ the associate point of the small \'etale topos of $X$. Set $q = g \circ p$. This is a point of the small \'etale topos of $Y$. By Lemma \ref{lemma-points-small-etale-site} we see that $q$ corresponds to a geometric point $\overline{y}$ of $Y$. Consider the map of stalks $$ (g^\sharp)_p : (\mathcal{O}_Y)_{\overline{y}} = \mathcal{O}_{Y, q} = (g^{-1}\mathcal{O}_Y)_p \longrightarrow \mathcal{O}_{X, p} = (\mathcal{O}_X)_{\overline{x}} $$ Since $(g, g^\sharp)$ is a morphism of {\it locally} ringed topoi $(g^\sharp)_p$ is a local ring homomorphism of strictly henselian local rings. Applying localization to the big commutative diagram above and Algebra, Lemma \ref{algebra-lemma-strictly-henselian-solutions} we conclude that $(g^{-1}h_V)_p \to (h_{X \times_Y V})_p$ is an isomorphism as desired. \medskip\noindent We claim that the isomorphisms $g^{-1}h_V \to h_{X \times_Y V}$ are functorial. Namely, suppose that $V_1 \to V_2$ is a morphism of affine schemes \'etale over $Y$. Write $V_i = \Spec(C_i)$ with $$ C_i = B[x_{i, 1}, \ldots, x_{i, n_i}]/(P_{i, 1}, \ldots, P_{i, n_i}) $$ The morphism $V_1 \to V_2$ is given by a $B$-algebra map $C_2 \to C_1$ which in turn is given by some polynomials $Q_j \in B[x_{1, 1}, \ldots, x_{1, n_1}]$ for $j = 1, \ldots, n_2$. Then it is an easy matter to show that the diagram of sheaves $$ \xymatrix{ h_{V_1} \ar[d] \ar[r] & \prod_{i = 1, \ldots, n_1} \mathcal{O}_Y \ar[d]^{Q_1, \ldots, Q_{n_2}}\\ h_{V_2} \ar[r] & \prod_{i = 1, \ldots, n_2} \mathcal{O}_Y } $$ is commutative, and pulling back to $X_\etale$ we obtain the solid commutative diagram $$ \xymatrix{ g^{-1}h_{V_1} \ar@{..>}[dd] \ar[rrd] \ar[r] & \prod_{i = 1, \ldots, n_1} g^{-1}\mathcal{O}_Y \ar[dd]^{g^\sharp} \ar[rrd]^{Q_1, \ldots, Q_{n_2}} \\ & & g^{-1}h_{V_2} \ar@{..>}[dd] \ar[r] & \prod_{i = 1, \ldots, n_2} g^{-1}\mathcal{O}_Y \ar[dd]^{g^\sharp} \\ h_{X \times_Y V_1} \ar[r] \ar[rrd] & \prod\nolimits_{i = 1, \ldots, n_1} \mathcal{O}_X \ar[rrd]^{Q'_1, \ldots, Q'_{n_2}} \\ & & h_{X \times_Y V_2} \ar[r] & \prod\nolimits_{i = 1, \ldots, n_2} \mathcal{O}_X } $$ where $Q'_j \in A[x_{1, 1}, \ldots, x_{1, n_1}]$ is the image of $Q_j$ via $\varphi$. Since the dotted arrows exist, make the two squares commute, and the horizontal arrows are injective we see that the whole diagram commutes. This proves functoriality (and also that the construction of $g^{-1}h_V \to h_{X \times_Y V}$ is independent of the choice of the presentation, although we strictly speaking do not need to show this). \medskip\noindent At this point we are able to show that $f_{small, *} \cong g_*$. Namely, let $\mathcal{F}$ be a sheaf on $X_\etale$. For every $V \in \Ob(X_\etale)$ affine we have \begin{align*} (g_*\mathcal{F})(V) & = \Mor_{\Sh(Y_\etale)}(h_V, g_*\mathcal{F}) \\ & = \Mor_{\Sh(X_\etale)}(g^{-1}h_V, \mathcal{F}) \\ & = \Mor_{\Sh(X_\etale)}(h_{X \times_Y V}, \mathcal{F}) \\ & = \mathcal{F}(X \times_Y V) \\ & = f_{small, *}\mathcal{F}(V) \end{align*} where in the third equality we use the isomorphism $g^{-1}h_V \cong h_{X \times_Y V}$ constructed above. These isomorphisms are clearly functorial in $\mathcal{F}$ and functorial in $V$ as the isomorphisms $g^{-1}h_V \cong h_{X \times_Y V}$ are functorial. Now any sheaf on $Y_\etale$ is determined by the restriction to the subcategory of affine schemes (Topologies, Lemma \ref{topologies-lemma-alternative}), and hence we obtain an isomorphism of functors $f_{small, *} \cong g_*$ as desired. \medskip\noindent Finally, we have to check that, via the isomorphism $f_{small, *} \cong g_*$ above, the maps $f_{small}^\sharp$ and $g^\sharp$ agree. By construction this is already the case for the global sections of $\mathcal{O}_Y$, i.e., for the elements of $B$. We only need to check the result on sections over an affine $V$ \'etale over $Y$ (by Topologies, Lemma \ref{topologies-lemma-alternative} again). Writing $V = \Spec(C)$, $C = B[x_i]/(P_j)$ as before it suffices to check that the coordinate functions $x_i$ are mapped to the same sections of $\mathcal{O}_X$ over $X \times_Y V$. And this is exactly what it means that the diagram $$ \xymatrix{ g^{-1}h_V \ar[r] \ar@{..>}[d] & \prod\nolimits_{i = 1, \ldots, n} g^{-1}\mathcal{O}_Y \ar[d]^{\prod g^\sharp} \\ h_{X \times_Y V} \ar[r] & \prod\nolimits_{i = 1, \ldots, n} \mathcal{O}_X } $$ commutes. Thus the lemma is proved. \end{proof} \noindent Here is a version for general schemes. \begin{theorem} \label{theorem-fully-faithful} Let $X$, $Y$ be schemes. Let $$ (g, g^\#) : (\Sh(X_\etale), \mathcal{O}_X) \longrightarrow (\Sh(Y_\etale), \mathcal{O}_Y) $$ be a morphism of locally ringed topoi. Then there exists a unique morphism of schemes $f : X \to Y$ such that $(g, g^\#)$ is isomorphic to $(f_{small}, f_{small}^\sharp)$. In other words, the construction $$ \Sch \longrightarrow \textit{Locally ringed topoi}, \quad X \longrightarrow (X_\etale, \mathcal{O}_X) $$ is fully faithful (morphisms up to $2$-isomorphisms on the right hand side). \end{theorem} \begin{proof} You can prove this theorem by carefuly adjusting the arguments of the proof of Lemma \ref{lemma-morphism-ringed-etale-topoi-affines} to the global setting. However, we want to indicate how we can glue the result of that lemma to get a global morphism due to the rigidity provided by the result of Lemma \ref{lemma-2-morphism}. Unfortunately, this is a bit messy. \medskip\noindent Let us prove existence when $Y$ is affine. In this case choose an affine open covering $X = \bigcup U_i$. For each $i$ the inclusion morphism $j_i : U_i \to X$ induces a morphism of locally ringed topoi $(j_{i, small}, j_{i, small}^\sharp) : (\Sh(U_{i, \etale}), \mathcal{O}_{U_i}) \to (\Sh(X_\etale), \mathcal{O}_X)$ by Lemma \ref{lemma-morphism-locally-ringed}. We can compose this with $(g, g^\sharp)$ to obtain a morphism of locally ringed topoi $$ (g, g^\sharp) \circ (j_{i, small}, j_{i, small}^\sharp) : (\Sh(U_{i, \etale}), \mathcal{O}_{U_i}) \to (\Sh(Y_\etale), \mathcal{O}_Y) $$ see Modules on Sites, Lemma \ref{sites-modules-lemma-composition-morphisms-locally-ringed-topoi}. By Lemma \ref{lemma-morphism-ringed-etale-topoi-affines} there exists a unique morphism of schemes $f_i : U_i \to Y$ and a $2$-isomorphism $$ t_i : (f_{i, small}, f_{i, small}^\sharp) \longrightarrow (g, g^\sharp) \circ (j_{i, small}, j_{i, small}^\sharp). $$ Set $U_{i, i'} = U_i \cap U_{i'}$, and denote $j_{i, i'} : U_{i, i'} \to U_i$ the inclusion morphism. Since we have $j_i \circ j_{i, i'} = j_{i'} \circ j_{i', i}$ we see that \begin{align*} (g, g^\sharp) \circ (j_{i, small}, j_{i, small}^\sharp) \circ (j_{i, i', small}, j_{i, i', small}^\sharp) = \\ (g, g^\sharp) \circ (j_{i', small}, j_{i', small}^\sharp) \circ (j_{i', i, small}, j_{i', i, small}^\sharp) \end{align*} Hence by uniqueness (see Lemma \ref{lemma-faithful}) we conclude that $f_i \circ j_{i, i'} = f_{i'} \circ j_{i', i}$, in other words the morphisms of schemes $f_i = f \circ j_i$ are the restrictions of a global morphism of schemes $f : X \to Y$. Consider the diagram of $2$-isomorphisms (where we drop the components ${}^\sharp$ to ease the notation) $$ \xymatrix{ g \circ j_{i, small} \circ j_{i, i', small} \ar[rr]^{t_i \star \text{id}_{j_{i, i', small}}} \ar@{=}[d] & & f_{small} \circ j_{i, small} \circ j_{i, i', small} \ar@{=}[d] \\ g \circ j_{i', small} \circ j_{i', i, small} \ar[rr]^{t_{i'} \star \text{id}_{j_{i', i, small}}} & & f_{small} \circ j_{i', small} \circ j_{i', i, small} } $$ The notation $\star$ indicates horizontal composition, see Categories, Definition \ref{categories-definition-2-category} in general and Sites, Section \ref{sites-section-2-category} for our particular case. By the result of Lemma \ref{lemma-2-morphism} this diagram commutes. Hence for any sheaf $\mathcal{G}$ on $Y_\etale$ the isomorphisms $t_i : f_{small}^{-1}\mathcal{G}|_{U_i} \to g^{-1}\mathcal{G}|_{U_i}$ agree over $U_{i, i'}$ and we obtain a global isomorphism $t : f_{small}^{-1}\mathcal{G} \to g^{-1}\mathcal{G}$. It is clear that this isomorphism is functorial in $\mathcal{G}$ and is compatible with the maps $f_{small}^\sharp$ and $g^\sharp$ (because it is compatible with these maps locally). This proves the theorem in case $Y$ is affine. \medskip\noindent In the general case, let $V \subset Y$ be an affine open. Then $h_V$ is a subsheaf of the final sheaf $*$ on $Y_\etale$. As $g$ is exact we see that $g^{-1}h_V$ is a subsheaf of the final sheaf on $X_\etale$. Hence by Lemma \ref{lemma-support-subsheaf-final} there exists an open subscheme $W \subset X$ such that $g^{-1}h_V = h_W$. By Modules on Sites, Lemma \ref{sites-modules-lemma-localize-morphism-locally-ringed-topoi} there exists a commutative diagram of morphisms of locally ringed topoi $$ \xymatrix{ (\Sh(W_\etale), \mathcal{O}_W) \ar[r] \ar[d]_{g'} & (\Sh(X_\etale), \mathcal{O}_X) \ar[d]^g \\ (\Sh(V_\etale), \mathcal{O}_V) \ar[r] & (\Sh(Y_\etale), \mathcal{O}_Y) } $$ where the horizontal arrows are the localization morphisms (induced by the inclusion morphisms $V \to Y$ and $W \to X$) and where $g'$ is induced from $g$. By the result of the preceding paragraph we obtain a morphism of schemes $f' : W \to V$ and a $2$-isomorphism $t : (f'_{small}, (f'_{small})^\sharp) \to (g', (g')^\sharp)$. Exactly as before these morphisms $f'$ (for varying affine opens $V \subset Y$) agree on overlaps by uniqueness, so we get a morphism $f : X \to Y$. Moreover, the $2$-isomorphisms $t$ are compatible on overlaps by Lemma \ref{lemma-2-morphism} again and we obtain a global $2$-isomorphism $(f_{small}, (f_{small})^\sharp) \to (g, (g)^\sharp)$. as desired. Some details omitted. \end{proof} \section{Push and pull} \label{section-monomorphisms} \noindent Let $f : X \to Y$ be a morphism of schemes. Here is a list of conditions we will consider in the following: \begin{enumerate} \item[(A)] For every \'etale morphism $U \to X$ and $u \in U$ there exist an \'etale morphism $V \to Y$ and a disjoint union decomposition $X \times_Y V = W \amalg W'$ and a morphism $h : W \to U$ over $X$ with $u$ in the image of $h$. \item[(B)] For every $V \to Y$ \'etale, and every \'etale covering $\{U_i \to X \times_Y V\}$ there exists an \'etale covering $\{V_j \to V\}$ such that for each $j$ we have $X \times_Y V_j = \coprod W_{ij}$ where $W_{ij} \to X \times_Y V$ factors through $U_i \to X \times_Y V$ for some $i$. \item[(C)] For every $U \to X$ \'etale, there exists a $V \to Y$ \'etale and a surjective morphism $X \times_Y V \to U$ over $X$. \end{enumerate} It turns out that each of these properties has meaning in terms of the behaviour of the functor $f_{small, *}$. We will work this out in the next few sections. \section{Property (A)} \label{section-A} \noindent Please see Section \ref{section-monomorphisms} for the definition of property (A). \begin{lemma} \label{lemma-property-A-implies} Let $f : X \to Y$ be a morphism of schemes. Assume (A). \begin{enumerate} \item $f_{small, *} : \textit{Ab}(X_\etale) \to \textit{Ab}(Y_\etale)$ reflects injections and surjections, \item $f_{small}^{-1}f_{small, *}\mathcal{F} \to \mathcal{F}$ is surjective for any abelian sheaf $\mathcal{F}$ on $X_\etale$, \item $f_{small, *} : \textit{Ab}(X_\etale) \to \textit{Ab}(Y_\etale)$ is faithful. \end{enumerate} \end{lemma} \begin{proof} Let $\mathcal{F}$ be an abelian sheaf on $X_\etale$. Let $U$ be an object of $X_\etale$. By assumption we can find a covering $\{W_i \to U\}$ in $X_\etale$ such that each $W_i$ is an open and closed subscheme of $X \times_Y V_i$ for some object $V_i$ of $Y_\etale$. The sheaf condition shows that $$ \mathcal{F}(U) \subset \prod \mathcal{F}(W_i) $$ and that $\mathcal{F}(W_i)$ is a direct summand of $\mathcal{F}(X \times_Y V_i) = f_{small, *}\mathcal{F}(V_i)$. Hence it is clear that $f_{small, *}$ reflects injections. \medskip\noindent Next, suppose that $a : \mathcal{G} \to \mathcal{F}$ is a map of abelian sheaves such that $f_{small, *}a$ is surjective. Let $s \in \mathcal{F}(U)$ with $U$ as above. With $W_i$, $V_i$ as above we see that it suffices to show that $s|_{W_i}$ is \'etale locally the image of a section of $\mathcal{G}$ under $a$. Since $\mathcal{F}(W_i)$ is a direct summand of $\mathcal{F}(X \times_Y V_i)$ it suffices to show that for any $V \in \Ob(Y_\etale)$ any element $s \in \mathcal{F}(X \times_Y V)$ is \'etale locally on $X \times_Y V$ the image of a section of $\mathcal{G}$ under $a$. Since $\mathcal{F}(X \times_Y V) = f_{small, *}\mathcal{F}(V)$ we see by assumption that there exists a covering $\{V_j \to V\}$ such that $s$ is the image of $s_j \in f_{small, *}\mathcal{G}(V_j) = \mathcal{G}(X \times_Y V_j)$. This proves $f_{small, *}$ reflects surjections. \medskip\noindent Parts (2), (3) follow formally from part (1), see Modules on Sites, Lemma \ref{sites-modules-lemma-reflect-surjections}. \end{proof} \begin{lemma} \label{lemma-locally-quasi-finite-A} Let $f : X \to Y$ be a separated locally quasi-finite morphism of schemes. Then property (A) above holds. \end{lemma} \begin{proof} Let $U \to X$ be an \'etale morphism and $u \in U$. The geometric statement (A) reduces directly to the case where $U$ and $Y$ are affine schemes. Denote $x \in X$ and $y \in Y$ the images of $u$. Since $X \to Y$ is locally quasi-finite, and $U \to X$ is locally quasi-finite (see Morphisms, Lemma \ref{morphisms-lemma-etale-locally-quasi-finite}) we see that $U \to Y$ is locally quasi-finite (see Morphisms, Lemma \ref{morphisms-lemma-composition-quasi-finite}). Moreover both $X \to Y$ and $U \to Y$ are separated. Thus More on Morphisms, Lemma \ref{more-morphisms-lemma-etale-splits-off-quasi-finite-part-technical-variant} applies to both morphisms. This means we may pick an \'etale neighbourhood $(V, v) \to (Y, y)$ such that $$ X \times_Y V = W \amalg R, \quad U \times_Y V = W' \amalg R' $$ and points $w \in W$, $w' \in W'$ such that \begin{enumerate} \item $W$, $R$ are open and closed in $X \times_Y V$, \item $W'$, $R'$ are open and closed in $U \times_Y V$, \item $W \to V$ and $W' \to V$ are finite, \item $w$, $w'$ map to $v$, \item $\kappa(v) \subset \kappa(w)$ and $\kappa(v) \subset \kappa(w')$ are purely inseparable, and \item no other point of $W$ or $W'$ maps to $v$. \end{enumerate} Here is a commutative diagram $$ \xymatrix{ U \ar[d] & U \times_Y V \ar[l] \ar[d] & W' \amalg R' \ar[d] \ar[l] \\ X \ar[d] & X \times_Y V \ar[l] \ar[d] & W \amalg R \ar[l] \\ Y & V \ar[l] } $$ After shrinking $V$ we may assume that $W'$ maps into $W$: just remove the image the inverse image of $R$ in $W'$; this is a closed set (as $W' \to V$ is finite) not containing $v$. Then $W' \to W$ is finite because both $W \to V$ and $W' \to V$ are finite. Hence $W' \to W$ is finite \'etale, and there is exactly one point in the fibre over $w$ with $\kappa(w) = \kappa(w')$. Hence $W' \to W$ is an isomorphism in an open neighbourhood $W^\circ$ of $w$, see \'Etale Morphisms, Lemma \ref{etale-lemma-finite-etale-one-point}. Since $W \to V$ is finite the image of $W \setminus W^\circ$ is a closed subset $T$ of $V$ not containing $v$. Thus after replacing $V$ by $V \setminus T$ we may assume that $W' \to W$ is an isomorphism. Now the decomposition $X \times_Y V = W \amalg R$ and the morphism $W \to U$ are as desired and we win. \end{proof} \begin{lemma} \label{lemma-integral-A} Let $f : X \to Y$ be an integral morphism of schemes. Then property (A) holds. \end{lemma} \begin{proof} Let $U \to X$ be \'etale, and let $u \in U$ be a point. We have to find $V \to Y$ \'etale, a disjoint union decomposition $X \times_Y V = W \amalg W'$ and an $X$-morphism $W \to U$ with $u$ in the image. We may shrink $U$ and $Y$ and assume $U$ and $Y$ are affine. In this case also $X$ is affine, since an integral morphism is affine by definition. Write $Y = \Spec(A)$, $X = \Spec(B)$ and $U = \Spec(C)$. Then $A \to B$ is an integral ring map, and $B \to C$ is an \'etale ring map. By Algebra, Lemma \ref{algebra-lemma-etale} we can find a finite $A$-subalgebra $B' \subset B$ and an \'etale ring map $B' \to C'$ such that $C = B \otimes_{B'} C'$. Thus the question reduces to the \'etale morphism $U' = \Spec(C') \to X' = \Spec(B')$ over the finite morphism $X' \to Y$. In this case the result follows from Lemma \ref{lemma-locally-quasi-finite-A}. \end{proof} \begin{lemma} \label{lemma-when-push-pull-surjective} Let $f : X \to Y$ be a morphism of schemes. Denote $f_{small} : \Sh(X_\etale) \to \Sh(Y_\etale)$ the associated morphism of small \'etale topoi. Assume at least one of the following \begin{enumerate} \item $f$ is integral, or \item $f$ is separated and locally quasi-finite. \end{enumerate} Then the functor $f_{small, *} : \textit{Ab}(X_\etale) \to \textit{Ab}(Y_\etale)$ has the following properties \begin{enumerate} \item the map $f_{small}^{-1}f_{small, *}\mathcal{F} \to \mathcal{F}$ is always surjective, \item $f_{small, *}$ is faithful, and \item $f_{small, *}$ reflects injections and surjections. \end{enumerate} \end{lemma} \begin{proof} Combine Lemmas \ref{lemma-locally-quasi-finite-A}, \ref{lemma-integral-A}, and \ref{lemma-property-A-implies}. \end{proof} \section{Property (B)} \label{section-B} \noindent Please see Section \ref{section-monomorphisms} for the definition of property (B). \begin{lemma} \label{lemma-property-B-implies} Let $f : X \to Y$ be a morphism of schemes. Assume (B) holds. Then the functor $f_{small, *} : \Sh(X_\etale) \to \Sh(Y_\etale)$ transforms surjections into surjections. \end{lemma} \begin{proof} This follows from Sites, Lemma \ref{sites-lemma-weaker}. \end{proof} \begin{lemma} \label{lemma-simplify-B} Let $f : X \to Y$ be a morphism of schemes. Suppose \begin{enumerate} \item $V \to Y$ is an \'etale morphism of schemes, \item $\{U_i \to X \times_Y V\}$ is an \'etale covering, and \item $v \in V$ is a point. \end{enumerate} Assume that for any such data there exists an \'etale neighbourhood $(V', v') \to (V, v)$, a disjoint union decomposition $X \times_Y V' = \coprod W'_i$, and morphisms $W'_i \to U_i$ over $X \times_Y V$. Then property (B) holds. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma} \label{lemma-finite-B} Let $f : X \to Y$ be a finite morphism of schemes. Then property (B) holds. \end{lemma} \begin{proof} Consider $V \to Y$ \'etale, $\{U_i \to X \times_Y V\}$ an \'etale covering, and $v \in V$. We have to find a $V' \to V$ and decomposition and maps as in Lemma \ref{lemma-simplify-B}. We may shrink $V$ and $Y$, hence we may assume that $V$ and $Y$ are affine. Since $X$ is finite over $Y$, this also implies that $X$ is affine. During the proof we may (finitely often) replace $(V, v)$ by an \'etale neighbourhood $(V', v')$ and correspondingly the covering $\{U_i \to X \times_Y V\}$ by $\{V' \times_V U_i \to X \times_Y V'\}$. \medskip\noindent Since $X \times_Y V \to V$ is finite there exist finitely many (pairwise distinct) points $x_1, \ldots, x_n \in X \times_Y V$ mapping to $v$. We may apply More on Morphisms, Lemma \ref{more-morphisms-lemma-etale-splits-off-quasi-finite-part-technical-variant} to $X \times_Y V \to V$ and the points $x_1, \ldots, x_n$ lying over $v$ and find an \'etale neighbourhood $(V', v') \to (V, v)$ such that $$ X \times_Y V' = R \amalg \coprod T_a $$ with $T_a \to V'$ finite with exactly one point $p_a$ lying over $v'$ and moreover $\kappa(v') \subset \kappa(p_a)$ purely inseparable, and such that $R \to V'$ has empty fibre over $v'$. Because $X \to Y$ is finite, also $R \to V'$ is finite. Hence after shrinking $V'$ we may assume that $R = \emptyset$. Thus we may assume that $X \times_Y V = X_1 \amalg \ldots \amalg X_n$ with exactly one point $x_l \in X_l$ lying over $v$ with moreover $\kappa(v) \subset \kappa(x_l)$ purely inseparable. Note that this property is preserved under refinement of the \'etale neighbourhood $(V, v)$. \medskip\noindent For each $l$ choose an $i_l$ and a point $u_l \in U_{i_l}$ mapping to $x_l$. Now we apply property (A) for the finite morphism $X \times_Y V \to V$ and the \'etale morphisms $U_{i_l} \to X \times_Y V$ and the points $u_l$. This is permissible by Lemma \ref{lemma-integral-A} This gives produces an \'etale neighbourhood $(V', v') \to (V, v)$ and decompositions $$ X \times_Y V' = W_l \amalg R_l $$ and $X$-morphisms $a_l : W_l \to U_{i_l}$ whose image contains $u_{i_l}$. Here is a picture: $$ \xymatrix{ & & & U_{i_l} \ar[d] & \\ W_l \ar[rrru] \ar[r] & W_l \amalg R_l \ar@{=}[r] & X \times_Y V' \ar[r] \ar[d] & X \times_Y V \ar[r] \ar[d] & X \ar[d] \\ & & V' \ar[r] & V \ar[r] & Y } $$ After replacing $(V, v)$ by $(V', v')$ we conclude that each $x_l$ is contained in an open and closed neighbourhood $W_l$ such that the inclusion morphism $W_l \to X \times_Y V$ factors through $U_i \to X \times_Y V$ for some $i$. Replacing $W_l$ by $W_l \cap X_l$ we see that these open and closed sets are disjoint and moreover that $\{x_1, \ldots, x_n\} \subset W_1 \cup \ldots \cup W_n$. Since $X \times_Y V \to V$ is finite we may shrink $V$ and assume that $X \times_Y V = W_1 \amalg \ldots \amalg W_n$ as desired. \end{proof} \begin{lemma} \label{lemma-integral-B} Let $f : X \to Y$ be an integral morphism of schemes. Then property (B) holds. \end{lemma} \begin{proof} Consider $V \to Y$ \'etale, $\{U_i \to X \times_Y V\}$ an \'etale covering, and $v \in V$. We have to find a $V' \to V$ and decomposition and maps as in Lemma \ref{lemma-simplify-B}. We may shrink $V$ and $Y$, hence we may assume that $V$ and $Y$ are affine. Since $X$ is integral over $Y$, this also implies that $X$ and $X \times_Y V$ are affine. We may refine the covering $\{U_i \to X \times_Y V\}$, and hence we may assume that $\{U_i \to X \times_Y V\}_{i = 1, \ldots, n}$ is a standard \'etale covering. Write $Y = \Spec(A)$, $X = \Spec(B)$, $V = \Spec(C)$, and $U_i = \Spec(B_i)$. Then $A \to B$ is an integral ring map, and $B \otimes_A C \to B_i$ are \'etale ring maps. By Algebra, Lemma \ref{algebra-lemma-etale} we can find a finite $A$-subalgebra $B' \subset B$ and an \'etale ring map $B' \otimes_A C \to B'_i$ for $i = 1, \ldots, n$ such that $B_i = B \otimes_{B'} B'_i$. Thus the question reduces to the \'etale covering $\{\Spec(B'_i) \to X' \times_Y V\}_{i = 1, \ldots, n}$ with $X' = \Spec(B')$ finite over $Y$. In this case the result follows from Lemma \ref{lemma-finite-B}. \end{proof} \begin{lemma} \label{lemma-what-integral} Let $f : X \to Y$ be a morphism of schemes. Assume $f$ is integral (for example finite). Then \begin{enumerate} \item $f_{small, *}$ transforms surjections into surjections (on sheaves of sets and on abelian sheaves), \item $f_{small}^{-1}f_{small, *}\mathcal{F} \to \mathcal{F}$ is surjective for any abelian sheaf $\mathcal{F}$ on $X_\etale$, \item $f_{small, *} : \textit{Ab}(X_\etale) \to \textit{Ab}(Y_\etale)$ is faithful and reflects injections and surjections, and \item $f_{small, *} : \textit{Ab}(X_\etale) \to \textit{Ab}(Y_\etale)$ is exact. \end{enumerate} \end{lemma} \begin{proof} Parts (2), (3) we have seen in Lemma \ref{lemma-when-push-pull-surjective}. Part (1) follows from Lemmas \ref{lemma-integral-B} and \ref{lemma-property-B-implies}. Part (4) is a consequence of part (1), see Modules on Sites, Lemma \ref{sites-modules-lemma-exactness}. \end{proof} \section{Property (C)} \label{section-C} \noindent Please see Section \ref{section-monomorphisms} for the definition of property (C). \begin{lemma} \label{lemma-property-C-implies} Let $f : X \to Y$ be a morphism of schemes. Assume (C) holds. Then the functor $f_{small, *} : \Sh(X_\etale) \to \Sh(Y_\etale)$ reflects injections and surjections. \end{lemma} \begin{proof} Follows from Sites, Lemma \ref{sites-lemma-cover-from-below}. We omit the verification that property (C) implies that the functor $Y_\etale \to X_\etale$, $V \mapsto X \times_Y V$ satisfies the assumption of Sites, Lemma \ref{sites-lemma-cover-from-below}. \end{proof} \begin{remark} \label{remark-property-C-strong} Property (C) holds if $f : X \to Y$ is an open immersion. Namely, if $U \in \Ob(X_\etale)$, then we can view $U$ also as an object of $Y_\etale$ and $U \times_Y X = U$. Hence property (C) does not imply that $f_{small, *}$ is exact as this is not the case for open immersions (in general). \end{remark} \begin{lemma} \label{lemma-property-C-closed-implies} Let $f : X \to Y$ be a morphism of schemes. Assume that for any $V \to Y$ \'etale we have that \begin{enumerate} \item $X \times_Y V \to V$ has property (C), and \item $X \times_Y V \to V$ is closed. \end{enumerate} Then the functor $Y_\etale \to X_\etale$, $V \mapsto X \times_Y V$ is almost cocontinuous, see Sites, Definition \ref{sites-definition-almost-cocontinuous}. \end{lemma} \begin{proof} Let $V \to Y$ be an object of $Y_\etale$ and let $\{U_i \to X \times_Y V\}_{i \in I}$ be a covering of $X_\etale$. By assumption (1) for each $i$ we can find an \'etale morphism $h_i : V_i \to V$ and a surjective morphism $X \times_Y V_i \to U_i$ over $X \times_Y V$. Note that $\bigcup h_i(V_i) \subset V$ is an open set containing the closed set $Z = \Im(X \times_Y V \to V)$. Let $h_0 : V_0 = V \setminus Z \to V$ be the open immersion. It is clear that $\{V_i \to V\}_{i \in I \cup \{0\}}$ is an \'etale covering such that for each $i \in I \cup \{0\}$ we have either $V_i \times_Y X = \emptyset$ (namely if $i = 0$), or $V_i \times_Y X \to V \times_Y X$ factors through $U_i \to X \times_Y V$ (if $i \not = 0$). Hence the functor $Y_\etale \to X_\etale$ is almost cocontinuous. \end{proof} \begin{lemma} \label{lemma-integral-homeo-onto-image-C} Let $f : X \to Y$ be an integral morphism of schemes which defines a homeomorphism of $X$ with a closed subset of $Y$. Then property (C) holds. \end{lemma} \begin{proof} Let $g : U \to X$ be an \'etale morphism. We need to find an object $V \to Y$ of $Y_\etale$ and a surjective morphism $X \times_Y V \to U$ over $X$. Suppose that for every $u \in U$ we can find an object $V_u \to Y$ of $Y_\etale$ and a morphism $h_u : X \times_Y V_u \to U$ over $X$ with $u \in \Im(h_u)$. Then we can take $V = \coprod V_u$ and $h = \coprod h_u$ and we win. Hence given a point $u \in U$ we find a pair $(V_u, h_u)$ as above. To do this we may shrink $U$ and assume that $U$ is affine. In this case $g : U \to X$ is locally quasi-finite. Let $g^{-1}(g(\{u\})) = \{u, u_2, \ldots, u_n\}$. Since there are no specializations $u_i \leadsto u$ we may replace $U$ by an affine neighbourhood so that $g^{-1}(g(\{u\})) = \{u\}$. \medskip\noindent The image $g(U) \subset X$ is open, hence $f(g(U))$ is locally closed in $Y$. Choose an open $V \subset Y$ such that $f(g(U)) = f(X) \cap V$. It follows that $g$ factors through $X \times_Y V$ and that the resulting $\{U \to X \times_Y V\}$ is an \'etale covering. Since $f$ has property (B) , see Lemma \ref{lemma-integral-B}, we see that there exists an \'etale covering $\{V_j \to V\}$ such that $X \times_Y V_j \to X \times_Y V$ factor through $U$. This implies that $V' = \coprod V_j$ is \'etale over $Y$ and that there is a morphism $h : X \times_Y V' \to U$ whose image surjects onto $g(U)$. Since $u$ is the only point in its fibre it must be in the image of $h$ and we win. \end{proof} \noindent We urge the reader to think of the following lemma as a way station\footnote{A way station is a place where people stop to eat and rest when they are on a long journey.} on the journey towards the ultimate truth regarding $f_{small, *}$ for integral universally injective morphisms. \begin{lemma} \label{lemma-integral-universally-injective} Let $f : X \to Y$ be a morphism of schemes. Assume that $f$ is universally injective and integral (for example a closed immersion). Then \begin{enumerate} \item $f_{small, *} : \Sh(X_\etale) \to \Sh(Y_\etale)$ reflects injections and surjections, \item $f_{small, *} : \Sh(X_\etale) \to \Sh(Y_\etale)$ commutes with pushouts and coequalizers (and more generally finite connected colimits), \item $f_{small, *}$ transforms surjections into surjections (on sheaves of sets and on abelian sheaves), \item the map $f_{small}^{-1}f_{small, *}\mathcal{F} \to \mathcal{F}$ is surjective for any sheaf (of sets or of abelian groups) $\mathcal{F}$ on $X_\etale$, \item the functor $f_{small, *}$ is faithful (on sheaves of sets and on abelian sheaves), \item $f_{small, *} : \textit{Ab}(X_\etale) \to \textit{Ab}(Y_\etale)$ is exact, and \item the functor $Y_\etale \to X_\etale$, $V \mapsto X \times_Y V$ is almost cocontinuous. \end{enumerate} \end{lemma} \begin{proof} By Lemmas \ref{lemma-integral-A}, \ref{lemma-integral-B} and \ref{lemma-integral-homeo-onto-image-C} we know that the morphism $f$ has properties (A), (B), and (C). Moreover, by Lemma \ref{lemma-property-C-closed-implies} we know that the functor $Y_\etale \to X_\etale$ is almost cocontinuous. Now we have \begin{enumerate} \item property (C) implies (1) by Lemma \ref{lemma-property-C-implies}, \item almost continuous implies (2) by Sites, Lemma \ref{sites-lemma-morphism-of-sites-almost-cocontinuous}, \item property (B) implies (3) by Lemma \ref{lemma-property-B-implies}. \end{enumerate} Properties (4), (5), and (6) follow formally from the first three, see Sites, Lemma \ref{sites-lemma-exactness-properties} and Modules on Sites, Lemma \ref{sites-modules-lemma-exactness}. Property (7) we saw above. \end{proof} \section{Topological invariance of the small \'etale site} \label{section-topological-invariance} \noindent In the following theorem we show that the small \'etale site is a topological invariant in the following sense: If $f : X \to Y$ is a morphism of schemes which is a universal homeomorphism, then $X_\etale \cong Y_\etale$ as sites. This improves the result of \'Etale Morphisms, Theorem \ref{etale-theorem-remarkable-equivalence}. We first prove the result for morphisms and then we state the result for categories. \begin{theorem} \label{theorem-etale-topological} Let $X$ and $Y$ be two schemes over a base scheme $S$. Let $S' \to S$ be a universal homeomorphism. Denote $X'$ (resp.\ $Y'$) the base change to $S'$. If $X$ is \'etale over $S$, then the map $$ \Mor_S(Y, X) \longrightarrow \Mor_{S'}(Y', X') $$ is bijective. \end{theorem} \begin{proof} After base changing via $Y \to S$, we may assume that $Y = S$. Thus we may and do assume both $X$ and $Y$ are \'etale over $S$. In other words, the theorem states that the base change functor is a fully faithful functor from the category of schemes \'etale over $S$ to the category of schemes \'etale over $S'$. \medskip\noindent Consider the forgetful functor \begin{equation} \label{equation-descent-etale-forget} \begin{matrix} \text{descent data }(X', \varphi')\text{ relative to }S'/S \\ \text{ with }X'\text{ \'etale over }S' \end{matrix} \longrightarrow \text{schemes }X'\text{ \'etale over }S' \end{equation} We claim this functor is an equivalence. On the other hand, the functor \begin{equation} \label{equation-descent-etale} \text{schemes }X\text{ \'etale over }S \longrightarrow \begin{matrix} \text{descent data }(X', \varphi')\text{ relative to }S'/S \\ \text{ with }X'\text{ \'etale over }S' \end{matrix} \end{equation} is fully faithful by \'Etale Morphisms, Lemma \ref{etale-lemma-fully-faithful-cases}. Thus the claim implies the theorem. \medskip\noindent Proof of the claim. Recall that a universal homeomorphism is the same thing as an integral, universally injective, surjective morphism, see Morphisms, Lemma \ref{morphisms-lemma-universal-homeomorphism}. In particular, the diagonal $\Delta : S' \to S' \times_S S'$ is a thickening by Morphisms, Lemma \ref{morphisms-lemma-universally-injective}. Thus by \'Etale Morphisms, Theorem \ref{etale-theorem-etale-topological} we see that given $X' \to S'$ \'etale there is a unique isomorphism $$ \varphi' : X' \times_S S' \to S' \times_S X' $$ of schemes \'etale over $S' \times_S S'$ which pulls back under $\Delta$ to $\text{id} : X' \to X'$ over $S'$. Since $S' \to S' \times_S S' \times_S S'$ is a thickening as well (it is bijective and a closed immersion) we conclude that $(X', \varphi')$ is a descent datum relative to $S'/S$. The canonical nature of the construction of $\varphi'$ shows that it is compatible with morphisms between schemes \'etale over $S'$. In other words, we obtain a quasi-inverse $X' \mapsto (X', \varphi')$ of the functor (\ref{equation-descent-etale-forget}). This proves the claim and finishes the proof of the theorem. \end{proof} \begin{theorem} \label{theorem-topological-invariance} \begin{reference} \cite[IV Theorem 18.1.2]{EGA} \end{reference} Let $f : X \to Y$ be a morphism of schemes. Assume $f$ is integral, universally injective and surjective (i.e., $f$ is a universal homeomorphism, see Morphisms, Lemma \ref{morphisms-lemma-universal-homeomorphism}). The functor $$ V \longmapsto V_X = X \times_Y V $$ defines an equivalence of categories $$ \{ \text{schemes }V\text{ \'etale over }Y \} \leftrightarrow \{ \text{schemes }U\text{ \'etale over }X \} $$ \end{theorem} \noindent We give two proofs. The first uses effectivity of descent for quasi-compact, separated, \'etale morphisms relative to surjective integral morphisms. The second uses the material on properties (A), (B), and (C) discussed earlier in the chapter. \begin{proof}[First proof] By Theorem \ref{theorem-etale-topological} we see that the functor is fully faithful. It remains to show that the functor is essentially surjective. Let $U \to X$ be an \'etale morphism of schemes. \medskip\noindent Suppose that the result holds if $U$ and $Y$ are affine. In that case, we choose an affine open covering $U = \bigcup U_i$ such that each $U_i$ maps into an affine open of $Y$. By assumption (affine case) we can find \'etale morphisms $V_i \to Y$ such that $X \times_Y V_i \cong U_i$ as schemes over $X$. Let $V_{i, i'} \subset V_i$ be the open subscheme whose underlying topological space corresponds to $U_i \cap U_{i'}$. Because we have isomorphisms $$ X \times_Y V_{i, i'} \cong U_i \cap U_{i'} \cong X \times_Y V_{i', i} $$ as schemes over $X$ we see by fully faithfulness that we obtain isomorphisms $\theta_{i, i'} : V_{i, i'} \to V_{i', i}$ of schemes over $Y$. We omit the verification that these isomorphisms satisfy the cocycle condition of Schemes, Section \ref{schemes-section-glueing-schemes}. Applying Schemes, Lemma \ref{schemes-lemma-glue-schemes} we obtain a scheme $V \to Y$ by glueing the schemes $V_i$ along the identifications $\theta_{i, i'}$. It is clear that $V \to Y$ is \'etale and $X \times_Y V \cong U$ by construction. \medskip\noindent Thus it suffices to show the lemma in case $U$ and $Y$ are affine. Recall that in the proof of Theorem \ref{theorem-etale-topological} we showed that $U$ comes with a unique descent datum $(U, \varphi)$ relative to $X/Y$. By \'Etale Morphisms, Proposition \ref{etale-proposition-effective} (which applies because $U \to X$ is quasi-compact and separated as well as \'etale by our reduction to the affine case) there exists an \'etale morphism $V \to Y$ such that $X \times_Y V \cong U$ and the proof is complete. \end{proof} \begin{proof}[Second proof] By Theorem \ref{theorem-etale-topological} we see that the functor is fully faithful. It remains to show that the functor is essentially surjective. Let $U \to X$ be an \'etale morphism of schemes. \medskip\noindent Suppose that the result holds if $U$ and $Y$ are affine. In that case, we choose an affine open covering $U = \bigcup U_i$ such that each $U_i$ maps into an affine open of $Y$. By assumption (affine case) we can find \'etale morphisms $V_i \to Y$ such that $X \times_Y V_i \cong U_i$ as schemes over $X$. Let $V_{i, i'} \subset V_i$ be the open subscheme whose underlying topological space corresponds to $U_i \cap U_{i'}$. Because we have isomorphisms $$ X \times_Y V_{i, i'} \cong U_i \cap U_{i'} \cong X \times_Y V_{i', i} $$ as schemes over $X$ we see by fully faithfulness that we obtain isomorphisms $\theta_{i, i'} : V_{i, i'} \to V_{i', i}$ of schemes over $Y$. We omit the verification that these isomorphisms satisfy the cocycle condition of Schemes, Section \ref{schemes-section-glueing-schemes}. Applying Schemes, Lemma \ref{schemes-lemma-glue-schemes} we obtain a scheme $V \to Y$ by glueing the schemes $V_i$ along the identifications $\theta_{i, i'}$. It is clear that $V \to Y$ is \'etale and $X \times_Y V \cong U$ by construction. \medskip\noindent Thus it suffices to prove that the functor \begin{equation} \label{equation-affine-etale} \{ \text{affine schemes }V\text{ \'etale over }Y \} \leftrightarrow \{ \text{affine schemes }U\text{ \'etale over }X \} \end{equation} is essentially surjective when $X$ and $Y$ are affine. \medskip\noindent Let $U \to X$ be an affine scheme \'etale over $X$. We have to find $V \to Y$ \'etale (and affine) such that $X \times_Y V$ is isomorphic to $U$ over $X$. Note that an \'etale morphism of affines has universally bounded fibres, see Morphisms, Lemmas \ref{morphisms-lemma-etale-locally-quasi-finite} and \ref{morphisms-lemma-locally-quasi-finite-qc-source-universally-bounded}. Hence we can do induction on the integer $n$ bounding the degree of the fibres of $U \to X$. See Morphisms, Lemma \ref{morphisms-lemma-etale-universally-bounded} for a description of this integer in the case of an \'etale morphism. If $n = 1$, then $U \to X$ is an open immersion (see \'Etale Morphisms, Theorem \ref{etale-theorem-etale-radicial-open}), and the result is clear. Assume $n > 1$. \medskip\noindent By Lemma \ref{lemma-integral-homeo-onto-image-C} there exists an \'etale morphism of schemes $W \to Y$ and a surjective morphism $W_X \to U$ over $X$. As $U$ is quasi-compact we may replace $W$ by a disjoint union of finitely many affine opens of $W$, hence we may assume that $W$ is affine as well. Here is a diagram $$ \xymatrix{ U \ar[d] & U \times_Y W \ar[l] \ar[d] & W_X \amalg R \ar@{=}[l]\\ X \ar[d] & W_X \ar[l] \ar[d] \\ Y & W \ar[l] } $$ The disjoint union decomposition arises because by construction the \'etale morphism of affine schemes $U \times_Y W \to W_X$ has a section. OK, and now we see that the morphism $R \to X \times_Y W$ is an \'etale morphism of affine schemes whose fibres have degree universally bounded by $n - 1$. Hence by induction assumption there exists a scheme $V' \to W$ \'etale such that $R \cong W_X \times_W V'$. Taking $V'' = W \amalg V'$ we find a scheme $V''$ \'etale over $W$ whose base change to $W_X$ is isomorphic to $U \times_Y W$ over $X \times_Y W$. \medskip\noindent At this point we can use descent to find $V$ over $Y$ whose base change to $X$ is isomorphic to $U$ over $X$. Namely, by the fully faithfulness of the functor (\ref{equation-affine-etale}) corresponding to the universal homeomorphism $X \times_Y (W \times_Y W) \to (W \times_Y W)$ there exists a unique isomorphism $\varphi : V'' \times_Y W \to W \times_Y V''$ whose base change to $X \times_Y (W \times_Y W)$ is the canonical descent datum for $U \times_Y W$ over $X \times_Y W$. In particular $\varphi$ satisfies the cocycle condition. Hence by Descent, Lemma \ref{descent-lemma-affine} we see that $\varphi$ is effective (recall that all schemes above are affine). Thus we obtain $V \to Y$ and an isomorphism $V'' \cong W \times_Y V$ such that the canonical descent datum on $W \times_Y V/W/Y$ agrees with $\varphi$. Note that $V \to Y$ is \'etale, by Descent, Lemma \ref{descent-lemma-descending-property-etale}. Moreover, there is an isomorphism $V_X \cong U$ which comes from descending the isomorphism $$ V_X \times_X W_X = X \times_Y V \times_Y W = (X \times_Y W) \times_W (W \times_Y V) \cong W_X \times_W V'' \cong U \times_Y W $$ which we have by construction. Some details omitted. \end{proof} \begin{remark} \label{remark-affine-inside-equivalence} In the situation of Theorem \ref{theorem-topological-invariance} it is also true that $V \mapsto V_X$ induces an equivalence between those \'etale morphisms $V \to Y$ with $V$ affine and those \'etale morphisms $U \to X$ with $U$ affine. This follows for example from Limits, Proposition \ref{limits-proposition-affine}. \end{remark} \begin{proposition}[Topological invariance of \'etale cohomology] \label{proposition-topological-invariance} Let $X_0 \to X$ be a universal homeomorphism of schemes (for example the closed immersion defined by a nilpotent sheaf of ideals). Then \begin{enumerate} \item the \'etale sites $X_\etale$ and $(X_0)_\etale$ are isomorphic, \item the \'etale topoi $\Sh(X_\etale)$ and $\Sh((X_0)_\etale)$ are equivalent, and \item $H^q_\etale(X, \mathcal{F}) = H^q_\etale(X_0, \mathcal{F}|_{X_0})$ for all $q$ and for any abelian sheaf $\mathcal{F}$ on $X_\etale$. \end{enumerate} \end{proposition} \begin{proof} The equivalence of categories $X_\etale \to (X_0)_\etale$ is given by Theorem \ref{theorem-topological-invariance}. We omit the proof that under this equivalence the \'etale coverings correspond. Hence (1) holds. Parts (2) and (3) follow formally from (1). \end{proof} \section{Closed immersions and pushforward} \label{section-closed-immersions} \noindent Before stating and proving Proposition \ref{proposition-closed-immersion-pushforward} in its correct generality we briefly state and prove it for closed immersions. Namely, some of the preceding arguments are quite a bit easier to follow in the case of a closed immersion and so we repeat them here in their simplified form. \medskip\noindent In the rest of this section $i : Z \to X$ is a closed immersion. The functor $$ \Sch/X \longrightarrow \Sch/Z, \quad U \longmapsto U_Z = Z \times_X U $$ will be denoted $U \mapsto U_Z$ as indicated. Since being a closed immersion is preserved under arbitrary base change the scheme $U_Z$ is a closed subscheme of $U$. \begin{lemma} \label{lemma-closed-immersion-almost-full} Let $i : Z \to X$ be a closed immersion of schemes. Let $U, U'$ be schemes \'etale over $X$. Let $h : U_Z \to U'_Z$ be a morphism over $Z$. Then there exists a diagram $$ \xymatrix{ U & W \ar[l]_a \ar[r]^b & U' } $$ such that $a_Z : W_Z \to U_Z$ is an isomorphism and $h = b_Z \circ (a_Z)^{-1}$. \end{lemma} \begin{proof} Consider the scheme $M = U \times_Y U'$. The graph $\Gamma_h \subset M_Z$ of $h$ is open. This is true for example as $\Gamma_h$ is the image of a section of the \'etale morphism $\text{pr}_{1, Z} : M_Z \to U_Z$, see \'Etale Morphisms, Proposition \ref{etale-proposition-properties-sections}. Hence there exists an open subscheme $W \subset M$ whose intersection with the closed subset $M_Z$ is $\Gamma_h$. Set $a = \text{pr}_1|_W$ and $b = \text{pr}_2|_W$. \end{proof} \begin{lemma} \label{lemma-closed-immersion-almost-essentially-surjective} Let $i : Z \to X$ be a closed immersion of schemes. Let $V \to Z$ be an \'etale morphism of schemes. There exist \'etale morphisms $U_i \to X$ and morphisms $U_{i, Z} \to V$ such that $\{U_{i, Z} \to V\}$ is a Zariski covering of $V$. \end{lemma} \begin{proof} Since we only have to find a Zariski covering of $V$ consisting of schemes of the form $U_Z$ with $U$ \'etale over $X$, we may Zariski localize on $X$ and $V$. Hence we may assume $X$ and $V$ affine. In the affine case this is Algebra, Lemma \ref{algebra-lemma-lift-etale}. \end{proof} \noindent If $\overline{x} : \Spec(k) \to X$ is a geometric point of $X$, then either $\overline{x}$ factors (uniquely) through the closed subscheme $Z$, or $Z_{\overline{x}} = \emptyset$. If $\overline{x}$ factors through $Z$ we say that $\overline{x}$ is a geometric point of $Z$ (because it is) and we use the notation ``$\overline{x} \in Z$'' to indicate this. \begin{lemma} \label{lemma-stalk-pushforward-closed-immersion} Let $i : Z \to X$ be a closed immersion of schemes. Let $\mathcal{G}$ be a sheaf of sets on $Z_\etale$. Let $\overline{x}$ be a geometric point of $X$. Then $$ (i_{small, *}\mathcal{G})_{\overline{x}} = \left\{ \begin{matrix} * & \text{if} & \overline{x} \not \in Z \\ \mathcal{G}_{\overline{x}} & \text{if} & \overline{x} \in Z \end{matrix} \right. $$ where $*$ denotes a singleton set. \end{lemma} \begin{proof} Note that $i_{small, *}\mathcal{G}|_{U_\etale} = *$ is the final object in the category of \'etale sheaves on $U$, i.e., the sheaf which associates a singleton set to each scheme \'etale over $U$. This explains the value of $(i_{small, *}\mathcal{G})_{\overline{x}}$ if $\overline{x} \not \in Z$. \medskip\noindent Next, suppose that $\overline{x} \in Z$. Note that $$ (i_{small, *}\mathcal{G})_{\overline{x}} = \colim_{(U, \overline{u})} \mathcal{G}(U_Z) $$ and on the other hand $$ \mathcal{G}_{\overline{x}} = \colim_{(V, \overline{v})} \mathcal{G}(V). $$ Let $\mathcal{C}_1 = \{(U, \overline{u})\}^{opp}$ be the opposite of the category of \'etale neighbourhoods of $\overline{x}$ in $X$, and let $\mathcal{C}_2 = \{(V, \overline{v})\}^{opp}$ be the opposite of the category of \'etale neighbourhoods of $\overline{x}$ in $Z$. The canonical map $$ \mathcal{G}_{\overline{x}} \longrightarrow (i_{small, *}\mathcal{G})_{\overline{x}} $$ corresponds to the functor $F : \mathcal{C}_1 \to \mathcal{C}_2$, $F(U, \overline{u}) = (U_Z, \overline{x})$. Now Lemmas \ref{lemma-closed-immersion-almost-essentially-surjective} and \ref{lemma-closed-immersion-almost-full} imply that $\mathcal{C}_1$ is cofinal in $\mathcal{C}_2$, see Categories, Definition \ref{categories-definition-cofinal}. Hence it follows that the displayed arrow is an isomorphism, see Categories, Lemma \ref{categories-lemma-cofinal}. \end{proof} \begin{proposition} \label{proposition-closed-immersion-pushforward} Let $i : Z \to X$ be a closed immersion of schemes. \begin{enumerate} \item The functor $$ i_{small, *} : \Sh(Z_\etale) \longrightarrow \Sh(X_\etale) $$ is fully faithful and its essential image is those sheaves of sets $\mathcal{F}$ on $X_\etale$ whose restriction to $X \setminus Z$ is isomorphic to $*$, and \item the functor $$ i_{small, *} : \textit{Ab}(Z_\etale) \longrightarrow \textit{Ab}(X_\etale) $$ is fully faithful and its essential image is those abelian sheaves on $X_\etale$ whose support is contained in $Z$. \end{enumerate} In both cases $i_{small}^{-1}$ is a left inverse to the functor $i_{small, *}$. \end{proposition} \begin{proof} Let's discuss the case of sheaves of sets. For any sheaf $\mathcal{G}$ on $Z$ the morphism $i_{small}^{-1}i_{small, *}\mathcal{G} \to \mathcal{G}$ is an isomorphism by Lemma \ref{lemma-stalk-pushforward-closed-immersion} (and Theorem \ref{theorem-exactness-stalks}). This implies formally that $i_{small, *}$ is fully faithful, see Sites, Lemma \ref{sites-lemma-exactness-properties}. It is clear that $i_{small, *}\mathcal{G}|_{U_\etale} \cong *$ where $U = X \setminus Z$. Conversely, suppose that $\mathcal{F}$ is a sheaf of sets on $X$ such that $\mathcal{F}|_{U_\etale} \cong *$. Consider the adjunction mapping $$ \mathcal{F} \longrightarrow i_{small, *}i_{small}^{-1}\mathcal{F} $$ Combining Lemmas \ref{lemma-stalk-pushforward-closed-immersion} and \ref{lemma-stalk-pullback} we see that it is an isomorphism. This finishes the proof of (1). The proof of (2) is identical. \end{proof} \section{Integral universally injective morphisms} \label{section-integral-universally-injective} \noindent Here is the general version of Proposition \ref{proposition-closed-immersion-pushforward}. \begin{proposition} \label{proposition-integral-universally-injective-pushforward} Let $f : X \to Y$ be a morphism of schemes which is integral and universally injective. \begin{enumerate} \item The functor $$ f_{small, *} : \Sh(X_\etale) \longrightarrow \Sh(Y_\etale) $$ is fully faithful and its essential image is those sheaves of sets $\mathcal{F}$ on $Y_\etale$ whose restriction to $Y \setminus f(X)$ is isomorphic to $*$, and \item the functor $$ f_{small, *} : \textit{Ab}(X_\etale) \longrightarrow \textit{Ab}(Y_\etale) $$ is fully faithful and its essential image is those abelian sheaves on $Y_\etale$ whose support is contained in $f(X)$. \end{enumerate} In both cases $f_{small}^{-1}$ is a left inverse to the functor $f_{small, *}$. \end{proposition} \begin{proof} We may factor $f$ as $$ \xymatrix{ X \ar[r]^h & Z \ar[r]^i & Y } $$ where $h$ is integral, universally injective and surjective and $i : Z \to Y$ is a closed immersion. Apply Proposition \ref{proposition-closed-immersion-pushforward} to $i$ and apply Theorem \ref{theorem-topological-invariance} to $h$. \end{proof} \section{Big sites and pushforward} \label{section-big} \noindent In this section we prove some technical results on $f_{big, *}$ for certain types of morphisms of schemes. \begin{lemma} \label{lemma-monomorphism-big-push-pull} Let $\tau \in \{Zariski, \etale, smooth, syntomic, fppf\}$. Let $f : X \to Y$ be a monomorphism of schemes. Then the canonical map $f_{big}^{-1}f_{big, *}\mathcal{F} \to \mathcal{F}$ is an isomorphism for any sheaf $\mathcal{F}$ on $(\Sch/X)_\tau$. \end{lemma} \begin{proof} In this case the functor $(\Sch/X)_\tau \to (\Sch/Y)_\tau$ is continuous, cocontinuous and fully faithful. Hence the result follows from Sites, Lemma \ref{sites-lemma-back-and-forth}. \end{proof} \begin{remark} \label{remark-push-pull-shriek} In the situation of Lemma \ref{lemma-monomorphism-big-push-pull} it is true that the canonical map $\mathcal{F} \to f_{big}^{-1}f_{big!}\mathcal{F}$ is an isomorphism for any sheaf of sets $\mathcal{F}$ on $(\Sch/X)_\tau$. The proof is the same. This also holds for sheaves of abelian groups. However, note that the functor $f_{big!}$ for sheaves of abelian groups is defined in Modules on Sites, Section \ref{sites-modules-section-exactness-lower-shriek} and is in general different from $f_{big!}$ on sheaves of sets. The result for sheaves of abelian groups follows from Modules on Sites, Lemma \ref{sites-modules-lemma-back-and-forth}. \end{remark} \begin{lemma} \label{lemma-closed-immersion-cover-from-below} Let $f : X \to Y$ be a closed immersion of schemes. Let $U \to X$ be a syntomic (resp.\ smooth, resp.\ \'etale) morphism. Then there exist syntomic (resp.\ smooth, resp.\ \'etale) morphisms $V_i \to Y$ and morphisms $V_i \times_Y X \to U$ such that $\{V_i \times_Y X \to U\}$ is a Zariski covering of $U$. \end{lemma} \begin{proof} Let us prove the lemma when $\tau = syntomic$. The question is local on $U$. Thus we may assume that $U$ is an affine scheme mapping into an affine of $Y$. Hence we reduce to proving the following case: $Y = \Spec(A)$, $X = \Spec(A/I)$, and $U = \Spec(\overline{B})$, where $A/I \to \overline{B}$ be a syntomic ring map. By Algebra, Lemma \ref{algebra-lemma-lift-syntomic} we can find elements $\overline{g}_i \in \overline{B}$ such that $\overline{B}_{\overline{g}_i} = A_i/IA_i$ for certain syntomic ring maps $A \to A_i$. This proves the lemma in the syntomic case. The proof of the smooth case is the same except it uses Algebra, Lemma \ref{algebra-lemma-lift-smooth}. In the \'etale case use Algebra, Lemma \ref{algebra-lemma-lift-etale}. \end{proof} \begin{lemma} \label{lemma-prepare-closed-immersion-almost-cocontinuous} Let $f : X \to Y$ be a closed immersion of schemes. Let $\{U_i \to X\}$ be a syntomic (resp.\ smooth, resp.\ \'etale) covering. There exists a syntomic (resp.\ smooth, resp.\ \'etale) covering $\{V_j \to Y\}$ such that for each $j$, either $V_j \times_Y X = \emptyset$, or the morphism $V_j \times_Y X \to X$ factors through $U_i$ for some $i$. \end{lemma} \begin{proof} For each $i$ we can choose syntomic (resp.\ smooth, resp.\ \'etale) morphisms $g_{ij} : V_{ij} \to Y$ and morphisms $V_{ij} \times_Y X \to U_i$ over $X$, such that $\{V_{ij} \times_Y X \to U_i\}$ are Zariski coverings, see Lemma \ref{lemma-closed-immersion-cover-from-below}. This in particular implies that $\bigcup_{ij} g_{ij}(V_{ij})$ contains the closed subset $f(X)$. Hence the family of syntomic (resp.\ smooth, resp.\ \'etale) maps $g_{ij}$ together with the open immersion $Y \setminus f(X) \to Y$ forms the desired syntomic (resp.\ smooth, resp.\ \'etale) covering of $Y$. \end{proof} \begin{lemma} \label{lemma-closed-immersion-almost-cocontinuous} Let $f : X \to Y$ be a closed immersion of schemes. Let $\tau \in \{syntomic, smooth, \etale\}$. The functor $V \mapsto X \times_Y V$ defines an almost cocontinuous functor (see Sites, Definition \ref{sites-definition-almost-cocontinuous}) $(\Sch/Y)_\tau \to (\Sch/X)_\tau$ between big $\tau$ sites. \end{lemma} \begin{proof} We have to show the following: given a morphism $V \to Y$ and any syntomic (resp.\ smooth, resp.\ \'etale) covering $\{U_i \to X \times_Y V\}$, there exists a smooth (resp.\ smooth, resp.\ \'etale) covering $\{V_j \to V\}$ such that for each $j$, either $X \times_Y V_j$ is empty, or $X \times_Y V_j \to Z \times_Y V$ factors through one of the $U_i$. This follows on applying Lemma \ref{lemma-prepare-closed-immersion-almost-cocontinuous} above to the closed immersion $X \times_Y V \to V$. \end{proof} \begin{lemma} \label{lemma-closed-immersion-pushforward-exact} Let $f : X \to Y$ be a closed immersion of schemes. Let $\tau \in \{syntomic, smooth, \etale\}$. \begin{enumerate} \item The pushforward $f_{big, *} : \Sh((\Sch/X)_\tau) \to \Sh((\Sch/Y)_\tau)$ commutes with coequalizers and pushouts. \item The pushforward $f_{big, *} : \textit{Ab}((\Sch/X)_\tau) \to \textit{Ab}((\Sch/Y)_\tau)$ is exact. \end{enumerate} \end{lemma} \begin{proof} This follows from Sites, Lemma \ref{sites-lemma-morphism-of-sites-almost-cocontinuous}, Modules on Sites, Lemma \ref{sites-modules-lemma-morphism-ringed-sites-almost-cocontinuous}, and Lemma \ref{lemma-closed-immersion-almost-cocontinuous} above. \end{proof} \begin{remark} \label{remark-fppf-closed-immersion-not-closed} In Lemma \ref{lemma-closed-immersion-pushforward-exact} the case $\tau = fppf$ is missing. The reason is that given a ring $A$, an ideal $I$ and a faithfully flat, finitely presented ring map $A/I \to \overline{B}$, there is no reason to think that one can find {\it any} flat finitely presented ring map $A \to B$ with $B/IB \not = 0$ such that $A/I \to B/IB$ factors through $\overline{B}$. Hence the proof of Lemma \ref{lemma-closed-immersion-almost-cocontinuous} does not work for the fppf topology. In fact it is likely false that $f_{big, *} : \textit{Ab}((\Sch/X)_{fppf}) \to \textit{Ab}((\Sch/Y)_{fppf})$ is exact when $f$ is a closed immersion. If you know an example, please email \href{mailto:stacks.project@gmail.com}{stacks.project@gmail.com}. \end{remark} \section{Exactness of big lower shriek} \label{section-exactness-lower-shriek} \noindent This is just the following technical result. Note that the functor $f_{big!}$ has nothing whatsoever to do with cohomology with compact support in general. \begin{lemma} \label{lemma-exactness-lower-shriek} Let $\tau \in \{Zariski, \etale, smooth, syntomic, fppf\}$. Let $f : X \to Y$ be a morphism of schemes. Let $$ f_{big} : \Sh((\Sch/X)_\tau) \longrightarrow \Sh((\Sch/Y)_\tau) $$ be the corresponding morphism of topoi as in Topologies, Lemma \ref{topologies-lemma-morphism-big}, \ref{topologies-lemma-morphism-big-etale}, \ref{topologies-lemma-morphism-big-smooth}, \ref{topologies-lemma-morphism-big-syntomic}, or \ref{topologies-lemma-morphism-big-fppf}. \begin{enumerate} \item The functor $f_{big}^{-1} : \textit{Ab}((\Sch/Y)_\tau) \to \textit{Ab}((\Sch/X)_\tau)$ has a left adjoint $$ f_{big!} : \textit{Ab}((\Sch/X)_\tau) \to \textit{Ab}((\Sch/Y)_\tau) $$ which is exact. \item The functor $f_{big}^* : \textit{Mod}((\Sch/Y)_\tau, \mathcal{O}) \to \textit{Mod}((\Sch/X)_\tau, \mathcal{O})$ has a left adjoint $$ f_{big!} : \textit{Mod}((\Sch/X)_\tau, \mathcal{O}) \to \textit{Mod}((\Sch/Y)_\tau, \mathcal{O}) $$ which is exact. \end{enumerate} Moreover, the two functors $f_{big!}$ agree on underlying sheaves of abelian groups. \end{lemma} \begin{proof} Recall that $f_{big}$ is the morphism of topoi associated to the continuous and cocontinuous functor $u : (\Sch/X)_\tau \to (\Sch/Y)_\tau$, $U/X \mapsto U/Y$. Moreover, we have $f_{big}^{-1}\mathcal{O} = \mathcal{O}$. Hence the existence of $f_{big!}$ follows from Modules on Sites, Lemma \ref{sites-modules-lemma-g-shriek-adjoint}, respectively Modules on Sites, Lemma \ref{sites-modules-lemma-lower-shriek-modules}. Note that if $U$ is an object of $(\Sch/X)_\tau$ then the functor $u$ induces an equivalence of categories $$ u' : (\Sch/X)_\tau/U \longrightarrow (\Sch/Y)_\tau/U $$ because both sides of the arrow are equal to $(\Sch/U)_\tau$. Hence the agreement of $f_{big!}$ on underlying abelian sheaves follows from the discussion in Modules on Sites, Remark \ref{sites-modules-remark-when-shriek-equal}. The exactness of $f_{big!}$ follows from Modules on Sites, Lemma \ref{sites-modules-lemma-exactness-lower-shriek} as the functor $u$ above which commutes with fibre products and equalizers. \end{proof} \noindent Next, we prove a technical lemma that will be useful later when comparing sheaves of modules on different sites associated to algebraic stacks. \begin{lemma} \label{lemma-compare-structure-sheaves} Let $X$ be a scheme. Let $\tau \in \{Zariski, \etale, smooth, syntomic, fppf\}$. Let $\mathcal{C}_1 \subset \mathcal{C}_2 \subset (\Sch/X)_\tau$ be full subcategories with the following properties: \begin{enumerate} \item For an object $U/X$ of $\mathcal{C}_t$, \begin{enumerate} \item if $\{U_i \to U\}$ is a covering of $(\Sch/X)_\tau$, then $U_i/X$ is an object of $\mathcal{C}_t$, \item $U \times \mathbf{A}^1/X$ is an object of $\mathcal{C}_t$. \end{enumerate} \item $X/X$ is an object of $\mathcal{C}_t$. \end{enumerate} We endow $\mathcal{C}_t$ with the structure of a site whose coverings are exactly those coverings $\{U_i \to U\}$ of $(\Sch/X)_\tau$ with $U \in \Ob(\mathcal{C}_t)$. Then \begin{enumerate} \item[(a)] The functor $\mathcal{C}_1 \to \mathcal{C}_2$ is fully faithful, continuous, and cocontinuous. \end{enumerate} Denote $g : \Sh(\mathcal{C}_1) \to \Sh(\mathcal{C}_2)$ the corresponding morphism of topoi. Denote $\mathcal{O}_t$ the restriction of $\mathcal{O}$ to $\mathcal{C}_t$. Denote $g_!$ the functor of Modules on Sites, Definition \ref{sites-modules-definition-g-shriek}. \begin{enumerate} \item[(b)] The canonical map $g_!\mathcal{O}_1 \to \mathcal{O}_2$ is an isomorphism. \end{enumerate} \end{lemma} \begin{proof} Assertion (a) is immediate from the definitions. In this proof all schemes are schemes over $X$ and all morphisms of schemes are morphisms of schemes over $X$. Note that $g^{-1}$ is given by restriction, so that for an object $U$ of $\mathcal{C}_1$ we have $\mathcal{O}_1(U) = \mathcal{O}_2(U) = \mathcal{O}(U)$. Recall that $g_!\mathcal{O}_1$ is the sheaf associated to the presheaf $g_{p!}\mathcal{O}_1$ which associates to $V$ in $\mathcal{C}_2$ the group $$ \colim_{V \to U} \mathcal{O}(U) $$ where $U$ runs over the objects of $\mathcal{C}_1$ and the colimit is taken in the category of abelian groups. Below we will use frequently that if $$ V \to U \to U' $$ are morphisms with $U, U' \in \Ob(\mathcal{C}_1)$ and if $f' \in \mathcal{O}(U')$ restricts to $f \in \mathcal{O}(U)$, then $(V \to U, f)$ and $(V \to U', f')$ define the same element of the colimit. Also, $g_!\mathcal{O}_1 \to \mathcal{O}_2$ maps the element $(V \to U, f)$ simply to the pullback of $f$ to $V$. \medskip\noindent Surjectivity. Let $V$ be a scheme and let $h \in \mathcal{O}(V)$. Then we obtain a morphism $V \to X \times \mathbf{A}^1$ induced by $h$ and the structure morphism $V \to X$. Writing $\mathbf{A}^1 = \Spec(\mathbf{Z}[x])$ we see the element $x \in \mathcal{O}(X \times \mathbf{A}^1)$ pulls back to $h$. Since $X \times \mathbf{A}^1$ is an object of $\mathcal{C}_1$ by assumptions (1)(b) and (2) we obtain the desired surjectivity. \medskip\noindent Injectivity. Let $V$ be a scheme. Let $s = \sum_{i = 1, \ldots, n} (V \to U_i, f_i)$ be an element of the colimit displayed above. For any $i$ we can use the morphism $f_i : U_i \to X \times \mathbf{A}^1$ to see that $(V \to U_i, f_i)$ defines the same element of the colimit as $(f_i : V \to X \times \mathbf{A}^1, x)$. Then we can consider $$ f_1 \times \ldots \times f_n : V \to X \times \mathbf{A}^n $$ and we see that $s$ is equivalent in the colimit to $$ \sum\nolimits_{i = 1, \ldots, n} (f_1 \times \ldots \times f_n : V \to X \times \mathbf{A}^n, x_i) = (f_1 \times \ldots \times f_n : V \to X \times \mathbf{A}^n, x_1 + \ldots + x_n) $$ Now, if $x_1 + \ldots + x_n$ restricts to zero on $V$, then we see that $f_1 \times \ldots \times f_n$ factors through $X \times \mathbf{A}^{n - 1} = V(x_1 + \ldots + x_n)$. Hence we see that $s$ is equivalent to zero in the colimit. \end{proof} %9.29.09 \section{\'Etale cohomology} \label{section-etale-cohomology} \noindent In the following sections we prove some basic results on \'etale cohomology. Here is an example of something we know for cohomology of topological spaces which also holds for \'etale cohomology. \begin{lemma}[Mayer-Vietoris for \'etale cohomology] \label{lemma-mayer-vietoris} Let $X$ be a scheme. Suppose that $X = U \cup V$ is a union of two opens. For any abelian sheaf $\mathcal{F}$ on $X_\etale$ there exists a long exact cohomology sequence $$ \begin{matrix} 0 \to H^0_\etale(X, \mathcal{F}) \to H^0_\etale(U, \mathcal{F}) \oplus H^0_\etale(V, \mathcal{F}) \to H^0_\etale(U \cap V, \mathcal{F}) \phantom{\to \ldots} \\ \phantom{0} \to H^1_\etale(X, \mathcal{F}) \to H^1_\etale(U, \mathcal{F}) \oplus H^1_\etale(V, \mathcal{F}) \to H^1_\etale(U \cap V, \mathcal{F}) \to \ldots \end{matrix} $$ This long exact sequence is functorial in $\mathcal{F}$. \end{lemma} \begin{proof} Observe that if $\mathcal{I}$ is an injective abelian sheaf, then $$ 0 \to \mathcal{I}(X) \to \mathcal{I}(U) \oplus \mathcal{I}(V) \to \mathcal{I}(U \cap V) \to 0 $$ is exact. This is true in the first and middle spots as $\mathcal{I}$ is a sheaf. It is true on the right, because $\mathcal{I}(U) \to \mathcal{I}(U \cap V)$ is surjective by Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-restriction-along-monomorphism-surjective}. Another way to prove it would be to show that the cokernel of the map $\mathcal{I}(U) \oplus \mathcal{I}(V) \to \mathcal{I}(U \cap V)$ is the first {\v C}ech cohomology group of $\mathcal{I}$ with respect to the covering $X = U \cup V$ which vanishes by Lemmas \ref{lemma-hom-injective} and \ref{lemma-forget-injectives}. Thus, if $\mathcal{F} \to \mathcal{I}^\bullet$ is an injective resolution, then $$ 0 \to \mathcal{I}^\bullet(X) \to \mathcal{I}^\bullet(U) \oplus \mathcal{I}^\bullet(V) \to \mathcal{I}^\bullet(U \cap V) \to 0 $$ is a short exact sequence of complexes and the associated long exact cohomology sequence is the sequence of the statement of the lemma. \end{proof} \begin{lemma}[Relative Mayer-Vietoris] \label{lemma-relative-mayer-vietoris} Let $f : X \to Y$ be a morphism of schemes. Suppose that $X = U \cup V$ is a union of two open subschemes. Denote $a = f|_U : U \to Y$, $b = f|_V : V \to Y$, and $c = f|_{U \cap V} : U \cap V \to Y$. For every abelian sheaf $\mathcal{F}$ on $X_\etale$ there exists a long exact sequence $$ 0 \to f_*\mathcal{F} \to a_*(\mathcal{F}|_U) \oplus b_*(\mathcal{F}|_V) \to c_*(\mathcal{F}|_{U \cap V}) \to R^1f_*\mathcal{F} \to \ldots $$ on $Y_\etale$. This long exact sequence is functorial in $\mathcal{F}$. \end{lemma} \begin{proof} Let $\mathcal{F} \to \mathcal{I}^\bullet$ be an injective resolution of $\mathcal{F}$ on $X_\etale$. We claim that we get a short exact sequence of complexes $$ 0 \to f_*\mathcal{I}^\bullet \to a_*\mathcal{I}^\bullet|_U \oplus b_*\mathcal{I}^\bullet|_V \to c_*\mathcal{I}^\bullet|_{U \cap V} \to 0. $$ Namely, for any $W$ in $Y_\etale$, and for any $n \geq 0$ the corresponding sequence of groups of sections over $W$ $$ 0 \to \mathcal{I}^n(W \times_Y X) \to \mathcal{I}^n(W \times_Y U) \oplus \mathcal{I}^n(W \times_Y V) \to \mathcal{I}^n(W \times_Y (U \cap V)) \to 0 $$ was shown to be short exact in the proof of Lemma \ref{lemma-mayer-vietoris}. The lemma follows by taking cohomology sheaves and using the fact that $\mathcal{I}^\bullet|_U$ is an injective resolution of $\mathcal{F}|_U$ and similarly for $\mathcal{I}^\bullet|_V$, $\mathcal{I}^\bullet|_{U \cap V}$. \end{proof} \section{Colimits} \label{section-colimit} \noindent We recall that if $(\mathcal{F}_i, \varphi_{ii'})$ is a diagram of sheaves on a site $\mathcal{C}$ its colimit (in the category of sheaves) is the sheafification of the presheaf $U \mapsto \colim_i \mathcal{F}_i(U)$. See Sites, Lemma \ref{sites-lemma-colimit-sheaves}. If the system is directed, $U$ is a quasi-compact object of $\mathcal{C}$ which has a cofinal system of coverings by quasi-compact objects, then $\mathcal{F}(U) = \colim \mathcal{F}_i(U)$, see Sites, Lemma \ref{sites-lemma-directed-colimits-sections}. See Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-colim-works-over-collection} for a result dealing with higher cohomology groups of colimits of abelian sheaves. \medskip\noindent In Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-colimit} we generalize this result to a system of sheaves on an inverse system of sites. Here is the corresponding notion in the case of a system of \'etale sheaves living on an inverse system of schemes. \begin{definition} \label{definition-inverse-system-sheaves} Let $I$ be a preordered set. Let $(X_i, f_{i'i})$ be an inverse system of schemes over $I$. A {\it system $(\mathcal{F}_i, \varphi_{i'i})$ of sheaves on $(X_i, f_{i'i})$} is given by \begin{enumerate} \item a sheaf $\mathcal{F}_i$ on $(X_i)_\etale$ for all $i \in I$, \item for $i' \geq i$ a map $\varphi_{i'i} : f_{i'i}^{-1}\mathcal{F}_i \to \mathcal{F}_{i'}$ of sheaves on $(X_{i'})_\etale$ \end{enumerate} such that $\varphi_{i''i} = \varphi_{i''i'} \circ f_{i'' i'}^{-1}\varphi_{i'i}$ whenever $i'' \geq i' \geq i$. \end{definition} \noindent In the situation of Definition \ref{definition-inverse-system-sheaves}, assume $I$ is a directed set and the transition morphisms $f_{i'i}$ affine. Let $X = \lim X_i$ be the limit in the category of schemes, see Limits, Section \ref{limits-section-limits}. Denote $f_i : X \to X_i$ the projection morphisms and consider the maps $$ f_i^{-1}\mathcal{F}_i = f_{i'}^{-1}f_{i'i}^{-1}\mathcal{F}_i \xrightarrow{f_{i'}^{-1}\varphi_{i'i}} f_{i'}^{-1}\mathcal{F}_{i'} $$ This turns $f_i^{-1}\mathcal{F}_i$ into a system of sheaves on $X_\etale$ over $I$ (it is a good exercise to check this). We often want to know whether there is an isomorphism $$ H^q_\etale(X, \colim f_i^{-1}\mathcal{F}_i) = \colim H^q_\etale(X_i, \mathcal{F}_i) $$ It will turn out this is true if $X_i$ is quasi-compact and quasi-separated for all $i$, see Theorem \ref{theorem-colimit}. \begin{lemma} \label{lemma-colimit-affine-sites} Let $I$ be a directed set. Let $(X_i, f_{i'i})$ be an inverse system of schemes over $I$ with affine transition morphisms. Let $X = \lim_{i \in I} X_i$. With notation as in Topologies, Lemma \ref{topologies-lemma-alternative} we have $$ X_{affine, \etale} = \colim (X_i)_{affine, \etale} $$ as sites in the sense of Sites, Lemma \ref{sites-lemma-colimit-sites}. \end{lemma} \begin{proof} Let us first prove this when $X$ and $X_i$ are quasi-compact and quasi-separated for all $i$ (as this is true in all cases of interest). In this case any object of $X_{affine, \etale}$, resp.\ $(X_i)_{affine, \etale}$ is of finite presentation over $X$. Moreover, the category of schemes of finite presentation over $X$ is the colimit of the categories of schemes of finite presentation over $X_i$, see Limits, Lemma \ref{limits-lemma-descend-finite-presentation}. The same holds for the subcategories of affine objects \'etale over $X$ by Limits, Lemmas \ref{limits-lemma-limit-affine} and \ref{limits-lemma-descend-etale}. Finally, if $\{U^j \to U\}$ is a covering of $X_{affine, \etale}$ and if $U_i^j \to U_i$ is morphism of affine schemes \'etale over $X_i$ whose base change to $X$ is $U^j \to U$, then we see that the base change of $\{U^j_i \to U_i\}$ to some $X_{i'}$ is a covering for $i'$ large enough, see Limits, Lemma \ref{limits-lemma-descend-surjective}. \medskip\noindent In the general case, let $U$ be an object of $X_{affine, \etale}$. Then $U \to X$ is \'etale and separated (as $U$ is separated) but in general not quasi-compact. Still, $U \to X$ is locally of finite presentation and hence by Limits, Lemma \ref{limits-lemma-descend-finite-presentation-variant} there exists an $i$, a quasi-compact and quasi-separated scheme $U_i$, and a morphism $U_i \to X_i$ which is locally of finite presentation whose base change to $X$ is $U \to X$. Then $U = \lim_{i' \geq i} U_{i'}$ where $U_{i'} = U_i \times_{X_i} X_{i'}$. After increasing $i$ we may assume $U_i$ is affine, see Limits, Lemma \ref{limits-lemma-limit-affine}. To check that $U_i \to X_i$ is \'etale for $i$ sufficiently large, choose a finite affine open covering $U_i = U_{i, 1} \cup \ldots \cup U_{i, m}$ such that $U_{i, j} \to U_i \to X_i$ maps into an affine open $W_{i, j} \subset X_i$. Then we can apply Limits, Lemma \ref{limits-lemma-descend-etale} to see that $U_{i, j} \to W_{i, j}$ is \'etale after possibly increasing $i$. In this way we see that the functor $\colim (X_i)_{affine, \etale} \to X_{affine, \etale}$ is essentially surjective. Fully faithfulness follows directly from the already used Limits, Lemma \ref{limits-lemma-descend-finite-presentation-variant}. The statement on coverings is proved in exactly the same manner as done in the first paragraph of the proof. \end{proof} \noindent Using the above we get the following general result on colimits and cohomology. \begin{theorem} \label{theorem-colimit} Let $X = \lim_{i \in I} X_i$ be a limit of a directed system of schemes with affine transition morphisms $f_{i'i} : X_{i'} \to X_i$. We assume that $X_i$ is quasi-compact and quasi-separated for all $i \in I$. Let $(\mathcal{F}_i, \varphi_{i'i})$ be a system of abelian sheaves on $(X_i, f_{i'i})$. Denote $f_i : X \to X_i$ the projection and set $\mathcal{F} = \colim f_i^{-1}\mathcal{F}_i$. Then $$ \colim_{i\in I} H_\etale^p(X_i, \mathcal{F}_i) = H_\etale^p(X, \mathcal{F}). $$ for all $p \geq 0$. \end{theorem} \begin{proof} By Topologies, Lemma \ref{topologies-lemma-alternative} we can compute the cohomology of $\mathcal{F}$ on $X_{affine, \etale}$. Thus the result by a combination of Lemma \ref{lemma-colimit-affine-sites} and Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-colimit}. \end{proof} \noindent The following two results are special cases of the theorem above. \begin{lemma} \label{lemma-colimit} Let $X$ be a quasi-compact and quasi-separated scheme. Let $I$ be a directed set. Let $(\mathcal{F}_i, \varphi_{ij})$ be a system of abelian sheaves on $X_\etale$ over $I$. Then $$ \colim_{i\in I} H_\etale^p(X, \mathcal{F}_i) = H_\etale^p(X, \colim_{i\in I} \mathcal{F}_i). $$ \end{lemma} \begin{proof} This is a special case of Theorem \ref{theorem-colimit}. We also sketch a direct proof. We prove it for all $X$ at the same time, by induction on $p$. \begin{enumerate} \item For any quasi-compact and quasi-separated scheme $X$ and any \'etale covering $\mathcal{U}$ of $X$, show that there exists a refinement $\mathcal{V} = \{V_j \to X\}_{j\in J}$ with $J$ finite and each $V_j$ quasi-compact and quasi-separated such that all $V_{j_0} \times_X \ldots \times_X V_{j_p}$ are also quasi-compact and quasi-separated. \item Using the previous step and the definition of colimits in the category of sheaves, show that the theorem holds for $p = 0$ and all $X$. \item Using the locality of cohomology (Lemma \ref{lemma-locality-cohomology}), the {\v C}ech-to-cohomology spectral sequence (Theorem \ref{theorem-cech-ss}) and the fact that the induction hypothesis applies to all $V_{j_0} \times_X \ldots \times_X V_{j_p}$ in the above situation, prove the induction step $p \to p + 1$. \end{enumerate} \end{proof} \begin{lemma} \label{lemma-directed-colimit-cohomology} Let $A$ be a ring, $(I, \leq)$ a directed set and $(B_i, \varphi_{ij})$ a system of $A$-algebras. Set $B = \colim_{i\in I} B_i$. Let $X \to \Spec(A)$ be a quasi-compact and quasi-separated morphism of schemes. Let $\mathcal{F}$ an abelian sheaf on $X_\etale$. Denote $Y_i = X \times_{\Spec(A)} \Spec(B_i)$, $Y = X \times_{\Spec(A)} \Spec(B)$, $\mathcal{G}_i = (Y_i \to X)^{-1}\mathcal{F}$ and $\mathcal{G} = (Y \to X)^{-1}\mathcal{F}$. Then $$ H_\etale^p(Y, \mathcal{G}) = \colim_{i\in I} H_\etale^p (Y_i, \mathcal{G}_i). $$ \end{lemma} \begin{proof} This is a special case of Theorem \ref{theorem-colimit}. We also outline a direct proof as follows. \begin{enumerate} \item Given $V \to Y$ \'etale with $V$ quasi-compact and quasi-separated, there exist $i\in I$ and $V_i \to Y_i$ such that $V = V_i \times_{Y_i} Y$. If all the schemes considered were affine, this would correspond to the following algebra statement: if $B = \colim B_i$ and $B \to C$ is \'etale, then there exist $i \in I$ and $B_i \to C_i$ \'etale such that $C \cong B \otimes_{B_i} C_i$. This is proved in Algebra, Lemma \ref{algebra-lemma-etale}. \item In the situation of (1) show that $\mathcal{G}(V) = \colim_{i' \geq i} \mathcal{G}_{i'}(V_{i'})$ where $V_{i'}$ is the base change of $V_i$ to $Y_{i'}$. \item By (1), we see that for every \'etale covering $\mathcal{V} = \{V_j \to Y\}_{j\in J}$ with $J$ finite and the $V_j$s quasi-compact and quasi-separated, there exists $i \in I$ and an \'etale covering $\mathcal{V}_i = \{V_{ij} \to Y_i\}_{j \in J}$ such that $\mathcal{V} \cong \mathcal{V}_i \times_{Y_i} Y$. \item Show that (2) and (3) imply $$ \check H^*(\mathcal{V}, \mathcal{G})= \colim_{i\in I} \check H^*(\mathcal{V}_i, \mathcal{G}_i). $$ \item Cleverly use the {\v C}ech-to-cohomology spectral sequence (Theorem \ref{theorem-cech-ss}). \end{enumerate} \end{proof} \begin{lemma} \label{lemma-higher-direct-images} Let $f: X\to Y$ be a morphism of schemes and $\mathcal{F}\in \textit{Ab}(X_\etale)$. Then $R^pf_*\mathcal{F}$ is the sheaf associated to the presheaf $$ (V \to Y) \longmapsto H_\etale^p(X \times_Y V, \mathcal{F}|_{X \times_Y V}). $$ More generally, for $K \in D(X_\etale)$ we have that $R^pf_*K$ is the sheaf associated to the presheaf $$ (V \to Y) \longmapsto H_\etale^p(X \times_Y V, K|_{X \times_Y V}). $$ \end{lemma} \begin{proof} This lemma is valid for topological spaces, and the proof in this case is the same. See Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-higher-direct-images} for the case of a sheaf and see Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-sheafification-cohomology} for the case of a complex of abelian sheaves. \end{proof} \begin{lemma} \label{lemma-relative-colimit} Let $S$ be a scheme. Let $X = \lim_{i \in I} X_i$ be a limit of a directed system of schemes over $S$ with affine transition morphisms $f_{i'i} : X_{i'} \to X_i$. We assume the structure morphisms $g_i : X_i \to S$ and $g : X \to S$ are quasi-compact and quasi-separated. Let $(\mathcal{F}_i, \varphi_{i'i})$ be a system of abelian sheaves on $(X_i, f_{i'i})$. Denote $f_i : X \to X_i$ the projection and set $\mathcal{F} = \colim f_i^{-1}\mathcal{F}_i$. Then $$ \colim_{i\in I} R^p g_{i, *} \mathcal{F}_i = R^p g_* \mathcal{F} $$ for all $p \geq 0$. \end{lemma} \begin{proof} Recall (Lemma \ref{lemma-higher-direct-images}) that $R^p g_{i, *} \mathcal{F}_i$ is the sheaf associated to the presheaf $U \mapsto H^p_\etale(U \times_S X_i, \mathcal{F}_i)$ and similarly for $R^pg_*\mathcal{F}$. Moreover, the colimit of a system of sheaves is the sheafification of the colimit on the level of presheaves. Note that every object of $S_\etale$ has a covering by quasi-compact and quasi-separated objects (e.g., affine schemes). Moreover, if $U$ is a quasi-compact and quasi-separated object, then we have $$ \colim H^p_\etale(U \times_S X_i, \mathcal{F}_i) = H^p_\etale(U \times_S X, \mathcal{F}) $$ by Theorem \ref{theorem-colimit}. Thus the lemma follows. \end{proof} \begin{lemma} \label{lemma-relative-colimit-general} Let $I$ be a directed set. Let $g_i : X_i \to S_i$ be an inverse system of morphisms of schemes over $I$. Assume $g_i$ is quasi-compact and quasi-separated and for $i' \geq i$ the transition morphisms $f_{i'i} : X_{i'} \to X_i$ and $h_{i'i} : S_{i'} \to S_i$ are affine. Let $g : X \to S$ be the limit of the morphisms $g_i$, see Limits, Section \ref{limits-section-limits}. Denote $f_i : X \to X_i$ and $h_i : S \to S_i$ the projections. Let $(\mathcal{F}_i, \varphi_{i'i})$ be a system of sheaves on $(X_i, f_{i'i})$. Set $\mathcal{F} = \colim f_i^{-1}\mathcal{F}_i$. Then $$ R^p g_* \mathcal{F} = \colim_{i \in I} h_i^{-1}R^p g_{i, *} \mathcal{F}_i $$ for all $p \geq 0$. \end{lemma} \begin{proof} How is the map of the lemma constructed? For $i' \geq i$ we have a commutative diagram $$ \xymatrix{ X \ar[r]_{f_{i'}} \ar[d]_g & X_{i'} \ar[r]_{f_{i'i}} \ar[d]_{g_{i'}} & X_i \ar[d]^{g_i} \\ S \ar[r]^{h_{i'}} & S_{i'} \ar[r]^{h_{i'i}} & S_i } $$ If we combine the base change map $h_{i'i}^{-1}Rg_{i, *}\mathcal{F}_i \to Rg_{i', *}f_{i'i}^{-1}\mathcal{F}_i$ (Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-base-change-map-flat-case} or Remark \ref{sites-cohomology-remark-base-change}) with the map $Rg_{i', *}\varphi_{i'i}$, then we obtain $\psi_{i'i} : h_{i' i}^{-1} R^p g_{i, *} \mathcal{F}_i \to R^pg_{i', *} \mathcal{F}_{i'}$. Similarly, using the left square in the diagram we obtain maps $\psi_i : h_i^{-1}R^pg_{i, *}\mathcal{F}_i \to R^pg_*\mathcal{F}$. The maps $h_{i'}^{-1}\psi_{i'i}$ and $\psi_i$ are the maps used in the statement of the lemma. For this to make sense, we have to check that $\psi_{i''i} = \psi_{i''i'} \circ h_{i''i'}^{-1}\psi_{i'i}$ and $\psi_{i'} \circ h_{i'}^{-1}\psi_{i'i} = \psi_i$; this follows from Cohomology on Sites, Remark \ref{sites-cohomology-remark-compose-base-change-horizontal}. \medskip\noindent Proof of the equality. First proof using dimension shifting\footnote{You can also use this method to produce the maps in the lemma.}. For any $U$ affine and \'etale over $X$ by Theorem \ref{theorem-colimit} we have $$ g_*\mathcal{F}(U) = H^0(U \times_S X, \mathcal{F}) = \colim H^0(U_i \times_{S_i} X_i, \mathcal{F}_i) = \colim g_{i, *}\mathcal{F}_i(U_i) $$ where the colimit is over $i$ large enough such that there exists an $i$ and $U_i$ affine \'etale over $S_i$ whose base change is $U$ over $S$ (see Lemma \ref{lemma-colimit-affine-sites}). The right hand side is equal to $(\colim h_i^{-1}g_{i, *}\mathcal{F}_i)(U)$ by Sites, Lemma \ref{sites-lemma-colimit}. This proves the lemma for $p = 0$. If $(\mathcal{G}_i, \varphi_{i'i})$ is a system with $\mathcal{G} = \colim f_i^{-1}\mathcal{G}_i$ such that $\mathcal{G}_i$ is an injective abelian sheaf on $X_i$ for all $i$, then for any $U$ affine and \'etale over $X$ by Theorem \ref{theorem-colimit} we have $$ H^p(U \times_S X, \mathcal{G}) = \colim H^p(U_i \times_{S_i} X_i, \mathcal{G}_i) = 0 $$ for $p > 0$ (same colimit as before). Hence $R^pg_*\mathcal{G} = 0$ and we get the result for $p > 0$ for such a system. In general we may choose a short exact sequence of systems $$ 0 \to (\mathcal{F}_i, \varphi_{i'i}) \to (\mathcal{G}_i, \varphi_{i'i}) \to (\mathcal{Q}_i, \varphi_{i'i}) \to 0 $$ where $(\mathcal{G}_i, \varphi_{i'i})$ is as above, see Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-colim-sites-injective}. By induction the lemma holds for $p - 1$ and by the above we have vanishing for $p$ and $(\mathcal{G}_i, \varphi_{i'i})$. Hence the result for $p$ and $(\mathcal{F}_i, \varphi_{i'i})$ by the long exact sequence of cohomology. \medskip\noindent Second proof. Recall that $S_{affine, \etale} = \colim (S_i)_{affine, \etale}$, see Lemma \ref{lemma-colimit-affine-sites}. Thus if $U$ is an object of $S_{affine, \etale}$, then we can write $U = U_i \times_{S_i} S$ for some $i$ and some $U_i$ in $(S_i)_{affine, \etale}$ and $$ (\colim_{i \in I} h_i^{-1}R^p g_{i, *} \mathcal{F}_i)(U) = \colim_{i' \geq i} (R^p g_{i', *}\mathcal{F}_{i'})(U_i \times_{S_i} S_{i'}) $$ by Sites, Lemma \ref{sites-lemma-colimit} and the construction of the transition maps in the system described above. Since $R^pg_{i', *}\mathcal{F}_{i'}$ is the sheaf associated to the presheaf $U_{i'} \mapsto H^p(U_{i'} \times_{S_{i'}} X_{i'}, \mathcal{F}_{i'})$ and since $R^pg_*\mathcal{F}$ is the sheaf associated to the presheaf $U \mapsto H^p(U \times_S X, \mathcal{F})$ (Lemma \ref{lemma-higher-direct-images}) we obtain a canonical commutative diagram $$ \xymatrix{ \colim_{i' \geq i} H^p(U_i \times_{S_i} X_{i'}, \mathcal{F}_{i'}) \ar[r] \ar[d] & \colim_{i' \geq i} (R^p g_{i', *}\mathcal{F}_{i'})(U_i \times_{S_i} S_{i'}) \ar[d] \\ H^p(U \times_S X, \mathcal{F}) \ar[r] & R^pg_*\mathcal{F}(U) } $$ Observe that the left hand vertical arrow is an isomorphism by Theorem \ref{theorem-colimit}. We're trying to show that the right hand vertical arrow is an isomorphism. However, we already know that the source and target of this arrow are sheaves on $S_{affine, \etale}$. Hence it suffices to show: (1) an element in the target, locally comes from an element in the source and (2) an element in the source which maps to zero in the target locally vanishes. Part (1) follows immediately from the above and the fact that the lower horizontal arrow comes from a map of presheaves which becomes an isomorphism after sheafification. For part (2), say $\xi \in \colim_{i' \geq i} (R^p g_{i', *}\mathcal{F}_{i'})(U_i \times_{S_i} S_{i'})$ is in the kernel. Choose an $i' \geq i$ and $\xi_{i'} \in (R^p g_{i', *}\mathcal{F}_{i'})(U_i \times_{S_i} S_{i'})$ representing $\xi$. Choose a standard \'etale covering $\{U_{i', k} \to U_i \times_{S_i} S_{i'}\}_{k = 1, \ldots, m}$ such that $\xi_{i'}|_{U_{i', k}}$ comes from $\xi_{i', k} \in H^p(U_{i', k} \times_{S_{i'}} X_{i'}, \mathcal{F}_{i'})$. Since it is enough to prove that $\xi$ dies locally, we may replace $U$ by the members of the \'etale covering $\{U_{i', k} \times_{S_{i'}} S \to U = U_i \times_{S_i} S\}$. After this replacement we see that $\xi$ is the image of an element $\xi'$ of the group $\colim_{i' \geq i} H^p(U_i \times_{S_i} X_{i'}, \mathcal{F}_{i'})$ in the diagram above. Since $\xi'$ maps to zero in $R^pg_*\mathcal{F}(U)$ we can do another replacement and assume that $\xi'$ maps to zero in $H^p(U \times_S X, \mathcal{F})$. However, since the left vertical arrow is an isomorphism we then conclude $\xi' = 0$ hence $\xi = 0$ as desired. \end{proof} \begin{lemma} \label{lemma-linus-hamann} Let $X = \lim_{i \in I} X_i$ be a directed limit of schemes with affine transition morphisms $f_{i'i}$ and projection morphisms $f_i : X \to X_i$. Let $\mathcal{F}$ be a sheaf on $X_\etale$. Then \begin{enumerate} \item there are canonical maps $\varphi_{i'i} : f_{i'i}^{-1}f_{i, *}\mathcal{F} \to f_{i', *}\mathcal{F}$ such that $(f_{i, *}\mathcal{F}, \varphi_{i'i})$ is a system of sheaves on $(X_i, f_{i'i})$ as in Definition \ref{definition-inverse-system-sheaves}, and \item $\mathcal{F} = \colim f_i^{-1}f_{i, *}\mathcal{F}$. \end{enumerate} \end{lemma} \begin{proof} Via Topologies, Lemma \ref{topologies-lemma-alternative} and Lemma \ref{lemma-colimit-affine-sites} this is a special case of Sites, Lemma \ref{sites-lemma-colimit-push-pull}. \end{proof} \begin{lemma} \label{lemma-compute-strangely} Let $I$ be a directed set. Let $g_i : X_i \to S_i$ be an inverse system of morphisms of schemes over $I$. Assume $g_i$ is quasi-compact and quasi-separated and for $i' \geq i$ the transition morphisms $X_{i'} \to X_i$ and $S_{i'} \to S_i$ are affine. Let $g : X \to S$ be the limit of the morphisms $g_i$, see Limits, Section \ref{limits-section-limits}. Denote $f_i : X \to X_i$ and $h_i : S \to S_i$ the projections. Let $\mathcal{F}$ be an abelian sheaf on $X$. Then we have $$ R^pg_*\mathcal{F} = \colim_{i \in I} h_i^{-1}R^pg_{i, *}(f_{i, *}\mathcal{F}) $$ \end{lemma} \begin{proof} Formal combination of Lemmas \ref{lemma-relative-colimit-general} and \ref{lemma-linus-hamann}. \end{proof} \section{Colimits and complexes} \label{section-colimit-complexes} \noindent In this section we discuss taking cohomology of systems of complexes in various settings, continuing the discussion for sheaves started in Section \ref{section-colimit}. We strongly urge the reader not to read this section unless absolutely necessary. \begin{lemma} \label{lemma-colimit-variant-complexes} Let $X = \lim_{i \in I} X_i$ be a limit of a directed system of schemes with affine transition morphisms $f_{i'i} : X_{i'} \to X_i$. We assume that $X_i$ is quasi-compact and quasi-separated for all $i \in I$. Let $\mathcal{F}_i^\bullet$ be a complex of abelian sheaves on $X_{i, \etale}$. Let $\varphi_{i'i} : f_{i'i}^{-1}\mathcal{F}_i^\bullet \to \mathcal{F}_{i'}^\bullet$ be a map of complexes on $X_{i, \etale}$ such that $\varphi_{i''i} = \varphi_{i''i'} \circ f_{i'' i'}^{-1}\varphi_{i'i}$ whenever $i'' \geq i' \geq i$. Assume there is an integer $a$ such that $\mathcal{F}_i^n = 0$ for $n < a$ and all $i \in I$. Then we have $$ H^p_\etale(X, \colim f_i^{-1}\mathcal{F}_i^\bullet) = \colim H^p_\etale(X_i, \mathcal{F}^\bullet_i) $$ where $f_i : X \to X_i$ is the projection. \end{lemma} \begin{proof} This is a consequence of Theorem \ref{theorem-colimit}. Set $\mathcal{F}^\bullet = \colim f_i^{-1}\mathcal{F}_i^\bullet$. The theorem tells us that $$ \colim_{i \in I} H_\etale^p(X_i, \mathcal{F}_i^n) = H_\etale^p(X, \mathcal{F}^n) $$ for all $n, p \in \mathbf{Z}$. Let us use the spectral sequences $$ E_{1, i}^{s, t} = H_\etale^t(X_i, \mathcal{F}_i^s) \Rightarrow H_\etale^{s + t}(X_i, \mathcal{F}_i^\bullet) $$ and $$ E_1^{s, t} = H_\etale^t(X, \mathcal{F}^s) \Rightarrow H_\etale^{s + t}(X, \mathcal{F}^\bullet) $$ of Derived Categories, Lemma \ref{derived-lemma-two-ss-complex-functor}. Since $\mathcal{F}_i^n = 0$ for $n < a$ (with $a$ independent of $i$) we see that only a fixed finite number of terms $E_{1, i}^{s, t}$ (independent of $i$) and $E_1^{s, t}$ contribute to $H^q_\etale(X_i, \mathcal{F}_i^\bullet)$ and $H^q_\etale(X, \mathcal{F}^\bullet)$ and $E_1^{s, t} = \colim E_{i, i}^{s, t}$. This implies what we want. Some details omitted. (There is an alternative argument using ``stupid'' truncations of complexes which avoids using spectral sequences.) \end{proof} \begin{lemma} \label{lemma-direct-sum-bounded-below-cohomology} Let $X$ be a quasi-compact and quasi-sepated scheme. Let $K_i \in D(X_\etale)$, $i \in I$ be a family of objects. Assume given $a \in \mathbf{Z}$ such that $H^n(K_i) = 0$ for $n < a$ and $i \in I$. Then $R\Gamma(X, \bigoplus_i K_i) = \bigoplus_i R\Gamma(X, K_i)$. \end{lemma} \begin{proof} We have to show that $H^p(X, \bigoplus_i K_i) = \bigoplus_i H^p(X, K_i)$ for all $p \in \mathbf{Z}$. Choose complexes $\mathcal{F}_i^\bullet$ representing $K_i$ such that $\mathcal{F}_i^n = 0$ for $n < a$. The direct sum of the complexes $\mathcal{F}_i^\bullet$ represents the object $\bigoplus K_i$ by Injectives, Lemma \ref{injectives-lemma-derived-products}. Since $\bigoplus \mathcal{F}^\bullet$ is the filtered colimit of the finite direct sums, the result follows from Lemma \ref{lemma-colimit-variant-complexes}. \end{proof} \begin{lemma} \label{lemma-colimit-complexes} Let $S$ be a scheme. Let $X = \lim_{i \in I} X_i$ be a limit of a directed system of schemes over $S$ with affine transition morphisms $f_{i'i} : X_{i'} \to X_i$. We assume that $X_i$ is quasi-compact and quasi-separated for all $i \in I$. Let $K \in D^+(S_\etale)$. Then $$ \colim_{i \in I} H_\etale^p(X_i, K|_{X_i}) = H_\etale^p(X, K|_X). $$ for all $p \in \mathbf{Z}$ where $K|_{X_i}$ and $K|_X$ are the pullbacks of $K$ to $X_i$ and $X$. \end{lemma} \begin{proof} We may represent $K$ by a bounded below complex $\mathcal{G}^\bullet$ of abelian sheaves on $S_\etale$. Say $\mathcal{G}^n = 0$ for $n < a$. Denote $\mathcal{F}^\bullet_i$ and $\mathcal{F}^\bullet$ the pullbacks of this complex of $X_i$ and $X$. These complexes represent the objects $K|_{X_i}$ and $K|_X$ and we have $\mathcal{F}^\bullet = \colim f_i^{-1}\mathcal{F}_i^\bullet$ termwise. Hence the lemma follows from Lemma \ref{lemma-colimit-variant-complexes}. \end{proof} \begin{lemma} \label{lemma-relative-colimit-general-complexes} Let $I$, $g_i : X_i \to S_i$, $g : X \to S$, $f_i$, $g_i$, $h_i$ be as in Lemma \ref{lemma-relative-colimit-general}. Let $0 \in I$ and $K_0 \in D^+(X_{0, \etale})$. For $i \geq 0$ denote $K_i$ the pullback of $K_0$ to $X_i$. Denote $K$ the pullback of $K$ to $X$. Then $$ R^pg_*K = \colim_{i \geq 0} h_i^{-1}R^pg_{i, *}K_i $$ for all $p \in \mathbf{Z}$. \end{lemma} \begin{proof} Fix an integer $p_0 \in \mathbf{Z}$. Let $a$ be an integer such that $H^j(K_0) = 0$ for $j < a$. We will prove the formula holds for all $p \leq p_0$ by descending induction on $a$. If $a > p_0$, then we see that the left and right hand side of the formula are zero for $p \leq p_0$ by trivial vanishing, see Derived Categories, Lemma \ref{derived-lemma-negative-vanishing}. Assume $a \leq p_0$. Consider the distinguished triangle $$ H^a(K_0)[-a] \to K_0 \to \tau_{\geq a + 1}K_0 $$ Pulling back this distinguished triangle to $X_i$ and $X$ gives compatible distinguished triangles for $K_i$ and $K$. For $p \leq p_0$ we consider the commutative diagram $$ \xymatrix{ \colim_{i \geq 0} h_i^{-1}R^{p - 1}g_{i, *}(\tau_{\geq a + 1}K_i) \ar[r]_-\alpha \ar[d] & R^{p - 1}g_*(\tau_{\geq a + 1}K) \ar[d] \\ \colim_{i \geq 0} h_i^{-1}R^pg_{i, *}(H^a(K_i)[-a]) \ar[r]_-\beta \ar[d] & R^pg_*(H^a(K)[-a]) \ar[d] \\ \colim_{i \geq 0} h_i^{-1}R^pg_{i, *}K_i \ar[r]_-\gamma \ar[d] & R^pg_*K \ar[d] \\ \colim_{i \geq 0} R^pg_{i, *}\tau_{\geq a + 1}K_i \ar[r]_-\delta \ar[d] & R^pg_*\tau_{\geq a + 1}K \ar[d] \\ \colim_{i \geq 0} R^{p + 1}g_{i, *}(H^a(K_i)[-a]) \ar[r]^-\epsilon & R^{p + 1}g_*(H^a(K)[-a]) } $$ with exact columns. The arrows $\beta$ and $\epsilon$ are isomorphisms by Lemma \ref{lemma-relative-colimit-general}. The arrows $\alpha$ and $\delta$ are isomorphisms by induction hypothesis. Hence $\gamma$ is an isomorphism as desired. \end{proof} \begin{lemma} \label{lemma-relative-colimit-general-really-complexes} Let $I$, $g_i : X_i \to S_i$, $g : X \to S$, $f_{ii'}$, $f_i$, $g_i$, $h_i$ be as in Lemma \ref{lemma-relative-colimit-general}. Let $\mathcal{F}_i^\bullet$ be a complex of abelian sheaves on $X_{i, \etale}$. Let $\varphi_{i'i} : f_{i'i}^{-1}\mathcal{F}_i^\bullet \to \mathcal{F}_{i'}^\bullet$ be a map of complexes on $X_{i, \etale}$ such that $\varphi_{i''i} = \varphi_{i''i'} \circ f_{i'' i'}^{-1}\varphi_{i'i}$ whenever $i'' \geq i' \geq i$. Assume there is an integer $a$ such that $\mathcal{F}_i^n = 0$ for $n < a$ and all $i \in I$. Then $$ R^pg_*(\colim f_i^{-1}\mathcal{F}_i^\bullet) = \colim_{i \geq 0} h_i^{-1}R^pg_{i, *}\mathcal{F}_i^\bullet $$ for all $p \in \mathbf{Z}$. \end{lemma} \begin{proof} This is a consequence of Lemma \ref{lemma-relative-colimit-general}. Set $\mathcal{F}^\bullet = \colim f_i^{-1}\mathcal{F}_i^\bullet$. The lemma tells us that $$ \colim_{i \in I} h_i^{-1}R^pg_{i, *}\mathcal{F}_i^n = R^pg_*\mathcal{F}^n $$ for all $n, p \in \mathbf{Z}$. Let us use the spectral sequences $$ E_{1, i}^{s, t} = R^tg_{i, *}\mathcal{F}_i^s \Rightarrow R^{s + t}g_{i, *}\mathcal{F}_i^\bullet $$ and $$ E_1^{s, t} = R^tg_*\mathcal{F}^s \Rightarrow R^{s + t}g_*\mathcal{F}^\bullet $$ of Derived Categories, Lemma \ref{derived-lemma-two-ss-complex-functor}. Since $\mathcal{F}_i^n = 0$ for $n < a$ (with $a$ independent of $i$) we see that only a fixed finite number of terms $E_{1, i}^{s, t}$ (independent of $i$) and $E_1^{s, t}$ contribute and $E_1^{s, t} = \colim E_{i, i}^{s, t}$. This implies what we want. Some details omitted. (There is an alternative argument using ``stupid'' truncations of complexes which avoids using spectral sequences.) \end{proof} \begin{lemma} \label{lemma-direct-sum-bounded-below-pushforward} Let $f : X \to Y$ be a quasi-compact and quasi-sepated morphism of schemes. Let $K_i \in D(X_\etale)$, $i \in I$ be a family of objects. Assume given $a \in \mathbf{Z}$ such that $H^n(K_i) = 0$ for $n < a$ and $i \in I$. Then $Rf_*(\bigoplus_i K_i) = \bigoplus_i Rf_*K_i$. \end{lemma} \begin{proof} We have to show that $R^pf_*(\bigoplus_i K_i) = \bigoplus_i R^pf_*K_i$ for all $p \in \mathbf{Z}$. Choose complexes $\mathcal{F}_i^\bullet$ representing $K_i$ such that $\mathcal{F}_i^n = 0$ for $n < a$. The direct sum of the complexes $\mathcal{F}_i^\bullet$ represents the object $\bigoplus K_i$ by Injectives, Lemma \ref{injectives-lemma-derived-products}. Since $\bigoplus \mathcal{F}^\bullet$ is the filtered colimit of the finite direct sums, the result follows from Lemma \ref{lemma-relative-colimit-general-really-complexes}. \end{proof} \section{Stalks of higher direct images} \label{section-stalks-direct-image} \noindent The stalks of higher direct images can often be computed as follows. \begin{theorem} \label{theorem-higher-direct-images} Let $f: X \to S$ be a quasi-compact and quasi-separated morphism of schemes, $\mathcal{F}$ an abelian sheaf on $X_\etale$, and $\overline{s}$ a geometric point of $S$ lying over $s \in S$. Then $$ \left(R^nf_* \mathcal{F}\right)_{\overline{s}} = H_\etale^n( X \times_S \Spec(\mathcal{O}_{S, \overline{s}}^{sh}), p^{-1}\mathcal{F}) $$ where $p : X \times_S \Spec(\mathcal{O}_{S, \overline{s}}^{sh}) \to X$ is the projection. For $K \in D^+(X_\etale)$ and $n \in \mathbf{Z}$ we have $$ \left(R^nf_*K\right)_{\overline{s}} = H_\etale^n(X \times_S \Spec(\mathcal{O}_{S, \overline{s}}^{sh}), p^{-1}K) $$ In fact, we have $$ \left(Rf_*K\right)_{\overline{s}} = R\Gamma_\etale(X \times_S \Spec(\mathcal{O}_{S, \overline{s}}^{sh}), p^{-1}K) $$ in $D^+(\textit{Ab})$. \end{theorem} \begin{proof} Let $\mathcal{I}$ be the category of \'etale neighborhoods of $\overline{s}$ on $S$. By Lemma \ref{lemma-higher-direct-images} we have $$ (R^nf_*\mathcal{F})_{\overline{s}} = \colim_{(V, \overline{v}) \in \mathcal{I}^{opp}} H_\etale^n(X \times_S V, \mathcal{F}|_{X \times_S V}). $$ We may replace $\mathcal{I}$ by the initial subcategory consisting of affine \'etale neighbourhoods of $\overline{s}$. Observe that $$ \Spec(\mathcal{O}_{S, \overline{s}}^{sh}) = \lim_{(V, \overline{v}) \in \mathcal{I}} V $$ by Lemma \ref{lemma-describe-etale-local-ring} and Limits, Lemma \ref{limits-lemma-directed-inverse-system-affine-schemes-has-limit}. Since fibre products commute with limits we also obtain $$ X \times_S \Spec(\mathcal{O}_{S, \overline{s}}^{sh}) = \lim_{(V, \overline{v}) \in \mathcal{I}} X \times_S V $$ We conclude by Lemma \ref{lemma-directed-colimit-cohomology}. For the second variant, use the same argument using Lemma \ref{lemma-colimit-complexes} instead of Lemma \ref{lemma-directed-colimit-cohomology}. \medskip\noindent To see that the last statement is true, it suffices to produce a map $\left(Rf_*K\right)_{\overline{s}} \to R\Gamma_\etale(X \times_S \Spec(\mathcal{O}_{S, \overline{s}}^{sh}), p^{-1}K)$ in $D^+(\textit{Ab})$ which realizes the ismorphisms on cohomology groups in degree $n$ above for all $n$. To do this, choose a bounded below complex $\mathcal{J}^\bullet$ of injective abelian sheaves on $X_\etale$ representing $K$. The complex $f_*\mathcal{J}^\bullet$ represents $Rf_*K$. Thus the complex $$ (f_*\mathcal{J}^\bullet)_{\overline{s}} = \colim_{(V, \overline{v}) \in \mathcal{I}^{opp}} (f_*\mathcal{J}^\bullet)(V) $$ represents $(Rf_*K)_{\overline{s}}$. For each $V$ we have maps $$ (f_*\mathcal{J}^\bullet)(V) = \Gamma(X \times_S V, \mathcal{J}^\bullet) \longrightarrow \Gamma(X \times_S \Spec(\mathcal{O}_{S, \overline{s}}^{sh}), p^{-1}\mathcal{J}^\bullet) $$ and the target complex represents $R\Gamma_\etale(X \times_S \Spec(\mathcal{O}_{S, \overline{s}}^{sh}), p^{-1}K)$ in $D^+(\textit{Ab})$. Taking the colimit of these maps we obtain the result. \end{proof} \begin{remark} \label{remark-stalk-fibre} Let $f : X \to S$ be a morphism of schemes. Let $K \in D(X_\etale)$. Let $\overline{s}$ be a geometric point of $S$. There are always canonical maps $$ (Rf_*K)_{\overline{s}} \longrightarrow R\Gamma(X \times_S \Spec(\mathcal{O}_{S, \overline{s}}^{sh}), p^{-1}K) \longrightarrow R\Gamma(X_{\overline{s}}, K|_{X_{\overline{s}}}) $$ where $p : X \times_S \Spec(\mathcal{O}_{S, \overline{s}}^{sh}) \to X$ is the projection. Namely, consider the commutative diagram $$ \xymatrix{ X_{\overline{s}} \ar[r] \ar[d]^{f_{\overline{s}}} & X \times_S \Spec(\mathcal{O}_{S, \overline{s}}^{sh}) \ar[r]_-p \ar[d]^{f'} & X \ar[d]^f \\ \overline{s} \ar[r]^-i & \Spec(\mathcal{O}_{S, \overline{s}}^{sh}) \ar[r]^-j & S } $$ We have the base change maps $$ i^{-1}Rf'_*(p^{-1}K) \to Rf_{\overline{s}, *}(K|_{X_{\overline{s}}}) \quad\text{and}\quad j^{-1}Rf_*K \to Rf'_*(p^{-1}K) $$ (Cohomology on Sites, Remark \ref{sites-cohomology-remark-base-change}) for the two squares in this diagram. Taking global sections we obtain the desired maps. By Cohomology on Sites, Remark \ref{sites-cohomology-remark-compose-base-change-horizontal} the composition of these two maps is the usual (base change) map $(Rf_*K)_{\overline{s}} \to R\Gamma(X_{\overline{s}}, K|_{X_{\overline{s}}})$. \end{remark} \section{The Leray spectral sequence} \label{section-leray} \begin{lemma} \label{lemma-prepare-leray} Let $f: X \to Y$ be a morphism and $\mathcal{I}$ an injective object of $\textit{Ab}(X_\etale)$. Let $V \in \Ob(Y_\etale)$. Then \begin{enumerate} \item for any covering $\mathcal{V} = \{V_j\to V\}_{j \in J}$ we have $\check H^p(\mathcal{V}, f_*\mathcal{I}) = 0$ for all $p > 0$, \item $f_*\mathcal{I}$ is acyclic for the functor $\Gamma(V, -)$, and \item if $g : Y \to Z$, then $f_*\mathcal{I}$ is acyclic for $g_*$. \end{enumerate} \end{lemma} \begin{proof} Observe that $\check{\mathcal{C}}^\bullet(\mathcal{V}, f_*\mathcal{I}) = \check{\mathcal{C}}^\bullet(\mathcal{V} \times_Y X, \mathcal{I})$ which has vanishing higher cohomology groups by Lemma \ref{lemma-hom-injective}. This proves (1). The second statement follows as a sheaf which has vanishing higher {\v C}ech cohomology groups for any covering has vanishing higher cohomology groups. This a wonderful exercise in using the {\v C}ech-to-cohomology spectral sequence, but see Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-cech-vanish-collection} for details and a more precise and general statement. Part (3) is a consequence of (2) and the description of $R^pg_*$ in Lemma \ref{lemma-higher-direct-images}. \end{proof} \noindent Using the formalism of Grothendieck spectral sequences, this gives the following. \begin{proposition}[Leray spectral sequence] \label{proposition-leray} Let $f: X \to Y$ be a morphism of schemes and $\mathcal{F}$ an \'etale sheaf on $X$. Then there is a spectral sequence $$ E_2^{p, q} = H_\etale^p(Y, R^qf_*\mathcal{F}) \Rightarrow H_\etale^{p+q}(X, \mathcal{F}). $$ \end{proposition} \begin{proof} See Lemma \ref{lemma-prepare-leray} and see Derived Categories, Section \ref{derived-section-composition-right-derived-functors}. \end{proof} \section{Vanishing of finite higher direct images} \label{section-vanishing-finite-morphism} \noindent The next goal is to prove that the higher direct images of a finite morphism of schemes vanish. \begin{lemma} \label{lemma-vanishing-etale-cohomology-strictly-henselian} Let $R$ be a strictly henselian local ring. Set $S = \Spec(R)$ and let $\overline{s}$ be its closed point. Then the global sections functor $\Gamma(S, -) : \textit{Ab}(S_\etale) \to \textit{Ab}$ is exact. In fact we have $\Gamma(S, \mathcal{F}) = \mathcal{F}_{\overline{s}}$ for any sheaf of sets $\mathcal{F}$. In particular $$ \forall p\geq 1, \quad H_\etale^p(S, \mathcal{F})=0 $$ for all $\mathcal{F}\in \textit{Ab}(S_\etale)$. \end{lemma} \begin{proof} If we show that $\Gamma(S, \mathcal{F}) = \mathcal{F}_{\overline{s}}$ then $\Gamma(S, -)$ is exact as the stalk functor is exact. Let $(U, \overline{u})$ be an \'etale neighbourhood of $\overline{s}$. Pick an affine open neighborhood $\Spec(A)$ of $\overline{u}$ in $U$. Then $R \to A$ is \'etale and $\kappa(\overline{s}) = \kappa(\overline{u})$. By Theorem \ref{theorem-henselian} we see that $A \cong R \times A'$ as an $R$-algebra compatible with maps to $\kappa(\overline{s}) = \kappa(\overline{u})$. Hence we get a section $$ \xymatrix{ \Spec(A) \ar[r] & U \ar[d]\\ & S \ar[ul] } $$ It follows that in the system of \'etale neighbourhoods of $\overline{s}$ the identity map $(S, \overline{s}) \to (S, \overline{s})$ is cofinal. Hence $\Gamma(S, \mathcal{F}) = \mathcal{F}_{\overline{s}}$. The final statement of the lemma follows as the higher derived functors of an exact functor are zero, see Derived Categories, Lemma \ref{derived-lemma-right-derived-exact-functor}. \end{proof} \begin{proposition} \label{proposition-finite-higher-direct-image-zero} Let $f : X \to Y$ be a finite morphism of schemes. \begin{enumerate} \item For any geometric point $\overline{y} : \Spec(k) \to Y$ we have $$ (f_*\mathcal{F})_{\overline{y}} = \prod\nolimits_{\overline{x} : \Spec(k) \to X,\ f(\overline{x}) = \overline{y}} \mathcal{F}_{\overline{x}}. $$ for $\mathcal{F}$ in $\Sh(X_\etale)$ and $$ (f_*\mathcal{F})_{\overline{y}} = \bigoplus\nolimits_{\overline{x} : \Spec(k) \to X,\ f(\overline{x}) = \overline{y}} \mathcal{F}_{\overline{x}}. $$ for $\mathcal{F}$ in $\textit{Ab}(X_\etale)$. \item For any $q \geq 1$ we have $R^q f_*\mathcal{F} = 0$ for $\mathcal{F}$ in $\textit{Ab}(X_\etale)$. \end{enumerate} \end{proposition} \begin{proof} Let $X_{\overline{y}}^{sh}$ denote the fiber product $X \times_Y \Spec(\mathcal{O}_{Y, \overline{y}}^{sh})$. By Theorem \ref{theorem-higher-direct-images} the stalk of $R^qf_*\mathcal{F}$ at $\overline{y}$ is computed by $H_\etale^q(X_{\overline{y}}^{sh}, \mathcal{F})$. Since $f$ is finite, $X_{\bar y}^{sh}$ is finite over $\Spec(\mathcal{O}_{Y, \overline{y}}^{sh})$, thus $X_{\bar y}^{sh} = \Spec(A)$ for some ring $A$ finite over $\mathcal{O}_{Y, \bar y}^{sh}$. Since the latter is strictly henselian, Lemma \ref{lemma-finite-over-henselian} implies that $A$ is a finite product of henselian local rings $A = A_1 \times \ldots \times A_r$. Since the residue field of $\mathcal{O}_{Y, \overline{y}}^{sh}$ is separably closed the same is true for each $A_i$. Hence $A_i$ is strictly henselian. This implies that $X_{\overline{y}}^{sh} = \coprod_{i = 1}^r \Spec(A_i)$. The vanishing of Lemma \ref{lemma-vanishing-etale-cohomology-strictly-henselian} implies that $(R^qf_*\mathcal{F})_{\overline{y}} = 0$ for $q > 0$ which implies (2) by Theorem \ref{theorem-exactness-stalks}. Part (1) follows from the corresponding statement of Lemma \ref{lemma-vanishing-etale-cohomology-strictly-henselian}. \end{proof} \begin{lemma} \label{lemma-finite-pushforward-commutes-with-base-change} Consider a cartesian square $$ \xymatrix{ X' \ar[r]_{g'} \ar[d]_{f'} & X \ar[d]^f \\ Y' \ar[r]^g & Y } $$ of schemes with $f$ a finite morphism. For any sheaf of sets $\mathcal{F}$ on $X_\etale$ we have $f'_*(g')^{-1}\mathcal{F} = g^{-1}f_*\mathcal{F}$. \end{lemma} \begin{proof} In great generality there is a pullback map $g^{-1}f_*\mathcal{F} \to f'_*(g')^{-1}\mathcal{F}$, see Sites, Section \ref{sites-section-pullback}. It suffices to check on stalks (Theorem \ref{theorem-exactness-stalks}). Let $\overline{y}' : \Spec(k) \to Y'$ be a geometric point. We have \begin{align*} (f'_*(g')^{-1}\mathcal{F})_{\overline{y}'} & = \prod\nolimits_{\overline{x}' : \Spec(k) \to X',\ f' \circ \overline{x}' = \overline{y}'} ((g')^{-1}\mathcal{F})_{\overline{x}'} \\ & = \prod\nolimits_{\overline{x}' : \Spec(k) \to X',\ f' \circ \overline{x}' = \overline{y}'} \mathcal{F}_{g' \circ \overline{x}'} \\ & = \prod\nolimits_{\overline{x} : \Spec(k) \to X,\ f \circ \overline{x} = g \circ \overline{y}'} \mathcal{F}_{\overline{x}} \\ & = (f_*\mathcal{F})_{g \circ \overline{y}'} \\ & = (g^{-1}f_*\mathcal{F})_{\overline{y}'} \end{align*} The first equality by Proposition \ref{proposition-finite-higher-direct-image-zero}. The second equality by Lemma \ref{lemma-stalk-pullback}. The third equality holds because the diagram is a cartesian square and hence the map $$ \{\overline{x}' : \Spec(k) \to X',\ f' \circ \overline{x}' = \overline{y}'\} \longrightarrow \{\overline{x} : \Spec(k) \to X,\ f \circ \overline{x} = g \circ \overline{y}'\} $$ sending $\overline{x}'$ to $g' \circ \overline{x}'$ is a bijection. The fourth equality by Proposition \ref{proposition-finite-higher-direct-image-zero}. The fifth equality by Lemma \ref{lemma-stalk-pullback}. \end{proof} \begin{lemma} \label{lemma-integral-pushforward-commutes-with-base-change} Consider a cartesian square $$ \xymatrix{ X' \ar[r]_{g'} \ar[d]_{f'} & X \ar[d]^f \\ Y' \ar[r]^g & Y } $$ of schemes with $f$ an integral morphism. For any sheaf of sets $\mathcal{F}$ on $X_\etale$ we have $f'_*(g')^{-1}\mathcal{F} = g^{-1}f_*\mathcal{F}$. \end{lemma} \begin{proof} The question is local on $Y$ and hence we may assume $Y$ is affine. Then we can write $X = \lim X_i$ with $f_i : X_i \to Y$ finite (this is easy in the affine case, but see Limits, Lemma \ref{limits-lemma-integral-limit-finite-and-finite-presentation} for a reference). Denote $p_{i'i} : X_{i'} \to X_i$ the transition morphisms and $p_i : X \to X_i$ the projections. Setting $\mathcal{F}_i = p_{i, *}\mathcal{F}$ we obtain from Lemma \ref{lemma-linus-hamann} a system $(\mathcal{F}_i, \varphi_{i'i})$ with $\mathcal{F} = \colim p_i^{-1}\mathcal{F}_i$. We get $f_*\mathcal{F} = \colim f_{i, *}\mathcal{F}_i$ from Lemma \ref{lemma-relative-colimit}. Set $X'_i = Y' \times_Y X_i$ with projections $f'_i$ and $g'_i$. Then $X' = \lim X'_i$ as limits commute with limits. Denote $p'_i : X' \to X'_i$ the projections. We have \begin{align*} g^{-1}f_*\mathcal{F} & = g^{-1} \colim f_{i, *}\mathcal{F}_i \\ & = \colim g^{-1}f_{i, *}\mathcal{F}_i \\ & = \colim f'_{i, *}(g'_i)^{-1}\mathcal{F}_i \\ & = f'_*(\colim (p'_i)^{-1}(g'_i)^{-1}\mathcal{F}_i) \\ & = f'_*(\colim (g')^{-1}p_i^{-1}\mathcal{F}_i) \\ & = f'_*(g')^{-1} \colim p_i^{-1}\mathcal{F}_i \\ & = f'_*(g')^{-1}\mathcal{F} \end{align*} as desired. For the first equality see above. For the second use that pullback commutes with colimits. For the third use the finite case, see Lemma \ref{lemma-finite-pushforward-commutes-with-base-change}. For the fourth use Lemma \ref{lemma-relative-colimit}. For the fifth use that $g'_i \circ p'_i = p_i \circ g'$. For the sixth use that pullback commutes with colimits. For the seventh use $\mathcal{F} = \colim p_i^{-1}\mathcal{F}_i$. \end{proof} \noindent The following lemma is a case of cohomological descent dealing with \'etale sheaves and finite surjective morphisms. We will significantly generalize this result once we prove the proper base change theorem. \begin{lemma} \label{lemma-cohomological-descent-finite} Let $f : X \to Y$ be a surjective finite morphism of schemes. Set $f_n : X_n \to Y$ equal to the $(n + 1)$-fold fibre product of $X$ over $Y$. For $\mathcal{F} \in \textit{Ab}(Y_\etale)$ set $\mathcal{F}_n = f_{n, *}f_n^{-1}\mathcal{F}$. There is an exact sequence $$ 0 \to \mathcal{F} \to \mathcal{F}_0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \ldots $$ on $X_\etale$. Moreover, there is a spectral sequence $$ E_1^{p, q} = H^q_\etale(X_p, f_p^{-1}\mathcal{F}) $$ converging to $H^{p + q}(Y_\etale, \mathcal{F})$. This spectral sequence is functorial in $\mathcal{F}$. \end{lemma} \begin{proof} If we prove the first statement of the lemma, then we obtain a spectral sequence with $E_1^{p, q} = H^q_\etale(Y, \mathcal{F})$ converging to $H^{p + q}(Y_\etale, \mathcal{F})$, see Derived Categories, Lemma \ref{derived-lemma-two-ss-complex-functor}. On the other hand, since $R^if_{p, *}f_p^{-1}\mathcal{F} = 0$ for $i > 0$ (Proposition \ref{proposition-finite-higher-direct-image-zero}) we get $$ H^q_\etale(X_p, f_p^{-1}\mathcal{F}) = H^q_\etale(Y, f_{p, *}f_p^{-1} \mathcal{F}) = H^q_\etale(Y, \mathcal{F}_p) $$ by Proposition \ref{proposition-leray} and we get the spectral sequence of the lemma. \medskip\noindent To prove the first statement of the lemma, observe that $X_n$ forms a simplicial scheme over $Y$, see Simplicial, Example \ref{simplicial-example-fibre-products-simplicial-object}. Observe moreover, that for each of the projections $d_j : X_{n + 1} \to X_n$ there is a map $d_j^{-1} f_n^{-1}\mathcal{F} \to f_{n + 1}^{-1}\mathcal{F}$. These maps induce maps $$ \delta_j : \mathcal{F}_n \to \mathcal{F}_{n + 1} $$ for $j = 0, \ldots, n + 1$. We use the alternating sum of these maps to define the differentials $\mathcal{F}_n \to \mathcal{F}_{n + 1}$. Similarly, there is a canonical augmentation $\mathcal{F} \to \mathcal{F}_0$, namely this is just the canonical map $\mathcal{F} \to f_*f^{-1}\mathcal{F}$. To check that this sequence of sheaves is an exact complex it suffices to check on stalks at geometric points (Theorem \ref{theorem-exactness-stalks}). Thus we let $\overline{y} : \Spec(k) \to Y$ be a geometric point. Let $E = \{\overline{x} : \Spec(k) \to X \mid f(\overline{x}) = \overline{y}\}$. Then $E$ is a finite nonempty set and we see that $$ (\mathcal{F}_n)_{\overline{y}} = \bigoplus\nolimits_{e \in E^{n + 1}} \mathcal{F}_{\overline{y}} $$ by Proposition \ref{proposition-finite-higher-direct-image-zero} and Lemma \ref{lemma-stalk-pullback}. Thus we have to see that given an abelian group $M$ the sequence $$ 0 \to M \to \bigoplus\nolimits_{e \in E} M \to \bigoplus\nolimits_{e \in E^2} M \to \ldots $$ is exact. Here the first map is the diagonal map and the map $\bigoplus_{e \in E^{n + 1}} M \to \bigoplus_{e \in E^{n + 2}} M$ is the alternating sum of the maps induced by the $(n + 2)$ projections $E^{n + 2} \to E^{n + 1}$. This can be shown directly or deduced by applying Simplicial, Lemma \ref{simplicial-lemma-fibre-products-simplicial-object-w-section} to the map $E \to \{*\}$. \end{proof} \begin{remark} \label{remark-cohomological-descent-finite} In the situation of Lemma \ref{lemma-cohomological-descent-finite} if $\mathcal{G}$ is a sheaf of sets on $Y_\etale$, then we have $$ \Gamma(Y, \mathcal{G}) = \text{Equalizer}( \xymatrix{ \Gamma(X_0, f_0^{-1}\mathcal{G}) \ar@<1ex>[r] \ar@<-1ex>[r] & \Gamma(X_1, f_1^{-1}\mathcal{G}) } ) $$ This is proved in exactly the same way, by showing that the sheaf $\mathcal{G}$ is the equalizer of the two maps $f_{0, *}f_0^{-1}\mathcal{G} \to f_{1, *}f_1^{-1}\mathcal{G}$. \end{remark} %10.06.09 \section{Galois action on stalks} \label{section-galois-action-stalks} \noindent In this section we define an action of the absolute Galois group of a residue field of a point $s$ of $S$ on the stalk functor at any geometric point lying over $s$. \medskip\noindent Galois action on stalks. Let $S$ be a scheme. Let $\overline{s}$ be a geometric point of $S$. Let $\sigma \in \text{Aut}(\kappa(\overline{s})/\kappa(s))$. Define an action of $\sigma$ on the stalk $\mathcal{F}_{\overline{s}}$ of a sheaf $\mathcal{F}$ as follows \begin{equation} \label{equation-galois-action} \begin{matrix} \mathcal{F}_{\overline{s}} & \longrightarrow & \mathcal{F}_{\overline{s}} \\ (U, \overline{u}, t) & \longmapsto & (U, \overline{u} \circ \Spec(\sigma), t). \end{matrix} \end{equation} where we use the description of elements of the stalk in terms of triples as in the discussion following Definition \ref{definition-stalk}. This is a left action, since if $\sigma_i \in \text{Aut}(\kappa(\overline{s})/\kappa(s))$ then \begin{align*} \sigma_1 \cdot (\sigma_2 \cdot (U, \overline{u}, t)) & = \sigma_1 \cdot (U, \overline{u} \circ \Spec(\sigma_2), t) \\ & = (U, \overline{u} \circ \Spec(\sigma_2) \circ \Spec(\sigma_1), t) \\ & = (U, \overline{u} \circ \Spec(\sigma_1 \circ \sigma_2), t) \\ & = (\sigma_1 \circ \sigma_2) \cdot (U, \overline{u}, t) \end{align*} It is clear that this action is functorial in the sheaf $\mathcal{F}$. We note that we could have defined this action by referring directly to Remark \ref{remark-map-stalks}. \begin{definition} \label{definition-algebraic-geometric-point} Let $S$ be a scheme. Let $\overline{s}$ be a geometric point lying over the point $s$ of $S$. Let $\kappa(s) \subset \kappa(s)^{sep} \subset \kappa(\overline{s})$ denote the separable algebraic closure of $\kappa(s)$ in the algebraically closed field $\kappa(\overline{s})$. \begin{enumerate} \item In this situation the {\it absolute Galois group} of $\kappa(s)$ is $\text{Gal}(\kappa(s)^{sep}/\kappa(s))$. It is sometimes denoted $\text{Gal}_{\kappa(s)}$. \item The geometric point $\overline{s}$ is called {\it algebraic} if $\kappa(s) \subset \kappa(\overline{s})$ is an algebraic closure of $\kappa(s)$. \end{enumerate} \end{definition} \begin{example} \label{example-stupid} The geometric point $\Spec(\mathbf{C}) \to \Spec(\mathbf{Q})$ is not algebraic. \end{example} \noindent Let $\kappa(s) \subset \kappa(s)^{sep} \subset \kappa(\overline{s})$ be as in the definition. Note that as $\kappa(\overline{s})$ is algebraically closed the map $$ \text{Aut}(\kappa(\overline{s})/\kappa(s)) \longrightarrow \text{Gal}(\kappa(s)^{sep}/\kappa(s)) = \text{Gal}_{\kappa(s)} $$ is surjective. Suppose $(U, \overline{u})$ is an \'etale neighbourhood of $\overline{s}$, and say $\overline{u}$ lies over the point $u$ of $U$. Since $U \to S$ is \'etale, the residue field extension $\kappa(u)/\kappa(s)$ is finite separable. This implies the following \begin{enumerate} \item If $\sigma \in \text{Aut}(\kappa(\overline{s})/\kappa(s)^{sep})$ then $\sigma$ acts trivially on $\mathcal{F}_{\overline{s}}$. \item More precisely, the action of $\text{Aut}(\kappa(\overline{s})/\kappa(s))$ determines and is determined by an action of the absolute Galois group $\text{Gal}_{\kappa(s)}$ on $\mathcal{F}_{\overline{s}}$. \item Given $(U, \overline{u}, t)$ representing an element $\xi$ of $\mathcal{F}_{\overline{s}}$ any element of $\text{Gal}(\kappa(s)^{sep}/K)$ acts trivially, where $\kappa(s) \subset K \subset \kappa(s)^{sep}$ is the image of $\overline{u}^\sharp : \kappa(u) \to \kappa(\overline{s})$. \end{enumerate} Altogether we see that $\mathcal{F}_{\overline{s}}$ becomes a $\text{Gal}_{\kappa(s)}$-set (see Fundamental Groups, Definition \ref{pione-definition-G-set-continuous}). Hence we may think of the stalk functor as a functor $$ \Sh(S_\etale) \longrightarrow \text{Gal}_{\kappa(s)}\textit{-Sets}, \quad \mathcal{F} \longmapsto \mathcal{F}_{\overline{s}} $$ and from now on we usually do think about the stalk functor in this way. \begin{theorem} \label{theorem-equivalence-sheaves-point} Let $S = \Spec(K)$ with $K$ a field. Let $\overline{s}$ be a geometric point of $S$. Let $G = \text{Gal}_{\kappa(s)}$ denote the absolute Galois group. Taking stalks induces an equivalence of categories $$ \Sh(S_\etale) \longrightarrow G\textit{-Sets}, \quad \mathcal{F} \longmapsto \mathcal{F}_{\overline{s}}. $$ \end{theorem} \begin{proof} Let us construct the inverse to this functor. In Fundamental Groups, Lemma \ref{pione-lemma-sheaves-point} we have seen that given a $G$-set $M$ there exists an \'etale morphism $X \to \Spec(K)$ such that $\Mor_K(\Spec(K^{sep}), X)$ is isomorphic to $M$ as a $G$-set. Consider the sheaf $\mathcal{F}$ on $\Spec(K)_\etale$ defined by the rule $U \mapsto \Mor_K(U, X)$. This is a sheaf as the \'etale topology is subcanonical. Then we see that $\mathcal{F}_{\overline{s}} = \Mor_K(\Spec(K^{sep}), X) = M$ as $G$-sets (details omitted). This gives the inverse of the functor and we win. \end{proof} \begin{remark} \label{remark-every-sheaf-representable} Another way to state the conclusion of Theorem \ref{theorem-equivalence-sheaves-point} and Fundamental Groups, Lemma \ref{pione-lemma-sheaves-point} is to say that every sheaf on $\Spec(K)_\etale$ is representable by a scheme $X$ \'etale over $\Spec(K)$. This does not mean that every sheaf is representable in the sense of Sites, Definition \ref{sites-definition-representable-sheaf}. The reason is that in our construction of $\Spec(K)_\etale$ we chose a sufficiently large set of schemes \'etale over $\Spec(K)$, whereas sheaves on $\Spec(K)_\etale$ form a proper class. \end{remark} \begin{lemma} \label{lemma-global-sections-point} Assumptions and notations as in Theorem \ref{theorem-equivalence-sheaves-point}. There is a functorial bijection $$ \Gamma(S, \mathcal{F}) = (\mathcal{F}_{\overline{s}})^G $$ \end{lemma} \begin{proof} We can prove this using formal arguments and the result of Theorem \ref{theorem-equivalence-sheaves-point} as follows. Given a sheaf $\mathcal{F}$ corresponding to the $G$-set $M = \mathcal{F}_{\overline{s}}$ we have \begin{eqnarray*} \Gamma(S, \mathcal{F}) & = & \Mor_{\Sh(S_\etale)}(h_{\Spec(K)}, \mathcal{F}) \\ & = & \Mor_{G\textit{-Sets}}(\{*\}, M) \\ & = & M^G \end{eqnarray*} Here the first identification is explained in Sites, Sections \ref{sites-section-presheaves} and \ref{sites-section-representable-sheaves}, the second results from Theorem \ref{theorem-equivalence-sheaves-point} and the third is clear. We will also give a direct proof\footnote{For the doubting Thomases out there.}. \medskip\noindent Suppose that $t \in \Gamma(S, \mathcal{F})$ is a global section. Then the triple $(S, \overline{s}, t)$ defines an element of $\mathcal{F}_{\overline{s}}$ which is clearly invariant under the action of $G$. Conversely, suppose that $(U, \overline{u}, t)$ defines an element of $\mathcal{F}_{\overline{s}}$ which is invariant. Then we may shrink $U$ and assume $U = \Spec(L)$ for some finite separable field extension of $K$, see Proposition \ref{proposition-etale-morphisms}. In this case the map $\mathcal{F}(U) \to \mathcal{F}_{\overline{s}}$ is injective, because for any morphism of \'etale neighbourhoods $(U', \overline{u}') \to (U, \overline{u})$ the restriction map $\mathcal{F}(U) \to \mathcal{F}(U')$ is injective since $U' \to U$ is a covering of $S_\etale$. After enlarging $L$ a bit we may assume $K \subset L$ is a finite Galois extension. At this point we use that $$ \Spec(L) \times_{\Spec(K)} \Spec(L) = \coprod\nolimits_{\sigma \in \text{Gal}(L/K)} \Spec(L) $$ where the maps $\Spec(L) \to \Spec(L \otimes_K L)$ come from the ring maps $a \otimes b \mapsto a\sigma(b)$. Hence we see that the condition that $(U, \overline{u}, t)$ is invariant under all of $G$ implies that $t \in \mathcal{F}(\Spec(L))$ maps to the same element of $\mathcal{F}(\Spec(L) \times_{\Spec(K)} \Spec(L))$ via restriction by either projection (this uses the injectivity mentioned above; details omitted). Hence the sheaf condition of $\mathcal{F}$ for the \'etale covering $\{\Spec(L) \to \Spec(K)\}$ kicks in and we conclude that $t$ comes from a unique section of $\mathcal{F}$ over $\Spec(K)$. \end{proof} \begin{remark} \label{remark-stalk-pullback} Let $S$ be a scheme and let $\overline{s} : \Spec(k) \to S$ be a geometric point of $S$. By definition this means that $k$ is algebraically closed. In particular the absolute Galois group of $k$ is trivial. Hence by Theorem \ref{theorem-equivalence-sheaves-point} the category of sheaves on $\Spec(k)_\etale$ is equivalent to the category of sets. The equivalence is given by taking sections over $\Spec(k)$. This finally provides us with an alternative definition of the stalk functor. Namely, the functor $$ \Sh(S_\etale) \longrightarrow \textit{Sets}, \quad \mathcal{F} \longmapsto \mathcal{F}_{\overline{s}} $$ is isomorphic to the functor $$ \Sh(S_\etale) \longrightarrow \Sh(\Spec(k)_\etale) = \textit{Sets}, \quad \mathcal{F} \longmapsto \overline{s}^*\mathcal{F} $$ To prove this rigorously one can use Lemma \ref{lemma-stalk-pullback} part (3) with $f = \overline{s}$. Moreover, having said this the general case of Lemma \ref{lemma-stalk-pullback} part (3) follows from functoriality of pullbacks. \end{remark} \section{Group cohomology} \label{section-group-cohomology} \noindent In the following, if we write $H^i(G, M)$ we will mean that $G$ is a topological group and $M$ a discrete $G$-module with continuous $G$-action and $H^i(G, -)$ is the $i$th right derived functor on the category $\text{Mod}_G$ of such $G$-modules, see Definitions \ref{definition-G-module-continuous} and \ref{definition-galois-cohomology}. This includes the case of an abstract group $G$, which simply means that $G$ is viewed as a topological group with the discrete topology. \medskip\noindent When the module has a nondiscrete topology, we will use the notation $H^i_{cont}(G, M)$ to indicate the continuous cohomology groups introduced in \cite{Tate}, see Section \ref{section-continuous-group-cohomology}. \begin{definition} \label{definition-G-module-continuous} Let $G$ be a topological group. \begin{enumerate} \item A {\it $G$-module}, sometimes called a {\it discrete $G$-module}, is an abelian group $M$ endowed with a left action $a : G \times M \to M$ by group homomorphisms such that $a$ is continuous when $M$ is given the discrete topology. \item A {\it morphism of $G$-modules} $f : M \to N$ is a $G$-equivariant homomorphism from $M$ to $N$. \item The category of $G$-modules is denoted $\text{Mod}_G$. \end{enumerate} Let $R$ be a ring. \begin{enumerate} \item An {\it $R\text{-}G$-module} is an $R$-module $M$ endowed with a left action $a : G \times M \to M$ by $R$-linear maps such that $a$ is continuous when $M$ is given the discrete topology. \item A {\it morphism of $R\text{-}G$-modules} $f : M \to N$ is a $G$-equivariant $R$-module map from $M$ to $N$. \item The category of $R\text{-}G$-modules is denoted $\text{Mod}_{R, G}$. \end{enumerate} \end{definition} \noindent The condition that $a : G \times M \to M$ is continuous is equivalent with the condition that the stabilizer of any $x \in M$ is open in $G$. If $G$ is an abstract group then this corresponds to the notion of an abelian group endowed with a $G$-action provided we endow $G$ with the discrete topology. Observe that $\text{Mod}_{\mathbf{Z}, G} = \text{Mod}_G$. \medskip\noindent The category $\text{Mod}_G$ has enough injectives, see Injectives, Lemma \ref{injectives-lemma-G-modules}. Consider the left exact functor $$ \text{Mod}_G \longrightarrow \textit{Ab}, \quad M \longmapsto M^G = \{x \in M \mid g \cdot x = x\ \forall g \in G\} $$ We sometimes denote $M^G = H^0(G, M)$ and sometimes we write $M^G = \Gamma_G(M)$. This functor has a total right derived functor $R\Gamma_G(M)$ and $i$th right derived functor $R^i\Gamma_G(M) = H^i(G, M)$ for any $i \geq 0$. \medskip\noindent The same construction works for $H^0(G, -) : \text{Mod}_{R, G} \to \text{Mod}_R$. We will see in Lemma \ref{lemma-modules-abelian} that this agrees with the cohomology of the underlying $G$-module. \begin{definition} \label{definition-galois-cohomology} Let $G$ be a topological group. Let $M$ be a discrete $G$-module with continuous $G$-action. In other words, $M$ is an object of the category $\text{Mod}_G$ introduced in Definition \ref{definition-G-module-continuous}. \begin{enumerate} \item The right derived functors $H^i(G, M)$ of $H^0(G, M)$ on the category $\text{Mod}_G$ are called the {\it continuous group cohomology groups} of $M$. \item If $G$ is an abstract group endowed with the discrete topology then the $H^i(G, M)$ are called the {\it group cohomology groups} of $M$. \item If $G$ is a Galois group, then the groups $H^i(G, M)$ are called the {\it Galois cohomology groups} of $M$. \item If $G$ is the absolute Galois group of a field $K$, then the groups $H^i(G, M)$ are sometimes called the {\it Galois cohomology groups of $K$ with coefficients in $M$}. In this case we sometimes write $H^i(K, M)$ instead of $H^i(G, M)$. \end{enumerate} \end{definition} \begin{lemma} \label{lemma-modules-abelian} Let $G$ be a topological group. Let $R$ be a ring. For every $i \geq 0$ the diagram $$ \xymatrix{ \text{Mod}_{R, G} \ar[rr]_{H^i(G, -)} \ar[d] & & \text{Mod}_R \ar[d] \\ \text{Mod}_G \ar[rr]^{H^i(G, -)} & & \textit{Ab} } $$ whose vertical arrows are the forgetful functors is commutative. \end{lemma} \begin{proof} Let us denote the forgetful functor $F : \text{Mod}_{R, G} \to \text{Mod}_G$. Then $F$ has a left adjoint $H : \text{Mod}_G \to \text{Mod}_{R, G}$ given by $H(M) = M \otimes_\mathbf{Z} R$. Observe that every object of $\text{Mod}_G$ is a quotient of a direct sum of modules of the form $\mathbf{Z}[G/U]$ where $U \subset G$ is an open subgroup. Here $\mathbf{Z}[G/U]$ denotes the $G$-modules of finite $\mathbf{Z}$-linear combinations of right $U$ congruence classes in $G$ endowed with left $G$-action. Thus every bounded above complex in $\text{Mod}_G$ is quasi-isomorphic to a bounded above complex in $\text{Mod}_G$ whose underlying terms are flat $\mathbf{Z}$-modules (Derived Categories, Lemma \ref{derived-lemma-subcategory-left-resolution}). Thus it is clear that $LH$ exists on $D^-(\text{Mod}_G)$ and is computed by evaluating $H$ on any complex whose terms are flat $\mathbf{Z}$-modules; this follows from Derived Categories, Lemma \ref{derived-lemma-subcategory-left-acyclics} and Proposition \ref{derived-proposition-enough-acyclics}. We conclude from Derived Categories, Lemma \ref{derived-lemma-pre-derived-adjoint-functors} that $$ \text{Ext}^i(\mathbf{Z}, F(M)) = \text{Ext}^i(R, M) $$ for $M$ in $\text{Mod}_{R, G}$. Observe that $H^0(G, -) = \Hom(\mathbf{Z}, -)$ on $\text{Mod}_G$ where $\mathbf{Z}$ denotes the $G$-module with trivial action. Hence $H^i(G, -) = \text{Ext}^i(\mathbf{Z}, -)$ on $\text{Mod}_G$. Similarly we have $H^i(G, -) = \text{Ext}^i(R, -)$ on $\text{Mod}_{R, G}$. Combining everything we see that the lemma is true. \end{proof} \begin{lemma} \label{lemma-ext-modules-hom} Let $G$ be a topological group. Let $R$ be a ring. Let $M$, $N$ be $R\text{-}G$-modules. If $M$ is finite projective as an $R$-module, then $\text{Ext}^i(M, N) = H^i(G, M^\vee \otimes_R N)$ (for notation see proof). \end{lemma} \begin{proof} The module $M^\vee = \Hom_R(M, R)$ endowed with the contragredient action of $G$. Namely $(g \cdot \lambda)(m) = \lambda(g^{-1} \cdot m)$ for $g \in G$, $\lambda \in M^\vee$, $m \in M$. The action of $G$ on $M^\vee \otimes_R N$ is the diagonal one, i.e., given by $g \cdot (\lambda \otimes n) = g \cdot \lambda \otimes g \cdot n$. Note that for a third $R\text{-}G$-module $E$ we have $\Hom(E, M^\vee \otimes_R N) = \Hom(M \otimes_R E, N)$. Namely, this is true on the level of $R$-modules by Algebra, Lemmas \ref{algebra-lemma-hom-from-tensor-product} and \ref{algebra-lemma-evaluation-map-iso-finite-projective} and the definitions of $G$-actions are chosen such that it remains true for $R\text{-}G$-modules. It follows that $M^\vee \otimes_R N$ is an injective $R\text{-}G$-module if $N$ is an injective $R\text{-}G$-module. Hence if $N \to N^\bullet$ is an injective resolution, then $M^\vee \otimes_R N \to M^\vee \otimes_R N^\bullet$ is an injective resolution. Then $$ \Hom(M, N^\bullet) = \Hom(R, M^\vee \otimes_R N^\bullet) = (M^\vee \otimes_R N^\bullet)^G $$ Since the left hand side computes $\text{Ext}^i(M, N)$ and the right hand side computes $H^i(G, M^\vee \otimes_R N)$ the proof is complete. \end{proof} \begin{lemma} \label{lemma-finite-dim-group-cohomology} Let $G$ be a topological group. Let $k$ be a field. Let $V$ be a $k\text{-}G$-module. If $G$ is topologically finitely generated and $\dim_k(V) < \infty$, then $\dim_k H^1(G, V) < \infty$. \end{lemma} \begin{proof} Let $g_1, \ldots, g_r \in G$ be elements which topologically generate $G$, i.e., this means that the subgroup generated by $g_1, \ldots, g_r$ is dense. By Lemma \ref{lemma-ext-modules-hom} we see that $H^1(G, V)$ is the $k$-vector space of extensions $$ 0 \to V \to E \to k \to 0 $$ of $k\text{-}G$-modules. Choose $e \in E$ mapping to $1 \in k$. Write $$ g_i \cdot e = v_i + e $$ for some $v_i \in V$. This is possible because $g_i \cdot 1 = 1$. We claim that the list of elements $v_1, \ldots, v_r \in V$ determine the isomorphism class of the extension $E$. Once we prove this the lemma follows as this means that our Ext vector space is isomorphic to a subquotient of the $k$-vector space $V^{\oplus r}$; some details omitted. Since $E$ is an object of the category defined in Definition \ref{definition-G-module-continuous} we know there is an open subgroup $U$ such that $u \cdot e = e$ for all $u \in U$. Now pick any $g \in G$. Then $gU$ contains a word $w$ in the elements $g_1, \ldots, g_r$. Say $gu = w$. Since the element $w \cdot e$ is determined by $v_1, \ldots, v_r$, we see that $g \cdot e = (gu) \cdot e = w \cdot e$ is too. \end{proof} \begin{lemma} \label{lemma-profinite-group-cohomology-torsion} Let $G$ be a profinite topological group. Then \begin{enumerate} \item $H^i(G, M)$ is torsion for $i > 0$ and any $G$-module $M$, and \item $H^i(G, M) = 0$ if $M$ is a $\mathbf{Q}$-vector space. \end{enumerate} \end{lemma} \begin{proof} Proof of (1). By dimension shifting we see that it suffices to show that $H^1(G, M)$ is torsion for every $G$-module $M$. Choose an exact sequence $0 \to M \to I \to N \to 0$ with $I$ an injective object of the category of $G$-modules. Then any element of $H^1(G, M)$ is the image of an element $y \in N^G$. Choose $x \in I$ mapping to $y$. The stabilizer $U \subset G$ of $x$ is open, hence has finite index $r$. Let $g_1, \ldots, g_r \in G$ be a system of representatives for $G/U$. Then $\sum g_i(x)$ is an invariant element of $I$ which maps to $ry$. Thus $r$ kills the element of $H^1(G, M)$ we started with. Part (2) follows as then $H^i(G, M)$ is both a $\mathbf{Q}$-vector space and torsion. \end{proof} \section{Tate's continuous cohomology} \label{section-continuous-group-cohomology} \noindent Tate's continuous cohomology (\cite{Tate}) is defined by the complex of continuous inhomogeneous cochains. We can define this when $M$ is an arbitrary topological abelian group endowed with a continuous $G$-action. Namely, we consider the complex $$ C^\bullet_{cont}(G, M) : M \to \text{Maps}_{cont}(G, M) \to \text{Maps}_{cont}(G \times G, M) \to \ldots $$ where the boundary map is defined for $n \geq 1$ by the rule \begin{align*} \text{d}(f)(g_1, \ldots, g_{n + 1}) & = g_1(f(g_2, \ldots, g_{n + 1})) \\ & + \sum\nolimits_{j = 1, \ldots, n} (-1)^jf(g_1, \ldots, g_jg_{j + 1}, \ldots, g_{n + 1}) \\ & + (-1)^{n + 1}f(g_1, \ldots, g_n) \end{align*} and for $n = 0$ sends $m \in M$ to the map $g \mapsto g(m) - m$. We define $$ H^i_{cont}(G, M) = H^i(C^\bullet_{cont}(G, M)) $$ Since the terms of the complex involve continuous maps from $G$ and self products of $G$ into the topological module $M$, it is not clear that this turns a short exact sequence of topological modules into a long exact cohomology sequence. Another difficulty is that the category of topological abelian groups isn't an abelian category! \medskip\noindent However, a short exact sequence of discrete $G$-modules does give rise to a short exact sequence of complexes of continuous cochains and hence a long exact cohomology sequence of continuous cohomology groups $H^i_{cont}(G, -)$. Therefore, on the category $\text{Mod}_G$ of Definition \ref{definition-G-module-continuous} the functors $H^i_{cont}(G, M)$ form a cohomological $\delta$-functor as defined in Homology, Section \ref{homology-section-cohomological-delta-functor}. Since the cohomology $H^i(G, M)$ of Definition \ref{definition-galois-cohomology} is a universal $\delta$-functor (Derived Categories, Lemma \ref{derived-lemma-right-derived-delta-functor}) we obtain canonical maps $$ H^i(G, M) \longrightarrow H^i_{cont}(G, M) $$ for $M \in \text{Mod}_G$. It is known that these maps are isomorphisms when $G$ is an abstract group (i.e., $G$ has the discrete topology) or when $G$ is a profinite group (insert future reference here). If you know an example showing this map is not an isomorphism for a topological group $G$ and $M \in \Ob(\text{Mod}_G)$ please email \href{mailto:stacks.project@gmail.com}{stacks.project@gmail.com}. \section{Cohomology of a point} \label{section-cohomology-point} \noindent As a consequence of the discussion in the preceding sections we obtain the equivalence of \'etale cohomology of the spectrum of a field with Galois cohomology. \begin{lemma} \label{lemma-equivalence-abelian-sheaves-point} Let $S = \Spec(K)$ with $K$ a field. Let $\overline{s}$ be a geometric point of $S$. Let $G = \text{Gal}_{\kappa(s)}$ denote the absolute Galois group. The stalk functor induces an equivalence of categories $$ \textit{Ab}(S_\etale) \longrightarrow \text{Mod}_G, \quad \mathcal{F} \longmapsto \mathcal{F}_{\overline{s}}. $$ \end{lemma} \begin{proof} In Theorem \ref{theorem-equivalence-sheaves-point} we have seen the equivalence between sheaves of sets and $G$-sets. The current lemma follows formally from this as an abelian sheaf is just a sheaf of sets endowed with a commutative group law, and a $G$-module is just a $G$-set endowed with a commutative group law. \end{proof} \begin{lemma} \label{lemma-compare-cohomology-point} Notation and assumptions as in Lemma \ref{lemma-equivalence-abelian-sheaves-point}. Let $\mathcal{F}$ be an abelian sheaf on $\Spec(K)_\etale$ which corresponds to the $G$-module $M$. Then \begin{enumerate} \item in $D(\textit{Ab})$ we have a canonical isomorphism $R\Gamma(S, \mathcal{F}) = R\Gamma_G(M)$, \item $H_\etale^0(S, \mathcal{F}) = M^G$, and \item $H_\etale^q(S, \mathcal{F}) = H^q(G, M)$. \end{enumerate} \end{lemma} \begin{proof} Combine Lemma \ref{lemma-equivalence-abelian-sheaves-point} with Lemma \ref{lemma-global-sections-point}. \end{proof} \begin{example} \label{example-sheaves-point} Sheaves on $\Spec(K)_\etale$. Let $G = \text{Gal}(K^{sep}/K)$ be the absolute Galois group of $K$. \begin{enumerate} \item The constant sheaf $\underline{\mathbf{Z}/n\mathbf{Z}}$ corresponds to the module $\mathbf{Z}/n\mathbf{Z}$ with trivial $G$-action, \item the sheaf $\mathbf{G}_m|_{\Spec(K)_\etale}$ corresponds to $(K^{sep})^*$ with its $G$-action, \item the sheaf $\mathbf{G}_a|_{\Spec(K^{sep})}$ corresponds to $(K^{sep}, +)$ with its $G$-action, and \item the sheaf $\mu_n|_{\Spec(K^{sep})}$ corresponds to $\mu_n(K^{sep})$ with its $G$-action. \end{enumerate} By Remark \ref{remark-special-case-fpqc-cohomology-quasi-coherent} and Theorem \ref{theorem-picard-group} we have the following identifications for cohomology groups: \begin{align*} H_\etale^0(S_\etale, \mathbf{G}_m) & = \Gamma(S, \mathcal{O}_S^*) \\ H_\etale^1(S_\etale, \mathbf{G}_m) & = H_{Zar}^1(S, \mathcal{O}_S^*) = \Pic(S) \\ H_\etale^i(S_\etale, \mathbf{G}_a) & = H_{Zar}^i(S, \mathcal{O}_S) \end{align*} Also, for any quasi-coherent sheaf $\mathcal{F}$ on $S_\etale$ we have $$ H^i(S_\etale, \mathcal{F}) = H_{Zar}^i(S, \mathcal{F}), $$ see Theorem \ref{theorem-zariski-fpqc-quasi-coherent}. In particular, this gives the following sequence of equalities $$ 0 = \Pic(\Spec(K)) = H_\etale^1(\Spec(K)_\etale, \mathbf{G}_m) = H^1(G, (K^{sep})^*) $$ which is none other than Hilbert's 90 theorem. Similarly, for $i \geq 1$, $$ 0 = H^i(\Spec(K), \mathcal{O}) = H_\etale^i(\Spec(K)_\etale, \mathbf{G}_a) = H^i(G, K^{sep}) $$ where the $K^{sep}$ indicates $K^{sep}$ as a Galois module with addition as group law. In this way we may consider the work we have done so far as a complicated way of computing Galois cohomology groups. \end{example} \noindent The following result is a curiosity and should be skipped on a first reading. \begin{lemma} \label{lemma-all-modules-quasi-coherent} Let $R$ be a local ring of dimension $0$. Let $S = \Spec(R)$. Then every $\mathcal{O}_S$-module on $S_\etale$ is quasi-coherent. \end{lemma} \begin{proof} Let $\mathcal{F}$ be an $\mathcal{O}_S$-module on $S_\etale$. We have to show that $\mathcal{F}$ is determined by the $R$-module $M = \Gamma(S, \mathcal{F})$. More precisely, if $\pi : X \to S$ is \'etale we have to show that $\Gamma(X, \mathcal{F}) = \Gamma(X, \pi^*\widetilde{M})$. \medskip\noindent Let $\mathfrak m \subset R$ be the maximal ideal and let $\kappa$ be the residue field. By Algebra, Lemma \ref{algebra-lemma-local-dimension-zero-henselian} the local ring $R$ is henselian. If $X \to S$ is \'etale, then the underlying topological space of $X$ is discrete by Morphisms, Lemma \ref{morphisms-lemma-etale-over-field} and hence $X$ is a disjoint union of affine schemes each having one point. Moreover, if $X = \Spec(A)$ is affine and has one point, then $R \to A$ is finite \'etale by Algebra, Lemma \ref{algebra-lemma-mop-up}. We have to show that $\Gamma(X, \mathcal{F}) = M \otimes_R A$ in this case. \medskip\noindent The functor $A \mapsto A/\mathfrak m A$ defines an equivalence of the category of finite \'etale $R$-algebras with the category of finite separable $\kappa$-algebras by Algebra, Lemma \ref{algebra-lemma-henselian-cat-finite-etale}. Let us first consider the case where $A/\mathfrak m A$ is a Galois extension of $\kappa$ with Galois group $G$. For each $\sigma \in G$ let $\sigma : A \to A$ denote the corresponding automorphism of $A$ over $R$. Let $N = \Gamma(X, \mathcal{F})$. Then $\Spec(\sigma) : X \to X$ is an automorphism over $S$ and hence pullback by this defines a map $\sigma : N \to N$ which is a $\sigma$-linear map: $\sigma(an) = \sigma(a) \sigma(n)$ for $a \in A$ and $n \in N$. We will apply Galois descent to the quasi-coherent module $\widetilde{N}$ on $X$ endowed with the isomorphisms coming from the action on $\sigma$ on $N$. See Descent, Lemma \ref{descent-lemma-galois-descent-more-general}. This lemma tells us there is an isomorphism $N = N^G \otimes_R A$. On the other hand, it is clear that $N^G = M$ by the sheaf property for $\mathcal{F}$. Thus the required isomorphism holds. \medskip\noindent The general case (with $A$ local and finite \'etale over $R$) is deduced from the Galois case as follows. Choose $A \to B$ finite \'etale such that $B$ is local with residue field Galois over $\kappa$. Let $G = \text{Aut}(B/R) = \text{Gal}(\kappa_B/\kappa)$. Let $H \subset G$ be the Galois group corresponding to the Galois extension $\kappa_B/\kappa_A$. Then as above one shows that $\Gamma(X, \mathcal{F}) = \Gamma(\Spec(B), \mathcal{F})^H$. By the result for Galois extensions (used twice) we get $$ \Gamma(X, \mathcal{F}) = (M \otimes_R B)^H = M \otimes_R A $$ as desired. \end{proof} \section{Cohomology of curves} \label{section-cohomology-curves} \noindent The next task at hand is to compute the \'etale cohomology of a smooth curve over an algebraically closed field with torsion coefficients, and in particular show that it vanishes in degree at least 3. To prove this, we will compute cohomology at the generic point, which amounts to some Galois cohomology. \section{Brauer groups} \label{section-brauer-groups} \noindent Brauer groups of fields are defined using finite central simple algebras. In this section we review the relevant facts about Brauer groups, most of which are discussed in the chapter Brauer Groups, Section \ref{brauer-section-introduction}. For other references, see \cite{SerreCorpsLocaux}, \cite{SerreGaloisCohomology} or \cite{Weil}. \begin{theorem} \label{theorem-central-simple-algebra} Let $K$ be a field. For a unital, associative (not necessarily commutative) $K$-algebra $A$ the following are equivalent \begin{enumerate} \item $A$ is finite central simple $K$-algebra, \item $A$ is a finite dimensional $K$-vector space, $K$ is the center of $A$, and $A$ has no nontrivial two-sided ideal, \item there exists $d \geq 1$ such that $A \otimes_K \bar K \cong \text{Mat}(d \times d, \bar K)$, \item there exists $d \geq 1$ such that $A \otimes_K K^{sep} \cong \text{Mat}(d \times d, K^{sep})$, \item there exist $d \geq 1$ and a finite Galois extension $K'/K$ such that $A \otimes_K K' \cong \text{Mat}(d \times d, K')$, \item there exist $n \geq 1$ and a finite central skew field $D$ over $K$ such that $A \cong \text{Mat}(n \times n, D)$. \end{enumerate} The integer $d$ is called the {\it degree} of $A$. \end{theorem} \begin{proof} This is a copy of Brauer Groups, Lemma \ref{brauer-lemma-finite-central-simple-algebra}. \end{proof} \begin{lemma} \label{lemma-brauer-inverse} Let $A$ be a finite central simple algebra over $K$. Then $$ \begin{matrix} A \otimes_K A^{opp} & \longrightarrow & \text{End}_K(A) \\ \ a \otimes a' & \longmapsto & (x \mapsto a x a') \end{matrix} $$ is an isomorphism of algebras over $K$. \end{lemma} \begin{proof} See Brauer Groups, Lemma \ref{brauer-lemma-inverse}. \end{proof} \begin{definition} \label{definition-brauer-equivalent} Two finite central simple algebras $A_1$ and $A_2$ over $K$ are called {\it similar}, or {\it equivalent} if there exist $m, n \geq 1$ such that $\text{Mat}(n \times n, A_1) \cong \text{Mat}(m \times m, A_2)$. We write $A_1 \sim A_2$. \end{definition} \noindent By Brauer Groups, Lemma \ref{brauer-lemma-similar} this is an equivalence relation. \begin{definition} \label{definition-brauer-group} Let $K$ be a field. The {\it Brauer group} of $K$ is the set $\text{Br} (K)$ of similarity classes of finite central simple algebras over $K$, endowed with the group law induced by tensor product (over $K$). The class of $A$ in $\text{Br}(K)$ is denoted by $[A]$. The neutral element is $[K] = [\text{Mat}(d \times d, K)]$ for any $d \geq 1$. \end{definition} \noindent The previous lemma implies that inverses exist and that $-[A] = [A^{opp}]$. The Brauer group of a field is always torsion. In fact, we will see that $[A]$ has order dividing $\deg(A)$ for any finite central simple algebra $A$ (see Lemma \ref{lemma-annihilated-by-degree}). In general the Brauer group is not finitely generated, for example the Brauer group of a non-Archimedean local field is $\mathbf{Q}/\mathbf{Z}$. The Brauer group of $\mathbf{C}(x, y)$ is uncountable. \begin{lemma} \label{lemma-central-simple-algebra-pgln} \begin{slogan} Central simple algebras are classified by Galois cohomology of PGL. \end{slogan} Let $K$ be a field and let $K^{sep}$ be a separable algebraic closure. Then the set of isomorphism classes of central simple algebras of degree $d$ over $K$ is in bijection with the non-abelian cohomology $H^1(\text{Gal}(K^{sep}/K), \text{PGL}_d(K^{sep}))$. \end{lemma} \begin{proof}[Sketch of proof.] The Skolem-Noether theorem (see Brauer Groups, Theorem \ref{brauer-theorem-skolem-noether}) implies that for any field $L$ the group $\text{Aut}_{L\text{-Algebras}}(\text{Mat}_d(L))$ equals $\text{PGL}_d(L)$. By Theorem \ref{theorem-central-simple-algebra}, we see that central simple algebras of degree $d$ correspond to forms of the $K$-algebra $\text{Mat}_d(K)$. Combined we see that isomorphism classes of degree $d$ central simple algebras correspond to elements of $H^1(\text{Gal}(K^{sep}/K), \text{PGL}_d(K^{sep}))$. For more details on twisting, see for example \cite{SilvermanEllipticCurves}. \end{proof} \noindent If $A$ is a finite central simple algebra of degree $d$ over a field $K$, we denote $\xi_A$ the corresponding cohomology class in $H^1(\text{Gal}(K^{sep}/K), \text{PGL}_d(K^{sep}))$. Consider the short exact sequence $$ 1 \to (K^{sep})^* \to \text{GL}_d(K^{sep}) \to \text{PGL}_d(K^{sep}) \to 1, $$ which gives rise to a long exact cohomology sequence (up to degree 2) with coboundary map $$ \delta_d : H ^1(\text{Gal}(K^{sep}/K), \text{PGL}_d(K^{sep})) \longrightarrow H^2(\text{Gal}(K^{sep}/K), (K^{sep})^*). $$ Explicitly, this is given as follows: if $\xi$ is a cohomology class represented by the 1-cocycle $(g_\sigma)$, then $\delta_d(\xi)$ is the class of the 2-cocycle \begin{equation} \label{equation-two-cocycle} (\sigma, \tau) \longmapsto \tilde g_\sigma^{-1} \tilde g_{\sigma \tau} \sigma(\tilde g_\tau^{-1}) \in (K^{sep})^* \end{equation} where $\tilde g_\sigma \in \text{GL}_d(K^{sep})$ is a lift of $g_\sigma$. Using this we can make explicit the map $$ \delta : \text{Br}(K) \longrightarrow H^2(\text{Gal}(K^{sep}/K), (K^{sep})^*), \quad [A] \longmapsto \delta_{\deg A} (\xi_A) $$ as follows. Assume $A$ has degree $d$ over $K$. Choose an isomorphism $\varphi : \text{Mat}_d(K^{sep}) \to A \otimes_K K^{sep}$. For $\sigma \in \text{Gal}(K^{sep}/K)$ choose an element $\tilde g_\sigma \in \text{GL}_d(K^{sep})$ such that $\varphi^{-1} \circ \sigma(\varphi)$ is equal to the map $x \mapsto \tilde g_\sigma x \tilde g_\sigma^{-1}$. The class in $H^2$ is defined by the two cocycle (\ref{equation-two-cocycle}). \begin{theorem} \label{theorem-brauer-delta} Let $K$ be a field with separable algebraic closure $K^{sep}$. The map $\delta : \text{Br}(K) \to H^2(\text{Gal}(K^{sep}/K), (K^{sep})^*)$ defined above is a group isomorphism. \end{theorem} \begin{proof}[Sketch of proof] To prove that $\delta$ defines a group homomorphism, i.e., that $\delta(A \otimes_K B) = \delta(A) + \delta(B)$, one computes directly with cocycles. \medskip\noindent Injectivity of $\delta$. In the abelian case ($d = 1$), one has the identification $$ H^1(\text{Gal}(K^{sep}/K), \text{GL}_d(K^{sep})) = H_\etale^1(\Spec(K), \text{GL}_d(\mathcal{O})) $$ the latter of which is trivial by fpqc descent. If this were true in the non-abelian case, this would readily imply injectivity of $\delta$. (See \cite{SGA4.5}.) Rather, to prove this, one can reinterpret $\delta([A])$ as the obstruction to the existence of a $K$-vector space $V$ with a left $A$-module structure and such that $\dim_K V = \deg A$. In the case where $V$ exists, one has $A \cong \text{End}_K(V)$. \medskip\noindent For surjectivity, pick a cohomology class $\xi \in H^2(\text{Gal}(K^{sep}/K), (K^{sep})^*)$, then there exists a finite Galois extension $K^{sep}/K'/K$ such that $\xi$ is the image of some $\xi' \in H^2(\text{Gal}(K'|K), (K')^*)$. Then write down an explicit central simple algebra over $K$ using the data $K', \xi'$. \end{proof} \section{The Brauer group of a scheme} \label{section-brauer-scheme} \noindent Let $S$ be a scheme. An $\mathcal{O}_S$-algebra $\mathcal{A}$ is called {\it Azumaya} if it is \'etale locally a matrix algebra, i.e., if there exists an \'etale covering $\mathcal{U} = \{ \varphi_i : U_i \to S\}_{i \in I}$ such that $\varphi_i^*\mathcal{A} \cong \text{Mat}_{d_i}(\mathcal{O}_{U_i})$ for some $d_i \geq 1$. Two such $\mathcal{A}$ and $\mathcal{B}$ are called {\it equivalent} if there exist finite locally free $\mathcal{O}_S$-modules $\mathcal{F}$ and $\mathcal{G}$ which have positive rank at every $s \in S$ such that $$ \mathcal{A} \otimes_{\mathcal{O}_S} \SheafHom_{\mathcal{O}_S}(\mathcal{F}, \mathcal{F}) \cong \mathcal{B} \otimes_{\mathcal{O}_S} \SheafHom_{\mathcal{O}_S}(\mathcal{G}, \mathcal{G}) $$ as $\mathcal{O}_S$-algebras. The {\it Brauer group} of $S$ is the set $\text{Br}(S)$ of equivalence classes of Azumaya $\mathcal{O}_S$-algebras with the operation induced by tensor product (over $\mathcal{O}_S$). \begin{lemma} \label{lemma-end-unique-up-to-invertible} Let $S$ be a scheme. Let $\mathcal{F}$ and $\mathcal{G}$ be finite locally free sheaves of $\mathcal{O}_S$-modules of positive rank. If there exists an isomorphism $\SheafHom_{\mathcal{O}_S}(\mathcal{F}, \mathcal{F}) \cong \SheafHom_{\mathcal{O}_S}(\mathcal{G}, \mathcal{G})$ of $\mathcal{O}_S$-algebras, then there exists an invertible sheaf $\mathcal{L}$ on $S$ such that $\mathcal{F} \otimes_{\mathcal{O}_S} \mathcal{L} \cong \mathcal{G}$ and such that this isomorphism induces the given isomorphism of endomorphism algebras. \end{lemma} \begin{proof} Fix an isomorphism $\SheafHom_{\mathcal{O}_S}(\mathcal{F}, \mathcal{F}) \to \SheafHom_{\mathcal{O}_S}(\mathcal{G}, \mathcal{G})$. Consider the sheaf $\mathcal{L} \subset \SheafHom(\mathcal{F}, \mathcal{G})$ generated as an $\mathcal{O}_S$-module by the local isomorphisms $\varphi : \mathcal{F} \to \mathcal{G}$ such that conjugation by $\varphi$ is the given isomorphism of endomorphism algebras. A local calculation (reducing to the case that $\mathcal{F}$ and $\mathcal{G}$ are finite free and $S$ is affine) shows that $\mathcal{L}$ is invertible. Another local calculation shows that the evaluation map $$ \mathcal{F} \otimes_{\mathcal{O}_S} \mathcal{L} \longrightarrow \mathcal{G} $$ is an isomorphism. \end{proof} \noindent The argument given in the proof of the following lemma can be found in \cite{Saltman-torsion}. \begin{lemma} \label{lemma-annihilated-by-degree} \begin{reference} Argument taken from \cite{Saltman-torsion}. \end{reference} Let $S$ be a scheme. Let $\mathcal{A}$ be an Azumaya algebra which is locally free of rank $d^2$ over $S$. Then the class of $\mathcal{A}$ in the Brauer group of $S$ is annihilated by $d$. \end{lemma} \begin{proof} Choose an \'etale covering $\{U_i \to S\}$ and choose isomorphisms $\mathcal{A}|_{U_i} \to \SheafHom(\mathcal{F}_i, \mathcal{F}_i)$ for some locally free $\mathcal{O}_{U_i}$-modules $\mathcal{F}_i$ of rank $d$. (We may assume $\mathcal{F}_i$ is free.) Consider the composition $$ p_i : \mathcal{F}_i^{\otimes d} \to \wedge^d(\mathcal{F}_i) \to \mathcal{F}_i^{\otimes d} $$ The first arrow is the usual projection and the second arrow is the isomorphism of the top exterior power of $\mathcal{F}_i$ with the submodule of sections of $\mathcal{F}_i^{\otimes d}$ which transform according to the sign character under the action of the symmetric group on $d$ letters. Then $p_i^2 = d! p_i$ and the rank of $p_i$ is $1$. Using the given isomorphism $\mathcal{A}|_{U_i} \to \SheafHom(\mathcal{F}_i, \mathcal{F}_i)$ and the canonical isomorphism $$ \SheafHom(\mathcal{F}_i, \mathcal{F}_i)^{\otimes d} = \SheafHom(\mathcal{F}_i^{\otimes d}, \mathcal{F}_i^{\otimes d}) $$ we may think of $p_i$ as a section of $\mathcal{A}^{\otimes d}$ over $U_i$. We claim that $p_i|_{U_i \times_S U_j} = p_j|_{U_i \times_S U_j}$ as sections of $\mathcal{A}^{\otimes d}$. Namely, applying Lemma \ref{lemma-end-unique-up-to-invertible} we obtain an invertible sheaf $\mathcal{L}_{ij}$ and a canonical isomorphism $$ \mathcal{F}_i|_{U_i \times_S U_j} \otimes \mathcal{L}_{ij} \longrightarrow \mathcal{F}_j|_{U_i \times_S U_j}. $$ Using this isomorphism we see that $p_i$ maps to $p_j$. Since $\mathcal{A}^{\otimes d}$ is a sheaf on $S_\etale$ (Proposition \ref{proposition-quasi-coherent-sheaf-fpqc}) we find a canonical global section $p \in \Gamma(S, \mathcal{A}^{\otimes d})$. A local calculation shows that $$ \mathcal{H} = \Im(\mathcal{A}^{\otimes d} \to \mathcal{A}^{\otimes d}, f \mapsto fp) $$ is a locally free module of rank $d^d$ and that (left) multiplication by $\mathcal{A}^{\otimes d}$ induces an isomorphism $\mathcal{A}^{\otimes d} \to \SheafHom(\mathcal{H}, \mathcal{H})$. In other words, $\mathcal{A}^{\otimes d}$ is the trivial element of the Brauer group of $S$ as desired. \end{proof} \noindent In this setting, the analogue of the isomorphism $\delta$ of Theorem \ref{theorem-brauer-delta} is a map $$ \delta_S: \text{Br}(S) \to H_\etale^2(S, \mathbf{G}_m). $$ It is true that $\delta_S$ is injective. If $S$ is quasi-compact or connected, then $\text{Br}(S)$ is a torsion group, so in this case the image of $\delta_S$ is contained in the {\it cohomological Brauer group} of $S$ $$ \text{Br}'(S) := H_\etale^2(S, \mathbf{G}_m)_\text{torsion}. $$ So if $S$ is quasi-compact or connected, there is an inclusion $\text{Br}(S) \subset \text{Br}'(S)$. This is not always an equality: there exists a nonseparated singular surface $S$ for which $\text{Br}(S) \subset \text{Br}'(S)$ is a strict inclusion. If $S$ is quasi-projective, then $\text{Br}(S) = \text{Br}'(S)$. However, it is not known whether this holds for a smooth proper variety over $\mathbf{C}$, say. \section{The Artin-Schreier sequence} \label{section-artin-schreier} \noindent Let $p$ be a prime number. Let $S$ be a scheme in characteristic $p$. The {\it Artin-Schreier} sequence is the short exact sequence $$ 0 \longrightarrow \underline{\mathbf{Z}/p\mathbf{Z}}_S \longrightarrow \mathbf{G}_{a, S} \xrightarrow{F-1} \mathbf{G}_{a, S} \longrightarrow 0 $$ where $F - 1$ is the map $x \mapsto x^p - x$. \begin{lemma} \label{lemma-vanishing-affine-char-p-p} Let $p$ be a prime. Let $S$ be a scheme of characteristic $p$. \begin{enumerate} \item If $S$ is affine, then $H_\etale^q(S, \underline{\mathbf{Z}/p\mathbf{Z}}) = 0$ for all $q \geq 2$. \item If $S$ is a quasi-compact and quasi-separated scheme of dimension $d$, then $H_\etale^q(S, \underline{\mathbf{Z}/p\mathbf{Z}}) = 0$ for all $q \geq 2 + d$. \end{enumerate} \end{lemma} \begin{proof} Recall that the \'etale cohomology of the structure sheaf is equal to its cohomology on the underlying topological space (Theorem \ref{theorem-zariski-fpqc-quasi-coherent}). The first statement follows from the Artin-Schreier exact sequence and the vanishing of cohomology of the structure sheaf on an affine scheme (Cohomology of Schemes, Lemma \ref{coherent-lemma-quasi-coherent-affine-cohomology-zero}). The second statement follows by the same argument from the vanishing of Cohomology, Proposition \ref{cohomology-proposition-cohomological-dimension-spectral} and the fact that $S$ is a spectral space (Properties, Lemma \ref{properties-lemma-quasi-compact-quasi-separated-spectral}). \end{proof} \begin{lemma} \label{lemma-F-1} Let $k$ be an algebraically closed field of characteristic $p > 0$. Let $V$ be a finite dimensional $k$-vector space. Let $F : V \to V$ be a frobenius linear map, i.e., an additive map such that $F(\lambda v) = \lambda^p F(v)$ for all $\lambda \in k$ and $v \in V$. Then $F - 1 : V \to V$ is surjective with kernel a finite dimensional $\mathbf{F}_p$-vector space of dimension $\leq \dim_k(V)$. \end{lemma} \begin{proof} If $F = 0$, then the statement holds. If we have a filtration of $V$ by $F$-stable subvector spaces such that the statement holds for each graded piece, then it holds for $(V, F)$. Combining these two remarks we may assume the kernel of $F$ is zero. \medskip\noindent Choose a basis $v_1, \ldots, v_n$ of $V$ and write $F(v_i) = \sum a_{ij} v_j$. Observe that $v = \sum \lambda_i v_i$ is in the kernel if and only if $\sum \lambda_i^p a_{ij} v_j = 0$. Since $k$ is algebraically closed this implies the matrix $(a_{ij})$ is invertible. Let $(b_{ij})$ be its inverse. Then to see that $F - 1$ is surjective we pick $w = \sum \mu_i v_i \in V$ and we try to solve $$ (F - 1)(\sum \lambda_iv_i) = \sum \lambda_i^p a_{ij} v_j - \sum \lambda_j v_j = \sum \mu_j v_j $$ This is equivalent to $$ \sum \lambda_j^p v_j - \sum b_{ij} \lambda_i v_j = \sum b_{ij} \mu_i v_j $$ in other words $$ \lambda_j^p - \sum b_{ij} \lambda_i = \sum b_{ij} \mu_i, \quad j = 1, \ldots, \dim(V). $$ The algebra $$ A = k[x_1, \ldots, x_n]/ (x_j^p - \sum b_{ij} x_i - \sum b_{ij} \mu_i) $$ is standard smooth over $k$ (Algebra, Definition \ref{algebra-definition-standard-smooth}) because the matrix $(b_{ij})$ is invertible and the partial derivatives of $x_j^p$ are zero. A basis of $A$ over $k$ is the set of monomials $x_1^{e_1} \ldots x_n^{e_n}$ with $e_i < p$, hence $\dim_k(A) = p^n$. Since $k$ is algebraically closed we see that $\Spec(A)$ has exactly $p^n$ points. It follows that $F - 1$ is surjective and every fibre has $p^n$ points, i.e., the kernel of $F - 1$ is a group with $p^n$ elements. \end{proof} \begin{lemma} \label{lemma-top-cohomology-coherent} Let $X$ be a separated scheme of finite type over a field $k$. Let $\mathcal{F}$ be a coherent sheaf of $\mathcal{O}_X$-modules. Then $\dim_k H^d(X, \mathcal{F}) < \infty$ where $d = \dim(X)$. \end{lemma} \begin{proof} We will prove this by induction on $d$. The case $d = 0$ holds because in that case $X$ is the spectrum of a finite dimensional $k$-algebra $A$ (Varieties, Lemma \ref{varieties-lemma-algebraic-scheme-dim-0}) and every coherent sheaf $\mathcal{F}$ corresponds to a finite $A$-module $M = H^0(X, \mathcal{F})$ which has $\dim_k M < \infty$. \medskip\noindent Assume $d > 0$ and the result has been shown for separated schemes of finite type of dimension $< d$. The scheme $X$ is Noetherian. Consider the property $\mathcal{P}$ of coherent sheaves on $X$ defined by the rule $$ \mathcal{P}(\mathcal{F}) \Leftrightarrow \dim_k H^d(X, \mathcal{F}) < \infty $$ We are going to use the result of Cohomology of Schemes, Lemma \ref{coherent-lemma-property-initial} to prove that $\mathcal{P}$ holds for every coherent sheaf on $X$. \medskip\noindent Let $$ 0 \to \mathcal{F}_1 \to \mathcal{F} \to \mathcal{F}_2 \to 0 $$ be a short exact sequence of coherent sheaves on $X$. Consider the long exact sequence of cohomology $$ H^d(X, \mathcal{F}_1) \to H^d(X, \mathcal{F}) \to H^d(X, \mathcal{F}_2) $$ Thus if $\mathcal{P}$ holds for $\mathcal{F}_1$ and $\mathcal{F}_2$, then it holds for $\mathcal{F}$. \medskip\noindent Let $Z \subset X$ be an integral closed subscheme. Let $\mathcal{I}$ be a coherent sheaf of ideals on $Z$. To finish the proof we have to show that $H^d(X, i_*\mathcal{I}) = H^d(Z, \mathcal{I})$ is finite dimensional. If $\dim(Z) < d$, then the result holds because the cohomology group will be zero (Cohomology, Proposition \ref{cohomology-proposition-vanishing-Noetherian}). In this way we reduce to the situation discussed in the following paragraph. \medskip\noindent Assume $X$ is a variety of dimension $d$ and $\mathcal{F} = \mathcal{I}$ is a coherent ideal sheaf. In this case we have a short exact sequence $$ 0 \to \mathcal{I} \to \mathcal{O}_X \to i_*\mathcal{O}_Z \to 0 $$ where $i : Z \to X$ is the closed subscheme defined by $\mathcal{I}$. By induction hypothesis we see that $H^{d - 1}(Z, \mathcal{O}_Z) = H^{d - 1}(X, i_*\mathcal{O}_Z)$ is finite dimensional. Thus we see that it suffices to prove the result for the structure sheaf. \medskip\noindent We can apply Chow's lemma (Cohomology of Schemes, Lemma \ref{coherent-lemma-chow-Noetherian}) to the morphism $X \to \Spec(k)$. Thus we get a diagram $$ \xymatrix{ X \ar[rd]_g & X' \ar[d]^-{g'} \ar[l]^\pi \ar[r]_i & \mathbf{P}^n_k \ar[dl] \\ & \Spec(k) & } $$ as in the statement of Chow's lemma. Also, let $U \subset X$ be the dense open subscheme such that $\pi^{-1}(U) \to U$ is an isomorphism. We may assume $X'$ is a variety as well, see Cohomology of Schemes, Remark \ref{coherent-remark-chow-Noetherian}. The morphism $i' = (i, \pi) : X' \to \mathbf{P}^n_X$ is a closed immersion (loc. cit.). Hence $$ \mathcal{L} = i^*\mathcal{O}_{\mathbf{P}^n_k}(1) \cong (i')^*\mathcal{O}_{\mathbf{P}^n_X}(1) $$ is $\pi$-relatively ample (for example by Morphisms, Lemma \ref{morphisms-lemma-characterize-ample-on-finite-type}). Hence by Cohomology of Schemes, Lemma \ref{coherent-lemma-kill-by-twisting} there exists an $n \geq 0$ such that $R^p\pi_*\mathcal{L}^{\otimes n} = 0$ for all $p > 0$. Set $\mathcal{G} = \pi_*\mathcal{L}^{\otimes n}$. Choose any nonzero global section $s$ of $\mathcal{L}^{\otimes n}$. Since $\mathcal{G} = \pi_*\mathcal{L}^{\otimes n}$, the section $s$ corresponds to section of $\mathcal{G}$, i.e., a map $\mathcal{O}_X \to \mathcal{G}$. Since $s|_U \not = 0$ as $X'$ is a variety and $\mathcal{L}$ invertible, we see that $\mathcal{O}_X|_U \to \mathcal{G}|_U$ is nonzero. As $\mathcal{G}|_U = \mathcal{L}^{\otimes n}|_{\pi^{-1}(U)}$ is invertible we conclude that we have a short exact sequence $$ 0 \to \mathcal{O}_X \to \mathcal{G} \to \mathcal{Q} \to 0 $$ where $\mathcal{Q}$ is coherent and supported on a proper closed subscheme of $X$. Arguing as before using our induction hypothesis, we see that it suffices to prove $\dim H^d(X, \mathcal{G}) < \infty$. \medskip\noindent By the Leray spectral sequence (Cohomology, Lemma \ref{cohomology-lemma-apply-Leray}) we see that $H^d(X, \mathcal{G}) = H^d(X', \mathcal{L}^{\otimes n})$. Let $\overline{X}' \subset \mathbf{P}^n_k$ be the closure of $X'$. Then $\overline{X}'$ is a projective variety of dimension $d$ over $k$ and $X' \subset \overline{X}'$ is a dense open. The invertible sheaf $\mathcal{L}$ is the restriction of $\mathcal{O}_{\overline{X}'}(n)$ to $X$. By Cohomology, Proposition \ref{cohomology-proposition-cohomological-dimension-spectral} the map $$ H^d(\overline{X}', \mathcal{O}_{\overline{X}'}(n)) \longrightarrow H^d(X', \mathcal{L}^{\otimes n}) $$ is surjective. Since the cohomology group on the left has finite dimension by Cohomology of Schemes, Lemma \ref{coherent-lemma-coherent-projective} the proof is complete. \end{proof} \begin{lemma} \label{lemma-vanishing-variety-char-p-p} Let $X$ be separated of finite type over an algebraically closed field $k$ of characteristic $p > 0$. Then $H_\etale^q(X, \underline{\mathbf{Z}/p\mathbf{Z}}) = 0$ for $q \geq dim(X) + 1$. \end{lemma} \begin{proof} Let $d = \dim(X)$. By the vanishing established in Lemma \ref{lemma-vanishing-affine-char-p-p} it suffices to show that $H_\etale^{d + 1}(X, \underline{\mathbf{Z}/p\mathbf{Z}}) = 0$. By Lemma \ref{lemma-top-cohomology-coherent} we see that $H^d(X, \mathcal{O}_X)$ is a finite dimensional $k$-vector space. Hence the long exact cohomology sequence associated to the Artin-Schreier sequence ends with $$ H^d(X, \mathcal{O}_X) \xrightarrow{F - 1} H^d(X, \mathcal{O}_X) \to H^{d + 1}_\etale(X, \mathbf{Z}/p\mathbf{Z}) \to 0 $$ By Lemma \ref{lemma-F-1} the map $F - 1$ in this sequence is surjective. This proves the lemma. \end{proof} \begin{lemma} \label{lemma-finiteness-proper-variety-char-p-p} Let $X$ be a proper scheme over an algebraically closed field $k$ of characteristic $p > 0$. Then \begin{enumerate} \item $H_\etale^q(X, \underline{\mathbf{Z}/p\mathbf{Z}})$ is a finite $\mathbf{Z}/p\mathbf{Z}$-module for all $q$, and \item $H^q_\etale(X, \underline{\mathbf{Z}/p\mathbf{Z}}) \to H^q_\etale(X_{k'}, \underline{\mathbf{Z}/p\mathbf{Z}}))$ is an isomorphism if $k'/k$ is an extension of algebraically closed fields. \end{enumerate} \end{lemma} \begin{proof} By Cohomology of Schemes, Lemma \ref{coherent-lemma-proper-over-affine-cohomology-finite}) and the comparison of cohomology of Theorem \ref{theorem-zariski-fpqc-quasi-coherent} the cohomology groups $H^q_\etale(X, \mathbf{G}_a) = H^q(X, \mathcal{O}_X)$ are finite dimensional $k$-vector spaces. Hence by Lemma \ref{lemma-F-1} the long exact cohomology sequence associated to the Artin-Schreier sequence, splits into short exact sequences $$ 0 \to H_\etale^q(X, \underline{\mathbf{Z}/p\mathbf{Z}}) \to H^q(X, \mathcal{O}_X) \xrightarrow{F - 1} H^q(X, \mathcal{O}_X) \to 0 $$ and moreover the $\mathbf{F}_p$-dimension of the cohomology groups $H_\etale^q(X, \underline{\mathbf{Z}/p\mathbf{Z}})$ is equal to the $k$-dimension of the vector space $H^q(X, \mathcal{O}_X)$. This proves the first statement. The second statement follows as $H^q(X, \mathcal{O}_X) \otimes_k k' \to H^q(X_{k'}, \mathcal{O}_{X_{k'}})$ is an isomorphism by flat base change (Cohomology of Schemes, Lemma \ref{coherent-lemma-flat-base-change-cohomology}). \end{proof} \section{Locally constant sheaves} \label{section-locally-constant} \noindent This section is the analogue of Modules on Sites, Section \ref{sites-modules-section-locally-constant} for the \'etale site. \begin{definition} \label{definition-finite-locally-constant} Let $X$ be a scheme. Let $\mathcal{F}$ be a sheaf of sets on $X_\etale$. \begin{enumerate} \item Let $E$ be a set. We say $\mathcal{F}$ is the {\it constant sheaf with value $E$} if $\mathcal{F}$ is the sheafification of the presheaf $U \mapsto E$. Notation: $\underline{E}_X$ or $\underline{E}$. \item We say $\mathcal{F}$ is a {\it constant sheaf} if it is isomorphic to a sheaf as in (1). \item We say $\mathcal{F}$ is {\it locally constant} if there exists a covering $\{U_i \to X\}$ such that $\mathcal{F}|_{U_i}$ is a constant sheaf. \item We say that $\mathcal{F}$ is {\it finite locally constant} if it is locally constant and the values are finite sets. \end{enumerate} Let $\mathcal{F}$ be a sheaf of abelian groups on $X_\etale$. \begin{enumerate} \item Let $A$ be an abelian group. We say $\mathcal{F}$ is the {\it constant sheaf with value $A$} if $\mathcal{F}$ is the sheafification of the presheaf $U \mapsto A$. Notation: $\underline{A}_X$ or $\underline{A}$. \item We say $\mathcal{F}$ is a {\it constant sheaf} if it is isomorphic as an abelian sheaf to a sheaf as in (1). \item We say $\mathcal{F}$ is {\it locally constant} if there exists a covering $\{U_i \to X\}$ such that $\mathcal{F}|_{U_i}$ is a constant sheaf. \item We say that $\mathcal{F}$ is {\it finite locally constant} if it is locally constant and the values are finite abelian groups. \end{enumerate} Let $\Lambda$ be a ring. Let $\mathcal{F}$ be a sheaf of $\Lambda$-modules on $X_\etale$. \begin{enumerate} \item Let $M$ be a $\Lambda$-module. We say $\mathcal{F}$ is the {\it constant sheaf with value $M$} if $\mathcal{F}$ is the sheafification of the presheaf $U \mapsto M$. Notation: $\underline{M}_X$ or $\underline{M}$. \item We say $\mathcal{F}$ is a {\it constant sheaf} if it is isomorphic as a sheaf of $\Lambda$-modules to a sheaf as in (1). \item We say $\mathcal{F}$ is {\it locally constant} if there exists a covering $\{U_i \to X\}$ such that $\mathcal{F}|_{U_i}$ is a constant sheaf. \end{enumerate} \end{definition} \begin{lemma} \label{lemma-pullback-locally-constant} Let $f : X \to Y$ be a morphism of schemes. If $\mathcal{G}$ is a locally constant sheaf of sets, abelian groups, or $\Lambda$-modules on $Y_\etale$, the same is true for $f^{-1}\mathcal{G}$ on $X_\etale$. \end{lemma} \begin{proof} Holds for any morphism of topoi, see Modules on Sites, Lemma \ref{sites-modules-lemma-pullback-locally-constant}. \end{proof} \begin{lemma} \label{lemma-pushforward-locally-constant} Let $f : X \to Y$ be a finite \'etale morphism of schemes. If $\mathcal{F}$ is a (finite) locally constant sheaf of sets, (finite) locally constant sheaf of abelian groups, or (finite type) locally constant sheaf of $\Lambda$-modules on $X_\etale$, the same is true for $f_*\mathcal{F}$ on $Y_\etale$. \end{lemma} \begin{proof} The construction of $f_*$ commutes with \'etale localization. A finite \'etale morphism is locally isomorphic to a disjoint union of isomorphisms, see \'Etale Morphisms, Lemma \ref{etale-lemma-finite-etale-etale-local}. Thus the lemma says that if $\mathcal{F}_i$, $i = 1, \ldots, n$ are (finite) locally constant sheaves of sets, then $\prod_{i = 1, \ldots, n} \mathcal{F}_i$ is too. This is clear. Similarly for sheaves of abelian groups and modules. \end{proof} \begin{lemma} \label{lemma-characterize-finite-locally-constant} Let $X$ be a scheme and $\mathcal{F}$ a sheaf of sets on $X_\etale$. Then the following are equivalent \begin{enumerate} \item $\mathcal{F}$ is finite locally constant, and \item $\mathcal{F} = h_U$ for some finite \'etale morphism $U \to X$. \end{enumerate} \end{lemma} \begin{proof} A finite \'etale morphism is locally isomorphic to a disjoint union of isomorphisms, see \'Etale Morphisms, Lemma \ref{etale-lemma-finite-etale-etale-local}. Thus (2) implies (1). Conversely, if $\mathcal{F}$ is finite locally constant, then there exists an \'etale covering $\{X_i \to X\}$ such that $\mathcal{F}|_{X_i}$ is representable by $U_i \to X_i$ finite \'etale. Arguing exactly as in the proof of Descent, Lemma \ref{descent-lemma-descent-data-sheaves} we obtain a descent datum for schemes $(U_i, \varphi_{ij})$ relative to $\{X_i \to X\}$ (details omitted). This descent datum is effective for example by Descent, Lemma \ref{descent-lemma-affine} and the resulting morphism of schemes $U \to X$ is finite \'etale by Descent, Lemmas \ref{descent-lemma-descending-property-finite} and \ref{descent-lemma-descending-property-etale}. \end{proof} \begin{lemma} \label{lemma-morphism-locally-constant} Let $X$ be a scheme. \begin{enumerate} \item Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a map of locally constant sheaves of sets on $X_\etale$. If $\mathcal{F}$ is finite locally constant, there exists an \'etale covering $\{U_i \to X\}$ such that $\varphi|_{U_i}$ is the map of constant sheaves associated to a map of sets. \item Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a map of locally constant sheaves of abelian groups on $X_\etale$. If $\mathcal{F}$ is finite locally constant, there exists an \'etale covering $\{U_i \to X\}$ such that $\varphi|_{U_i}$ is the map of constant abelian sheaves associated to a map of abelian groups. \item Let $\Lambda$ be a ring. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a map of locally constant sheaves of $\Lambda$-modules on $X_\etale$. If $\mathcal{F}$ is of finite type, then there exists an \'etale covering $\{U_i \to X\}$ such that $\varphi|_{U_i}$ is the map of constant sheaves of $\Lambda$-modules associated to a map of $\Lambda$-modules. \end{enumerate} \end{lemma} \begin{proof} This holds on any site, see Modules on Sites, Lemma \ref{sites-modules-lemma-morphism-locally-constant}. \end{proof} \begin{lemma} \label{lemma-kernel-finite-locally-constant} Let $X$ be a scheme. \begin{enumerate} \item The category of finite locally constant sheaves of sets is closed under finite limits and colimits inside $\Sh(X_\etale)$. \item The category of finite locally constant abelian sheaves is a weak Serre subcategory of $\textit{Ab}(X_\etale)$. \item Let $\Lambda$ be a Noetherian ring. The category of finite type, locally constant sheaves of $\Lambda$-modules on $X_\etale$ is a weak Serre subcategory of $\textit{Mod}(X_\etale, \Lambda)$. \end{enumerate} \end{lemma} \begin{proof} This holds on any site, see Modules on Sites, Lemma \ref{sites-modules-lemma-kernel-finite-locally-constant}. \end{proof} \begin{lemma} \label{lemma-tensor-product-locally-constant} Let $X$ be a scheme. Let $\Lambda$ be a ring. The tensor product of two locally constant sheaves of $\Lambda$-modules on $X_\etale$ is a locally constant sheaf of $\Lambda$-modules. \end{lemma} \begin{proof} This holds on any site, see Modules on Sites, Lemma \ref{sites-modules-lemma-tensor-product-locally-constant}. \end{proof} \begin{lemma} \label{lemma-connected-locally-constant} Let $X$ be a connected scheme. Let $\Lambda$ be a ring and let $\mathcal{F}$ be a locally constant sheaf of $\Lambda$-modules. Then there exists a $\Lambda$-module $M$ and an \'etale covering $\{U_i \to X\}$ such that $\mathcal{F}|_{U_i} \cong \underline{M}|_{U_i}$. \end{lemma} \begin{proof} Choose an \'etale covering $\{U_i \to X\}$ such that $\mathcal{F}|_{U_i}$ is constant, say $\mathcal{F}|_{U_i} \cong \underline{M_i}_{U_i}$. Observe that $U_i \times_X U_j$ is empty if $M_i$ is not isomorphic to $M_j$. For each $\Lambda$-module $M$ let $I_M = \{i \in I \mid M_i \cong M\}$. As \'etale morphisms are open we see that $U_M = \bigcup_{i \in I_M} \Im(U_i \to X)$ is an open subset of $X$. Then $X = \coprod U_M$ is a disjoint open covering of $X$. As $X$ is connected only one $U_M$ is nonempty and the lemma follows. \end{proof} \section{Locally constant sheaves and the fundamental group} \label{section-pione} \noindent We can relate locally constant sheaves to the fundamental group of a scheme in some cases. \begin{lemma} \label{lemma-locally-constant-on-connected} Let $X$ be a connected scheme. Let $\overline{x}$ be a geometric point of $X$. \begin{enumerate} \item There is an equivalence of categories $$ \left\{ \begin{matrix} \text{finite locally constant}\\ \text{sheaves of sets on }X_\etale \end{matrix} \right\} \longleftrightarrow \left\{ \begin{matrix} \text{finite }\pi_1(X, \overline{x})\text{-sets} \end{matrix} \right\} $$ \item There is an equivalence of categories $$ \left\{ \begin{matrix} \text{finite locally constant}\\ \text{sheaves of abelian groups on }X_\etale \end{matrix} \right\} \longleftrightarrow \left\{ \begin{matrix} \text{finite }\pi_1(X, \overline{x})\text{-modules} \end{matrix} \right\} $$ \item Let $\Lambda$ be a finite ring. There is an equivalence of categories $$ \left\{ \begin{matrix} \text{finite type, locally constant}\\ \text{sheaves of }\Lambda\text{-modules on }X_\etale \end{matrix} \right\} \longleftrightarrow \left\{ \begin{matrix} \text{finite }\pi_1(X, \overline{x})\text{-modules endowed}\\ \text{with commuting }\Lambda\text{-module structure} \end{matrix} \right\} $$ \end{enumerate} \end{lemma} \begin{proof} We observe that $\pi_1(X, \overline{x})$ is a profinite topological group, see Fundamental Groups, Definition \ref{pione-definition-fundamental-group}. The left hand categories are defined in Section \ref{section-locally-constant}. The notation used in the right hand categories is taken from Fundamental Groups, Definition \ref{pione-definition-G-set-continuous} for sets and Definition \ref{definition-G-module-continuous} for abelian groups. This explains the notation. \medskip\noindent Assertion (1) follows from Lemma \ref{lemma-characterize-finite-locally-constant} and Fundamental Groups, Theorem \ref{pione-theorem-fundamental-group}. Parts (2) and (3) follow immediately from this by endowing the underlying (sheaves of) sets with additional structure. For example, a finite locally constant sheaf of abelian groups on $X_\etale$ is the same thing as a finite locally constant sheaf of sets $\mathcal{F}$ together with a map $+ : \mathcal{F} \times \mathcal{F} \to \mathcal{F}$ satisfying the usual axioms. The equivalence in (1) sends products to products and hence sends $+$ to an addition on the corresponding finite $\pi_1(X, \overline{x})$-set. Since $\pi_1(X, \overline{x})$-modules are the same thing as $\pi_1(X, \overline{x})$-sets with a compatible abelian group structure we obtain (2). Part (3) is proved in exactly the same way. \end{proof} \begin{lemma} \label{lemma-locally-constant-on-connected-geom-unibranch} Let $X$ be an irreducible, geometrically unibranch scheme. Let $\overline{x}$ be a geometric point of $X$. Let $\Lambda$ be a ring. There is an equivalence of categories $$ \left\{ \begin{matrix} \text{finite type, locally constant}\\ \text{sheaves of }\Lambda\text{-modules on }X_\etale \end{matrix} \right\} \longleftrightarrow \left\{ \begin{matrix} \text{finite }\Lambda\text{-modules }M\text{ endowed}\\ \text{with a continuous }\pi_1(X, \overline{x})\text{-action} \end{matrix} \right\} $$ \end{lemma} \begin{proof} The proof given in Lemma \ref{lemma-locally-constant-on-connected} does not work as a finite $\Lambda$-module $M$ may not have a finite underlying set. \medskip\noindent Let $\nu : X^\nu \to X$ be the normalization morphism. By Morphisms, Lemma \ref{morphisms-lemma-normalization-geom-unibranch-univ-homeo} this is a universal homeomorphism. By Fundamental Groups, Proposition \ref{pione-proposition-universal-homeomorphism} this induces an isomorphism $\pi_1(X^\nu, \overline{x}) \to \pi_1(X, \overline{x})$ and by Theorem \ref{theorem-topological-invariance} we get an equivalence of category between finite type, locally constant $\Lambda$-modules on $X_\etale$ and on $X^\nu_\etale$. This reduces us to the case where $X$ is an integral normal scheme. \medskip\noindent Assume $X$ is an integral normal scheme. Let $\eta \in X$ be the generic point. Let $\overline{\eta}$ be a geometric point lying over $\eta$. By Fundamental Groups, Proposition \ref{pione-proposition-normal} have a continuous surjection $$ \text{Gal}(\kappa(\eta)^{sep}/\kappa(\eta)) = \pi_1(\eta, \overline{\eta}) \longrightarrow \pi_1(X, \overline{\eta}) $$ whose kernel is described in Fundamental Groups, Lemma \ref{pione-lemma-normal-pione-quotient-inertia}. Let $\mathcal{F}$ be a finite type, locally constant sheaf of $\Lambda$-modules on $X_\etale$. Let $M = \mathcal{F}_{\overline{\eta}}$ be the stalk of $\mathcal{F}$ at $\overline{\eta}$. We obtain a continuous action of $\text{Gal}(\kappa(\eta)^{sep}/\kappa(\eta))$ on $M$ by Section \ref{section-galois-action-stalks}. Our goal is to show that this action factors through the displayed surjection. Since $\mathcal{F}$ is of finite type, $M$ is a finite $\Lambda$-module. Since $\mathcal{F}$ is locally constant, for every $x \in X$ the restriction of $\mathcal{F}$ to $\Spec(\mathcal{O}_{X, x}^{sh})$ is constant. Hence the action of $\text{Gal}(K^{sep}/K_x^{sh})$ (with notation as in Fundamental Groups, Lemma \ref{pione-lemma-normal-pione-quotient-inertia}) on $M$ is trivial. We conclude we have the factorization as desired. \medskip\noindent On the other hand, suppose we have a finite $\Lambda$-module $M$ with a continuous action of $\pi_1(X, \overline{\eta})$. We are going to construct an $\mathcal{F}$ such that $M \cong \mathcal{F}_{\overline{\eta}}$ as $\Lambda[\pi_1(X, \overline{\eta})]$-modules. Choose generators $m_1, \ldots, m_r \in M$. Since the action of $\pi_1(X, \overline{\eta})$ on $M$ is continuous, for each $i$ there exists an open subgroup $N_i$ of the profinite group $\pi_1(X, \overline{\eta})$ such that every $\gamma \in H_i$ fixes $m_i$. We conclude that every element of the open subgroup $H = \bigcap_{i = 1, \ldots, r} H_i$ fixes every element of $M$. After shrinking $H$ we may assume $H$ is an open normal subgroup of $\pi_1(X, \overline{\eta})$. Set $G = \pi_1(X, \overline{\eta})/H$. Let $f : Y \to X$ be the corresponding Galois finite \'etale $G$-cover. We can view $f_*\underline{\mathbf{Z}}$ as a sheaf of $\mathbf{Z}[G]$-modules on $X_\etale$. Then we just take $$ \mathcal{F} = f_*\underline{\mathbf{Z}} \otimes_{\underline{\mathbf{Z}[G]}} \underline{M} $$ We leave it to the reader to compute $\mathcal{F}_{\overline{\eta}}$. We also omit the verification that this construction is the inverse to the construction in the previous paragraph. \end{proof} \begin{remark} \label{remark-functorial-locally-constant-on-connected} The equivalences of Lemmas \ref{lemma-locally-constant-on-connected} and \ref{lemma-locally-constant-on-connected-geom-unibranch} are compatible with pullbacks. For example, suppose $f : Y \to X$ is a morphism of connected schemes. Let $\overline{y}$ be geometric point of $Y$ and set $\overline{x} = f(\overline{y})$. Then the diagram $$ \xymatrix{ \text{finite locally constant sheaves of sets on }Y_\etale \ar[r] & \text{finite }\pi_1(Y, \overline{y})\text{-sets} \\ \text{finite locally constant sheaves of sets on }X_\etale \ar[r] \ar[u]_{f^{-1}} & \text{finite }\pi_1(X, \overline{x})\text{-sets} \ar[u] } $$ is commutative, where the vertical arrow on the right comes from the continuous homomorphism $\pi_1(Y, \overline{y}) \to \pi_1(X, \overline{x})$ induced by $f$. This follows immediately from the commutative diagram in Fundamental Groups, Theorem \ref{pione-theorem-fundamental-group}. A similar result holds for the other cases. \end{remark} \section{M\'ethode de la trace} \label{section-trace-method} \noindent A reference for this section is \cite[Expos\'e IX, \S 5]{SGA4}. The material here will be used in the proof of Lemma \ref{lemma-vanishing-easier} below. \medskip\noindent Let $f : Y \to X$ be an \'etale morphism of schemes. There is a sequence $$ f_!, f^{-1}, f_* $$ of adjoint functors between $\textit{Ab}(X_\etale)$ and $\textit{Ab}(Y_\etale)$. The functor $f_!$ is discussed in Section \ref{section-extension-by-zero}. The adjunction map $\text{id} \to f_* f^{-1}$ is called {\it restriction}. The adjunction map $f_! f^{-1} \to \text{id}$ is often called the {\it trace map}. If $f$ is finite \'etale, then $f_* = f_!$ (Lemma \ref{lemma-shriek-equals-star-finite-etale}) and we can view this as a map $f_*f^{-1} \to \text{id}$. \begin{definition} \label{definition-trace-map} Let $f : Y \to X$ be a finite \'etale morphism of schemes. The map $f_* f^{-1} \to \text{id}$ described above and explicitly below is called the {\it trace}. \end{definition} \noindent Let $f : Y \to X$ be a finite \'etale morphism of schemes. The trace map is characterized by the following two properties: \begin{enumerate} \item it commutes with \'etale localization on $X$ and \item if $Y = \coprod_{i = 1}^d X$ then the trace map is the sum map $f_*f^{-1} \mathcal{F} = \mathcal{F}^{\oplus d} \to \mathcal{F}$. \end{enumerate} By \'Etale Morphisms, Lemma \ref{etale-lemma-finite-etale-etale-local} every finite \'etale morphism $f : Y \to X$ is \'etale locally on $X$ of the form given in (2) for some integer $d \geq 0$. Hence we can define the trace map using the characterization given; in particular we do not need to know about the existence of $f_!$ and the agreement of $f_!$ with $f_*$ in order to construct the trace map. This description shows that if $f$ has constant degree $d$, then the composition $$ \mathcal{F} \xrightarrow{res} f_* f^{-1} \mathcal{F} \xrightarrow{trace} \mathcal{F} $$ is multiplication by $d$. The ``m\'ethode de la trace'' is the following observation: if $\mathcal{F}$ is an abelian sheaf on $X_\etale$ such that multiplication by $d$ on $\mathcal{F}$ is an isomorphism, then the map $$ H^n_\etale(X, \mathcal{F}) \longrightarrow H^n_\etale(Y, f^{-1}\mathcal{F}) $$ is injective. Namely, we have $$ H^n_\etale(Y, f^{-1}\mathcal{F}) = H^n_\etale(X, f_*f^{-1}\mathcal{F}) $$ by the vanishing of the higher direct images (Proposition \ref{proposition-finite-higher-direct-image-zero}) and the Leray spectral sequence (Proposition \ref{proposition-leray}). Thus we can consider the maps $$ H^n_\etale(X, \mathcal{F}) \to H^n_\etale(Y, f^{-1}\mathcal{F})= H^n_\etale(X, f_*f^{-1}\mathcal{F}) \xrightarrow{trace} H^n_\etale(X, \mathcal{F}) $$ and the composition is an isomorphism (under our assumption on $\mathcal{F}$ and $f$). In particular, if $H_\etale^q(Y, f^{-1}\mathcal{F}) = 0$ then $H_\etale^q(X, \mathcal{F}) = 0$ as well. Indeed, multiplication by $d$ induces an isomorphism on $H_\etale^q(X, \mathcal{F})$ which factors through $H_\etale^q(Y, f^{-1}\mathcal{F})= 0$. \medskip\noindent This is often combined with the following. \begin{lemma} \label{lemma-pullback-filtered} Let $S$ be a connected scheme. Let $\ell$ be a prime number. Let $\mathcal{F}$ be a finite type, locally constant sheaf of $\mathbf{F}_\ell$-vector spaces on $S_\etale$. Then there exists a finite \'etale morphism $f : T \to S$ of degree prime to $\ell$ such that $f^{-1}\mathcal{F}$ has a finite filtration whose successive quotients are $\underline{\mathbf{Z}/\ell\mathbf{Z}}_T$. \end{lemma} \begin{proof} Choose a geometric point $\overline{s}$ of $S$. Via the equivalence of Lemma \ref{lemma-locally-constant-on-connected} the sheaf $\mathcal{F}$ corresponds to a finite dimensional $\mathbf{F}_\ell$-vector space $V$ with a continuous $\pi_1(S, \overline{s})$-action. Let $G \subset \text{Aut}(V)$ be the image of the homomorphism $\rho : \pi_1(S, \overline{s}) \to \text{Aut}(V)$ giving the action. Observe that $G$ is finite. The surjective continuous homomorphism $\overline{\rho} : \pi_1(S, \overline{s}) \to G$ corresponds to a Galois object $Y \to S$ of $\textit{F\'Et}_S$ with automorphism group $G = \text{Aut}(Y/S)$, see Fundamental Groups, Section \ref{pione-section-finite-etale-under-galois}. Let $H \subset G$ be an $\ell$-Sylow subgroup. We claim that $T = Y/H \to S$ works. Namely, let $\overline{t} \in T$ be a geometric point over $\overline{s}$. The image of $\pi_1(T, \overline{t}) \to \pi_1(S, \overline{s})$ is $(\overline{\rho})^{-1}(H)$ as follows from the functorial nature of fundamental groups. Hence the action of $\pi_1(T, \overline{t})$ on $V$ corresponding to $f^{-1}\mathcal{F}$ is through the map $\pi_1(T, \overline{t}) \to H$, see Remark \ref{remark-functorial-locally-constant-on-connected}. As $H$ is a finite $\ell$-group, the irreducible constituents of the representation $\rho|_{\pi_1(T, \overline{t})}$ are each trivial of rank $1$ (this is a simple lemma on representation theory of finite groups; insert future reference here). Via the equivalence of Lemma \ref{lemma-locally-constant-on-connected} this means $f^{-1}\mathcal{F}$ is a successive extension of constant sheaves with value $\underline{\mathbf{Z}/\ell\mathbf{Z}}_T$. Moreover the degree of $T = Y/H \to S$ is prime to $\ell$ as it is equal to the index of $H$ in $G$. \end{proof} \begin{lemma} \label{lemma-action-l-group} Let $\Lambda$ be a Noetherian ring. Let $\ell$ be a prime number and $n \geq 1$. Let $H$ be a finite $\ell$-group. Let $M$ be a finite $\Lambda[H]$-module annihilated by $\ell^n$. Then there is a finite filtration $0 = M_0 \subset M_1 \subset \ldots \subset M_t = M$ by $\Lambda[H]$-submodules such that $H$ acts trivially on $M_{i + 1}/M_i$ for all $i = 0, \ldots, t - 1$. \end{lemma} \begin{proof} Omitted. Hint: Show that the augmentation ideal $\mathfrak m$ of the noncommutative ring $\mathbf{Z}/\ell^n\mathbf{Z}[H]$ is nilpotent. \end{proof} \begin{lemma} \label{lemma-pullback-filtered-modules} Let $S$ be an irreducible, geometrically unibranch scheme. Let $\ell$ be a prime number and $n \geq 1$. Let $\Lambda$ be a Noetherian ring. Let $\mathcal{F}$ be a finite type, locally constant sheaf of $\Lambda$-modules on $S_\etale$ which is annihilated by $\ell^n$. Then there exists a finite \'etale morphism $f : T \to S$ of degree prime to $\ell$ such that $f^{-1}\mathcal{F}$ has a finite filtration whose successive quotients are of the form $\underline{M}_T$ for some finite $\Lambda$-modules $M$. \end{lemma} \begin{proof} Choose a geometric point $\overline{s}$ of $S$. Via the equivalence of Lemma \ref{lemma-locally-constant-on-connected-geom-unibranch} the sheaf $\mathcal{F}$ corresponds to a finite $\Lambda$-module $M$ with a continuous $\pi_1(S, \overline{s})$-action. Let $G \subset \text{Aut}(V)$ be the image of the homomorphism $\rho : \pi_1(S, \overline{s}) \to \text{Aut}(M)$ giving the action. Observe that $G$ is finite as $M$ is a finite $\Lambda$-module (see proof of Lemma \ref{lemma-locally-constant-on-connected-geom-unibranch}). The surjective continuous homomorphism $\overline{\rho} : \pi_1(S, \overline{s}) \to G$ corresponds to a Galois object $Y \to S$ of $\textit{F\'Et}_S$ with automorphism group $G = \text{Aut}(Y/S)$, see Fundamental Groups, Section \ref{pione-section-finite-etale-under-galois}. Let $H \subset G$ be an $\ell$-Sylow subgroup. We claim that $T = Y/H \to S$ works. Namely, let $\overline{t} \in T$ be a geometric point over $\overline{s}$. The image of $\pi_1(T, \overline{t}) \to \pi_1(S, \overline{s})$ is $(\overline{\rho})^{-1}(H)$ as follows from the functorial nature of fundamental groups. Hence the action of $\pi_1(T, \overline{t})$ on $M$ corresponding to $f^{-1}\mathcal{F}$ is through the map $\pi_1(T, \overline{t}) \to H$, see Remark \ref{remark-functorial-locally-constant-on-connected}. Let $0 = M_0 \subset M_1 \subset \ldots \subset M_t = M$ be as in Lemma \ref{lemma-action-l-group}. This induces a filtration $0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots \subset \mathcal{F}_t = f^{-1}\mathcal{F}$ such that the successive quotients are constant with value $M_{i + 1}/M_i$. Finally, the degree of $T = Y/H \to S$ is prime to $\ell$ as it is equal to the index of $H$ in $G$. \end{proof} \section{Galois cohomology} \label{section-galois-cohomology} \noindent In this section we prove a result on Galois cohomology (Proposition \ref{proposition-serre-galois}) using \'etale cohomology and the trick from Section \ref{section-trace-method}. This will allow us to prove vanishing of higher \'etale cohomology groups over the spectrum of a field. \begin{lemma} \label{lemma-nonvanishing-inherited} Let $\ell$ be a prime number and $n$ an integer $> 0$. Let $S$ be a quasi-compact and quasi-separated scheme. Let $X = \lim_{i \in I} X_i$ be the limit of a directed system of $S$-schemes each $X_i \to S$ being finite \'etale of constant degree relatively prime to $\ell$. The following are equivalent: \begin{enumerate} \item there exists an $\ell$-power torsion sheaf $\mathcal{G}$ on $S$ such that $H_\etale^n(S, \mathcal{G}) \neq 0$ and \item there exists an $\ell$-power torsion sheaf $\mathcal{F}$ on $X$ such that $H_\etale^n(X, \mathcal{F}) \neq 0$. \end{enumerate} In fact, given $\mathcal{G}$ we can take $\mathcal{F} = g^{-1}\mathcal{F}$ and given $\mathcal{F}$ we can take $\mathcal{G} = g_*\mathcal{F}$. \end{lemma} \begin{proof} Let $g : X \to S$ and $g_i : X_i \to S$ denote the structure morphisms. Fix an $\ell$-power torsion sheaf $\mathcal{G}$ on $S$ with $H^n_\etale(S, \mathcal{G}) \not = 0$. The system given by $\mathcal{G}_i = g_i^{-1}\mathcal{G}$ satisify the conditions of Theorem \ref{theorem-colimit} with colimit sheaf given by $g^{-1}\mathcal{G}$. This tells us that: $$ \colim_{i\in I} H^n_\etale(X_i, g_i^{-1}\mathcal{G}) = H^n_\etale(X, \mathcal{G}) $$ By virtue of the $g_i$ being finite \'etale morphism of degree prime to $\ell$ we can apply ``la m\'ethode de la trace'' and we find the maps $$ H^n_\etale(S, \mathcal{G}) \to H^n_\etale(X_i, g_i^{-1}\mathcal{G}) $$ are all injective (and compatible with the transition maps). See Section \ref{section-trace-method}. Thus, the colimit is non-zero, i.e., $H^n(X,g^{-1}\mathcal{G}) \neq 0$, giving us the desired result with $\mathcal{F} = g^{-1}\mathcal{G}$. \medskip\noindent Conversely, suppose given an $\ell$-power torsion sheaf $\mathcal{F}$ on $X$ with $H^n_\etale(X, \mathcal{F}) \not = 0$. We note that since the $g_i$ are finite morphisms the higher direct images vanish (Proposition \ref{proposition-finite-higher-direct-image-zero}). Then, by applying Lemma \ref{lemma-relative-colimit} we may also conclude the same for $g$. The vanishing of the higher direct images tells us that $H^n_\etale(X, \mathcal{F}) = H^n(S, g_*\mathcal{F}) \neq 0$ by Leray (Proposition \ref{proposition-leray}) giving us what we want with $\mathcal{G} = g_*\mathcal{F}$. \end{proof} \begin{lemma} \label{lemma-reduce-to-l-group} Let $\ell$ be a prime number and $n$ an integer $> 0$. Let $K$ be a field with $G = Gal(K^{sep}/K)$ and let $H \subset G$ be a maximal pro-$\ell$ subgroup with $L/K$ being the corresponding field extension. Then $H^n_\etale(\Spec(K), \mathcal{F}) = 0$ for all $\ell$-power torsion $\mathcal{F}$ if and only if $H^n_\etale(\Spec(L), \underline{\mathbf{Z}/\ell\mathbf{Z}}) = 0$. \end{lemma} \begin{proof} Write $L = \bigcup L_i$ as the union of its finite subextensions over $K$. Our choice of $H$ implies that $[L_i : K]$ is prime to $\ell$. Thus $\Spec(L) = \lim_{i \in I} \Spec(L_i)$ as in Lemma \ref{lemma-nonvanishing-inherited}. Thus we may replace $K$ by $L$ and assume that the absolute Galois group $G$ of $K$ is a profinite pro-$\ell$ group. \medskip\noindent Assume $H^n(\Spec(K), \underline{\mathbf{Z}/\ell\mathbf{Z}}) = 0$. Let $\mathcal{F}$ be an $\ell$-power torsion sheaf on $\Spec(K)_\etale$. We will show that $H^n_\etale(\Spec(K), \mathcal{F}) = 0$. By the correspondence specified in Lemma \ref{lemma-equivalence-abelian-sheaves-point} our sheaf $\mathcal{F}$ corresponds to an $\ell$-power torsion $G$-module $M$. Any finite set of elements $x_1, \ldots, x_m \in M$ must be fixed by an open subgroup $U$ by continuity. Let $M'$ be the module spanned by the orbits of $x_1, \ldots, x_m$. This is a finite abelian $\ell$-group as each $x_i$ is killed by a power of $\ell$ and the orbits are finite. Since $M$ is the filtered colimit of these submodules $M'$, we see that $\mathcal{F}$ is the filtered colimit of the corresponding subsheaves $\mathcal{F}' \subset \mathcal{F}$. Applying Theorem \ref{theorem-colimit} to this colimit, we reduce to the case where $\mathcal{F}$ is a finite locally constant sheaf. \medskip\noindent Let $M$ be a finite abelian $\ell$-group with a continuous action of the profinite pro-$\ell$ group $G$. Then there is a $G$-invariant filtration $$ 0 = M_0 \subset M_1 \subset \ldots \subset M_r = M $$ such that $M_{i + 1}/M_i \cong \mathbf{Z}/\ell \mathbf{Z}$ with trivial $G$-action (this is a simple lemma on representation theory of finite groups; insert future reference here). Thus the corresponding sheaf $\mathcal{F}$ has a filtration $$ 0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots \subset \mathcal{F}_r = \mathcal{F} $$ with successive quotients isomorphic to $\underline{\mathbf{Z}/\ell \mathbf{Z}}$. Thus by induction and the long exact cohomology sequence we conclude. \end{proof} \begin{lemma} \label{lemma-reduce-to-l-group-higher} Let $\ell$ be a prime number and $n$ an integer $> 0$. Let $K$ be a field with $G = Gal(K^{sep}/K)$ and let $H \subset G$ be a maximal pro-$\ell$ subgroup with $L/K$ being the corresponding field extension. Then $H^q_\etale(\Spec(K),\mathcal{F}) = 0$ for $q \geq n$ and all $\ell$-torsion sheaves $\mathcal{F}$ if and only if $H^n_\etale(\Spec(L), \underline{\mathbf{Z}/\ell\mathbf{Z}}) = 0$. \end{lemma} \begin{proof} The forward direction is trivial, so we need only prove the reverse direction. We proceed by induction on $q$. The case of $q = n$ is Lemma \ref{lemma-reduce-to-l-group}. Now let $\mathcal{F}$ be an $\ell$-power torsion sheaf on $\Spec(K)$. Let $f : \Spec(K^{sep}) \rightarrow \Spec(K)$ be the inclusion of a geometric point. Then consider the exact sequence: $$ 0 \rightarrow \mathcal{F} \xrightarrow{res} f_* f^{-1} \mathcal{F} \rightarrow f_* f^{-1} \mathcal{F}/\mathcal{F} \rightarrow 0 $$ Note that $K^{sep}$ may be written as the filtered colimit of finite separable extensions. Thus $f$ is the limit of a directed system of finite \'etale morphisms. We may, as was seen in the proof of Lemma \ref{lemma-nonvanishing-inherited}, conclude that $f$ has vanishing higher direct images. Thus, we may express the higher cohomology of $f_* f^{-1} \mathcal{F}$ as the higher cohomology on the geometric point which clearly vanishes. Hence, as everything here is still $\ell$-torsion, we may use the inductive hypothesis in conjunction with the long-exact cohomology sequence to conclude the result for $q + 1$. \end{proof} \begin{proposition} \label{proposition-serre-galois} \begin{reference} \cite[Chapter II, Section 3, Proposition 5]{SerreGaloisCohomology} \end{reference} Let $K$ be a field with separable algebraic closure $K^{sep}$. Assume that for any finite extension $K'$ of $K$ we have $\text{Br}(K') = 0$. Then \begin{enumerate} \item $H^q(\text{Gal}(K^{sep}/K), (K^{sep})^*) = 0$ for all $q \geq 1$, and \item $H^q(\text{Gal}(K^{sep}/K), M) = 0$ for any torsion $\text{Gal}(K^{sep}/K)$-module $M$ and any $q \geq 2$, \end{enumerate} \end{proposition} \begin{proof} Set $p = \text{char}(K)$. By Lemma \ref{lemma-compare-cohomology-point}, Theorem \ref{theorem-brauer-delta}, and Example \ref{example-sheaves-point} the proposition is equivalent to showing that if $H^2(\Spec(K'),\mathbf{G}_m|_{\Spec(K')_\etale}) = 0$ for all finite extensions $K'/K$ then: \begin{itemize} \item $H^q(\Spec(K),\mathbf{G}_m|_{\Spec(K)_\etale}) = 0$ for all $q \geq 1$, and \item $H^q(\Spec(K),\mathcal{F}) = 0$ for any torsion sheaf $\mathcal{F}$ and any $q \geq 2$. \end{itemize} We prove the second part first. Since $\mathcal{F}$ is a torsion sheaf, we may use the $\ell$-primary decomposition as well as the compatibility of cohomology with colimits (i.e, direct sums, see Theorem \ref{theorem-colimit}) to reduce to showing $H^q(\Spec(K),\mathcal{F}) = 0$, $q \geq 2$ for all $\ell$-power torsion sheaves for every prime $\ell$. This allows us to analyze each prime individually. \medskip\noindent Suppose that $\ell \neq p$. For any extension $K'/K$ consider the Kummer sequence (Lemma \ref{lemma-kummer-sequence}) $$ 0 \to \mu_{\ell, \Spec{K'}} \to \mathbf{G}_{m, \Spec{K'}} \xrightarrow{(\cdot)^{\ell}} \mathbf{G}_{m, \Spec{K'}} \to 0 $$ Since $H^q(\Spec{K'},\mathbf{G}_m|_{\Spec(K')_\etale}) = 0$ for $q = 2$ by assumption and for $q = 1$ by Theorem \ref{theorem-picard-group} combined with $\Pic(K) = (0)$. Thus, by the long-exact cohomology sequence we may conclude that $H^2(\Spec{K'}, \mu_\ell) = 0$ for any separable $K'/K$. Now let $H$ be a maximal pro-$\ell$ subgroup of the absolute Galois group of $K$ and let $L$ be the corresponding extension. We can write $L$ as the colimit of finite extensions, applying Theorem \ref{theorem-colimit} to this colimit we see that $H^2(\Spec(L), \mu_\ell) = 0$. Now $\mu_\ell$ must be the constant sheaf. If it weren't, that would imply there exists a Galois extension of degree relatively prime to $\ell$ of $L$ which is not true by definition of $L$ (namely, the extension one gets by adjoining the $\ell$th roots of unity to $L$). Hence, via Lemma \ref{lemma-reduce-to-l-group-higher}, we conclude the result for $\ell \neq p$. \medskip\noindent Now suppose that $\ell = p$. We consider the Artin-Schrier exact sequence (Section \ref{section-artin-schreier}) $$ 0 \longrightarrow \underline{\mathbf{Z}/p\mathbf{Z}}_{\Spec{K}} \longrightarrow \mathbf{G}_{a, \Spec{K}} \xrightarrow{F-1} \mathbf{G}_{a, \Spec{K}} \longrightarrow 0 $$ where $F - 1$ is the map $x \mapsto x^p - x$. Then note that the higher Cohomology of $\mathbf{G}_{a, \Spec{K}}$ vanishes, by Remark \ref{remark-special-case-fpqc-cohomology-quasi-coherent} and the vanishing of the higher cohomology of the structure sheaf of an affine scheme (Cohomology of Schemes, Lemma \ref{coherent-lemma-quasi-coherent-affine-cohomology-zero}). Note this can be applied to any field of characteristic $p$. In particular, we can apply it to the field extension $L$ defined by a maximal pro-$p$ subgroup $H$. This allows us to conclude $H^n(\Spec{L}, \underline{\mathbf{Z}/p\mathbf{Z}}_{\Spec{L}}) = 0$ for $n \geq 2$, from which the result follows for $\ell = p$, by Lemma \ref{lemma-reduce-to-l-group-higher}. \medskip\noindent To finish the proof we still have to show that $H^q(\text{Gal}(K^{sep}/K), (K^{sep})^*) = 0$ for all $q \geq 1$. Set $G = \text{Gal}(K^{sep}/K)$ and set $M = (K^{sep})^*$ viewed as a $G$-module. We have already shown (above) that $H^1(G, M) = 0$ and $H^2(G, M) = 0$. Consider the exact sequence $$ 0 \to A \to M \to M \otimes \mathbf{Q} \to B \to 0 $$ of $G$-modules. By the above we have $H^i(G, A) = 0$ and $H^i(G, B) = 0$ for $i > 1$ since $A$ and $B$ are torsion $G$-modules. By Lemma \ref{lemma-profinite-group-cohomology-torsion} we have $H^i(G, M \otimes \mathbf{Q}) = 0$ for $i > 0$. It is a pleasant exercise to see that this implies that $H^i(G, M) = 0$ also for $i \geq 3$. \end{proof} %10.08.09 \begin{definition} \label{definition-Cr} A field $K$ is called {\it $C_r$} if for every $0 < d^r < n$ and every $f \in K[T_1, \ldots, T_n]$ homogeneous of degree $d$, there exist $\alpha = (\alpha_1, \ldots, \alpha_n)$, $\alpha_i \in K$ not all zero, such that $f(\alpha) = 0$. Such an $\alpha$ is called a {\it nontrivial solution} of $f$. \end{definition} \begin{example} \label{example-algebraically-closed-field-Cr} An algebraically closed field is $C_r$. \end{example} \noindent In fact, we have the following simple lemma. \begin{lemma} \label{lemma-algebraically-closed-find-solutions} Let $k$ be an algebraically closed field. Let $f_1, \ldots, f_s \in k[T_1, \ldots, T_n]$ be homogeneous polynomials of degree $d_1, \ldots, d_s$ with $d_i > 0$. If $s < n$, then $f_1 = \ldots = f_s = 0$ have a common nontrivial solution. \end{lemma} \begin{proof} This follows from dimension theory, for example in the form of Varieties, Lemma \ref{varieties-lemma-intersection-in-affine-space} applied $s - 1$ times. \end{proof} \noindent The following result computes the Brauer group of $C_1$ fields. \begin{theorem} \label{theorem-C1-brauer-group-zero} Let $K$ be a $C_1$ field. Then $\text{Br}(K) = 0$. \end{theorem} \begin{proof} Let $D$ be a finite dimensional division algebra over $K$ with center $K$. We have seen that $$ D \otimes_K K^{sep} \cong \text{Mat}_d(K^{sep}) $$ uniquely up to inner isomorphism. Hence the determinant $\det : \text{Mat}_d(K^{sep}) \to K^{sep}$ is Galois invariant and descends to a homogeneous degree $d$ map $$ \det = N_\text{red} : D \longrightarrow K $$ called the {\it reduced norm}. Since $K$ is $C_1$, if $d > 1$, then there exists a nonzero $x \in D$ with $N_\text{red}(x) = 0$. This clearly implies that $x$ is not invertible, which is a contradiction. Hence $\text{Br}(K) = 0$. \end{proof} \begin{definition} \label{definition-variety} Let $k$ be a field. A {\it variety} is separated, integral scheme of finite type over $k$. A {\it curve} is a variety of dimension $1$. \end{definition} \begin{theorem}[Tsen's theorem] \label{theorem-tsen} The function field of a variety of dimension $r$ over an algebraically closed field $k$ is $C_r$. \end{theorem} \begin{proof} For projective space one can show directly that the field $k(x_1, \ldots, x_r)$ is $C_r$ (exercise). \medskip\noindent General case. Without loss of generality, we may assume $X$ to be projective. Let $f \in k(X)[T_1, \ldots, T_n]_d$ with $0 < d^r < n$. Say the coefficients of $f$ are in $\Gamma(X, \mathcal{O}_X(H))$ for some ample $H \subset X$. Let $\mathbf{\alpha} = (\alpha_1, \ldots, \alpha_n)$ with $\alpha_i \in \Gamma(X, \mathcal{O}_X(eH))$. Then $f(\mathbf{\alpha}) \in \Gamma(X, \mathcal{O}_X((de + 1)H))$. Consider the system of equations $f(\mathbf{\alpha}) =0$. Then by asymptotic Riemann-Roch (Varieties, Proposition \ref{varieties-proposition-asymptotic-riemann-roch}) there exists a $c > 0$ such that \begin{itemize} \item the number of variables is $n\dim_k \Gamma(X, \mathcal{O}_X(eH)) \sim n e^r c$, and \item the number of equations is $\dim_k \Gamma(X, \mathcal{O}_X((de + 1)H)) \sim (de + 1)^r c$. \end{itemize} Since $n > d^r$, there are more variables than equations. The equations are homogeneous hence there is a solution by Lemma \ref{lemma-algebraically-closed-find-solutions}. \end{proof} \begin{lemma} \label{lemma-curve-brauer-zero} Let $C$ be a curve over an algebraically closed field $k$. Then the Brauer group of the function field of $C$ is zero: $\text{Br}(k(C)) = 0$. \end{lemma} \begin{proof} This is clear from Tsen's theorem, Theorem \ref{theorem-tsen} and Theorem \ref{theorem-C1-brauer-group-zero}. \end{proof} \begin{lemma} \label{lemma-cohomology-Gm-function-field-curve} Let $k$ be an algebraically closed field and $K/k$ a field extension of transcendence degree 1. Then for all $q \geq 1$, $H_\etale^q(\Spec(K), \mathbf{G}_m) = 0$. \end{lemma} \begin{proof} Recall that $H_\etale^q(\Spec(K), \mathbf{G}_m) = H^q(\text{Gal}(K^{sep}/K), (K^{sep})^*)$ by Lemma \ref{lemma-compare-cohomology-point}. Thus by Proposition \ref{proposition-serre-galois} it suffices to show that if $K'/K$ is a finite field extension, then $\text{Br}(K') = 0$. Now observe that $K' = \colim K''$, where $K''$ runs over the finitely generated subextensions of $k$ contained in $K'$ of transcendence degree $1$. Note that $\text{Br}(K') = \colim \text{Br}(K'')$ which reduces us to a finitely generated field extension $K''/k$ of transcendence degree $1$. Such a field is the function field of a curve over $k$, hence has trivial Brauer group by Lemma \ref{lemma-curve-brauer-zero}. \end{proof} \section{Higher vanishing for the multiplicative group} \label{section-higher-Gm} \noindent In this section, we fix an algebraically closed field $k$ and a smooth curve $X$ over $k$. We denote $i_x : x \hookrightarrow X$ the inclusion of a closed point of $X$ and $j : \eta \hookrightarrow X$ the inclusion of the generic point. We also denote $X_0$ the set of closed points of $X$. \begin{theorem}[The Fundamental Exact Sequence] \label{theorem-fundamental-exact-sequence} There is a short exact sequence of \'etale sheaves on $X$ $$ 0 \longrightarrow \mathbf{G}_{m, X} \longrightarrow j_* \mathbf{G}_{m, \eta} \longrightarrow \bigoplus\nolimits_{x \in X_0} {i_x}_* \underline{\mathbf{Z}} \longrightarrow 0. $$ \end{theorem} \begin{proof} Let $\varphi : U \to X$ be an \'etale morphism. Then by properties of \'etale morphisms (Proposition \ref{proposition-etale-morphisms}), $U = \coprod_i U_i$ where each $U_i$ is a smooth curve mapping to $X$. The above sequence for $U$ is a product of the corresponding sequences for each $U_i$, so it suffices to treat the case where $U$ is connected, hence irreducible. In this case, there is a well known exact sequence $$ 1 \longrightarrow \Gamma(U, \mathcal{O}_U^*) \longrightarrow k(U)^* \longrightarrow \bigoplus\nolimits_{y \in U_0} \mathbf{Z}_y. $$ This amounts to a sequence $$ 0 \longrightarrow \Gamma(U, \mathcal{O}_U^*) \longrightarrow \Gamma(\eta \times_X U, \mathcal{O}_{\eta \times_X U}^*) \longrightarrow \bigoplus\nolimits_{x \in X_0} \Gamma(x \times_X U, \underline{\mathbf{Z}}) $$ which, unfolding definitions, is nothing but a sequence $$ 0 \longrightarrow \mathbf{G}_m(U) \longrightarrow j_* \mathbf{G}_{m, \eta}(U) \longrightarrow \left(\bigoplus\nolimits_{x \in X_0} {i_x}_* \underline{\mathbf{Z}}\right)(U). $$ This defines the maps in the Fundamental Exact Sequence and shows it is exact except possibly at the last step. To see surjectivity, let us recall that if $U$ is a nonsingular curve and $D$ is a divisor on $U$, then there exists a Zariski open covering $\{U_j \to U\}$ of $U$ such that $D|_{U_j} = \text{div}(f_j)$ for some $f_j \in k(U)^*$. \end{proof} \begin{lemma} \label{lemma-higher-direct-jstar-Gm} For any $q \geq 1$, $R^q j_*\mathbf{G}_{m, \eta} = 0$. \end{lemma} \begin{proof} We need to show that $(R^q j_*\mathbf{G}_{m, \eta})_{\bar x} = 0$ for every geometric point $\bar x$ of $X$. \medskip\noindent Assume that $\bar x$ lies over a closed point $x$ of $X$. Let $\Spec(A)$ be an affine open neighbourhood of $x$ in $X$, and $K$ the fraction field of $A$. Then $$ \Spec(\mathcal{O}^{sh}_{X, \bar x}) \times_X \eta = \Spec(\mathcal{O}^{sh}_{X, \bar x} \otimes_A K). $$ The ring $\mathcal{O}^{sh}_{X, \bar x} \otimes_A K$ is a localization of the discrete valuation ring $\mathcal{O}^{sh}_{X, \bar x}$, so it is either $\mathcal{O}^{sh}_{X, \bar x}$ again, or its fraction field $K^{sh}_{\bar x}$. But since some local uniformizer gets inverted, it must be the latter. Hence $$ (R^q j_*\mathbf{G}_{m, \eta})_{(X, \bar x)} = H_\etale^q(\Spec K^{sh}_{\bar x}, \mathbf{G}_m). $$ Now recall that $\mathcal{O}^{sh}_{X, \bar x} = \colim_{(U, \bar u) \to \bar x} \mathcal{O}(U) = \colim_{A \subset B} B$ where $A \to B$ is \'etale, hence $K^{sh}_{\bar x}$ is an algebraic extension of $K = k(X)$, and we may apply Lemma \ref{lemma-cohomology-Gm-function-field-curve} to get the vanishing. \medskip\noindent Assume that $\bar x = \bar \eta$ lies over the generic point $\eta$ of $X$ (in fact, this case is superfluous). Then $\mathcal{O}^{sh}_{X, \bar \eta} = \kappa(\eta)^{sep}$ and thus \begin{eqnarray*} (R^q j_*\mathbf{G}_{m, \eta})_{\bar \eta} & = & H_\etale^q(\Spec(\kappa(\eta)^{sep}) \times_X \eta, \mathbf{G}_m) \\ & = & H_\etale^q (\Spec(\kappa(\eta)^{sep}), \mathbf{G}_m) \\ & = & 0 \ \ \text{ for } q \geq 1 \end{eqnarray*} since the corresponding Galois group is trivial. \end{proof} \begin{lemma} \label{lemma-cohomology-jstar-Gm} For all $p \geq 1$, $H_\etale^p(X, j_*\mathbf{G}_{m, \eta}) = 0$. \end{lemma} \begin{proof} The Leray spectral sequence reads $$ E_2^{p, q} = H_\etale^p(X, R^qj_*\mathbf{G}_{m, \eta}) \Rightarrow H_\etale^{p+q}(\eta, \mathbf{G}_{m, \eta}), $$ which vanishes for $p+q \geq 1$ by Lemma \ref{lemma-cohomology-Gm-function-field-curve}. Taking $q = 0$, we get the desired vanishing. \end{proof} \begin{lemma} \label{lemma-cohomology-istar-Z} For all $q \geq 1$, $H_\etale^q(X, \bigoplus_{x \in X_0} {i_x}_* \underline{\mathbf{Z}}) = 0$. \end{lemma} \begin{proof} For $X$ quasi-compact and quasi-separated, cohomology commutes with colimits, so it suffices to show the vanishing of $H_\etale^q(X, {i_x}_* \underline{\mathbf{Z}})$. But then the inclusion $i_x$ of a closed point is finite so $R^p {i_x}_* \underline{\mathbf{Z}} = 0$ for all $p \geq 1$ by Proposition \ref{proposition-finite-higher-direct-image-zero}. Applying the Leray spectral sequence, we see that $H_\etale^q(X, {i_x}_* \underline{\mathbf{Z}}) = H_\etale^q(x, \underline{\mathbf{Z}})$. Finally, since $x$ is the spectrum of an algebraically closed field, all higher cohomology on $x$ vanishes. \end{proof} \noindent Concluding this series of lemmata, we get the following result. \begin{theorem} \label{theorem-vanishing-cohomology-Gm-curve} Let $X$ be a smooth curve over an algebraically closed field. Then $$ H_\etale^q(X, \mathbf{G}_m) = 0 \ \ \text{ for all } q \geq 2. $$ \end{theorem} \begin{proof} See discussion above. \end{proof} \noindent We also get the cohomology long exact sequence $$ 0 \to H_\etale^0(X, \mathbf{G}_m) \to H_\etale^0(X, j_*\mathbf{G}_{m\eta}) \to H_\etale^0(X, \bigoplus {i_x}_*\underline{\mathbf{Z}}) \to H_\etale^1(X, \mathbf{G}_m) \to 0 $$ although this is the familiar $$ 0 \to H_{Zar}^0(X, \mathcal{O}_X^*) \to k(X)^* \to \text{Div}(X) \to \Pic(X) \to 0. $$ \section{Picard groups of curves} \label{section-pic-curves} \noindent Our next step is to use the Kummer sequence to deduce some information about the cohomology group of a curve with finite coefficients. In order to get vanishing in the long exact sequence, we review some facts about Picard groups. \medskip\noindent Let $X$ be a smooth projective curve over an algebraically closed field $k$. Let $g = \dim_k H^1(X, \mathcal{O}_X)$ be the genus of $X$. There exists a short exact sequence $$ 0 \to \Pic^0(X) \to \Pic(X) \xrightarrow{\deg} \mathbf{Z} \to 0. $$ The abelian group $\Pic^0(X)$ can be identified with $\Pic^0(X) = \underline{\Picardfunctor}^0_{X/k}(k)$, i.e., the $k$-valued points of an abelian variety $\underline{\Picardfunctor}^0_{X/k}$ over $k$ of dimension $g$. Consequently, if $n \in k^*$ then $\Pic^0(X)[n] \cong (\mathbf{Z}/n\mathbf{Z})^{2g}$ as abelian groups. See Picard Schemes of Curves, Section \ref{pic-section-picard-curve} and Groupoids, Section \ref{groupoids-section-abelian-varieties}. This key fact, namely the description of the torsion in the Picard group of a smooth projective curve over an algebraically closed field does not appear to have an elementary proof. \begin{lemma} \label{lemma-cohomology-smooth-projective-curve} Let $X$ be a smooth projective curve of genus $g$ over an algebraically closed field $k$ and let $n \geq 1$ be invertible in $k$. Then there are canonical identifications $$ H_\etale^q(X, \mu_n) = \left\{ \begin{matrix} \mu_n(k) & \text{ if }q = 0, \\ \Pic^0(X)[n] & \text{ if }q = 1, \\ \mathbf{Z}/n\mathbf{Z} & \text{ if }q = 2, \\ 0 & \text{ if }q \geq 3. \end{matrix} \right. $$ Since $\mu_n \cong \underline{\mathbf{Z}/n\mathbf{Z}}$, this gives (noncanonical) identifications $$ H_\etale^q(X, \underline{\mathbf{Z}/n\mathbf{Z}}) \cong \left\{ \begin{matrix} \mathbf{Z}/n\mathbf{Z} & \text{ if }q = 0, \\ (\mathbf{Z}/n\mathbf{Z})^{2g} & \text{ if }q = 1, \\ \mathbf{Z}/n\mathbf{Z} & \text{ if }q = 2, \\ 0 & \text{ if }q \geq 3. \end{matrix} \right. $$ \end{lemma} \begin{proof} Theorems \ref{theorem-picard-group} and \ref{theorem-vanishing-cohomology-Gm-curve} determine the \'etale cohomology of $\mathbf{G}_m$ on $X$ in terms of the Picard group of $X$. The Kummer sequence $0\to \mu_{n, X} \to \mathbf{G}_{m, X} \to \mathbf{G}_{m, X}\to 0$ (Lemma \ref{lemma-kummer-sequence}) then gives us the long exact cohomology sequence $$ \xymatrix{ 0 \ar[r] & \mu_n(k) \ar[r] & k^* \ar[r]^{(\cdot)^n} & k^* \ar@(rd, ul)[rdllllr] \\ & H_\etale^1(X, \mu_n) \ar[r] & \Pic(X) \ar[r]^{(\cdot)^n} & \Pic(X) \ar@(rd, ul)[rdllllr] \\ & H_\etale^2(X, \mu_n) \ar[r] & 0 \ar[r] & 0 \ldots } $$ The $n$th power map $k^* \to k^*$ is surjective since $k$ is algebraically closed. So we need to compute the kernel and cokernel of the map $n : \Pic(X) \to \Pic(X)$. Consider the commutative diagram with exact rows $$ \xymatrix{ 0 \ar[r] & \Pic^0(X) \ar[r] \ar@{>>}[d]^{(\cdot)^n} & \Pic(X) \ar[r]_-\deg \ar[d]^{(\cdot)^n} & \mathbf{Z} \ar[r] \ar@{^{(}->}[d]^n & 0 \\ 0 \ar[r] & \Pic^0(X) \ar[r] & \Pic(X) \ar[r]^-\deg & \mathbf{Z} \ar[r] & 0 } $$ The group $\Pic^0(X)$ is the $k$-points of the group scheme $\underline{\Picardfunctor}^0_{X/k}$, see Picard Schemes of Curves, Lemma \ref{pic-lemma-picard-pieces}. The same lemma tells us that $\underline{\Picardfunctor}^0_{X/k}$ is a $g$-dimensional abelian variety over $k$ as defined in Groupoids, Definition \ref{groupoids-definition-abelian-variety}. Hence the left vertical map is surjective by Groupoids, Proposition \ref{groupoids-proposition-review-abelian-varieties}. Applying the snake lemma gives canonical identifications as stated in the lemma. \medskip\noindent To get the noncanonical identifications of the lemma we need to show the kernel of $n : \Pic^0(X) \to \Pic^0(X)$ is isomorphic to $(\mathbf{Z}/n\mathbf{Z})^{\oplus 2g}$. This is also part of Groupoids, Proposition \ref{groupoids-proposition-review-abelian-varieties}. \end{proof} \begin{lemma} \label{lemma-pullback-on-h2-curve} Let $\pi : X \to Y$ be a nonconstant morphism of smooth projective curves over an algebraically closed field $k$ and let $n \geq 1$ be invertible in $k$. The map $$ \pi^* : H^2_\etale(Y, \mu_n) \longrightarrow H^2_\etale(X, \mu_n) $$ is given by multiplication by the degree of $\pi$. \end{lemma} \begin{proof} Observe that the statement makes sense as we have identified both cohomology groups $ H^2_\etale(Y, \mu_n)$ and $H^2_\etale(X, \mu_n)$ with $\mathbf{Z}/n\mathbf{Z}$ in Lemma \ref{lemma-cohomology-smooth-projective-curve}. In fact, if $\mathcal{L}$ is a line bundle of degree $1$ on $Y$ with class $[\mathcal{L}] \in H^1_\etale(Y, \mathbf{G}_m)$, then the coboundary of $[\mathcal{L}]$ is the generator of $H^2_\etale(Y, \mu_n)$. Here the coboundary is the coboundary of the long exact sequence of cohomology associated to the Kummer sequence. Thus the result of the lemma follows from the fact that the degree of the line bundle $\pi^*\mathcal{L}$ on $X$ is $\deg(\pi)$. Some details omitted. \end{proof} \begin{lemma} \label{lemma-vanishing-cohomology-mu-smooth-curve} Let $X$ be an affine smooth curve over an algebraically closed field $k$ and $n\in k^*$. Then \begin{enumerate} \item $H_\etale^0(X, \mu_n) = \mu_n(k)$; \item $H_\etale^1(X, \mu_n) \cong \left(\mathbf{Z}/n\mathbf{Z}\right)^{2g+r-1}$, where $r$ is the number of points in $\bar X - X$ for some smooth projective compactification $\bar X$ of $X$, and \item for all $q\geq 2$, $H_\etale^q(X, \mu_n) = 0$. \end{enumerate} \end{lemma} \begin{proof} Write $X = \bar X - \{ x_1, \ldots, x_r\}$. Then $\Pic(X) = \Pic(\bar X)/ R$, where $R$ is the subgroup generated by $\mathcal{O}_{\bar X}(x_i)$, $1 \leq i \leq r$. Since $r \geq 1$, we see that $\Pic^0(\bar X) \to \Pic(X)$ is surjective, hence $\Pic(X)$ is divisible. Applying the Kummer sequence, we get (1) and (3). For (2), recall that \begin{align*} H_\etale^1(X, \mu_n) & = \{(\mathcal L, \alpha) | \mathcal L \in \Pic(X), \alpha : \mathcal{L}^{\otimes n} \to \mathcal{O}_X\}/\cong \\ & = \{(\bar{\mathcal L},\ D,\ \bar \alpha)\}/\tilde{R} \end{align*} where $\bar{\mathcal L} \in \Pic^0(\bar X)$, $D$ is a divisor on $\bar X$ supported on $\left\{x_1, \ldots, x_r\right\}$ and $ \bar{\alpha}: \bar{\mathcal L}^{\otimes n} \cong \mathcal{O}_{\bar{X}}(D)$ is an isomorphism. Note that $D$ must have degree 0. Further $\tilde{R}$ is the subgroup of triples of the form $(\mathcal{O}_{\bar X}(D'), n D', 1^{\otimes n})$ where $D'$ is supported on $\left\{x_1, \ldots, x_r\right\}$ and has degree 0. Thus, we get an exact sequence $$ 0 \longrightarrow H_\etale^1(\bar X, \mu_n) \longrightarrow H_\etale^1(X, \mu_n) \longrightarrow \bigoplus_{i = 1}^r \mathbf{Z}/n\mathbf{Z} \xrightarrow{\ \sum\ } \mathbf{Z}/n\mathbf{Z} \longrightarrow 0 $$ where the middle map sends the class of a triple $(\bar{ \mathcal L}, D, \bar \alpha)$ with $D = \sum_{i = 1}^r a_i (x_i)$ to the $r$-tuple $(a_i)_{i = 1}^r$. It now suffices to use Lemma \ref{lemma-cohomology-smooth-projective-curve} to count ranks. \end{proof} \begin{remark} \label{remark-natural-proof} The ``natural'' way to prove the previous corollary is to excise $X$ from $\bar X$. This is possible, we just haven't developed that theory. \end{remark} \begin{remark} \label{remark-normalize-H1-Gm} Let $k$ be an algebraically closed field. Let $n$ be an integer prime to the characteristic of $k$. Recall that $$ \mathbf{G}_{m, k} = \mathbf{A}^1_k \setminus \{0\} = \mathbf{P}^1_k \setminus \{0, \infty\} $$ We claim there is a canonical isomorphism $$ H^1_\etale(\mathbf{G}_{m, k}, \mu_n) = \mathbf{Z}/n\mathbf{Z} $$ What does this mean? This means there is an element $1_k$ in $H^1_\etale(\mathbf{G}_{m, k}, \mu_n)$ such that for every morphism $\Spec(k') \to \Spec(k)$ the pullback map on \'etale cohomology for the map $\mathbf{G}_{m, k'} \to \mathbf{G}_{m, k}$ maps $1_k$ to $1_{k'}$. (In particular this element is fixed under all automorphisms of $k$.) To see this, consider the $\mu_{n, \mathbf{Z}}$-torsor $\mathbf{G}_{m, \mathbf{Z}} \to \mathbf{G}_{m, \mathbf{Z}}$, $x \mapsto x^n$. By the identification of torsors with first cohomology, this pulls back to give our canonical elements $1_k$. Twisting back we see that there are canonical identifications $$ H^1_\etale(\mathbf{G}_{m, k}, \mathbf{Z}/n\mathbf{Z}) = \Hom(\mu_n(k), \mathbf{Z}/n\mathbf{Z}), $$ i.e., these isomorphisms are compatible with respect to maps of algebraically closed fields, in particular with respect to automorphisms of $k$. \end{remark} \section{Extension by zero} \label{section-extension-by-zero} \noindent The general material in Modules on Sites, Section \ref{sites-modules-section-localize} allows us to make the following definition. \begin{definition} \label{definition-extension-zero} Let $j : U \to X$ be an \'etale morphism of schemes. \begin{enumerate} \item The restriction functor $j^{-1} : \Sh(X_\etale) \to \Sh(U_\etale)$ has a left adjoint $j_!^{Sh} : \Sh(U_\etale) \to \Sh(X_\etale)$. \item The restriction functor $j^{-1} : \textit{Ab}(X_\etale) \to \textit{Ab}(U_\etale)$ has a left adjoint which is denoted $j_! : \textit{Ab}(U_\etale) \to \textit{Ab}(X_\etale)$ and called {\it extension by zero}. \item Let $\Lambda$ be a ring. The restriction functor $j^{-1} : \textit{Mod}(X_\etale, \Lambda) \to \textit{Mod}(U_\etale, \Lambda)$ has a left adjoint which is denoted $j_! : \textit{Mod}(U_\etale, \Lambda) \to \textit{Mod}(X_\etale, \Lambda)$ and called {\it extension by zero}. \end{enumerate} \end{definition} \noindent If $\mathcal{F}$ is an abelian sheaf on $X_\etale$, then $j_!\mathcal{F} \not = j_!^{Sh}\mathcal{F}$ in general. On the other hand $j_!$ for sheaves of $\Lambda$-modules agrees with $j_!$ on underlying abelian sheaves (Modules on Sites, Remark \ref{sites-modules-remark-localize-shriek-equal}). The functor $j_!$ is characterized by the functorial isomorphism $$ \Hom_X(j_!\mathcal{F}, \mathcal{G}) = \Hom_U(\mathcal{F}, j^{-1}\mathcal{G}) $$ for all $\mathcal{F} \in \textit{Ab}(U_\etale)$ and $\mathcal{G} \in \textit{Ab}(X_\etale)$. Similarly for sheaves of $\Lambda$-modules. \medskip\noindent To describe the functors in Definition \ref{definition-extension-zero} more explicitly, recall that $j^{-1}$ is just the restriction via the functor $U_\etale \to X_\etale$. In other words, $j^{-1}\mathcal{G}(U') = \mathcal{G}(U')$ for $U'$ \'etale over $U$. On the other hand, for $\mathcal{F} \in \textit{Ab}(U_\etale)$ we consider the presheaf \begin{equation} \label{equation-j-p-shriek} j_{p!}\mathcal{F} : X_\etale \longrightarrow \textit{Ab}, \quad V \longmapsto \bigoplus\nolimits_{V \to U} \mathcal{F}(V \to U) \end{equation} Then $j_!\mathcal{F}$ is the sheafification of $j_{p!}\mathcal{F}$. This is proven in Modules on Sites, Lemma \ref{sites-modules-lemma-extension-by-zero}; more generally see the discussion in Modules on Sites, Sections \ref{sites-modules-section-localize} and \ref{sites-modules-section-exactness-lower-shriek}. \begin{exercise} \label{exercise-jshriek-direct} Prove directly that the functor $j_!$ defined as the sheafification of the functor $j_{p!}$ given in (\ref{equation-j-p-shriek}) is a left adjoint to $j^{-1}$. \end{exercise} \begin{proposition} \label{proposition-describe-jshriek} Let $j : U \to X$ be an \'etale morphism of schemes. Let $\mathcal{F}$ in $\textit{Ab}(U_\etale)$. If $\overline{x} : \Spec(k) \to X$ is a geometric point of $X$, then $$ (j_!\mathcal{F})_{\overline{x}} = \bigoplus\nolimits_{\overline{u} : \Spec(k) \to U,\ j(\overline{u}) = \overline{x}} \mathcal{F}_{\bar{u}}. $$ In particular, $j_!$ is an exact functor. \end{proposition} \begin{proof} Exactness of $j_!$ is very general, see Modules on Sites, Lemma \ref{sites-modules-lemma-extension-by-zero-exact}. Of course it does also follow from the description of stalks. The formula for the stalk follows from Modules on Sites, Lemma \ref{sites-modules-lemma-stalk-j-shriek} and the description of points of the small \'etale site in terms of geometric points, see Lemma \ref{lemma-points-small-etale-site}. \medskip\noindent For later use we note that the isomorphism \begin{align*} (j_!\mathcal{F})_{\overline{x}} & = (j_{p!}\mathcal{F})_{\overline{x}} \\ & = \colim_{(V, \overline{v})} j_{p!}\mathcal{F}(V) \\ & = \colim_{(V, \overline{v})} \bigoplus\nolimits_{\varphi : V \to U} \mathcal{F}(V \xrightarrow{\varphi} U) \\ & \to \bigoplus\nolimits_{\overline{u} : \Spec(k) \to U,\ j(\overline{u}) = \overline{x}} \mathcal{F}_{\bar{u}}. \end{align*} constructed in Modules on Sites, Lemma \ref{sites-modules-lemma-stalk-j-shriek} sends $(V, \overline{v}, \varphi, s)$ to the class of $s$ in the stalk of $\mathcal{F}$ at $\overline{u} = \varphi(\overline{v})$. \end{proof} \begin{lemma} \label{lemma-jshriek-open} Let $j : U \to X$ be an open immersion of schemes. For any abelian sheaf $\mathcal{F}$ on $U_\etale$, the adjunction mappings $j^{-1}j_*\mathcal{F} \to \mathcal{F}$ and $\mathcal{F} \to j^{-1}j_!\mathcal{F}$ are isomorphisms. In fact, $j_!\mathcal{F}$ is the unique abelian sheaf on $X_\etale$ whose restriction to $U$ is $\mathcal{F}$ and whose stalks at geometric points of $X \setminus U$ are zero. \end{lemma} \begin{proof} We encourage the reader to prove the first statement by working through the definitions, but here we just use that it is a special case of the very general Modules on Sites, Lemma \ref{sites-modules-lemma-restrict-back}. For the second statement, observe that if $\mathcal{G}$ is an abelian sheaf on $X_\etale$ whose restriction to $U$ is $\mathcal{F}$, then we obtain by adjointness a map $j_!\mathcal{F} \to \mathcal{G}$. This map is then an isomorphism at stalks of geometric points of $U$ by Proposition \ref{proposition-describe-jshriek}. Thus if $\mathcal{G}$ has vanishing stalks at geometric points of $X \setminus U$, then $j_!\mathcal{F} \to \mathcal{G}$ is an isomorphism by Theorem \ref{theorem-exactness-stalks}. \end{proof} \begin{lemma}[Extension by zero commutes with base change] \label{lemma-shriek-base-change} Let $f: Y \to X$ be a morphism of schemes. Let $j: V \to X$ be an \'etale morphism. Consider the fibre product $$ \xymatrix{ V' = Y \times_X V \ar[d]_{f'} \ar[r]_-{j'} & Y \ar[d]^f \\ V \ar[r]^j & X } $$ Then we have $j'_! f'^{-1} = f^{-1} j_!$ on abelian sheaves and on sheaves of modules. \end{lemma} \begin{proof} This is true because $j'_! f'^{-1}$ is left adjoint to $f'_* (j')^{-1}$ and $f^{-1} j_!$ is left adjoint to $j^{-1}f_*$. Further $f'_* (j')^{-1} = j^{-1}f_*$ because $f_*$ commutes with \'etale localization (by construction). In fact, the lemma holds very generally in the setting of a morphism of sites, see Modules on Sites, Lemma \ref{sites-modules-lemma-localize-morphism-ringed-sites}. \end{proof} \begin{lemma} \label{lemma-shriek-into-star-separated-etale} Let $j : U \to X$ be separated and \'etale. Then there is a functorial injective map $j_!\mathcal{F} \to j_*\mathcal{F}$ on abelian sheaves and sheaves of $\Lambda$-modules. \end{lemma} \begin{proof} We prove this in the case of abelian sheaves. Let us construct a canonical map $$ j_{p!}\mathcal{F} \to j_*\mathcal{F} $$ of abelian presheaves on $X_\etale$ for any abelian sheaf $\mathcal{F}$ on $U_\etale$ where $j_{p!}$ is as in (\ref{equation-j-p-shriek}). Sheafification of this map will be the desired map $j_!\mathcal{F} \to j_*\mathcal{F}$. Evaluating both sides on $V \to X$ \'etale we obtain $$ j_{p!}\mathcal{F}(V) = \bigoplus\nolimits_{\varphi : V \to U} \mathcal{F}(V \xrightarrow{\varphi} U) \quad\text{and}\quad j_*\mathcal{F}(V) = \mathcal{F}(V \times_X U) $$ For each $\varphi$ we have an open and closed immersion $$ \Gamma_\varphi = (1, \varphi) : V \longrightarrow V \times_X U $$ over $U$. It is open as it is a morphism between schemes \'etale over $U$ and it is closed as it is a section of a scheme separated over $V$ (Schemes, Lemma \ref{schemes-lemma-section-immersion}). Thus for a section $s_\varphi \in \mathcal{F}(V \xrightarrow{\varphi} U)$ there exists a unique section $s'_\varphi$ in $\mathcal{F}(V \times_X U)$ which pulls back to $s_\varphi$ by $\Gamma_\varphi$ and which restricts to zero on the complement of the image of $\Gamma_\varphi$. \medskip\noindent To show that our map is injective suppose that $\sum_{i = 1, \ldots, n} s_{\varphi_i}$ is an element of $j_{p!}\mathcal{F}(V)$ in the formula above maps to zero in $j_*\mathcal{F}(V)$. Our task is to show that $\sum_{i = 1, \ldots, n} s_{\varphi_i}$ restricts to zero on the members of an \'etale covering of $V$. Looking at all pairwise equalizers (which are open and closed in $V$) of the morphisms $\varphi_i : V \to U$ and working locally on $V$, we may assume the images of the morphisms $\Gamma_{\varphi_1}, \ldots, \Gamma_{\varphi_n}$ are pairwise disjoint. Since our assumption is that $\sum_{i = 1, \ldots, n} s'_{\varphi_i} = 0$ we then immediately conclude that $s'_{\varphi_i} = 0$ for each $i$ (by the disjointness of the supports of these sections), whence $s_{\varphi_i} = 0$ for all $i$ as desired. \end{proof} \begin{lemma} \label{lemma-shriek-equals-star-finite-etale} Let $j : U \to X$ be finite and \'etale. Then the map $j_! \to j_*$ of Lemma \ref{lemma-shriek-into-star-separated-etale} is an isomorphism on abelian sheaves and sheaves of $\Lambda$-modules. \end{lemma} \begin{proof} \medskip\noindent It suffices to check $j_!\mathcal{F} \to j_*\mathcal{F}$ is an isomorphism \'etale locally on $X$. Thus we may assume $U \to X$ is a finite disjoint union of isomorphisms, see \'Etale Morphisms, Lemma \ref{etale-lemma-finite-etale-etale-local}. We omit the proof in this case. \end{proof} \begin{lemma} \label{lemma-ses-associated-to-open} Let $X$ be a scheme. Let $Z \subset X$ be a closed subscheme and let $U \subset X$ be the complement. Denote $i : Z \to X$ and $j : U \to X$ the inclusion morphisms. For every abelian sheaf $\mathcal{F}$ on $X_\etale$ there is a canonical short exact sequence $$ 0 \to j_!j^{-1}\mathcal{F} \to \mathcal{F} \to i_*i^{-1}\mathcal{F} \to 0 $$ on $X_\etale$. \end{lemma} \begin{proof} We obtain the maps by the adjointness properties of the functors involved. For a geometric point $\overline{x}$ in $X$ we have either $\overline{x} \in U$ in which case the map on the left hand side is an isomorphism on stalks and the stalk of $i_*i^{-1}\mathcal{F}$ is zero or $\overline{x} \in Z$ in which case the map on the right hand side is an isomorphism on stalks and the stalk of $j_!j^{-1}\mathcal{F}$ is zero. Here we have used the description of stalks of Lemma \ref{lemma-stalk-pushforward-closed-immersion} and Proposition \ref{proposition-describe-jshriek}. \end{proof} \begin{lemma} \label{lemma-compatible-shriek-push-finite} Consider a cartesian diagram of schemes $$ \xymatrix{ U \ar[d]_g \ar[r]_{j'} & X \ar[d]^f \\ V \ar[r]^j & Y } $$ where $f$ is finite, $g$ is \'etale, and $j$ is an open immersion. Then $f_* \circ j'_! = j_! \circ g_*$ as functors $\textit{Ab}(U_\etale) \to \textit{Ab}(Y_\etale)$. \end{lemma} \begin{proof} Let $\mathcal{F}$ be an object of $\textit{Ab}(U_\etale)$. Let $\overline{y}$ be a geometric point of $Y$ not contained in the open $V$. Then $$ (f_*j'_!\mathcal{F})_{\overline{y}} = \bigoplus\nolimits_{\overline{x},\ f(\overline{x}) = \overline{y}} (j'_!\mathcal{F})_{\overline{x}} = 0 $$ by Proposition \ref{proposition-finite-higher-direct-image-zero} and because the stalk of $j'_!\mathcal{F}$ at $\overline{x} \not \in U$ are zero by Lemma \ref{lemma-jshriek-open}. On the other hand, we have $$ j^{-1}f_*j'_!\mathcal{F} = g_*(j')^{-1}j'_!\mathcal{F} = g_*\mathcal{F} $$ by Lemmas \ref{lemma-finite-pushforward-commutes-with-base-change} and Lemma \ref{lemma-jshriek-open}. Hence by the characterization of $j_!$ in Lemma \ref{lemma-jshriek-open} we see that $f_*j'_!\mathcal{F} = j_!g_*\mathcal{F}$. We omit the verification that this identification is functorial in $\mathcal{F}$. \end{proof} \section{Constructible sheaves} \label{section-constructible} \noindent Let $X$ be a scheme. A {\it constructible locally closed subscheme} of $X$ is a locally closed subscheme $T \subset X$ such that the underlying topological space of $T$ is a constructible subset of $X$. If $T, T' \subset X$ are locally closed subschemes with the same underlying topological space, then $T_\etale \cong T'_\etale$ by the topological invariance of the \'etale site (Theorem \ref{theorem-topological-invariance}). Thus in the following definition we may assume our locally closed subschemes are reduced. \begin{definition} \label{definition-constructible} Let $X$ be a scheme. \begin{enumerate} \item A sheaf of sets on $X_\etale$ is {\it constructible} if for every affine open $U \subset X$ there exists a finite decomposition of $U$ into constructible locally closed subschemes $U = \coprod_i U_i$ such that $\mathcal{F}|_{U_i}$ is finite locally constant for all $i$. \item A sheaf of abelian groups on $X_\etale$ is {\it constructible} if for every affine open $U \subset X$ there exists a finite decomposition of $U$ into constructible locally closed subschemes $U = \coprod_i U_i$ such that $\mathcal{F}|_{U_i}$ is finite locally constant for all $i$. \item Let $\Lambda$ be a Noetherian ring. A sheaf of $\Lambda$-modules on $X_\etale$ is {\it constructible} if for every affine open $U \subset X$ there exists a finite decomposition of $U$ into constructible locally closed subschemes $U = \coprod_i U_i$ such that $\mathcal{F}|_{U_i}$ is of finite type and locally constant for all $i$. \end{enumerate} \end{definition} \noindent It seems that this is the accepted definition. An alternative, which lends itself more readily to generalizations beyond the \'etale site of a scheme, would have been to define constructible sheaves by starting with $h_U$, $j_{U!}\mathbf{Z}/n\mathbf{Z}$, and $j_{U!}\underline{\Lambda}$ where $U$ runs over all quasi-compact and quasi-separated objects of $X_\etale$, and then take the smallest full subcategory of $\Sh(X_\etale)$, $\textit{Ab}(X_\etale)$, and $\textit{Mod}(X_\etale, \underline{\Lambda})$ containing these and closed under finite limits and colimits. It follows from Lemma \ref{lemma-constructible-abelian} and Lemmas \ref{lemma-category-constructible-sets}, \ref{lemma-category-constructible-abelian}, and \ref{lemma-category-constructible-modules} that this produces the same category if $X$ is quasi-compact and quasi-separated. In general this does not produce the same category however. \medskip\noindent A disjoint union decomposition $U = \coprod U_i$ of a scheme by locally closed subschemes will be called a {\it partition} of $U$ (compare with Topology, Section \ref{topology-section-stratifications}). \begin{lemma} \label{lemma-constructible-quasi-compact-quasi-separated} Let $X$ be a quasi-compact and quasi-separated scheme. Let $\mathcal{F}$ be a sheaf of sets on $X_\etale$. The following are equivalent \begin{enumerate} \item $\mathcal{F}$ is constructible, \item there exists an open covering $X = \bigcup U_i$ such that $\mathcal{F}|_{U_i}$ is constructible, and \item there exists a partition $X = \bigcup X_i$ by constructible locally closed subschemes such that $\mathcal{F}|_{X_i}$ is finite locally constant. \end{enumerate} A similar statement holds for abelian sheaves and sheaves of $\Lambda$-modules if $\Lambda$ is Noetherian. \end{lemma} \begin{proof} It is clear that (1) implies (2). \medskip\noindent Assume (2). For every $x \in X$ we can find an $i$ and an affine open neighbourhood $V_x \subset U_i$ of $x$. Hence we can find a finite affine open covering $X = \bigcup V_j$ such that for each $j$ there exists a finite decomposition $V_j = \coprod V_{j, k}$ by locally closed constructible subsets such that $\mathcal{F}|_{V_{j, k}}$ is finite locally constant. By Topology, Lemma \ref{topology-lemma-quasi-compact-open-immersion-constructible-image} each $V_{j, k}$ is constructible as a subset of $X$. By Topology, Lemma \ref{topology-lemma-constructible-partition-refined-by-stratification} we can find a finite stratification $X = \coprod X_l$ with constructible locally closed strata such that each $V_{j, k}$ is a union of $X_l$. Thus (3) holds. \medskip\noindent Assume (3) holds. Let $U \subset X$ be an affine open. Then $U \cap X_i$ is a constructible locally closed subset of $U$ (for example by Properties, Lemma \ref{properties-lemma-locally-constructible}) and $U = \coprod U \cap X_i$ is a partition of $U$ as in Definition \ref{definition-constructible}. Thus (1) holds. \end{proof} \begin{lemma} \label{lemma-constructible-constructible} Let $X$ be a quasi-compact and quasi-separated scheme. Let $\mathcal{F}$ be a sheaf of sets, abelian groups, $\Lambda$-modules (with $\Lambda$ Noetherian) on $X_\etale$. If there exist constructible locally closed subschemes $T_i \subset X$ such that (a) $X = \bigcup T_j$ and (b) $\mathcal{F}|_{T_j}$ is constructible, then $\mathcal{F}$ is constructible. \end{lemma} \begin{proof} First, we can assume the covering is finite as $X$ is quasi-compact in the spectral topology (Topology, Lemma \ref{topology-lemma-constructible-hausdorff-quasi-compact} and Properties, Lemma \ref{properties-lemma-quasi-compact-quasi-separated-spectral}). Observe that each $T_i$ is a quasi-compact and quasi-separated scheme in its own right (because it is constructible in $X$; details omitted). Thus we can find a finite partition $T_i = \coprod T_{i, j}$ into locally closed constructible parts of $T_i$ such that $\mathcal{F}|_{T_{i, j}}$ is finite locally constant (Lemma \ref{lemma-constructible-quasi-compact-quasi-separated}). By Topology, Lemma \ref{topology-lemma-constructible-in-constructible} we see that $T_{i, j}$ is a constructible locally closed subscheme of $X$. Then we can apply Topology, Lemma \ref{topology-lemma-constructible-partition-refined-by-stratification} to $X = \bigcup T_{i, j}$ to find the desired partition of $X$. \end{proof} \begin{lemma} \label{lemma-constructible-local} Let $X$ be a scheme. Checking constructibility of a sheaf of sets, abelian groups, $\Lambda$-modules (with $\Lambda$ Noetherian) can be done Zariski locally on $X$. \end{lemma} \begin{proof} The statement means if $X = \bigcup U_i$ is an open covering such that $\mathcal{F}|_{U_i}$ is constructible, then $\mathcal{F}$ is constructible. If $U \subset X$ is affine open, then $U = \bigcup U \cap U_i$ and $\mathcal{F}|_{U \cap U_i}$ is constructible (it is trivial that the restriction of a constructible sheaf to an open is constructible). It follows from Lemma \ref{lemma-constructible-quasi-compact-quasi-separated} that $\mathcal{F}|_U$ is constructible, i.e., a suitable partition of $U$ exists. \end{proof} \begin{lemma} \label{lemma-pullback-constructible} Let $f : X \to Y$ be a morphism of schemes. If $\mathcal{F}$ is a constructible sheaf of sets, abelian groups, or $\Lambda$-modules (with $\Lambda$ Noetherian) on $Y_\etale$, the same is true for $f^{-1}\mathcal{F}$ on $X_\etale$. \end{lemma} \begin{proof} By Lemma \ref{lemma-constructible-local} this reduces to the case where $X$ and $Y$ are affine. By Lemma \ref{lemma-constructible-quasi-compact-quasi-separated} it suffices to find a finite partition of $X$ by constructible locally closed subschemes such that $f^{-1}\mathcal{F}$ is finite locally constant on each of them. To find it we just pull back the partition of $Y$ adapted to $\mathcal{F}$ and use Lemma \ref{lemma-pullback-locally-constant}. \end{proof} \begin{lemma} \label{lemma-constructible-abelian} Let $X$ be a scheme. \begin{enumerate} \item The category of constructible sheaves of sets is closed under finite limits and colimits inside $\Sh(X_\etale)$. \item The category of constructible abelian sheaves is a weak Serre subcategory of $\textit{Ab}(X_\etale)$. \item Let $\Lambda$ be a Noetherian ring. The category of constructible sheaves of $\Lambda$-modules on $X_\etale$ is a weak Serre subcategory of $\textit{Mod}(X_\etale, \Lambda)$. \end{enumerate} \end{lemma} \begin{proof} We prove (3). We will use the criterion of Homology, Lemma \ref{homology-lemma-characterize-weak-serre-subcategory}. Suppose that $\varphi : \mathcal{F} \to \mathcal{G}$ is a map of constructible sheaves of $\Lambda$-modules. We have to show that $\mathcal{K} = \Ker(\varphi)$ and $\mathcal{Q} = \Coker(\varphi)$ are constructible. Similarly, suppose that $0 \to \mathcal{F} \to \mathcal{E} \to \mathcal{G} \to 0$ is a short exact sequence of sheaves of $\Lambda$-modules with $\mathcal{F}$, $\mathcal{G}$ constructible. We have to show that $\mathcal{E}$ is constructible. In both cases we can replace $X$ with the members of an affine open covering. Hence we may assume $X$ is affine. Then we may further replace $X$ by the members of a finite partition of $X$ by constructible locally closed subschemes on which $\mathcal{F}$ and $\mathcal{G}$ are of finite type and locally constant. Thus we may apply Lemma \ref{lemma-kernel-finite-locally-constant} to conclude. \medskip\noindent The proofs of (1) and (2) are very similar and are omitted. \end{proof} \begin{lemma} \label{lemma-support-constructible} Let $X$ be a quasi-compact and quasi-separated scheme. \begin{enumerate} \item Let $\mathcal{F} \to \mathcal{G}$ be a map of constructible sheaves of sets on $X_\etale$. Then the set of points $x \in X$ where $\mathcal{F}_{\overline{x}} \to \mathcal{G}_{\overline{x}}$ is surjective, resp.\ injective, resp.\ is isomorphic to a given map of sets, is constructible in $X$. \item Let $\mathcal{F}$ be a constructible abelian sheaf on $X_\etale$. The support of $\mathcal{F}$ is constructible. \item Let $\Lambda$ be a Noetherian ring. Let $\mathcal{F}$ be a constructible sheaf of $\Lambda$-modules on $X_\etale$. The support of $\mathcal{F}$ is constructible. \end{enumerate} \end{lemma} \begin{proof} Proof of (1). Let $X = \coprod X_i$ be a partition of $X$ by locally closed constructible subschemes such that both $\mathcal{F}$ and $\mathcal{G}$ are finite locally constant over the parts (use Lemma \ref{lemma-constructible-quasi-compact-quasi-separated} for both $\mathcal{F}$ and $\mathcal{G}$ and choose a common refinement). Then apply Lemma \ref{lemma-morphism-locally-constant} to the restriction of the map to each part. \medskip\noindent The proof of (2) and (3) is omitted. \end{proof} \noindent The following lemma will turn out to be very useful later on. It roughly says that the category of constructible sheaves has a kind of weak ``Noetherian'' property. \begin{lemma} \label{lemma-colimit-constructible} Let $X$ be a quasi-compact and quasi-separated scheme. Let $\mathcal{F} = \colim_{i \in I} \mathcal{F}_i$ be a filtered colimit of sheaves of sets, abelian sheaves, or sheaves of modules. \begin{enumerate} \item If $\mathcal{F}$ and $\mathcal{F}_i$ are constructible sheaves of sets, then the ind-object $\mathcal{F}_i$ is essentially constant with value $\mathcal{F}$. \item If $\mathcal{F}$ and $\mathcal{F}_i$ are constructible sheaves of abelian groups, then the ind-object $\mathcal{F}_i$ is essentially constant with value $\mathcal{F}$. \item Let $\Lambda$ be a Noetherian ring. If $\mathcal{F}$ and $\mathcal{F}_i$ are constructible sheaves of $\Lambda$-modules, then the ind-object $\mathcal{F}_i$ is essentially constant with value $\mathcal{F}$. \end{enumerate} \end{lemma} \begin{proof} Proof of (1). We will use without further mention that finite limits and colimits of constructible sheaves are constructible (Lemma \ref{lemma-kernel-finite-locally-constant}). For each $i$ let $T_i \subset X$ be the set of points $x \in X$ where $\mathcal{F}_{i, \overline{x}} \to \mathcal{F}_{\overline{x}}$ is not surjective. Because $\mathcal{F}_i$ and $\mathcal{F}$ are constructible $T_i$ is a constructible subset of $X$ (Lemma \ref{lemma-support-constructible}). Since the stalks of $\mathcal{F}$ are finite and since $\mathcal{F} = \colim_{i \in I} \mathcal{F}_i$ we see that for all $x \in X$ we have $x \not \in T_i$ for $i$ large enough. Since $X$ is a spectral space by Properties, Lemma \ref{properties-lemma-quasi-compact-quasi-separated-spectral} the constructible topology on $X$ is quasi-compact by Topology, Lemma \ref{topology-lemma-constructible-hausdorff-quasi-compact}. Thus $T_i = \emptyset$ for $i$ large enough. Thus $\mathcal{F}_i \to \mathcal{F}$ is surjective for $i$ large enough. Assume now that $\mathcal{F}_i \to \mathcal{F}$ is surjective for all $i$. Choose $i \in I$. For $i' \geq i$ denote $S_{i'} \subset X$ the set of points $x$ such that the number of elements in $\Im(\mathcal{F}_{i, \overline{x}} \to \mathcal{F}_{\overline{x}})$ is equal to the number of elements in $\Im(\mathcal{F}_{i, \overline{x}} \to \mathcal{F}_{i', \overline{x}})$. Because $\mathcal{F}_i$, $\mathcal{F}_{i'}$ and $\mathcal{F}$ are constructible $S_{i'}$ is a constructible subset of $X$ (details omitted; hint: use Lemma \ref{lemma-support-constructible}). Since the stalks of $\mathcal{F}_i$ and $\mathcal{F}$ are finite and since $\mathcal{F} = \colim_{i' \geq i} \mathcal{F}_{i'}$ we see that for all $x \in X$ we have $x \not \in S_{i'}$ for $i'$ large enough. By the same argument as above we can find a large $i'$ such that $S_{i'} = \emptyset$. Thus $\mathcal{F}_i \to \mathcal{F}_{i'}$ factors through $\mathcal{F}$ as desired. \medskip\noindent Proof of (2). Observe that a constructible abelian sheaf is a constructible sheaf of sets. Thus case (2) follows from (1). \medskip\noindent Proof of (3). We will use without further mention that the category of constructible sheaves of $\Lambda$-modules is abelian (Lemma \ref{lemma-kernel-finite-locally-constant}). For each $i$ let $\mathcal{Q}_i$ be the cokernel of the map $\mathcal{F}_i \to \mathcal{F}$. The support $T_i$ of $\mathcal{Q}_i$ is a constructible subset of $X$ as $\mathcal{Q}_i$ is constructible (Lemma \ref{lemma-support-constructible}). Since the stalks of $\mathcal{F}$ are finite $\Lambda$-modules and since $\mathcal{F} = \colim_{i \in I} \mathcal{F}_i$ we see that for all $x \in X$ we have $x \not \in T_i$ for $i$ large enough. Since $X$ is a spectral space by Properties, Lemma \ref{properties-lemma-quasi-compact-quasi-separated-spectral} the constructible topology on $X$ is quasi-compact by Topology, Lemma \ref{topology-lemma-constructible-hausdorff-quasi-compact}. Thus $T_i = \emptyset$ for $i$ large enough. This proves the first assertion. For the second, assume now that $\mathcal{F}_i \to \mathcal{F}$ is surjective for all $i$. Choose $i \in I$. For $i' \geq i$ denote $\mathcal{K}_{i'}$ the image of $\Ker(\mathcal{F}_i \to \mathcal{F})$ in $\mathcal{F}_{i'}$. The support $S_{i'}$ of $\mathcal{K}_{i'}$ is a constructible subset of $X$ as $\mathcal{K}_{i'}$ is constructible. Since the stalks of $\Ker(\mathcal{F}_i \to \mathcal{F})$ are finite $\Lambda$-modules and since $\mathcal{F} = \colim_{i' \geq i} \mathcal{F}_{i'}$ we see that for all $x \in X$ we have $x \not \in S_{i'}$ for $i'$ large enough. By the same argument as above we can find a large $i'$ such that $S_{i'} = \emptyset$. Thus $\mathcal{F}_i \to \mathcal{F}_{i'}$ factors through $\mathcal{F}$ as desired. \end{proof} \begin{lemma} \label{lemma-tensor-product-constructible} Let $X$ be a scheme. Let $\Lambda$ be a Noetherian ring. The tensor product of two constructible sheaves of $\Lambda$-modules on $X_\etale$ is a constructible sheaf of $\Lambda$-modules. \end{lemma} \begin{proof} The question immediately reduces to the case where $X$ is affine. Since any two partitions of $X$ with constructible locally closed strata have a common refinement of the same type and since pullbacks commute with tensor product we reduce to Lemma \ref{lemma-tensor-product-locally-constant}. \end{proof} \begin{lemma} \label{lemma-tensor-constructible} Let $\Lambda \to \Lambda'$ be a homomorphism of Noetherian rings. Let $X$ be a scheme. Let $\mathcal{F}$ be a constructible sheaf of $\Lambda$-modules on $X_\etale$. Then $\mathcal{F} \otimes_{\underline{\Lambda}} \underline{\Lambda'}$ is a constructible sheaf of $\Lambda'$-modules. \end{lemma} \begin{proof} Omitted. Hint: affine locally you can use the same stratification. \end{proof} \section{Auxiliary lemmas on morphisms} \label{section-stratify-morphisms} \noindent Some lemmas that are useful for proving functoriality properties of constructible sheaves. \begin{lemma} \label{lemma-etale-stratified-finite} Let $U \to X$ be an \'etale morphism of quasi-compact and quasi-separated schemes (for example an \'etale morphism of Noetherian schemes). Then there exists a partition $X = \coprod_i X_i$ by constructible locally closed subschemes such that $X_i \times_X U \to X_i$ is finite \'etale for all $i$. \end{lemma} \begin{proof} If $U \to X$ is separated, then this is More on Morphisms, Lemma \ref{more-morphisms-lemma-stratify-flat-fp-qf}. In general, we may assume $X$ is affine. Choose a finite affine open covering $U = \bigcup U_j$. Apply the previous case to all the morphisms $U_j \to X$ and $U_j \cap U_{j'} \to X$ and choose a common refinement $X = \coprod X_i$ of the resulting partitions. After refining the partition further we may assume $X_i$ affine as well. Fix $i$ and set $V = U \times_X X_i$. The morphisms $V_j = U_j \times_X X_i \to X_i$ and $V_{jj'} = (U_j \cap U_{j'}) \times_X X_i \to X_i$ are finite \'etale. Hence $V_j$ and $V_{jj'}$ are affine schemes and $V_{jj'} \subset V_j$ is closed as well as open (since $V_{jj'} \to X_i$ is proper, so Morphisms, Lemma \ref{morphisms-lemma-image-proper-scheme-closed} applies). Then $V = \bigcup V_j$ is separated because $\mathcal{O}(V_j) \to \mathcal{O}(V_{jj'})$ is surjective, see Schemes, Lemma \ref{schemes-lemma-characterize-separated}. Thus the previous case applies to $V \to X_i$ and we can further refine the partition if needed (it actually isn't but we don't need this). \end{proof} \noindent In the Noetherian case one can prove the preceding lemma by Noetherian induction and the following amusing lemma. \begin{lemma} \label{lemma-generically-finite} Let $f: X \to Y$ be a morphism of schemes which is quasi-compact, quasi-separated, and locally of finite type. If $\eta$ is a generic point of an irreducible component of $Y$ such that $f^{-1}(\eta)$ is finite, then there exists an open $V \subset Y$ containing $\eta$ such that $f^{-1}(V) \to V$ is finite. \end{lemma} \begin{proof} This is Morphisms, Lemma \ref{morphisms-lemma-generically-finite}. \end{proof} \noindent The statement of the following lemma can be strengthened a bit. \begin{lemma} \label{lemma-decompose-quasi-finite-morphism} Let $f : Y \to X$ be a quasi-finite and finitely presented morphism of affine schemes. \begin{enumerate} \item There exists a surjective morphism of affine schemes $X' \to X$ and a closed subscheme $Z' \subset Y' = X' \times_X Y$ such that \begin{enumerate} \item $Z' \subset Y'$ is a thickening, and \item $Z' \to X'$ is a finite \'etale morphism. \end{enumerate} \item There exists a finite partition $X = \coprod X_i$ by locally closed, constructible, affine strata, and surjective finite locally free morphisms $X'_i \to X_i$ such that the reduction of $Y'_i = X'_i \times_X Y \to X'_i$ is isomorphic to $\coprod_{j = 1}^{n_i} (X'_i)_{red} \to (X'_i)_{red}$ for some $n_i$. \end{enumerate} \end{lemma} \begin{proof} Setting $X' = \coprod X'_i$ we see that (2) implies (1). Write $X = \Spec(A)$ and $Y = \Spec(B)$. Write $A$ as a filtered colimit of finite type $\mathbf{Z}$-algebras $A_i$. Since $B$ is an $A$-algebra of finite presentation, we see that there exists $0 \in I$ and a finite type ring map $A_0 \to B_0$ such that $B = \colim B_i$ with $B_i = A_i \otimes_{A_0} B_0$, see Algebra, Lemma \ref{algebra-lemma-colimit-category-fp-algebras}. For $i$ sufficiently large we see that $A_i \to B_i$ is quasi-finite, see Limits, Lemma \ref{limits-lemma-descend-quasi-finite}. Thus we reduce to the case of finite type algebras over $\mathbf{Z}$, in particular we reduce to the Noetherian case. (Details omitted.) \medskip\noindent Assume $X$ and $Y$ Noetherian. In this case any locally closed subset of $X$ is constructible. By Lemma \ref{lemma-generically-finite} and Noetherian induction we see that there is a finite partition $X = \coprod X_i$ of $X$ by locally closed strata such that $Y \times_X X_i \to X_i$ is finite. We can refine this partition to get affine strata. Thus after replacing $X$ by $X' = \coprod X_i$ we may assume $Y \to X$ is finite. \medskip\noindent Assume $X$ and $Y$ Noetherian and $Y \to X$ finite. Suppose that we can prove (2) after base change by a surjective, flat, quasi-finite morphism $U \to X$. Thus we have a partition $U = \coprod U_i$ and finite locally free morphisms $U'_i \to U_i$ such that $U'_i \times_X Y \to U'_i$ is isomorphic to $\coprod_{j = 1}^{n_i} (U'_i)_{red} \to (U'_i)_{red}$ for some $n_i$. Then, by the argument in the previous paragraph, we can find a partition $X = \coprod X_j$ with locally closed affine strata such that $X_j \times_X U_i \to X_j$ is finite for all $i, j$. By Morphisms, Lemma \ref{morphisms-lemma-finite-flat} each $X_j \times_X U_i \to X_j$ is finite locally free. Hence $X_j \times_X U'_i \to X_j$ is finite locally free (Morphisms, Lemma \ref{morphisms-lemma-composition-finite-locally-free}). It follows that $X = \coprod X_j$ and $X_j' = \coprod_i X_j \times_X U'_i$ is a solution for $Y \to X$. Thus it suffices to prove the result (in the Noetherian case) after a surjective flat quasi-finite base change. \medskip\noindent Applying Morphisms, Lemma \ref{morphisms-lemma-massage-finite} we see we may assume that $Y$ is a closed subscheme of an affine scheme $Z$ which is (set theoretically) a finite union $Z = \bigcup_{i \in I} Z_i$ of closed subschemes mapping isomorphically to $X$. In this case we will find a finite partition of $X = \coprod X_j$ with affine locally closed strata that works (in other words $X'_j = X_j$). Set $T_i = Y \cap Z_i$. This is a closed subscheme of $X$. As $X$ is Noetherian we can find a finite partition of $X = \coprod X_j$ by affine locally closed subschemes, such that each $X_j \times_X T_i$ is (set theoretically) a union of strata $X_j \times_X Z_i$. Replacing $X$ by $X_j$ we see that we may assume $I = I_1 \amalg I_2$ with $Z_i \subset Y$ for $i \in I_1$ and $Z_i \cap Y = \emptyset$ for $i \in I_2$. Replacing $Z$ by $\bigcup_{i \in I_1} Z_i$ we see that we may assume $Y = Z$. Finally, we can replace $X$ again by the members of a partition as above such that for every $i, i' \subset I$ the intersection $Z_i \cap Z_{i'}$ is either empty or (set theoretically) equal to $Z_i$ and $Z_{i'}$. This clearly means that $Y$ is (set theoretically) equal to a disjoint union of the $Z_i$ which is what we wanted to show. \end{proof} \section{More on constructible sheaves} \label{section-more-constructible} \noindent Let $\Lambda$ be a Noetherian ring. Let $X$ be a scheme. We often consider $X_\etale$ as a ringed site with sheaf of rings $\underline{\Lambda}$. In case of abelian sheaves we often take $\Lambda = \mathbf{Z}/n\mathbf{Z}$ for a suitable integer $n$. \begin{lemma} \label{lemma-jshriek-constructible} Let $j : U \to X$ be an \'etale morphism of quasi-compact and quasi-separated schemes. \begin{enumerate} \item The sheaf $h_U$ is a constructible sheaf of sets. \item The sheaf $j_!\underline{M}$ is a constructible abelian sheaf for a finite abelian group $M$. \item If $\Lambda$ is a Noetherian ring and $M$ is a finite $\Lambda$-module, then $j_!\underline{M}$ is a constructible sheaf of $\Lambda$-modules on $X_\etale$. \end{enumerate} \end{lemma} \begin{proof} By Lemma \ref{lemma-etale-stratified-finite} there is a partition $\coprod_i X_i$ such that $\pi_i : j^{-1}(X_i) \to X_i$ is finite \'etale. The restriction of $h_U$ to $X_i$ is $h_{j^{-1}(X_i)}$ which is finite locally constant by Lemma \ref{lemma-characterize-finite-locally-constant}. For cases (2) and (3) we note that $$ j_!(\underline{M})|_{X_i} = \pi_{i!}(\underline{M}) = \pi_{i*}(\underline{M}) $$ by Lemmas \ref{lemma-shriek-base-change} and \ref{lemma-shriek-equals-star-finite-etale}. Thus it suffices to show the lemma for $\pi : Y \to X$ finite \'etale. This is Lemma \ref{lemma-pushforward-locally-constant}. \end{proof} \begin{lemma} \label{lemma-torsion-colimit-constructible} Let $X$ be a quasi-compact and quasi-separated scheme. \begin{enumerate} \item Let $\mathcal{F}$ be a sheaf of sets on $X_\etale$. Then $\mathcal{F}$ is a filtered colimit of constructible sheaves of sets. \item Let $\mathcal{F}$ be a torsion abelian sheaf on $X_\etale$. Then $\mathcal{F}$ is a filtered colimit of constructible abelian sheaves. \item Let $\Lambda$ be a Noetherian ring and $\mathcal{F}$ a sheaf of $\Lambda$-modules on $X_\etale$. Then $\mathcal{F}$ is a filtered colimit of constructible sheaves of $\Lambda$-modules. \end{enumerate} \end{lemma} \begin{proof} Let $\mathcal{B}$ be the collection of quasi-compact and quasi-separated objects of $X_\etale$. By Modules on Sites, Lemma \ref{sites-modules-lemma-module-filtered-colimit-constructibles} any sheaf of sets is a filtered colimit of sheaves of the form $$ \text{Coequalizer}\left( \xymatrix{ \coprod\nolimits_{j = 1, \ldots, m} h_{V_j} \ar@<1ex>[r] \ar@<-1ex>[r] & \coprod\nolimits_{i = 1, \ldots, n} h_{U_i} } \right) $$ with $V_j$ and $U_i$ quasi-compact and quasi-separated objects of $X_\etale$. By Lemmas \ref{lemma-jshriek-constructible} and \ref{lemma-constructible-abelian} these coequalizers are constructible. This proves (1). \medskip\noindent Let $\Lambda$ be a Noetherian ring. By Modules on Sites, Lemma \ref{sites-modules-lemma-module-filtered-colimit-constructibles} $\Lambda$-modules $\mathcal{F}$ is a filtered colimit of modules of the form $$ \Coker\left( \bigoplus\nolimits_{j = 1, \ldots, m} j_{V_j!}\underline{\Lambda}_{V_j} \longrightarrow \bigoplus\nolimits_{i = 1, \ldots, n} j_{U_i!}\underline{\Lambda}_{U_i} \right) $$ with $V_j$ and $U_i$ quasi-compact and quasi-separated objects of $X_\etale$. By Lemmas \ref{lemma-jshriek-constructible} and \ref{lemma-constructible-abelian} these cokernels are constructible. This proves (3). \medskip\noindent Proof of (2). First write $\mathcal{F} = \bigcup \mathcal{F}[n]$ where $\mathcal{F}[n]$ is the $n$-torsion subsheaf. Then we can view $\mathcal{F}[n]$ as a sheaf of $\mathbf{Z}/n\mathbf{Z}$-modules and apply (3). \end{proof} \begin{lemma} \label{lemma-check-constructible} Let $f : X \to Y$ be a surjective morphism of quasi-compact and quasi-separated schemes. \begin{enumerate} \item Let $\mathcal{F}$ be a sheaf of sets on $Y_\etale$. Then $\mathcal{F}$ is constructible if and only if $f^{-1}\mathcal{F}$ is constructible. \item Let $\mathcal{F}$ be an abelian sheaf on $Y_\etale$. Then $\mathcal{F}$ is constructible if and only if $f^{-1}\mathcal{F}$ is constructible. \item Let $\Lambda$ be a Noetherian ring. Let $\mathcal{F}$ be sheaf of $\Lambda$-modules on $Y_\etale$. Then $\mathcal{F}$ is constructible if and only if $f^{-1}\mathcal{F}$ is constructible. \end{enumerate} \end{lemma} \begin{proof} One implication follows from Lemma \ref{lemma-pullback-constructible}. For the converse, assume $f^{-1}\mathcal{F}$ is constructible. Write $\mathcal{F} = \colim \mathcal{F}_i$ as a filtered colimit of constructible sheaves (of sets, abelian groups, or modules) using Lemma \ref{lemma-torsion-colimit-constructible}. Since $f^{-1}$ is a left adjoint it commutes with colimits (Categories, Lemma \ref{categories-lemma-adjoint-exact}) and we see that $f^{-1}\mathcal{F} = \colim f^{-1}\mathcal{F}_i$. By Lemma \ref{lemma-colimit-constructible} we see that $f^{-1}\mathcal{F}_i \to f^{-1}\mathcal{F}$ is surjective for all $i$ large enough. Since $f$ is surjective we conclude (by looking at stalks using Lemma \ref{lemma-stalk-pullback} and Theorem \ref{theorem-exactness-stalks}) that $\mathcal{F}_i \to \mathcal{F}$ is surjective for all $i$ large enough. Thus $\mathcal{F}$ is the quotient of a constructible sheaf $\mathcal{G}$. Applying the argument once more to $\mathcal{G} \times_\mathcal{F} \mathcal{G}$ or the kernel of $\mathcal{G} \to \mathcal{F}$ we conclude using that $f^{-1}$ is exact and that the category of constructible sheaves (of sets, abelian groups, or modules) is preserved under finite (co)limits or (co)kernels inside $\Sh(Y_\etale)$, $\Sh(X_\etale)$, $\textit{Ab}(Y_\etale)$, $\textit{Ab}(X_\etale)$, $\textit{Mod}(Y_\etale, \Lambda)$, and $\textit{Mod}(X_\etale, \Lambda)$, see Lemma \ref{lemma-constructible-abelian}. \end{proof} \begin{lemma} \label{lemma-pushforward-constructible} Let $f : X \to Y$ be a finite \'etale morphism of schemes. Let $\Lambda$ be a Noetherian ring. If $\mathcal{F}$ is a constructible sheaf of sets, constructible sheaf of abelian groups, or constructible sheaf of $\Lambda$-modules on $X_\etale$, the same is true for $f_*\mathcal{F}$ on $Y_\etale$. \end{lemma} \begin{proof} By Lemma \ref{lemma-constructible-local} it suffices to check this Zariski locally on $Y$ and by Lemma \ref{lemma-check-constructible} we may replace $Y$ by an \'etale cover (the construction of $f_*$ commutes with \'etale localization). A finite \'etale morphism is \'etale locally isomorphic to a disjoint union of isomorphisms, see \'Etale Morphisms, Lemma \ref{etale-lemma-finite-etale-etale-local}. Thus, in the case of sheaves of sets, the lemma says that if $\mathcal{F}_i$, $i = 1, \ldots, n$ are constructible sheaves of sets, then $\prod_{i = 1, \ldots, n} \mathcal{F}_i$ is too. This is clear. Similarly for sheaves of abelian groups and modules. \end{proof} \begin{lemma} \label{lemma-category-constructible-sets} Let $X$ be a quasi-compact and quasi-separated scheme. The category of constructible sheaves of sets is the full subcategory of $\Sh(X_\etale)$ consisting of sheaves $\mathcal{F}$ which are coequalizers $$ \xymatrix{ \mathcal{F}_1 \ar@<1ex>[r] \ar@<-1ex>[r] & \mathcal{F}_0 \ar[r] & \mathcal{F}} $$ such that $\mathcal{F}_i$, $i = 0, 1$ is a finite coproduct of sheaves of the form $h_U$ with $U$ a quasi-compact and quasi-separated object of $X_\etale$. \end{lemma} \begin{proof} In the proof of Lemma \ref{lemma-torsion-colimit-constructible} we have seen that sheaves of this form are constructible. For the converse, suppose that for every constructible sheaf of sets $\mathcal{F}$ we can find a surjection $\mathcal{F}_0 \to \mathcal{F}$ with $\mathcal{F}_0$ as in the lemma. Then we find our surjection $\mathcal{F}_1 \to \mathcal{F}_0 \times_\mathcal{F} \mathcal{F}_0$ because the latter is constructible by Lemma \ref{lemma-constructible-abelian}. \medskip\noindent By Topology, Lemma \ref{topology-lemma-constructible-partition-refined-by-stratification} we may choose a finite stratification $X = \coprod_{i \in I} X_i$ such that $\mathcal{F}$ is finite locally constant on each stratum. We will prove the result by induction on the cardinality of $I$. Let $i \in I$ be a minimal element in the partial ordering of $I$. Then $X_i \subset X$ is closed. By induction, there exist finitely many quasi-compact and quasi-separated objects $U_\alpha$ of $(X \setminus X_i)_\etale$ and a surjective map $\coprod h_{U_\alpha} \to \mathcal{F}|_{X \setminus X_i}$. These determine a map $$ \coprod h_{U_\alpha} \to \mathcal{F} $$ which is surjective after restricting to $X \setminus X_i$. By Lemma \ref{lemma-characterize-finite-locally-constant} we see that $\mathcal{F}|_{X_i} = h_V$ for some scheme $V$ finite \'etale over $X_i$. Let $\overline{v}$ be a geometric point of $V$ lying over $\overline{x} \in X_i$. We may think of $\overline{v}$ as an element of the stalk $\mathcal{F}_{\overline{x}} = V_{\overline{x}}$. Thus we can find an \'etale neighbourhood $(U, \overline{u})$ of $\overline{x}$ and a section $s \in \mathcal{F}(U)$ whose stalk at $\overline{x}$ gives $\overline{v}$. Thinking of $s$ as a map $s : h_U \to \mathcal{F}$, restricting to $X_i$ we obtain a morphism $s|_{X_i} : U \times_X X_i \to V$ over $X_i$ which maps $\overline{u}$ to $\overline{v}$. Since $V$ is quasi-compact (finite over the closed subscheme $X_i$ of the quasi-compact scheme $X$) a finite number $s^{(1)}, \ldots, s^{(m)}$ of these sections of $\mathcal{F}$ over $U^{(1)}, \ldots, U^{(m)}$ will determine a jointly surjective map $$ \coprod s^{(j)}|_{X_i} : \coprod U^{(j)} \times_X X_i \longrightarrow V $$ Then we obtain the surjection $$ \coprod h_{U_\alpha} \amalg \coprod h_{U^{(j)}} \to \mathcal{F} $$ as desired. \end{proof} \begin{lemma} \label{lemma-category-constructible-modules} Let $X$ be a quasi-compact and quasi-separated scheme. Let $\Lambda$ be a Noetherian ring. The category of constructible sheaves of $\Lambda$-modules is exactly the category of modules of the form $$ \Coker\left( \bigoplus\nolimits_{j = 1, \ldots, m} j_{V_j!}\underline{\Lambda}_{V_j} \longrightarrow \bigoplus\nolimits_{i = 1, \ldots, n} j_{U_i!}\underline{\Lambda}_{U_i} \right) $$ with $V_j$ and $U_i$ quasi-compact and quasi-separated objects of $X_\etale$. In fact, we can even assume $U_i$ and $V_j$ affine. \end{lemma} \begin{proof} In the proof of Lemma \ref{lemma-torsion-colimit-constructible} we have seen modules of this form are constructible. Since the category of constructible modules is abelian (Lemma \ref{lemma-constructible-abelian}) it suffices to prove that given a constructible module $\mathcal{F}$ there is a surjection $$ \bigoplus\nolimits_{i = 1, \ldots, n} j_{U_i!}\underline{\Lambda}_{U_i} \longrightarrow \mathcal{F} $$ for some affine objects $U_i$ in $X_\etale$. By Modules on Sites, Lemma \ref{sites-modules-lemma-module-filtered-colimit-constructibles} there is a surjection $$ \Psi : \bigoplus\nolimits_{i \in I} j_{U_i!}\underline{\Lambda}_{U_i} \longrightarrow \mathcal{F} $$ with $U_i$ affine and the direct sum over a possibly infinite index set $I$. For every finite subset $I' \subset I$ set $$ T_{I'} = \text{Supp}(\Coker( \bigoplus\nolimits_{i \in I'} j_{U_i!}\underline{\Lambda}_{U_i} \longrightarrow \mathcal{F})) $$ By the very definition of constructible sheaves, the set $T_{I'}$ is a constructible subset of $X$. We want to show that $T_{I'} = \emptyset$ for some $I'$. Since every stalk $\mathcal{F}_{\overline{x}}$ is a finite type $\Lambda$-module and since $\Psi$ is surjective, for every $x \in X$ there is an $I'$ such that $x \not \in T_{I'}$. In other words we have $\emptyset = \bigcap_{I' \subset I\text{ finite}} T_{I'}$. Since $X$ is a spectral space by Properties, Lemma \ref{properties-lemma-quasi-compact-quasi-separated-spectral} the constructible topology on $X$ is quasi-compact by Topology, Lemma \ref{topology-lemma-constructible-hausdorff-quasi-compact}. Thus $T_{I'} = \emptyset$ for some $I' \subset I$ finite as desired. \end{proof} \begin{lemma} \label{lemma-category-constructible-abelian} Let $X$ be a quasi-compact and quasi-separated scheme. The category of constructible abelian sheaves is exactly the category of abelian sheaves of the form $$ \Coker\left( \bigoplus\nolimits_{j = 1, \ldots, m} j_{V_j!}\underline{\mathbf{Z}/m_j\mathbf{Z}}_{V_j} \longrightarrow \bigoplus\nolimits_{i = 1, \ldots, n} j_{U_i!}\underline{\mathbf{Z}/n_i\mathbf{Z}}_{U_i} \right) $$ with $V_j$ and $U_i$ quasi-compact and quasi-separated objects of $X_\etale$ and $m_j$, $n_i$ positive integers. In fact, we can even assume $U_i$ and $V_j$ affine. \end{lemma} \begin{proof} This follows from Lemma \ref{lemma-category-constructible-modules} applied with $\Lambda = \mathbf{Z}/n\mathbf{Z}$ and the fact that, since $X$ is quasi-compact, every constructible abelian sheaf is annihilated by some positive integer $n$ (details omitted). \end{proof} \begin{lemma} \label{lemma-constructible-is-compact} Let $X$ be a quasi-compact and quasi-separated scheme. Let $\Lambda$ be a Noetherian ring. Let $\mathcal{F}$ be a constructible sheaf of sets, abelian groups, or $\Lambda$-modules on $X_\etale$. Let $\mathcal{G} = \colim \mathcal{G}_i$ be a filtered colimit of sheaves of sets, abelian groups, or $\Lambda$-modules. Then $$ \Mor(\mathcal{F}, \mathcal{G}) = \colim \Mor(\mathcal{F}, \mathcal{G}_i) $$ in the category of sheaves of sets, abelian groups, or $\Lambda$-modules on $X_\etale$. \end{lemma} \begin{proof} The case of sheaves of sets. By Lemma \ref{lemma-category-constructible-sets} it suffices to prove the lemma for $h_U$ where $U$ is a quasi-compact and quasi-separated object of $X_\etale$. Recall that $\Mor(h_U, \mathcal{G}) = \mathcal{G}(U)$. Hence the result follows from Sites, Lemma \ref{sites-lemma-directed-colimits-sections}. \medskip\noindent In the case of abelian sheaves or sheaves of modules, the result follows in the same way using Lemmas \ref{lemma-category-constructible-abelian} and \ref{lemma-category-constructible-modules}. For the case of abelian sheaves, we add that $\Mor(j_{U!}\underline{\mathbf{Z}/n\mathbf{Z}}, \mathcal{G})$ is equal to the $n$-torsion elements of $\mathcal{G}(U)$. \end{proof} \begin{lemma} \label{lemma-finite-pushforward-constructible} Let $f : X \to Y$ be a finite and finitely presented morphism of schemes. Let $\Lambda$ be a Noetherian ring. If $\mathcal{F}$ is a constructible sheaf of sets, abelian groups, or $\Lambda$-modules on $X_\etale$, then $f_*\mathcal{F}$ is too. \end{lemma} \begin{proof} It suffices to prove this when $X$ and $Y$ are affine by Lemma \ref{lemma-constructible-local}. By Lemmas \ref{lemma-finite-pushforward-commutes-with-base-change} and \ref{lemma-check-constructible} we may base change to any affine scheme surjective over $X$. By Lemma \ref{lemma-decompose-quasi-finite-morphism} this reduces us to the case of a finite \'etale morphism (because a thickening leads to an equivalence of \'etale topoi and even small \'etale sites, see Theorem \ref{theorem-topological-invariance}). The finite \'etale case is Lemma \ref{lemma-pushforward-constructible}. \end{proof} \begin{lemma} \label{lemma-category-is-colimit} Let $X = \lim_{i \in I} X_i$ be a limit of a directed system of schemes with affine transition morphisms. We assume that $X_i$ is quasi-compact and quasi-separated for all $i \in I$. \begin{enumerate} \item The category of constructible sheaves of sets on $X_\etale$ is the colimit of the categories of constructible sheaves of sets on $(X_i)_\etale$. \item The category of constructible abelian sheaves on $X_\etale$ is the colimit of the categories of constructible abelian sheaves on $(X_i)_\etale$. \item Let $\Lambda$ be a Noetherian ring. The category of constructible sheaves of $\Lambda$-modules on $X_\etale$ is the colimit of the categories of constructible sheaves of $\Lambda$-modules on $(X_i)_\etale$. \end{enumerate} \end{lemma} \begin{proof} Proof of (1). Denote $f_i : X \to X_i$ the projection maps. There are 3 parts to the proof corresponding to ``faithful'', ``fully faithful'', and ``essentially surjective''. \medskip\noindent Faithful. Choose $0 \in I$ and let $\mathcal{F}_0$, $\mathcal{G}_0$ be constructible sheaves on $X_0$. Suppose that $a, b : \mathcal{F}_0 \to \mathcal{G}_0$ are maps such that $f_0^{-1}a = f_0^{-1}b$. Let $E \subset X_0$ be the set of points $x \in X_0$ such that $a_{\overline{x}} = b_{\overline{x}}$. By Lemma \ref{lemma-support-constructible} the subset $E \subset X_0$ is constructible. By assumption $X \to X_0$ maps into $E$. By Limits, Lemma \ref{limits-lemma-limit-contained-in-constructible} we find an $i \geq 0$ such that $X_i \to X_0$ maps into $E$. Hence $f_{i0}^{-1}a = f_{i0}^{-1}b$. \medskip\noindent Fully faithful. Choose $0 \in I$ and let $\mathcal{F}_0$, $\mathcal{G}_0$ be constructible sheaves on $X_0$. Suppose that $a : f_0^{-1}\mathcal{F}_0 \to f_0^{-1}\mathcal{G}_0$ is a map. We claim there is an $i$ and a map $a_i : f_{i0}^{-1}\mathcal{F}_0 \to f_{i0}^{-1}\mathcal{G}_0$ which pulls back to $a$ on $X$. By Lemma \ref{lemma-category-constructible-sets} we can replace $\mathcal{F}_0$ by a finite coproduct of sheaves represented by quasi-compact and quasi-separated objects of $(X_0)_\etale$. Thus we have to show: If $U_0 \to X_0$ is such an object of $(X_0)_\etale$, then $$ f_0^{-1}\mathcal{G}(U) = \colim_{i \geq 0} f_{i0}^{-1}\mathcal{G}(U_i) $$ where $U = X \times_{X_0} U_0$ and $U_i = X_i \times_{X_0} U_0$. This is a special case of Theorem \ref{theorem-colimit}. \medskip\noindent Essentially surjective. We have to show every constructible $\mathcal{F}$ on $X$ is isomorphic to $f_i^{-1}\mathcal{F}$ for some constructible $\mathcal{F}_i$ on $X_i$. Applying Lemma \ref{lemma-category-constructible-sets} and using the results of the previous two paragraphs, we see that it suffices to prove this for $h_U$ for some quasi-compact and quasi-separated object $U$ of $X_\etale$. In this case we have to show that $U$ is the base change of a quasi-compact and quasi-separated scheme \'etale over $X_i$ for some $i$. This follows from Limits, Lemmas \ref{limits-lemma-descend-finite-presentation} and \ref{limits-lemma-descend-etale}. \medskip\noindent Proof of (3). The argument is very similar to the argument for sheaves of sets, but using Lemma \ref{lemma-category-constructible-modules} instead of Lemma \ref{lemma-category-constructible-sets}. Details omitted. Part (2) follows from part (3) because every constructible abelian sheaf over a quasi-compact scheme is a constructible sheaf of $\mathbf{Z}/n\mathbf{Z}$-modules for some $n$. \end{proof} \begin{lemma} \label{lemma-category-loc-cst-is-colimit} Let $X = \lim_{i \in I} X_i$ be a limit of a directed system of schemes with affine transition morphisms. We assume that $X_i$ is quasi-compact and quasi-separated for all $i \in I$. \begin{enumerate} \item The category of finite locally constant sheaves on $X_\etale$ is the colimit of the categories of finite locally constant sheaves on $(X_i)_\etale$. \item The category of finite locally constant abelian sheaves on $X_\etale$ is the colimit of the categories of finite locally constant abelian sheaves on $(X_i)_\etale$. \item Let $\Lambda$ be a Noetherian ring. The category of finite type, locally constant sheaves of $\Lambda$-modules on $X_\etale$ is the colimit of the categories of finite type, locally constant sheaves of $\Lambda$-modules on $(X_i)_\etale$. \end{enumerate} \end{lemma} \begin{proof} By Lemma \ref{lemma-category-is-colimit} the functor in each case is fully faithful. By the same lemma, all we have to show to finish the proof in case (1) is the following: given a constructible sheaf $\mathcal{F}_i$ on $X_i$ whose pullback $\mathcal{F}$ to $X$ is finite locally constant, there exists an $i' \geq i$ such that the pullback $\mathcal{F}_{i'}$ of $\mathcal{F}_i$ to $X_{i'}$ is finite locally constant. By assumption there exists an \'etale covering $\mathcal{U} = \{U_j \to X\}_{j \in J}$ such that $\mathcal{F}|_{U_j} \cong \underline{S_j}$ for some finite set $S_j$. We may assume $U_j$ is affine for all $j \in J$. Since $X$ is quasi-compact, we may assume $J$ finite. By Lemma \ref{lemma-colimit-affine-sites} we can find an $i' \geq i$ and an \'etale covering $\mathcal{U}_{i'} = \{U_{i', j} \to X_{i'}\}_{j \in J}$ whose base change to $X$ is $\mathcal{U}$. Then $\mathcal{F}_{i'}|_{U_{i', j}}$ and $\underline{S_j}$ are constructible sheaves on $(U_{i', j})_\etale$ whose pullbacks to $U_j$ are isomorphic. Hence after increasing $i'$ we get that $\mathcal{F}_{i'}|_{U_{i', j}}$ and $\underline{S_j}$ are isomorphic. Thus $\mathcal{F}_{i'}$ is finite locally constant. The proof in cases (2) and (3) is exactly the same. \end{proof} \begin{lemma} \label{lemma-irreducible-subsheaf-constant-zero} Let $X$ be an irreducible scheme with generic point $\eta$. \begin{enumerate} \item Let $S' \subset S$ be an inclusion of sets. If we have $\underline{S'} \subset \mathcal{G} \subset \underline{S}$ in $\Sh(X_\etale)$ and $S' = \mathcal{G}_{\overline{\eta}}$, then $\mathcal{G} = \underline{S'}$. \item Let $A' \subset A$ be an inclusion of abelian groups. If we have $\underline{A'} \subset \mathcal{G} \subset \underline{A}$ in $\textit{Ab}(X_\etale)$ and $A' = \mathcal{G}_{\overline{\eta}}$, then $\mathcal{G} = \underline{A'}$. \item Let $M' \subset M$ be an inclusion of modules over a ring $\Lambda$. If we have $\underline{M'} \subset \mathcal{G} \subset \underline{M}$ in $\textit{Mod}(X_\etale, \underline{\Lambda})$ and $M' = \mathcal{G}_{\overline{\eta}}$, then $\mathcal{G} = \underline{M'}$. \end{enumerate} \end{lemma} \begin{proof} This is true because for every \'etale morphism $U \to X$ with $U \not = \emptyset$ the point $\eta$ is in the image. \end{proof} \begin{lemma} \label{lemma-push-constant-sheaf-from-open} Let $X$ be an integral normal scheme with function field $K$. Let $E$ be a set. \begin{enumerate} \item Let $g : \Spec(K) \to X$ be the inclusion of the generic point. Then $g_*\underline{E} = \underline{E}$. \item Let $j : U \to X$ be the inclusion of a nonempty open. Then $j_*\underline{E} = \underline{E}$. \end{enumerate} \end{lemma} \begin{proof} Proof of (1). Let $x \in X$ be a point. Let $\mathcal{O}^{sh}_{X, \overline{x}}$ be a strict henselization of $\mathcal{O}_{X, x}$. By More on Algebra, Lemma \ref{more-algebra-lemma-henselization-normal} we see that $\mathcal{O}^{sh}_{X, \overline{x}}$ is a normal domain. Hence $\Spec(K) \times_X \Spec(\mathcal{O}^{sh}_{X, \overline{x}})$ is irreducible. It follows that the stalk $(g_*\underline{E}_{\underline{x}}$ is equal to $E$, see Theorem \ref{theorem-higher-direct-images}. \medskip\noindent Proof of (2). Since $g$ factors through $j$ there is a map $j_*\underline{E} \to g_*\underline{E}$. This map is injective because for every scheme $V$ \'etale over $X$ the set $\Spec(K) \times_X V$ is dense in $U \times_X V$. On the other hand, we have a map $\underline{E} \to j_*\underline{E}$ and we conclude. \end{proof} \begin{lemma} \label{lemma-zero-in-generic-point} Let $X$ be a quasi-compact and quasi-separated scheme. Let $\eta \in X$ be a generic point of an irreducible component of $X$. \begin{enumerate} \item Let $\mathcal{F}$ be a torsion abelian sheaf on $X_\etale$ whose stalk $\mathcal{F}_{\overline{\eta}}$ is zero. Then $\mathcal{F} = \colim \mathcal{F}_i$ is a filtered colimit of constructible abelian sheaves $\mathcal{F}_i$ such that for each $i$ the support of $\mathcal{F}_i$ is contained in a closed subscheme not containing $\eta$. \item Let $\Lambda$ be a Noetherian ring and $\mathcal{F}$ a sheaf of $\Lambda$-modules on $X_\etale$ whose stalk $\mathcal{F}_{\overline{\eta}}$ is zero. Then $\mathcal{F} = \colim \mathcal{F}_i$ is a filtered colimit of constructible sheaves of $\Lambda$-modules $\mathcal{F}_i$ such that for each $i$ the support of $\mathcal{F}_i$ is contained in a closed subscheme not containing $\eta$. \end{enumerate} \end{lemma} \begin{proof} Proof of (1). We can write $\mathcal{F} = \colim_{i \in I} \mathcal{F}_i$ with $\mathcal{F}_i$ constructible abelian by Lemma \ref{lemma-torsion-colimit-constructible}. Choose $i \in I$. Since $\mathcal{F}|_\eta$ is zero by assumption, we see that there exists an $i'(i) \geq i$ such that $\mathcal{F}_i|_\eta \to \mathcal{F}_{i'(i)}|_\eta$ is zero, see Lemma \ref{lemma-colimit-constructible}. Then $\mathcal{G}_i = \Im(\mathcal{F}_i \to \mathcal{F}_{i'(i)})$ is a constructible abelian sheaf (Lemma \ref{lemma-constructible-abelian}) whose stalk at $\eta$ is zero. Hence the support $E_i$ of $\mathcal{G}_i$ is a constructible subset of $X$ not containing $\eta$. Since $\eta$ is a generic point of an irreducible component of $X$, we see that $\eta \not \in Z_i = \overline{E_i}$ by Topology, Lemma \ref{topology-lemma-generic-point-in-constructible}. Define a new directed set $I'$ by using the set $I$ with ordering defined by the rule $i_1$ is bigger or equal to $i_2$ if and only if $i_1 \geq i'(i_2)$. Then the sheaves $\mathcal{G}_i$ form a system over $I'$ with colimit $\mathcal{F}$ and the proof is complete. \medskip\noindent The proof in case (2) is exactly the same and we omit it. \end{proof} \section{Constructible sheaves on Noetherian schemes} \label{section-noetherian-constructible} \noindent If $X$ is a Noetherian scheme then any locally closed subset is a constructible locally closed subset (Topology, Lemma \ref{topology-lemma-constructible-Noetherian-space}). Hence an abelian sheaf $\mathcal{F}$ on $X_\etale$ is constructible if and only if there exists a finite partition $X = \coprod X_i$ such that $\mathcal{F}|_{X_i}$ is finite locally constant. (By convention a partition of a topological space has locally closed parts, see Topology, Section \ref{topology-section-stratifications}.) In other words, we can omit the adjective ``constructible'' in Definition \ref{definition-constructible}. Actually, the category of constructible sheaves on Noetherian schemes has some additional properties which we will catalogue in this section. \begin{proposition} \label{proposition-constructible-over-noetherian} Let $X$ be a Noetherian scheme. Let $\Lambda$ be a Noetherian ring. \begin{enumerate} \item Any sub or quotient sheaf of a constructible sheaf of sets is constructible. \item The category of constructible abelian sheaves on $X_\etale$ is a (strong) Serre subcategory of $\textit{Ab}(X_\etale)$. In particular, every sub and quotient sheaf of a constructible abelian sheaf on $X_\etale$ is constructible. \item The category of constructible sheaves of $\Lambda$-modules on $X_\etale$ is a (strong) Serre subcategory of $\textit{Mod}(X_\etale, \Lambda)$. In particular, every submodule and quotient module of a constructible sheaf of $\Lambda$-modules on $X_\etale$ is constructible. \end{enumerate} \end{proposition} \begin{proof} Proof of (1). Let $\mathcal{G} \subset \mathcal{F}$ with $\mathcal{F}$ a constructible sheaf of sets on $X_\etale$. Let $\eta \in X$ be a generic point of an irreducible component of $X$. By Noetherian induction it suffices to find an open neighbourhood $U$ of $\eta$ such that $\mathcal{G}|_U$ is locally constant. To do this we may replace $X$ by an \'etale neighbourhood of $\eta$. Hence we may assume $\mathcal{F}$ is constant and $X$ is irreducible. \medskip\noindent Say $\mathcal{F} = \underline{S}$ for some finite set $S$. Then $S' = \mathcal{G}_{\overline{\eta}} \subset S$ say $S' = \{s_1, \ldots, s_t\}$. Pick an \'etale neighbourhood $(U, \overline{u})$ of $\overline{\eta}$ and sections $\sigma_1, \ldots, \sigma_t \in \mathcal{G}(U)$ which map to $s_i$ in $\mathcal{G}_{\overline{\eta}} \subset S$. Since $\sigma_i$ maps to an element $s_i \in S' \subset S = \Gamma(X, \mathcal{F})$ we see that the two pullbacks of $\sigma_i$ to $U \times_X U$ are the same as sections of $\mathcal{G}$. By the sheaf condition for $\mathcal{G}$ we find that $\sigma_i$ comes from a section of $\mathcal{G}$ over the open $\Im(U \to X)$ of $X$. Shrinking $X$ we may assume $\underline{S'} \subset \mathcal{G} \subset \underline{S}$. Then we see that $\underline{S'} = \mathcal{G}$ by Lemma \ref{lemma-irreducible-subsheaf-constant-zero}. \medskip\noindent Let $\mathcal{F} \to \mathcal{Q}$ be a surjection with $\mathcal{F}$ a constructible sheaf of sets on $X_\etale$. Then set $\mathcal{G} = \mathcal{F} \times_\mathcal{Q} \mathcal{F}$. By the first part of the proof we see that $\mathcal{G}$ is constructible as a subsheaf of $\mathcal{F} \times \mathcal{F}$. This in turn implies that $\mathcal{Q}$ is constructible, see Lemma \ref{lemma-constructible-abelian}. \medskip\noindent Proof of (3). we already know that constructible sheaves of modules form a weak Serre subcategory, see Lemma \ref{lemma-constructible-abelian}. Thus it suffices to show the statement on submodules. \medskip\noindent Let $\mathcal{G} \subset \mathcal{F}$ be a submodule of a constructible sheaf of $\Lambda$-modules on $X_\etale$. Let $\eta \in X$ be a generic point of an irreducible component of $X$. By Noetherian induction it suffices to find an open neighbourhood $U$ of $\eta$ such that $\mathcal{G}|_U$ is locally constant. To do this we may replace $X$ by an \'etale neighbourhood of $\eta$. Hence we may assume $\mathcal{F}$ is constant and $X$ is irreducible. \medskip\noindent Say $\mathcal{F} = \underline{M}$ for some finite $\Lambda$-module $M$. Then $M' = \mathcal{G}_{\overline{\eta}} \subset M$. Pick finitely many elements $s_1, \ldots, s_t$ generating $M'$ as a $\Lambda$-module. (This is possible as $\Lambda$ is Noetherian and $M$ is finite.) Pick an \'etale neighbourhood $(U, \overline{u})$ of $\overline{\eta}$ and sections $\sigma_1, \ldots, \sigma_t \in \mathcal{G}(U)$ which map to $s_i$ in $\mathcal{G}_{\overline{\eta}} \subset M$. Since $\sigma_i$ maps to an element $s_i \in M' \subset M = \Gamma(X, \mathcal{F})$ we see that the two pullbacks of $\sigma_i$ to $U \times_X U$ are the same as sections of $\mathcal{G}$. By the sheaf condition for $\mathcal{G}$ we find that $\sigma_i$ comes from a section of $\mathcal{G}$ over the open $\Im(U \to X)$ of $X$. Shrinking $X$ we may assume $\underline{M'} \subset \mathcal{G} \subset \underline{M}$. Then we see that $\underline{M'} = \mathcal{G}$ by Lemma \ref{lemma-irreducible-subsheaf-constant-zero}. \medskip\noindent Proof of (2). This follows in the usual manner from (3). Details omitted. \end{proof} \noindent The following lemma tells us that every object of the abelian category of constructible sheaves on $X$ is ``Noetherian'', i.e., satisfies a.c.c.\ for subobjects. \begin{lemma} \label{lemma-constructible-over-noetherian-noetherian} Let $X$ be a Noetherian scheme. Let $\Lambda$ be a Noetherian ring. Consider inclusions $$ \mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset \ldots \subset \mathcal{F} $$ in the category of sheaves of sets, abelian groups, or $\Lambda$-modules. If $\mathcal{F}$ is constructible, then for some $n$ we have $\mathcal{F}_n = \mathcal{F}_{n + 1} = \mathcal{F}_{n + 2} = \ldots$. \end{lemma} \begin{proof} By Proposition \ref{proposition-constructible-over-noetherian} we see that $\mathcal{F}_i$ and $\colim \mathcal{F}_i$ are constructible. Then the lemma follows from Lemma \ref{lemma-colimit-constructible}. \end{proof} \begin{lemma} \label{lemma-constructible-maps-into-constant} Let $X$ be a Noetherian scheme. \begin{enumerate} \item Let $\mathcal{F}$ be a constructible sheaf of sets on $X_\etale$. There exist an injective map of sheaves $$ \mathcal{F} \longrightarrow \prod\nolimits_{i = 1, \ldots, n} f_{i, *}\underline{E_i} $$ where $f_i : Y_i \to X$ is a finite morphism and $E_i$ is a finite set. \item Let $\mathcal{F}$ be a constructible abelian sheaf on $X_\etale$. There exist an injective map of abelian sheaves $$ \mathcal{F} \longrightarrow \bigoplus\nolimits_{i = 1, \ldots, n} f_{i, *}\underline{M_i} $$ where $f_i : Y_i \to X$ is a finite morphism and $M_i$ is a finite abelian group. \item Let $\Lambda$ be a Noetherian ring. Let $\mathcal{F}$ be a constructible sheaf of $\Lambda$-modules on $X_\etale$. There exist an injective map of sheaves of modules $$ \mathcal{F} \longrightarrow \bigoplus\nolimits_{i = 1, \ldots, n} f_{i, *}\underline{M_i} $$ where $f_i : Y_i \to X$ is a finite morphism and $M_i$ is a finite $\Lambda$-module. \end{enumerate} Moreover, we may assume each $Y_i$ is irreducible, reduced, maps onto an irreducible and reduced closed subscheme $Z_i \subset X$ such that $Y_i \to Z_i$ is finite \'etale over a nonempty open of $Z_i$. \end{lemma} \begin{proof} Proof of (1). Because we have the ascending chain condition for subsheaves of $\mathcal{F}$ (Lemma \ref{lemma-constructible-over-noetherian-noetherian}), it suffices to show that for every point $x \in X$ we can find a map $\varphi : \mathcal{F} \to f_*\underline{E}$ where $f : Y \to X$ is finite and $E$ is a finite set such that $\varphi_{\overline{x}} : \mathcal{F}_{\overline{x}} \to (f_*S)_{\overline{x}}$ is injective. (This argument can be avoided by picking a partition of $X$ as in Lemma \ref{lemma-constructible-quasi-compact-quasi-separated} and constructing a $Y_i \to X$ for each irreducible component of each part.) Let $Z \subset X$ be the induced reduced scheme structure (Schemes, Definition \ref{schemes-definition-reduced-induced-scheme}) on $\overline{\{x\}}$. Since $\mathcal{F}$ is constructible, there is a finite separable extension $K/\kappa(x)$ such that $\mathcal{F}|_{\Spec(K)}$ is the constant sheaf with value $E$ for some finite set $E$. Let $Y \to Z$ be the normalization of $Z$ in $\Spec(K)$. By Morphisms, Lemma \ref{morphisms-lemma-normal-normalization} we see that $Y$ is a normal integral scheme. As $K/\kappa(x)$ is a finite extension, it is clear that $K$ is the function field of $Y$. Denote $g : \Spec(K) \to Y$ the inclusion. The map $\mathcal{F}|_{\Spec(K)} \to \underline{E}$ is adjoint to a map $\mathcal{F}|_Y \to g_*\underline{E} = \underline{E}$ (Lemma \ref{lemma-push-constant-sheaf-from-open}). This in turn is adjoint to a map $\varphi : \mathcal{F} \to f_*\underline{E}$. Observe that the stalk of $\varphi$ at a geometric point $\overline{x}$ is injective: we may take a lift $\overline{y} \in Y$ of $\overline{x}$ and the commutative diagram $$ \xymatrix{ \mathcal{F}_{\overline{x}} \ar@{=}[r] \ar[d] & (\mathcal{F}|_Y)_{\overline{y}} \ar@{=}[d] \\ (f_*\underline{E})_{\overline{x}} \ar[r] & \underline{E}_{\overline{y}} } $$ proves the injectivity. We are not yet done, however, as the morphism $f : Y \to Z$ is integral but in general not finite\footnote{If $X$ is a Nagata scheme, for example of finite type over a field, then $Y \to Z$ is finite.}. \medskip\noindent To fix the problem stated in the last sentence of the previous paragraph, we write $Y = \lim_{i \in I} Y_i$ with $Y_i$ irreducible, integral, and finite over $Z$. Namely, apply Properties, Lemma \ref{properties-lemma-integral-algebra-directed-colimit-finite} to $f_*\mathcal{O}_Y$ viewed as a sheaf of $\mathcal{O}_Z$-algebras and apply the functor $\underline{\Spec}_Z$. Then $f_*\underline{E} = \colim f_{i, *}\underline{E}$ by Lemma \ref{lemma-relative-colimit}. By Lemma \ref{lemma-constructible-is-compact} the map $\mathcal{F} \to f_*\underline{E}$ factors through $f_{i, *}\underline{E}$ for some $i$. Since $Y_i \to Z$ is a finite morphism of integral schemes and since the function field extension induced by this morphism is finite separable, we see that the morphism is finite \'etale over a nonempty open of $Z$ (use Algebra, Lemma \ref{algebra-lemma-smooth-at-generic-point}; details omitted). This finishes the proof of (1). \medskip\noindent The proofs of (2) and (3) are identical to the proof of (1). \end{proof} \noindent In the following lemma we use a standard trick to reduce a very general statement to the Noetherian case. \begin{lemma} \label{lemma-constructible-maps-into-constant-general} \begin{reference} \cite[Exposee IX, Proposition 2.14]{SGA4} \end{reference} Let $X$ be a quasi-compact and quasi-separated scheme. \begin{enumerate} \item Let $\mathcal{F}$ be a constructible sheaf of sets on $X_\etale$. There exist an injective map of sheaves $$ \mathcal{F} \longrightarrow \prod\nolimits_{i = 1, \ldots, n} f_{i, *}\underline{E_i} $$ where $f_i : Y_i \to X$ is a finite and finitely presented morphism and $E_i$ is a finite set. \item Let $\mathcal{F}$ be a constructible abelian sheaf on $X_\etale$. There exist an injective map of abelian sheaves $$ \mathcal{F} \longrightarrow \bigoplus\nolimits_{i = 1, \ldots, n} f_{i, *}\underline{M_i} $$ where $f_i : Y_i \to X$ is a finite and finitely presented morphism and $M_i$ is a finite abelian group. \item Let $\Lambda$ be a Noetherian ring. Let $\mathcal{F}$ be a constructible sheaf of $\Lambda$-modules on $X_\etale$. There exist an injective map of sheaves of modules $$ \mathcal{F} \longrightarrow \bigoplus\nolimits_{i = 1, \ldots, n} f_{i, *}\underline{M_i} $$ where $f_i : Y_i \to X$ is a finite and finitely presented morphism and $M_i$ is a finite $\Lambda$-module. \end{enumerate} \end{lemma} \begin{proof} We will reduce this lemma to the Noetherian case by absolute Noetherian approximation. Namely, by Limits, Proposition \ref{limits-proposition-approximate} we can write $X = \lim_{t \in T} X_t$ with each $X_t$ of finite type over $\Spec(\mathbf{Z})$ and with affine transition morphisms. By Lemma \ref{lemma-category-is-colimit} the category of constructible sheaves (of sets, abelian groups, or $\Lambda$-modules) on $X_\etale$ is the colimit of the corresponding categories for $X_t$. Thus our constructible sheaf $\mathcal{F}$ is the pullback of a similar constructible sheaf $\mathcal{F}_t$ over $X_t$ for some $t$. Then we apply the Noetherian case (Lemma \ref{lemma-constructible-maps-into-constant}) to find an injection $$ \mathcal{F}_t \longrightarrow \prod\nolimits_{i = 1, \ldots, n} f_{i, *}\underline{E_i} \quad\text{or}\quad \mathcal{F}_t \longrightarrow \bigoplus\nolimits_{i = 1, \ldots, n} f_{i, *}\underline{M_i} $$ over $X_t$ for some finite morphisms $f_i : Y_i \to X_t$. Since $X_t$ is Noetherian the morphisms $f_i$ are of finite presentation. Since pullback is exact and since formation of $f_{i, *}$ commutes with base change (Lemma \ref{lemma-finite-pushforward-commutes-with-base-change}), we conclude. \end{proof} \begin{lemma} \label{lemma-support-in-subset} Let $X$ be a Noetherian scheme. Let $E \subset X$ be a subset closed under specialization. \begin{enumerate} \item Let $\mathcal{F}$ be a torsion abelian sheaf on $X_\etale$ whose support is contained in $E$. Then $\mathcal{F} = \colim \mathcal{F}_i$ is a filtered colimit of constructible abelian sheaves $\mathcal{F}_i$ such that for each $i$ the support of $\mathcal{F}_i$ is contained in a closed subset contained in $E$. \item Let $\Lambda$ be a Noetherian ring and $\mathcal{F}$ a sheaf of $\Lambda$-modules on $X_\etale$ whose support is contained in $E$. Then $\mathcal{F} = \colim \mathcal{F}_i$ is a filtered colimit of constructible sheaves of $\Lambda$-modules $\mathcal{F}_i$ such that for each $i$ the support of $\mathcal{F}_i$ is contained in a closed subset contained in $E$. \end{enumerate} \end{lemma} \begin{proof} Proof of (1). We can write $\mathcal{F} = \colim_{i \in I} \mathcal{F}_i$ with $\mathcal{F}_i$ constructible abelian by Lemma \ref{lemma-torsion-colimit-constructible}. By Proposition \ref{proposition-constructible-over-noetherian} the image $\mathcal{F}'_i \subset \mathcal{F}$ of the map $\mathcal{F}_i \to \mathcal{F}$ is constructible. Thus $\mathcal{F} = \colim \mathcal{F}'_i$ and the support of $\mathcal{F}'_i$ is contained in $E$. Since the support of $\mathcal{F}'_i$ is constructible (by our definition of constructible sheaves), we see that its closure is also contained in $E$, see for example Topology, Lemma \ref{topology-lemma-constructible-stable-specialization-closed}. \medskip\noindent The proof in case (2) is exactly the same and we omit it. \end{proof} \section{Specializations and \'etale sheaves} \label{section-specialization} \noindent Topological picture: Let $X$ be a topological space and let $x' \leadsto x$ be a specialization of points in $X$. Then every open neighbourhood of $x$ contains $x'$. Hence for any sheaf $\mathcal{F}$ on $X$ there is a {\it specialization map} $$ sp : \mathcal{F}_x \longrightarrow \mathcal{F}_{x'} $$ of stalks sending the equivalence class of the pair $(U, s)$ in $\mathcal{F}_x$ to the equivalence class of the pair $(U, s)$ in $\mathcal{F}_{x'}$; see Sheaves, Section \ref{sheaves-section-stalks} for the description of stalks in terms of equivalence classes of pairs. Of course this map is functorial in $\mathcal{F}$, i.e., $sp$ is a transformation of functors. \medskip\noindent For sheaves in the \'etale topology we can mimick this construction, see \cite[Exposee VII, 7.7, page 397]{SGA4}. To do this suppose we have a scheme $S$, a geometric point $\overline{s}$ of $S$, and a geometric point $\overline{t}$ of $\Spec(\mathcal{O}^{sh}_{S, \overline{s}})$. For any sheaf $\mathcal{F}$ on $S_\etale$ we will construct the {\it specialization map} $$ sp : \mathcal{F}_{\overline{s}} \longrightarrow \mathcal{F}_{\overline{t}} $$ Here we have abused language: instead of writing $\mathcal{F}_{\overline{t}}$ we should write $\mathcal{F}_{p(\overline{t})}$ where $p : \Spec(\mathcal{O}^{sh}_{S, \overline{s}}) \to S$ is the canonical morphism. Recall that $$ \mathcal{F}_{\overline{s}} = \colim_{(U, \overline{u})} \mathcal{F}(U) $$ where the colimit is over all \'etale neighbourhoods $(U, \overline{u})$ of $(S, \overline{s})$, see Section \ref{section-stalks}. Since $\mathcal{O}^{sh}_{S, \overline{s}}$ is the stalk of the structure sheaf, we find for every \'etale neighbourhood $(U, \overline{u})$ of $(S, \overline{s})$ a canonical map $\mathcal{O}_{U, u} \to \mathcal{O}^{sh}_{S, \overline{s}}$. Hence we get a unique factorization $$ \Spec(\mathcal{O}^{sh}_{S, \overline{s}}) \to U \to S $$ If $\overline{v}$ denotes the image of $\overline{t}$ in $U$, then we see that $(U, \overline{v})$ is an \'etale neighbourhood of $(S, \overline{t})$. This construction defines a functor from the category of \'etale neighbourhoods of $(S, \overline{s})$ to the category of \'etale neighbourhoods of $(S, \overline{t})$. Thus we may define the map $sp : \mathcal{F}_{\overline{s}} \to \mathcal{F}_{\overline{t}}$ by sending the equivalence class of $(U, \overline{u}, \sigma)$ where $\sigma \in \mathcal{F}(U)$ to the equivalence class of $(U, \overline{v}, \sigma)$. \medskip\noindent Let $K \in D(S_\etale)$. With $\overline{s}$ and $\overline{t}$ as above we have the {\it specialization map} $$ sp : K_{\overline{s}} \longrightarrow K_{\overline{t}} \quad\text{in}\quad D(\textit{Ab}) $$ Namely, if $K$ is represented by the complex $\mathcal{F}^\bullet$ of abelian sheaves, then we simply that the map $$ K_{\overline{s}} = \mathcal{F}^\bullet_{\overline{s}} \longrightarrow \mathcal{F}^\bullet_{\overline{t}} = K_{\overline{t}} $$ which is termwise given by the specialization maps for sheaves constructed above. This is independent of the choice of complex representing $K$ by the exactness of the stalk functors (i.e., taking stalks of complexes is well defined on the derived category). \medskip\noindent Clearly the construction is functorial in the sheaf $\mathcal{F}$ on $S_\etale$. If we think of the stalk functors as morphisms of topoi $\overline{s}, \overline{t} : \textit{Sets} \to \Sh(S_\etale)$, then we may think of $sp$ as a $2$-morphism $$ \xymatrix{ \textit{Sets} \rrtwocell^{\overline{t}}_{\overline{s}}{\ sp} & & \Sh(S_\etale) } $$ of topoi. \begin{remark}[Alternative description of sp] \label{remark-alternative-sp} Let $S$, $\overline{s}$, and $\overline{t}$ be as above. Another way to describe the specialization map is to use that $$ \mathcal{F}_{\overline{s}} = \Gamma(\Spec(\mathcal{O}^{sh}_{S, \overline{s}}), p^{-1}\mathcal{F}) \quad\text{and}\quad \mathcal{F}_{\overline{t}} = \Gamma(\overline{t}, \overline{t}^{-1}p^{-1}\mathcal{F}) $$ The first equality follows from Theorem \ref{theorem-higher-direct-images} applied to $\text{id}_S : S \to S$ and the second equality follows from Lemma \ref{lemma-stalk-pullback}. Then we can think of $sp$ as the map $$ sp : \mathcal{F}_{\overline{s}} = \Gamma(\Spec(\mathcal{O}^{sh}_{S, \overline{s}}), p^{-1}\mathcal{F}) \xrightarrow{\text{pullback by }\overline{t}} \Gamma(\overline{t}, \overline{t}^{-1}p^{-1}\mathcal{F}) = \mathcal{F}_{\overline{t}} $$ \end{remark} \begin{remark}[Yet another description of sp] \label{remark-another-sp} Let $S$, $\overline{s}$, and $\overline{t}$ be as above. Another alternative is to use the unique morphism $$ c : \Spec(\mathcal{O}^{sh}_{S, \overline{t}}) \longrightarrow \Spec(\mathcal{O}^{sh}_{S, \overline{s}}) $$ over $S$ which is compatible with the given morphism $\overline{t} \to \Spec(\mathcal{O}^{sh}_{S, \overline{s}})$ and the morphism $\overline{t} \to \Spec(\mathcal{O}^{sh}_{t, \overline{t}})$. The uniqueness and existence of the displayed arrow follows from Algebra, Lemma \ref{algebra-lemma-map-into-henselian-colimit} applied to $\mathcal{O}_{S, s}$, $\mathcal{O}^{sh}_{S, \overline{t}}$, and $\mathcal{O}^{sh}_{S, \overline{s}} \to \kappa(\overline{t})$. We obtain $$ sp : \mathcal{F}_{\overline{s}} = \Gamma(\Spec(\mathcal{O}^{sh}_{S, \overline{s}}), \mathcal{F}) \xrightarrow{\text{pullback by }c} \Gamma(\Spec(\mathcal{O}^{sh}_{S, \overline{t}}), \mathcal{F}) = \mathcal{F}_{\overline{t}} $$ (with obvious notational conventions). In fact this procedure also works for objects $K$ in $D(S_\etale)$: the specialization map for $K$ is equal to the map $$ sp : K_{\overline{s}} = R\Gamma(\Spec(\mathcal{O}^{sh}_{S, \overline{s}}), K) \xrightarrow{\text{pullback by }c} R\Gamma(\Spec(\mathcal{O}^{sh}_{S, \overline{t}}), K) = K_{\overline{t}} $$ The equality signs are valid as taking global sections over the striclty henselian schemes $\Spec(\mathcal{O}^{sh}_{S, \overline{s}})$ and $\Spec(\mathcal{O}^{sh}_{S, \overline{t}})$ is exact (and the same as taking stalks at $\overline{s}$ and $\overline{t}$) and hence no subtleties related to the fact that $K$ may be unbounded arise. \end{remark} \begin{remark}[Lifting specializations] \label{remark-can-lift} Let $S$ be a scheme and let $t \leadsto s$ be a specialization of point on $S$. Choose geometric points $\overline{t}$ and $\overline{s}$ lying over $t$ and $s$. Since $t$ corresponds to a point of $\Spec(\mathcal{O}_{S, s})$ by Schemes, Lemma \ref{schemes-lemma-specialize-points} and since $\mathcal{O}_{S, s} \to \mathcal{O}^{sh}_{S, \overline{s}}$ is faithfully flat, we can find a point $t' \in \Spec(\mathcal{O}^{sh}_{S, \overline{s}})$ mapping to $t$. As $\Spec(\mathcal{O}^{sh}_{S, \overline{s}})$ is a limit of schemes \'etale over $S$ we see that $\kappa(t')/\kappa(t)$ is a separable algebraic extension (usually not finite of course). Since $\kappa(\overline{t})$ is algebraically closed, we can choose an embedding $\kappa(t') \to \kappa(\overline{t})$ as extensions of $\kappa(t)$. This choice gives us a commutative diagram $$ \xymatrix{ \overline{t} \ar[d] \ar[r] & \Spec(\mathcal{O}^{sh}_{S, \overline{s}}) \ar[d] & \overline{s} \ar[l] \ar[d] \\ t \ar[r] & S & s \ar[l] } $$ of points and geometric points. Thus if $t \leadsto s$ we can always ``lift'' $\overline{t}$ to a geometric point of the strict henselization of $S$ at $\overline{s}$ and get specialization maps as above. \end{remark} \begin{lemma} \label{lemma-specialization-map-pullback} Let $g : S' \to S$ be a morphism of schemes. Let $\mathcal{F}$ be a sheaf on $S_\etale$. Let $\overline{s}'$ be a geometric point of $S'$, and let $\overline{t}'$ be a geometric point of $\Spec(\mathcal{O}^{sh}_{S', \overline{s}'})$. Denote $\overline{s} = g(\overline{s}')$ and $\overline{t} = h(\overline{t}')$ where $h : \Spec(\mathcal{O}^{sh}_{S', \overline{s}'}) \to \Spec(\mathcal{O}^{sh}_{S, \overline{s}})$ is the canonical morphism. For any sheaf $\mathcal{F}$ on $S_\etale$ the specialization map $$ sp : (f^{-1}\mathcal{F})_{\overline{s}'} \longrightarrow (f^{-1}\mathcal{F})_{\overline{t}'} $$ is equal to the specialization map $sp : \mathcal{F}_{\overline{s}} \to \mathcal{F}_{\overline{t}}$ via the identifications $(f^{-1}\mathcal{F})_{\overline{s}'} = \mathcal{F}_{\overline{s}}$ and $(f^{-1}\mathcal{F})_{\overline{t}'} = \mathcal{F}_{\overline{t}}$ of Lemma \ref{lemma-stalk-pullback}. \end{lemma} \begin{proof} Omitted. \end{proof} \begin{lemma} \label{lemma-characterize-locally-constant} Let $S$ be a scheme such that every quasi-compact open of $S$ has finite number of irreducible components (for example if $S$ has a Noetherian underlying topological space, or if $S$ is locally Noetherian). Let $\mathcal{F}$ be a sheaf of sets on $S_\etale$. The following are equivalent \begin{enumerate} \item $\mathcal{F}$ is finite locally constant, and \item all stalks of $\mathcal{F}$ are finite sets and all specialization maps $sp : \mathcal{F}_{\overline{s}} \to \mathcal{F}_{\overline{t}}$ are bijective. \end{enumerate} \end{lemma} \begin{proof} Assume (2). Let $\overline{s}$ be a geometric point of $S$ lying over $s \in S$. In order to prove (1) we have to find an \'etale neighbourhood $(U, \overline{u})$ of $(S, \overline{s})$ such that $\mathcal{F}|_U$ is constant. We may and do assume $S$ is affine. \medskip\noindent Since $\mathcal{F}_{\overline{s}}$ is finite, we can choose $(U, \overline{u})$, $n \geq 0$, and pairwise distinct elements $\sigma_1, \ldots, \sigma_n \in \mathcal{F}(U)$ such that $\{\sigma_1, \ldots, \sigma_n\} \subset \mathcal{F}(U)$ maps bijectively to $\mathcal{F}_{\overline{s}}$ via the map $\mathcal{F}(U) \to \mathcal{F}_{\overline{s}}$. Consider the map $$ \varphi : \underline{\{1, \ldots, n\}} \longrightarrow \mathcal{F}|_U $$ on $U_\etale$ defined by $\sigma_1, \ldots, \sigma_n$. This map is a bijection on stalks at $\overline{u}$ by construction. Let us consider the subset $$ E = \{u' \in U \mid \varphi_{\overline{u}'}\text{ is bijective}\} \subset U $$ Here $\overline{u}'$ is any geometric point of $U$ lying over $u'$ (the condition is independent of the choice by Remark \ref{remark-map-stalks}). The image $u \in U$ of $\overline{u}$ is in $E$. By our assumption on the specialization maps for $\mathcal{F}$, by Remark \ref{remark-can-lift}, and by Lemma \ref{lemma-specialization-map-pullback} we see that $E$ is closed under specializations and generalizations in the topological space $U$. \medskip\noindent After shrinking $U$ we may assume $U$ is affine too. By Descent, Lemma \ref{descent-lemma-locally-finite-nr-irred-local-fppf} we see that $U$ has a finite number of irreducible components. After removing the irreducible components which do not pass through $u$, we may assume every irreducible component of $U$ passes through $u$. Since $U$ is a sober topological space it follows that $E = U$ and we conclude that $\varphi$ is an isomorphism by Theorem \ref{theorem-exactness-stalks}. Thus (1) follows. \medskip\noindent We omit the proof that (1) implies (2). \end{proof} \begin{lemma} \label{lemma-characterize-locally-constant-module} Let $S$ be a scheme such that every quasi-compact open of $S$ has finite number of irreducible components (for example if $S$ has a Noetherian underlying topological space, or if $S$ is locally Noetherian). Let $\Lambda$ be a Noetherian ring. Let $\mathcal{F}$ be a sheaf of $\Lambda$-modules on $S_\etale$. The following are equivalent \begin{enumerate} \item $\mathcal{F}$ is a finite type, locally constant sheaf of $\Lambda$-modules, and \item all stalks of $\mathcal{F}$ are finite $\Lambda$-modules and all specialization maps $sp : \mathcal{F}_{\overline{s}} \to \mathcal{F}_{\overline{t}}$ are bijective. \end{enumerate} \end{lemma} \begin{proof} The proof of this lemma is the same as the proof of Lemma \ref{lemma-characterize-locally-constant}. Assume (2). Let $\overline{s}$ be a geometric point of $S$ lying over $s \in S$. In order to prove (1) we have to find an \'etale neighbourhood $(U, \overline{u})$ of $(S, \overline{s})$ such that $\mathcal{F}|_U$ is constant. We may and do assume $S$ is affine. \medskip\noindent Since $M = \mathcal{F}_{\overline{s}}$ is a finite $\Lambda$-module and $\Lambda$ is Noetherian, we can choose a presentation $$ \Lambda^{\oplus m} \xrightarrow{A} \Lambda^{\oplus n} \to M \to 0 $$ for some matrix $A = (a_{ji})$ with coefficients in $\Lambda$. We can choose $(U, \overline{u})$ and elements $\sigma_1, \ldots, \sigma_n \in \mathcal{F}(U)$ such that $\sum a_{ji}\sigma_i = 0$ in $\mathcal{F}(U)$ and such that the images of $\sigma_i$ in $\mathcal{F}_{\overline{s}} = M$ are the images of the standard basis element of $\Lambda^n$ in the presentation of $M$ given above. Consider the map $$ \varphi : \underline{M} \longrightarrow \mathcal{F}|_U $$ on $U_\etale$ defined by $\sigma_1, \ldots, \sigma_n$. This map is a bijection on stalks at $\overline{u}$ by construction. Let us consider the subset $$ E = \{u' \in U \mid \varphi_{\overline{u}'}\text{ is bijective}\} \subset U $$ Here $\overline{u}'$ is any geometric point of $U$ lying over $u'$ (the condition is independent of the choice by Remark \ref{remark-map-stalks}). The image $u \in U$ of $\overline{u}$ is in $E$. By our assumption on the specialization maps for $\mathcal{F}$, by Remark \ref{remark-can-lift}, and by Lemma \ref{lemma-specialization-map-pullback} we see that $E$ is closed under specializations and generalizations in the topological space $U$. \medskip\noindent After shrinking $U$ we may assume $U$ is affine too. By Descent, Lemma \ref{descent-lemma-locally-finite-nr-irred-local-fppf} we see that $U$ has a finite number of irreducible components. After removing the irreducible components which do not pass through $u$, we may assume every irreducible component of $U$ passes through $u$. Since $U$ is a sober topological space it follows that $E = U$ and we conclude that $\varphi$ is an isomorphism by Theorem \ref{theorem-exactness-stalks}. Thus (1) follows. \medskip\noindent We omit the proof that (1) implies (2). \end{proof} \begin{lemma} \label{lemma-specialization-map-pushforward} Let $f : X \to S$ be a quasi-compact and quasi-separated morphism of schemes. Let $K \in D^+(X_\etale)$. Let $\overline{s}$ be a geometric point of $S$ and let $\overline{t}$ be a geometric point of $\Spec(\mathcal{O}^{sh}_{S, \overline{s}})$. We have a commutative diagram $$ \xymatrix{ (Rf_*K)_{\overline{s}} \ar[r]_{sp} \ar@{=}[d] & (Rf_*K)_{\overline{t}} \ar@{=}[d] \\ R\Gamma(X \times_S \Spec(\mathcal{O}^{sh}_{S, \overline{s}}), K) \ar[r] & R\Gamma(X \times_S \Spec(\mathcal{O}^{sh}_{S, \overline{t}}), K) } $$ where the bottom horizontal arrow arises as pullback by the morphism $\text{id}_X \times c$ where $c : \Spec(\mathcal{O}^{sh}_{S, \overline{t}}) \to \Spec(\mathcal{O}^{sh}_{S, \overline{S}})$ is the morphism introduced in Remark \ref{remark-another-sp}. The vertical arrows are given by Theorem \ref{theorem-higher-direct-images}. \end{lemma} \begin{proof} This follows immediately from the description of $sp$ in Remark \ref{remark-another-sp}. \end{proof} \begin{remark} \label{remark-specialization-map-and-fibres} Let $f : X \to S$ be a morphism of schemes. Let $K \in D(X_\etale)$. Let $\overline{s}$ be a geometric point of $S$ and let $\overline{t}$ be a geometric point of $\Spec(\mathcal{O}^{sh}_{S, \overline{s}})$. Let $c$ be as in Remark \ref{remark-another-sp}. We can always make a commutative diagram $$ \xymatrix{ (Rf_*K)_{\overline{s}} \ar[r] \ar[d]_{sp} & R\Gamma(X \times_S \Spec(\mathcal{O}_{S, \overline{s}}^{sh}), K) \ar[r] \ar[d]_{(\text{id}_X \times c)^{-1}} & R\Gamma(X_{\overline{s}}, K) \\ (Rf_*K)_{\overline{t}} \ar[r] & R\Gamma(X \times_S \Spec(\mathcal{O}_{S, \overline{t}}^{sh}), K) \ar[r] & R\Gamma(X_{\overline{t}}, K) } $$ where the horizontal arrows are those of Remark \ref{remark-stalk-fibre}. In general there won't be a vertical map on the right between the cohomologies of $K$ on the fibres fitting into this diagram, even in the case of Lemma \ref{lemma-specialization-map-pushforward}. \end{remark} \section{Complexes with constructible cohomology} \label{section-Dc} \noindent Let $\Lambda$ be a ring. Denote $D(X_\etale, \Lambda)$ the derived category of sheaves of $\Lambda$-modules on $X_\etale$. We denote by $D^b(X_\etale, \Lambda)$ (respectively $D^+$, $D^-$) the full subcategory of bounded (resp. above, below) complexes in $D(X_\etale, \Lambda)$. \begin{definition} \label{definition-c} Let $X$ be a scheme. Let $\Lambda$ be a Noetherian ring. We denote {\it $D_c(X_\etale, \Lambda)$} the full subcategory of $D(X_\etale, \Lambda)$ of complexes whose cohomology sheaves are constructible sheaves of $\Lambda$-modules. \end{definition} \noindent This definition makes sense by Lemma \ref{lemma-constructible-abelian} and Derived Categories, Section \ref{derived-section-triangulated-sub}. Thus we see that $D_c(X_\etale, \Lambda)$ is a strictly full, saturated triangulated subcategory of $D(X_\etale, \Lambda)$. \begin{lemma} \label{lemma-restrict-and-shriek-from-etale-c} Let $\Lambda$ be a Noetherian ring. If $j : U \to X$ is an \'etale morphism of schemes, then \begin{enumerate} \item $K|_U \in D_c(U_\etale, \Lambda)$ if $K \in D_c(X_\etale, \Lambda)$, and \item $j_!M \in D_c(X_\etale, \Lambda)$ if $M \in D_c(U_\etale, \Lambda)$ and the morphism $j$ is quasi-compact and quasi-separated. \end{enumerate} \end{lemma} \begin{proof} The first assertion is clear. The second follows from the fact that $j_!$ is exact and Lemma \ref{lemma-jshriek-constructible}. \end{proof} \begin{lemma} \label{lemma-pullback-c} Let $\Lambda$ be a Noetherian ring. Let $f : X \to Y$ be a morphism of schemes. If $K \in D_c(Y_\etale, \Lambda)$ then $Lf^*K \in D_c(X_\etale, \Lambda)$. \end{lemma} \begin{proof} This follows as $f^{-1} = f^*$ is exact and Lemma \ref{lemma-pullback-constructible}. \end{proof} \begin{lemma} \label{lemma-one-constructible} Let $X$ be a quasi-compact and quasi-separated scheme. Let $\Lambda$ be a Noetherian ring. Let $K \in D(X_\etale, \Lambda)$ and $b \in \mathbf{Z}$ such that $H^b(K)$ is constructible. Then there exist a sheaf $\mathcal{F}$ which is a finite direct sum of $j_{U!}\underline{\Lambda}$ with $U \in \Ob(X_\etale)$ affine and a map $\mathcal{F}[-b] \to K$ in $D(X_\etale, \Lambda)$ inducing a surjection $\mathcal{F} \to H^b(K)$. \end{lemma} \begin{proof} Represent $K$ by a complex $\mathcal{K}^\bullet$ of sheaves of $\Lambda$-modules. Consider the surjection $$ \Ker(\mathcal{K}^b \to \mathcal{K}^{b + 1}) \longrightarrow H^b(K) $$ By Modules on Sites, Lemma \ref{sites-modules-lemma-module-quotient-direct-sum} we may choose a surjection $\bigoplus_{i \in I} j_{U_i!} \underline{\Lambda} \to \Ker(\mathcal{K}^b \to \mathcal{K}^{b + 1})$ with $U_i$ affine. For $I' \subset I$ finite, denote $\mathcal{H}_{I'} \subset H^b(K)$ the image of $\bigoplus_{i \in I'} j_{U_i!} \underline{\Lambda}$. By Lemma \ref{lemma-colimit-constructible} we see that $\mathcal{H}_{I'} = H^b(K)$ for some $I' \subset I$ finite. The lemma follows taking $\mathcal{F} = \bigoplus_{i \in I'} j_{U_i!} \underline{\Lambda}$. \end{proof} \begin{lemma} \label{lemma-bounded-above-c} Let $X$ be a quasi-compact and quasi-separated scheme. Let $\Lambda$ be a Noetherian ring. Let $K \in D^-(X_\etale, \Lambda)$. Then the following are equivalent \begin{enumerate} \item $K$ is in $D_c(X_\etale, \Lambda)$, \item $K$ can be represented by a bounded above complex whose terms are finite direct sums of $j_{U!}\underline{\Lambda}$ with $U \in \Ob(X_\etale)$ affine, \item $K$ can be represented by a bounded above complex of flat constructible sheaves of $\Lambda$-modules. \end{enumerate} \end{lemma} \begin{proof} It is clear that (2) implies (3) and that (3) implies (1). Assume $K$ is in $D_c^-(X_\etale, \Lambda)$. Say $H^i(K) = 0$ for $i > b$. By induction on $a$ we will construct a complex $\mathcal{F}^a \to \ldots \to \mathcal{F}^b$ such that each $\mathcal{F}^i$ is a finite direct sum of $j_{U!}\underline{\Lambda}$ with $U \in \Ob(X_\etale)$ affine and a map $\mathcal{F}^\bullet \to K$ which induces an isomorphism $H^i(\mathcal{F}^\bullet) \to H^i(K)$ for $i > a$ and a surjection $H^a(\mathcal{F}^\bullet) \to H^a(K)$. For $a = b$ this can be done by Lemma \ref{lemma-one-constructible}. Given such a datum choose a distinguished triangle $$ \mathcal{F}^\bullet \to K \to L \to \mathcal{F}^\bullet[1] $$ Then we see that $H^i(L) = 0$ for $i \geq a$. Choose $\mathcal{F}^{a - 1}[-a +1] \to L$ as in Lemma \ref{lemma-one-constructible}. The composition $\mathcal{F}^{a - 1}[-a +1] \to L \to \mathcal{F}^\bullet$ corresponds to a map $\mathcal{F}^{a - 1} \to \mathcal{F}^a$ such that the composition with $\mathcal{F}^a \to \mathcal{F}^{a + 1}$ is zero. By TR4 we obtain a map $$ (\mathcal{F}^{a - 1} \to \ldots \to \mathcal{F}^b) \to K $$ in $D(X_\etale, \Lambda)$. This finishes the induction step and the proof of the lemma. \end{proof} \begin{lemma} \label{lemma-tensor-c} Let $X$ be a scheme. Let $\Lambda$ be a Noetherian ring. Let $K, L \in D_c^-(X_\etale, \Lambda)$. Then $K \otimes_\Lambda^\mathbf{L} L$ is in $D_c^-(X_\etale, \Lambda)$. \end{lemma} \begin{proof} This follows from Lemmas \ref{lemma-bounded-above-c} and \ref{lemma-tensor-product-constructible}. \end{proof} \section{Tor finite with constructible cohomology} \label{section-ctf} \noindent Let $X$ be a scheme and let $\Lambda$ be a Noetherian ring. An often used subcategory of the derived category $D_c(X_\etale, \Lambda)$ defined in Section \ref{section-Dc} is the full subcategory consisting of objects having (locally) finite tor dimension. Here is the formal definition. \begin{definition} \label{definition-ctf} Let $X$ be a scheme. Let $\Lambda$ be a Noetherian ring. We denote {\it $D_{ctf}(X_\etale, \Lambda)$} the full subcategory of $D_c(X_\etale, \Lambda)$ consisting of objects having locally finite tor dimension. \end{definition} \noindent This is a strictly full, saturated triangulated subcategory of $D_c(X_\etale, \Lambda)$ and $D(X_\etale, \Lambda)$. By our conventions, see Cohomology on Sites, Definition \ref{sites-cohomology-definition-tor-amplitude}, we see that $$ D_{ctf}(X_\etale, \Lambda) \subset D^b_c(X_\etale, \Lambda) \subset D^b(X_\etale, \Lambda) $$ if $X$ is quasi-compact. A good way to think about objects of $D_{ctf}(X_\etale, \Lambda)$ is given in Lemma \ref{lemma-when-ctf}. \begin{remark} \label{remark-different} Objects in the derived category $D_{ctf}(X_\etale, \Lambda)$ in some sense have better global properties than the perfect objects in $D(\mathcal{O}_X)$. Namely, it can happen that a complex of $\mathcal{O}_X$-modules is locally quasi-isomorphic to a finite complex of finite locally free $\mathcal{O}_X$-modules, without being globally quasi-isomorphic to a bounded complex of locally free $\mathcal{O}_X$-modules. The following lemma shows this does not happen for $D_{ctf}$ on a Noetherian scheme. \end{remark} \begin{lemma} \label{lemma-when-ctf} Let $\Lambda$ be a Noetherian ring. Let $X$ be a quasi-compact and quasi-separated scheme. Let $K \in D(X_\etale, \Lambda)$. The following are equivalent \begin{enumerate} \item $K \in D_{ctf}(X_\etale, \Lambda)$, and \item $K$ can be represented by a finite complex of constructible flat sheaves of $\Lambda$-modules. \end{enumerate} In fact, if $K$ has tor amplitude in $[a, b]$ then we can represent $K$ by a complex $\mathcal{F}^a \to \ldots \to \mathcal{F}^b$ with $\mathcal{F}^p$ a constructible flat sheaf of $\Lambda$-modules. \end{lemma} \begin{proof} It is clear that a finite complex of constructible flat sheaves of $\Lambda$-modules has finite tor dimension. It is also clear that it is an object of $D_c(X_\etale, \Lambda)$. Thus we see that (2) implies (1). \medskip\noindent Assume (1). Choose $a, b \in \mathbf{Z}$ such that $H^i(K \otimes_\Lambda^\mathbf{L} \mathcal{G}) = 0$ if $i \not \in [a, b]$ for all sheaves of $\Lambda$-modules $\mathcal{G}$. We will prove the final assertion holds by induction on $b - a$. If $a = b$, then $K = H^a(K)[-a]$ is a flat constructible sheaf and the result holds. Next, assume $b > a$. Represent $K$ by a complex $\mathcal{K}^\bullet$ of sheaves of $\Lambda$-modules. Consider the surjection $$ \Ker(\mathcal{K}^b \to \mathcal{K}^{b + 1}) \longrightarrow H^b(K) $$ By Lemma \ref{lemma-category-constructible-modules} we can find finitely many affine schemes $U_i$ \'etale over $X$ and a surjection $\bigoplus j_{U_i!}\underline{\Lambda}_{U_i} \to H^b(K)$. After replacing $U_i$ by standard \'etale coverings $\{U_{ij} \to U_i\}$ we may assume this surjection lifts to a map $\mathcal{F} = \bigoplus j_{U_i!}\underline{\Lambda}_{U_i} \to \Ker(\mathcal{K}^b \to \mathcal{K}^{b + 1})$. This map determines a distinguished triangle $$ \mathcal{F}[-b] \to K \to L \to \mathcal{F}[-b + 1] $$ in $D(X_\etale, \Lambda)$. Since $D_{ctf}(X_\etale, \Lambda)$ is a triangulated subcategory we see that $L$ is in it too. In fact $L$ has tor amplitude in $[a, b - 1]$ as $\mathcal{F}$ surjects onto $H^b(K)$ (details omitted). By induction hypothesis we can find a finite complex $\mathcal{F}^a \to \ldots \to \mathcal{F}^{b - 1}$ of flat constructible sheaves of $\Lambda$-modules representing $L$. The map $L \to \mathcal{F}[-b + 1]$ corresponds to a map $\mathcal{F}^b \to \mathcal{F}$ annihilating the image of $\mathcal{F}^{b - 1} \to \mathcal{F}^b$. Then it follows from axiom TR3 that $K$ is represented by the complex $$ \mathcal{F}^a \to \ldots \to \mathcal{F}^{b - 1} \to \mathcal{F}^b $$ which finishes the proof. \end{proof} \begin{remark} \label{remark-projective-each-degree} Let $\Lambda$ be a Noetherian ring. Let $X$ be a scheme. For a bounded complex $K^\bullet$ of constructible flat $\Lambda$-modules on $X_\etale$ each stalk $K^p_{\overline{x}}$ is a finite projective $\Lambda$-module. Hence the stalks of the complex are perfect complexes of $\Lambda$-modules. \end{remark} \begin{lemma} \label{lemma-restrict-and-shriek-from-etale-ctf} Let $\Lambda$ be a Noetherian ring. If $j : U \to X$ is an \'etale morphism of schemes, then \begin{enumerate} \item $K|_U \in D_{ctf}(U_\etale, \Lambda)$ if $K \in D_{ctf}(X_\etale, \Lambda)$, and \item $j_!M \in D_{ctf}(X_\etale, \Lambda)$ if $M \in D_{ctf}(U_\etale, \Lambda)$ and the morphism $j$ is quasi-compact and quasi-separated. \end{enumerate} \end{lemma} \begin{proof} Perhaps the easiest way to prove this lemma is to reduce to the case where $X$ is affine and then apply Lemma \ref{lemma-when-ctf} to translate it into a statement about finite complexes of flat constructible sheaves of $\Lambda$-modules where the result follows from Lemma \ref{lemma-jshriek-constructible}. \end{proof} \begin{lemma} \label{lemma-pullback-ctf} Let $\Lambda$ be a Noetherian ring. Let $f : X \to Y$ be a morphism of schemes. If $K \in D_{ctf}(Y_\etale, \Lambda)$ then $Lf^*K \in D_{ctf}(X_\etale, \Lambda)$. \end{lemma} \begin{proof} Apply Lemma \ref{lemma-when-ctf} to reduce this to a question about finite complexes of flat constructible sheaves of $\Lambda$-modules. Then the statement follows as $f^{-1} = f^*$ is exact and Lemma \ref{lemma-pullback-constructible}. \end{proof} \begin{lemma} \label{lemma-connected-ctf-locally-constant} Let $X$ be a connected scheme. Let $\Lambda$ be a Noetherian ring. Let $K \in D_{ctf}(X_\etale, \Lambda)$ have locally constant cohomology sheaves. Then there exists a finite complex of finite projective $\Lambda$-modules $M^\bullet$ and an \'etale covering $\{U_i \to X\}$ such that $K|_{U_i} \cong \underline{M^\bullet}|_{U_i}$ in $D(U_{i, \etale}, \Lambda)$. \end{lemma} \begin{proof} Choose an \'etale covering $\{U_i \to X\}$ such that $K|_{U_i}$ is constant, say $K|_{U_i} \cong \underline{M_i^\bullet}_{U_i}$ for some finite complex of finite $\Lambda$-modules $M_i^\bullet$. See Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-locally-constant}. Observe that $U_i \times_X U_j$ is empty if $M_i^\bullet$ is not isomorphic to $M_j^\bullet$ in $D(\Lambda)$. For each complex of $\Lambda$-modules $M^\bullet$ let $I_{M^\bullet} = \{i \in I \mid M_i^\bullet \cong M^\bullet\text{ in }D(\Lambda)\}$. As \'etale morphisms are open we see that $U_{M^\bullet} = \bigcup_{i \in I_{M^\bullet}} \Im(U_i \to X)$ is an open subset of $X$. Then $X = \coprod U_{M^\bullet}$ is a disjoint open covering of $X$. As $X$ is connected only one $U_{M^\bullet}$ is nonempty. As $K$ is in $D_{ctf}(X_\etale, \Lambda)$ we see that $M^\bullet$ is a perfect complex of $\Lambda$-modules, see More on Algebra, Lemma \ref{more-algebra-lemma-perfect}. Hence we may assume $M^\bullet$ is a finite complex of finite projective $\Lambda$-modules. \end{proof} \section{Torsion sheaves} \label{section-torsion} \noindent A brief section on torsion abelian sheaves and their \'etale cohomology. Let $\mathcal{C}$ be a site. We have shown in Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-torsion} that any object in $D(\mathcal{C})$ whose cohomology sheaves are torsion sheaves, can be represented by a complex all of whose terms are torsion. \begin{lemma} \label{lemma-torsion-cohomology} Let $X$ be a quasi-compact and quasi-separated scheme. \begin{enumerate} \item If $\mathcal{F}$ is a torsion abelian sheaf on $X_\etale$, then $H^n_\etale(X, \mathcal{F})$ is a torsion abelian group for all $n$. \item If $K$ in $D^+(X_\etale)$ has torsion cohomology sheaves, then $H^n_\etale(X, K)$ is a torsion abelian group for all $n$. \end{enumerate} \end{lemma} \begin{proof} To prove (1) we write $\mathcal{F} = \bigcup \mathcal{F}[n]$ where $\mathcal{F}[d]$ is the $d$-torsion subsheaf. By Lemma \ref{lemma-colimit} we have $H^n_\etale(X, \mathcal{F}) = \colim H^n_\etale(X, \mathcal{F}[d])$. This proves (1) as $H^n_\etale(X, \mathcal{F}[d])$ is annihilated by $d$. \medskip\noindent To prove (2) we can use the spectral sequence $E_2^{p, q} = H^p_\etale(X, H^q(K))$ converging to $H^n_\etale(X, K)$ (Derived Categories, Lemma \ref{derived-lemma-two-ss-complex-functor}) and the result for sheaves. \end{proof} \begin{lemma} \label{lemma-torsion-direct-image} Let $f : X \to Y$ be a quasi-compact and quasi-separated morphism of schemes. \begin{enumerate} \item If $\mathcal{F}$ is a torsion abelian sheaf on $X_\etale$, then $R^nf_*\mathcal{F}$ is a torsion abelian sheaf on $Y_\etale$ for all $n$. \item If $K$ in $D^+(X_\etale)$ has torsion cohomology sheaves, then $Rf_*K$ is an object of $D^+(Y_\etale)$ whose cohomology sheaves are torsion abelian sheaves. \end{enumerate} \end{lemma} \begin{proof} Proof of (1). Recall that $R^nf_*\mathcal{F}$ is the sheaf associated to the presheaf $V \mapsto H^n_\etale(X \times_Y V, \mathcal{F})$ on $Y_\etale$. See Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-higher-direct-images}. If we choose $V$ affine, then $X \times_Y V$ is quasi-compact and quasi-separated because $f$ is, hence we can apply Lemma \ref{lemma-torsion-cohomology} to see that $H^n_\etale(X \times_Y V, \mathcal{F})$ is torsion. \medskip\noindent Proof of (2). Recall that $R^nf_*K$ is the sheaf associated to the presheaf $V \mapsto H^n_\etale(X \times_Y V, K)$ on $Y_\etale$. See Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-unbounded-describe-higher-direct-images}. If we choose $V$ affine, then $X \times_Y V$ is quasi-compact and quasi-separated because $f$ is, hence we can apply Lemma \ref{lemma-torsion-cohomology} to see that $H^n_\etale(X \times_Y V, K)$ is torsion. \end{proof} \section{Cohomology with support in a closed subscheme} \label{section-cohomology-support} \noindent Let $X$ be a scheme and let $Z \subset X$ be a closed subscheme. Let $\mathcal{F}$ be an abelian sheaf on $X_\etale$. We let $$ \Gamma_Z(X, \mathcal{F}) = \{s \in \mathcal{F}(X) \mid \text{Supp}(s) \subset Z\} $$ be the sections with support in $Z$ (Definition \ref{definition-support}). This is a left exact functor which is not exact in general. Hence we obtain a derived functor $$ R\Gamma_Z(X, -) : D(X_\etale) \longrightarrow D(\textit{Ab}) $$ and cohomology groups with support in $Z$ defined by $H^q_Z(X, \mathcal{F}) = R^q\Gamma_Z(X, \mathcal{F})$. \medskip\noindent Let $\mathcal{I}$ be an injective abelian sheaf on $X_\etale$. Let $U = X \setminus Z$. Then the restriction map $\mathcal{I}(X) \to \mathcal{I}(U)$ is surjective (Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-restriction-along-monomorphism-surjective}) with kernel $\Gamma_Z(X, \mathcal{I})$. It immediately follows that for $K \in D(X_\etale)$ there is a distinguished triangle $$ R\Gamma_Z(X, K) \to R\Gamma(X, K) \to R\Gamma(U, K) \to R\Gamma_Z(X, K)[1] $$ in $D(\textit{Ab})$. As a consequence we obtain a long exact cohomology sequence $$ \ldots \to H^i_Z(X, K) \to H^i(X, K) \to H^i(U, K) \to H^{i + 1}_Z(X, K) \to \ldots $$ for any $K$ in $D(X_\etale)$. \medskip\noindent For an abelian sheaf $\mathcal{F}$ on $X_\etale$ we can consider the {\it subsheaf of sections with support in $Z$}, denoted $\mathcal{H}_Z(\mathcal{F})$, defined by the rule $$ \mathcal{H}_Z(\mathcal{F})(U) = \{s \in \mathcal{F}(U) \mid \text{Supp}(s) \subset U \times_X Z\} $$ Here we use the support of a section from Definition \ref{definition-support}. Using the equivalence of Proposition \ref{proposition-closed-immersion-pushforward} we may view $\mathcal{H}_Z(\mathcal{F})$ as an abelian sheaf on $Z_\etale$. Thus we obtain a functor $$ \textit{Ab}(X_\etale) \longrightarrow \textit{Ab}(Z_\etale),\quad \mathcal{F} \longmapsto \mathcal{H}_Z(\mathcal{F}) $$ which is left exact, but in general not exact. \begin{lemma} \label{lemma-sections-with-support-acyclic} Let $i : Z \to X$ be a closed immersion of schemes. Let $\mathcal{I}$ be an injective abelian sheaf on $X_\etale$. Then $\mathcal{H}_Z(\mathcal{I})$ is an injective abelian sheaf on $Z_\etale$. \end{lemma} \begin{proof} Observe that for any abelian sheaf $\mathcal{G}$ on $Z_\etale$ we have $$ \Hom_Z(\mathcal{G}, \mathcal{H}_Z(\mathcal{F})) = \Hom_X(i_*\mathcal{G}, \mathcal{F}) $$ because after all any section of $i_*\mathcal{G}$ has support in $Z$. Since $i_*$ is exact (Section \ref{section-closed-immersions}) and as $\mathcal{I}$ is injective on $X_\etale$ we conclude that $\mathcal{H}_Z(\mathcal{I})$ is injective on $Z_\etale$. \end{proof} \noindent Denote $$ R\mathcal{H}_Z : D(X_\etale) \longrightarrow D(Z_\etale) $$ the derived functor. We set $\mathcal{H}^q_Z(\mathcal{F}) = R^q\mathcal{H}_Z(\mathcal{F})$ so that $\mathcal{H}^0_Z(\mathcal{F}) = \mathcal{H}_Z(\mathcal{F})$. By the lemma above we have a Grothendieck spectral sequence $$ E_2^{p, q} = H^p(Z, \mathcal{H}^q_Z(\mathcal{F})) \Rightarrow H^{p + q}_Z(X, \mathcal{F}) $$ \begin{lemma} \label{lemma-cohomology-with-support-sheaf-on-support} Let $i : Z \to X$ be a closed immersion of schemes. Let $\mathcal{G}$ be an injective abelian sheaf on $Z_\etale$. Then $\mathcal{H}^p_Z(i_*\mathcal{G}) = 0$ for $p > 0$. \end{lemma} \begin{proof} This is true because the functor $i_*$ is exact and transforms injective abelian sheaves into injective abelian sheaves (Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-pushforward-injective-flat}). \end{proof} \begin{lemma} \label{lemma-cohomology-with-support-triangle} Let $i : Z \to X$ be a closed immersion of schemes. Let $j : U \to X$ be the inclusion of the complement of $Z$. Let $\mathcal{F}$ be an abelian sheaf on $X_\etale$. There is a distinguished triangle $$ i_*R\mathcal{H}_Z(\mathcal{F}) \to \mathcal{F} \to Rj_*(\mathcal{F}|_U) \to i_*R\mathcal{H}_Z(\mathcal{F})[1] $$ in $D(X_\etale)$. This produces an exact sequence $$ 0 \to i_*\mathcal{H}_Z(\mathcal{F}) \to \mathcal{F} \to j_*(\mathcal{F}|_U) \to i_*\mathcal{H}^1_Z(\mathcal{F}) \to 0 $$ and isomorphisms $R^pj_*(\mathcal{F}|_U) \cong i_*\mathcal{H}^{p + 1}_Z(\mathcal{F})$ for $p \geq 1$. \end{lemma} \begin{proof} To get the distinguished triangle, choose an injective resolution $\mathcal{F} \to \mathcal{I}^\bullet$. Then we obtain a short exact sequence of complexes $$ 0 \to i_*\mathcal{H}_Z(\mathcal{I}^\bullet) \to \mathcal{I}^\bullet \to j_*(\mathcal{I}^\bullet|_U) \to 0 $$ by the discussion above. Thus the distinguished triangle by Derived Categories, Section \ref{derived-section-canonical-delta-functor}. \end{proof} \noindent Let $X$ be a scheme and let $Z \subset X$ be a closed subscheme. We denote $D_Z(X_\etale)$ the strictly full saturated triangulated subcategory of $D(X_\etale)$ consisting of complexes whose cohomology sheaves are supported on $Z$. Note that $D_Z(X_\etale)$ only depends on the underlying closed subset of $X$. \begin{lemma} \label{lemma-complexes-with-support-on-closed} Let $i : Z \to X$ be a closed immersion of schemes. The map $Ri_{small, *} = i_{small, *} : D(Z_\etale) \to D(X_\etale)$ induces an equivalence $D(Z_\etale) \to D_Z(X_\etale)$ with quasi-inverse $$ i_{small}^{-1}|_{D_Z(X_\etale)} = R\mathcal{H}_Z|_{D_Z(X_\etale)} $$ \end{lemma} \begin{proof} Recall that $i_{small}^{-1}$ and $i_{small, *}$ is an adjoint pair of exact functors such that $i_{small}^{-1}i_{small, *}$ is isomorphic to the identify functor on abelian sheaves. See Proposition \ref{proposition-closed-immersion-pushforward} and Lemma \ref{lemma-stalk-pullback}. Thus $i_{small, *} : D(Z_\etale) \to D_Z(X_\etale)$ is fully faithful and $i_{small}^{-1}$ determines a left inverse. On the other hand, suppose that $K$ is an object of $D_Z(X_\etale)$ and consider the adjunction map $K \to i_{small, *}i_{small}^{-1}K$. Using exactness of $i_{small, *}$ and $i_{small}^{-1}$ this induces the adjunction maps $H^n(K) \to i_{small, *}i_{small}^{-1}H^n(K)$ on cohomology sheaves. Since these cohomology sheaves are supported on $Z$ we see these adjunction maps are isomorphisms and we conclude that $D(Z_\etale) \to D_Z(X_\etale)$ is an equivalence. \medskip\noindent To finish the proof we have to show that $R\mathcal{H}_Z(K) = i_{small}^{-1}K$ if $K$ is an object of $D_Z(X_\etale)$. To do this we can use that $K = i_{small, *}i_{small}^{-1}K$ as we've just proved this is the case. Then we can choose a K-injective representative $\mathcal{I}^\bullet$ for $i_{small}^{-1}K$. Since $i_{small, *}$ is the right adjoint to the exact functor $i_{small}^{-1}$, the complex $i_{small, *}\mathcal{I}^\bullet$ is K-injective (Derived Categories, Lemma \ref{derived-lemma-adjoint-preserve-K-injectives}). We see that $R\mathcal{H}_Z(K)$ is computed by $\mathcal{H}_Z(i_{small, *}\mathcal{I}^\bullet) = \mathcal{I}^\bullet$ as desired. \end{proof} \begin{lemma} \label{lemma-cohomology-with-support-quasi-coherent} Let $X$ be a scheme. Let $Z \subset X$ be a closed subscheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module and denote $\mathcal{F}^a$ the associated quasi-coherent sheaf on the small \'etale site of $X$ (Proposition \ref{proposition-quasi-coherent-sheaf-fpqc}). Then \begin{enumerate} \item $H^q_Z(X, \mathcal{F})$ agrees with $H^q_Z(X_\etale, \mathcal{F}^a)$, \item if the complement of $Z$ is retrocompact in $X$, then $i_*\mathcal{H}^q_Z(\mathcal{F}^a)$ is a quasi-coherent sheaf of $\mathcal{O}_X$-modules equal to $(i_*\mathcal{H}^q_Z(\mathcal{F}))^a$. \end{enumerate} \end{lemma} \begin{proof} Let $j : U \to X$ be the inclusion of the complement of $Z$. The statement (1) on cohomology groups follows from the long exact sequences for cohomology with supports and the agreements $H^q(X_\etale, \mathcal{F}^a) = H^q(X, \mathcal{F})$ and $H^q(U_\etale, \mathcal{F}^a) = H^q(U, \mathcal{F})$, see Theorem \ref{theorem-zariski-fpqc-quasi-coherent}. If $j : U \to X$ is a quasi-compact morphism, i.e., if $U \subset X$ is retrocompact, then $R^qj_*$ transforms quasi-coherent sheaves into quasi-coherent sheaves (Cohomology of Schemes, Lemma \ref{coherent-lemma-quasi-coherence-higher-direct-images}) and commutes with taking associated sheaf on \'etale sites (Descent, Lemma \ref{descent-lemma-higher-direct-images-small-etale}). We conclude by applying Lemma \ref{lemma-cohomology-with-support-triangle}. \end{proof} \section{Schemes with strictly henselian local rings} \label{section-strictly-henselian-local-rings} \noindent In this section we collect some results about the \'etale cohomology of schemes whose local rings are strictly henselian. For example, here is a fun generalization of Lemma \ref{lemma-vanishing-etale-cohomology-strictly-henselian}. \begin{lemma} \label{lemma-local-rings-strictly-henselian} Let $S$ be a scheme all of whose local rings are strictly henselian. Then for any abelian sheaf $\mathcal{F}$ on $S_\etale$ we have $H^i(S_\etale, \mathcal{F}) = H^i(S_{Zar}, \mathcal{F})$. \end{lemma} \begin{proof} Let $\epsilon : S_\etale \to S_{Zar}$ be the morphism of sites given by the inclusion functor. The Zariski sheaf $R^p\epsilon_*\mathcal{F}$ is the sheaf associated to the presheaf $U \mapsto H^p_\etale(U, \mathcal{F})$. Thus the stalk at $x \in X$ is $\colim H^p_\etale(U, \mathcal{F}) = H^p_\etale(\Spec(\mathcal{O}_{X, x}), \mathcal{G}_x)$ where $\mathcal{G}_x$ denotes the pullback of $\mathcal{F}$ to $\Spec(\mathcal{O}_{X, x})$, see Lemma \ref{lemma-directed-colimit-cohomology}. Thus the higher direct images of $R^p\epsilon_*\mathcal{F}$ are zero by Lemma \ref{lemma-vanishing-etale-cohomology-strictly-henselian} and we conclude by the Leray spectral sequence. \end{proof} \begin{lemma} \label{lemma-gabber-criterion} Let $R$ be a ring all of whose local rings are strictly henselian. Let $\mathcal{F}$ be a sheaf on $\Spec(R)_\etale$. Assume that for all $f, g \in R$ the kernel of $$ H^1_\etale(D(f + g), \mathcal{F}) \longrightarrow H^1_\etale(D(f(f + g)), \mathcal{F}) \oplus H^1_\etale(D(g(f + g)), \mathcal{F}) $$ is zero. Then $H^q_\etale(\Spec(R), \mathcal{F}) = 0$ for $q > 0$. \end{lemma} \begin{proof} By Lemma \ref{lemma-local-rings-strictly-henselian} we see that \'etale cohomology of $\mathcal{F}$ agrees with Zariski cohomology on any open of $\Spec(R)$. We will prove by induction on $i$ the statement: for $h \in R$ we have $H^q_\etale(D(h), \mathcal{F}) = 0$ for $1 \leq q \leq i$. The base case $i = 0$ is trivial. Assume $i \geq 1$. \medskip\noindent Let $\xi \in H^q_\etale(D(h), \mathcal{F})$ for some $1 \leq q \leq i$ and $h \in R$. If $q < i$ then we are done by induction, so we assume $q = i$. After replacing $R$ by $R_h$ we may assume $\xi \in H^i_\etale(\Spec(R), \mathcal{F})$; some details omitted. Let $I \subset R$ be the set of elements $f \in R$ such that $\xi|_{D(f)} = 0$. Since $\xi$ is Zariski locally trivial, it follows that for every prime $\mathfrak p$ of $R$ there exists an $f \in I$ with $f \not \in \mathfrak p$. Thus if we can show that $I$ is an ideal, then $1 \in I$ and we're done. It is clear that $f \in I$, $r \in R$ implies $rf \in I$. Thus we assume that $f, g \in I$ and we show that $f + g \in I$. If $q = i = 1$, then this is exactly the assumption of the lemma! Whence the result for $i = 1$. For $q = i > 1$, note that $$ D(f + g) = D(f(f + g)) \cup D(g(f + g)) $$ By Mayer-Vietoris (Cohomology, Lemma \ref{cohomology-lemma-mayer-vietoris} which applies as \'etale cohomology on open subschemes of $\Spec(R)$ equals Zariski cohomology) we have an exact sequence $$ \xymatrix{ H^{i - 1}_\etale(D(fg(f + g)), \mathcal{F}) \ar[d] \\ H^i_\etale(D(f + g), \mathcal{F}) \ar[d] \\ H^i_\etale(D(f(f + g)), \mathcal{F}) \oplus H^i_\etale(D(g(f + g)), \mathcal{F}) } $$ and the result follows as the first group is zero by induction. \end{proof} \begin{lemma} \label{lemma-affine-only-closed-points} Let $S$ be an affine scheme such that (1) all points are closed, and (2) all residue fields are separably algebraically closed. Then for any abelian sheaf $\mathcal{F}$ on $S_\etale$ we have $H^i(S_\etale, \mathcal{F}) = 0$ for $i > 0$. \end{lemma} \begin{proof} Condition (1) implies that the underlying topological space of $S$ is profinite, see Algebra, Lemma \ref{algebra-lemma-ring-with-only-minimal-primes}. Thus the higher cohomology groups of an abelian sheaf on the topological space $S$ (i.e., Zariski cohomology) is trivial, see Cohomology, Lemma \ref{cohomology-lemma-vanishing-for-profinite}. The local rings are strictly henselian by Algebra, Lemma \ref{algebra-lemma-local-dimension-zero-henselian}. Thus \'etale cohomology of $S$ is computed by Zariski cohomology by Lemma \ref{lemma-local-rings-strictly-henselian} and the proof is done. \end{proof} \noindent The spectrum of an absolutely integrally closed ring is an example of a scheme all of whose local rings are strictly henselian, see More on Algebra, Lemma \ref{more-algebra-lemma-absolutely-integrally-closed-strictly-henselian}. It turns out that normal domains with separably closed fraction fields have an even stronger property as explained in the following lemma. \begin{lemma} \label{lemma-normal-scheme-with-alg-closed-function-field} Let $X$ be an integral normal scheme with separably closed function field. \begin{enumerate} \item A separated \'etale morphism $U \to X$ is a disjoint union of open immersions. \item All local rings of $X$ are strictly henselian. \end{enumerate} \end{lemma} \begin{proof} Let $R$ be a normal domain whose fraction field is separably algebraically closed. Let $R \to A$ be an \'etale ring map. Then $A \otimes_R K$ is as a $K$-algebra a finite product $\prod_{i = 1, \ldots, n} K$ of copies of $K$. Let $e_i$, $i = 1, \ldots, n$ be the corresponding idempotents of $A \otimes_R K$. Since $A$ is normal (Algebra, Lemma \ref{algebra-lemma-normal-goes-up}) the idempotents $e_i$ are in $A$ (Algebra, Lemma \ref{algebra-lemma-normal-ring-integrally-closed}). Hence $A = \prod Ae_i$ and we may assume $A \otimes_R K = K$. Since $A \subset A \otimes_R K = K$ (by flatness of $R \to A$ and since $R \subset K$) we conclude that $A$ is a domain. By the same argument we conclude that $A \otimes_R A \subset (A \otimes_R A) \otimes_R K = K$. It follows that the map $A \otimes_R A \to A$ is injective as well as surjective. Thus $R \to A$ defines an open immersion by Morphisms, Lemma \ref{morphisms-lemma-universally-injective} and \'Etale Morphisms, Theorem \ref{etale-theorem-etale-radicial-open}. \medskip\noindent Let $f : U \to X$ be a separated \'etale morphism. Let $\eta \in X$ be the generic point and let $f^{-1}(\{\eta\}) = \{\xi_i\}_{i \in I}$. The result of the previous paragraph shows the following: For any affine open $U' \subset U$ whose image in $X$ is contained in an affine we have $U' = \coprod_{i \in I} U'_i$ where $U'_i$ is the set of point of $U'$ which are specializations of $\xi_i$. Moreover, the morphism $U'_i \to X$ is an open immersion. It follows that $U_i = \overline{\{\xi_i\}}$ is an open and closed subscheme of $U$ and that $U_i \to X$ is locally on the source an isomorphism. By Morphisms, Lemma \ref{morphisms-lemma-distinct-local-rings} the fact that $U_i \to X$ is separated, implies that $U_i \to X$ is injective and we conclude that $U_i \to X$ is an open immersion, i.e., (1) holds. \medskip\noindent Part (2) follows from part (1) and the description of the strict henselization of $\mathcal{O}_{X, x}$ as the local ring at $\overline{x}$ on the \'etale site of $X$ (Lemma \ref{lemma-describe-etale-local-ring}). It can also be proved directly, see Fundamental Groups, Lemma \ref{pione-lemma-normal-local-domain-separablly-closed-fraction-field}. \end{proof} \begin{lemma} \label{lemma-Rf-star-zero-normal-with-alg-closed-function-field} Let $f : X \to Y$ be a morphism of schemes where $X$ is an integral normal scheme with separably closed function field. Then $R^qf_*\underline{M} = 0$ for $q > 0$ and any abelian group $M$. \end{lemma} \begin{proof} Recall that $R^qf_*\underline{M}$ is the sheaf associated to the presheaf $V \mapsto H^q_\etale(V \times_Y X, M)$ on $Y_\etale$, see Lemma \ref{lemma-higher-direct-images}. If $V$ is affine, then $V \times_Y X \to X$ is separated and \'etale. Hence $V \times_Y X = \coprod U_i$ is a disjoint union of open subschemes $U_i$ of $X$, see Lemma \ref{lemma-normal-scheme-with-alg-closed-function-field}. By Lemma \ref{lemma-local-rings-strictly-henselian} we see that $H^q_\etale(U_i, M)$ is equal to $H^q_{Zar}(U_i, M)$. This vanishes by Cohomology, Lemma \ref{cohomology-lemma-irreducible-constant-cohomology-zero}. \end{proof} \begin{lemma} \label{lemma-closed-of-affine-normal-scheme-with-alg-closed-function-field} Let $X$ be an affine integral normal scheme with separably closed function field. Let $Z \subset X$ be a closed subscheme. Let $V \to Z$ be an \'etale morphism with $V$ affine. Then $V$ is a finite disjoint union of open subschemes of $Z$. If $V \to Z$ is surjective and finite \'etale, then $V \to Z$ has a section. \end{lemma} \begin{proof} By Algebra, Lemma \ref{algebra-lemma-lift-etale} we can lift $V$ to an affine scheme $U$ \'etale over $X$. Apply Lemma \ref{lemma-normal-scheme-with-alg-closed-function-field} to $U \to X$ to get the first statement. \medskip\noindent The final statement is a consequence of the first. Let $V = \coprod_{i = 1, \ldots, n} V_i$ be a finite decomposition into open and closed subschemes with $V_i \to Z$ an open immersion. As $V \to Z$ is finite we see that $V_i \to Z$ is also closed. Let $U_i \subset Z$ be the image. Then we have a decomposition into open and closed subschemes $$ Z = \coprod\nolimits_{(A, B)} \bigcap\nolimits_{i \in A} U_i \cap \bigcap\nolimits_{i \in B} U_i^c $$ where the disjoint union is over $\{1, \ldots, n\} = A \amalg B$ where $A$ has at least one element. Each of the strata is contained in a single $U_i$ and we find our section. \end{proof} \begin{lemma} \label{lemma-gabber-for-h1-absolutely-algebraically-closed} Let $X$ be a normal integral affine scheme with separably closed function field. Let $Z \subset X$ be a closed subscheme. For any finite abelian group $M$ we have $H^1_\etale(Z, \underline{M}) = 0$. \end{lemma} \begin{proof} By Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-torsors-h1} an element of $H^1_\etale(Z, \underline{M})$ corresponds to a $\underline{M}$-torsor $\mathcal{F}$ on $Z_\etale$. Such a torsor is clearly a finite locally constant sheaf. Hence $\mathcal{F}$ is representable by a scheme $V$ finite \'etale over $Z$, Lemma \ref{lemma-characterize-finite-locally-constant}. Of course $V \to Z$ is surjective as a torsor is locally trivial. Since $V \to Z$ has a section by Lemma \ref{lemma-closed-of-affine-normal-scheme-with-alg-closed-function-field} we are done. \end{proof} \begin{lemma} \label{lemma-gabber-for-absolutely-algebraically-closed} Let $X$ be a normal integral affine scheme with separably closed function field. Let $Z \subset X$ be a closed subscheme. For any finite abelian group $M$ we have $H^q_\etale(Z, \underline{M}) = 0$ for $q \geq 1$. \end{lemma} \begin{proof} Write $X = \Spec(R)$ and $Z = \Spec(R')$ so that we have a surjection of rings $R \to R'$. All local rings of $R'$ are strictly henselian by Lemma \ref{lemma-normal-scheme-with-alg-closed-function-field} and Algebra, Lemma \ref{algebra-lemma-quotient-strict-henselization}. Furthermore, we see that for any $f' \in R'$ there is a surjection $R_f \to R'_{f'}$ where $f \in R$ is a lift of $f'$. Since $R_f$ is a normal domain with separably closed fraction field we see that $H^1_\etale(D(f'), \underline{M}) = 0$ by Lemma \ref{lemma-gabber-for-h1-absolutely-algebraically-closed}. Thus we may apply Lemma \ref{lemma-gabber-criterion} to $Z = \Spec(R')$ to conclude. \end{proof} \begin{lemma} \label{lemma-integral-cover-trivial-cohomology} Let $X$ be an affine scheme. \begin{enumerate} \item There exists an integral surjective morphism $X' \to X$ such that for every closed subscheme $Z' \subset X'$, every finite abelian group $M$, and every $q \geq 1$ we have $H^q_\etale(Z', \underline{M}) = 0$. \item For any closed subscheme $Z \subset X$, finite abelian group $M$, $q \geq 1$, and $\xi \in H^q_\etale(Z, \underline{M})$ there exists a finite surjective morphism $X' \to X$ of finite presentation such that $\xi$ pulls back to zero in $H^q_\etale(X' \times_X Z, \underline{M})$. \end{enumerate} \end{lemma} \begin{proof} Write $X = \Spec(A)$. Write $A = \mathbf{Z}[x_i]/J$ for some ideal $J$. Let $R$ be the integral closure of $\mathbf{Z}[x_i]$ in an algebraic closure of the fraction field of $\mathbf{Z}[x_i]$. Let $A' = R/JR$ and set $X' = \Spec(A')$. This gives an example as in (1) by Lemma \ref{lemma-gabber-for-absolutely-algebraically-closed}. \medskip\noindent Proof of (2). Let $X' \to X$ be the integral surjective morphism we found above. Certainly, $\xi$ maps to zero in $H^q_\etale(X' \times_X Z, \underline{M})$. We may write $X'$ as a limit $X' = \lim X'_i$ of schemes finite and of finite presentation over $X$; this is easy to do in our current affine case, but it is a special case of the more general Limits, Lemma \ref{limits-lemma-integral-limit-finite-and-finite-presentation}. By Lemma \ref{lemma-directed-colimit-cohomology} we see that $\xi$ maps to zero in $H^q_\etale(X'_i \times_X Z, \underline{M})$ for some $i$ large enough. \end{proof} \section{Absolutely integrally closed vanishing} \label{section-aic-vanishing} \noindent Recall that we say a ring $R$ is absolutely integrally closed if every monic polynomial over $R$ has a root in $R$ (More on Algebra, Definition \ref{more-algebra-definition-absolutely-integrally-closed}). In this section we prove that the \'etale cohomology of $\Spec(R)$ with coefficients in a finite torsion group vanishes in positive degrees (Proposition \ref{proposition-aic-vanishing}) thereby slightly improving the earlier Lemma \ref{lemma-gabber-for-absolutely-algebraically-closed}. We suggest the reader skip this section. \begin{lemma} \label{lemma-find-extension} Let $A$ be a ring. Let $a, b \in A$ such that $aA + bA = A$ and $a \bmod bA$ is a root of unity. Then there exists a monogenic extension $A \subset B$ and an element $y \in B$ such that $u = a - by$ is a unit. \end{lemma} \begin{proof} Say $a^n \equiv 1 \bmod bA$. In particular $a^i$ is a unit modulo $b^mA$ for all $i, m \geq 1$. We claim there exist $a_1, \ldots, a_n \in A$ such that $$ 1 = a^n + a_1 a^{n - 1}b + a_2 a^{n - 2}b^2 + \ldots + a_n b^n $$ Namely, since $1 - a^n \in bA$ we can find an element $a_1 \in A$ such that $1 - a^n - a_1 a^{n - 1} b \in b^2A$ using the unit property of $a^{n - 1}$ modulo $bA$. Next, we can find an element $a_2 \in A$ such that $1 - a^n - a_1 a^{n - 1} b - a_2 a^{n - 2} b^2 \in b^3A$. And so on. Eventually we find $a_1, \ldots, a_{n - 1} \in A$ such that $1 - (a^n + a_1 a^{n - 1}b + a_2 a^{n - 2}b^2 + \ldots + a_{n - 1} ab^{n - 1}) \in b^nA$. This allows us to find $a_n \in A$ such that the displayed equality holds. \medskip\noindent With $a_1, \ldots, a_n$ as above we claim that setting $$ B = A[y]/(y^n + a_1 y^{n - 1} + a_2 y^{n - 2} + \ldots + a_n) $$ works. Namely, suppose that $\mathfrak q \subset B$ is a prime ideal lying over $\mathfrak p \subset A$. To get a contradiction assume $u = a - by$ is in $\mathfrak q$. If $b \in \mathfrak p$ then $a \not \in \mathfrak p$ as $aA + bA = A$ and hence $u$ is not in $\mathfrak q$. Thus we may assume $b \not \in \mathfrak p$, i.e., $b \not \in \mathfrak q$. This implies that $y \bmod \mathfrak q$ is equal to $a/b \bmod \mathfrak q$. However, then we obtain $$ 0 = y^n + a_1 y^{n - 1} + a_2 y^{n - 2} + \ldots + a_n = b^{-n}(a^n + a_1 a^{n - 1}b + a_2 a^{n - 2}b^2 + \ldots + a_nb^n) = b^{-n} $$ a contradiction. This finishes the proof. \end{proof} \noindent In order to explain the proof we need to introduce some group schemes. Fix a prime number $\ell$. Let $$ A = \mathbf{Z}[\zeta] = \mathbf{Z}[x]/(x^{\ell - 1} + x^{\ell - 2} + \ldots + 1) $$ In other words $A$ is the monogenic extension of $\mathbf{Z}$ generated by a primitive $\ell$th root of unity $\zeta$. We set $$ \pi = \zeta - 1 $$ A calculation (omitted) shows that $\ell$ is divisible by $\pi^{\ell - 1}$ in $A$. Our first group scheme over $A$ is $$ G = \Spec(A[s, \frac{1}{\pi s + 1}]) $$ with group law given by the comultiplication $$ \mu : A[s, \frac{1}{\pi s + 1}] \longrightarrow A[s, \frac{1}{\pi s + 1}] \otimes_A A[s, \frac{1}{\pi s + 1}],\quad s \longmapsto \pi s \otimes s + s \otimes 1 + 1 \otimes s $$ With this choice we have $$ \mu(\pi s + 1) = (\pi s + 1) \otimes (\pi s + 1) $$ and hence we indeed have an $A$-algebra map as indicated. We omit the verification that this indeed defines a group law. Our second group scheme over $A$ is $$ H = \Spec(A[t, \frac{1}{\pi^\ell t + 1}]) $$ with group law given by the comultiplication $$ \mu : A[t, \frac{1}{\pi^\ell t + 1}] \longrightarrow A[t, \frac{1}{\pi^\ell t + 1}] \otimes_A A[t, \frac{1}{\pi^\ell t + 1}],\quad t \longmapsto \pi^\ell t \otimes t + t \otimes 1 + 1 \otimes t $$ The same verification as before shows that this defines a group law. Next, we observe that the polynomial $$ \Phi(s) = \frac{(\pi s + 1)^\ell - 1}{\pi^\ell} $$ is in $A[s]$ and of degree $\ell$ and monic in $s$. Namely, the coefficicient of $s^i$ for $0 < i < \ell$ is equal to ${\ell \choose i}\pi^{i - \ell}$ and since $\pi^{\ell - 1}$ divides $\ell$ in $A$ this is an element of $A$. We obtain a ring map $$ A[t, \frac{1}{\pi^\ell t + 1}] \longrightarrow A[s, \frac{1}{\pi s + 1}],\quad t \longmapsto \Phi(s) $$ which the reader easily verifies is compatible with the comultiplications. Thus we get a morphism of group schemes $$ f : G \to H $$ The following lemma in particular shows that this morphism is faithfully flat (in fact we will see that it is finite \'etale surjective). \begin{lemma} \label{lemma-monogenic-one} We have $$ A[s, \frac{1}{\pi s + 1}] = \left(A[t, \frac{1}{\pi^\ell t + 1}]\right)[s]/(\Phi(s) - t) $$ In particular, the Hopf algebra of $G$ is a monogenic extension of the Hopf algebra of $H$. \end{lemma} \begin{proof} Follows from the discussion above and the shape of $\Phi(s)$. In particular, note that using $\Phi(s) = t$ the element $\frac{1}{\pi^\ell t + 1}$ becomes the element $\frac{1}{(\pi s + 1)^\ell}$. \end{proof} \noindent Next, let us compute the kernel of $f$. Since the origin of $H$ is given by $t = 0$ in $H$ we see that the kernel of $f$ is given by $\Phi(s) = 0$. Now observe that the $A$-valued points $\sigma_0, \ldots, \sigma_{\ell - 1}$ of $G$ given by $$ \sigma_i : s = \frac{\zeta^i - 1}{\pi} = \frac{\zeta^i - 1}{\zeta - 1} = \zeta^{i - 1} + \zeta^{i - 2} + \ldots + 1,\quad i = 0, 1, \ldots, \ell - 1 $$ are certainly contained in $\Ker(f)$. Moreover, these are all pairwise distinct in {\bf all} fibres of $G \to \Spec(A)$. Also, the reader computes that $\sigma_i +_G \sigma_j = \sigma_{i + j \bmod \ell}$. Hence we find a closed immersion of group schemes $$ \underline{\mathbf{Z}/\ell \mathbf{Z}}_A \longrightarrow \Ker(f) $$ sending $i$ to $\sigma_i$. However, by construction $\Ker(f)$ is finite flat over $\Spec(A)$ of degree $\ell$. Hence we conclude that this map is an isomorphism. All in all we conclude that we have a short exact sequence \begin{equation} \label{equation-ses} 0 \to \underline{\mathbf{Z}/\ell \mathbf{Z}}_A \to G \to H \to 0 \end{equation} of group schemes over $A$. \begin{lemma} \label{lemma-lift-points-H-to-G} Let $R$ be an $A$-algebra which is absolutely integrally closed. Then $G(R) \to H(R)$ is surjective. \end{lemma} \begin{proof} Let $h \in H(R)$ correspond to the $A$-algebra map $A[t, \frac{1}{\pi^\ell t + 1}] \to R$ sending $t$ to $a \in A$. Since $\Phi(s)$ is monic we can find $b \in A$ with $\Phi(b) = a$. By Lemma \ref{lemma-monogenic-one} sending $s$ to $b$ we obtain a unique $A$-algebra map $A[s, \frac{1}{\pi s + 1}] \to R$ compatible with the map $A[t, \frac{1}{\pi^\ell t + 1}] \to R$ above. This in turn corresponds to an element $g \in G(R)$ mapping to $h \in H(R)$. \end{proof} \begin{lemma} \label{lemma-interpolate} Let $R$ be an $A$-algebra which is absolutely integrally closed. Let $I, J \subset R$ be ideals with $I + J = R$. There exists a $g \in G(R)$ such that $g \bmod I = \sigma_0$ and $g \bmod J = \sigma_1$. \end{lemma} \begin{proof} Choose $x \in I$ such that $x \equiv 1 \bmod J$. We may and do replace $I$ by $xR$ and $J$ by $(x - 1)R$. Then we are looking for an $s \in R$ such that \begin{enumerate} \item $1 + \pi s$ is a unit, \item $s \equiv 0 \bmod xR$, and \item $s \equiv 1 \bmod (x - 1)R$. \end{enumerate} The last two conditions say that $s = x + x(x - 1)y$ for some $y \in R$. The first condition says that $1 + \pi s = 1 + \pi x + \pi x (x - 1) y$ needs to be a unit of $R$. However, note that $1 + \pi x$ and $\pi x (x - 1)$ generate the unit ideal of $R$ and that $1 + \pi x$ is an $\ell$th root of $1$ modulo $\pi x (x - 1)$\footnote{Because $1 + \pi x$ is congruent to $1$ modulo $\pi$, congruent to $1$ modulo $x$, and congruent to $1 + \pi = \zeta$ modulo $x - 1$ and because we have $(\pi) \cap (x) \cap (x - 1) = (\pi x (x - 1))$ in $A[x]$.}. Thus we win by Lemma \ref{lemma-find-extension} and the fact that $R$ is absolutely integrally closed. \end{proof} \begin{proposition} \label{proposition-aic-vanishing} Let $R$ be an absolutely integrally closed ring. Let $M$ be a finite abelian group. Then $H^i_\etale(\Spec(R), \underline{M}) = 0$ for $i > 0$. \end{proposition} \begin{proof} Since any finite abelian group has a finite filtration whose subquotients are cyclic of prime order, we may assume $M = \mathbf{Z}/\ell\mathbf{Z}$ where $\ell$ is a prime number. \medskip\noindent Observe that all local rings of $R$ are strictly henselian, see More on Algebra, Lemma \ref{more-algebra-lemma-absolutely-integrally-closed-strictly-henselian}. Furthermore, any localization of $R$ is also absolutely integrally closed by More on Algebra, Lemma \ref{more-algebra-lemma-absolutely-integrally-closed-quotient-localization}. Thus Lemma \ref{lemma-gabber-criterion} tells us it suffices to show that the kernel of $$ H^1_\etale(D(f + g), \mathbf{Z}/\ell\mathbf{Z}) \longrightarrow H^1_\etale(D(f(f + g)), \mathbf{Z}/\ell\mathbf{Z}) \oplus H^1_\etale(D(g(f + g)), \mathbf{Z}/\ell\mathbf{Z}) $$ is zero for any $f, g \in R$. After replacing $R$ by $R_{f + g}$ we reduce to the following claim: given $\xi \in H^1_\etale(\Spec(R), \mathbf{Z}/\ell\mathbf{Z})$ and an affine open covering $\Spec(R) = U \cup V$ such that $\xi|_U$ and $\xi|_V$ are trivial, then $\xi = 0$. \medskip\noindent Let $A = \mathbf{Z}[\zeta]$ as above. Since $\mathbf{Z} \subset A$ is monogenic, we can find a ring map $A \to R$. From now on we think of $R$ as an $A$-algebra and we think of $\Spec(R)$ as a scheme over $\Spec(A)$. If we base change the short exact sequence (\ref{equation-ses}) to $\Spec(R)$ and take \'etale cohomology we obtain $$ G(R) \to H(R) \to H^1_\etale(\Spec(R), \mathbf{Z}/\ell\mathbf{Z}) \to H^1_\etale(\Spec(R), G) $$ Please keep this in mind during the rest of the proof. \medskip\noindent Let $\tau \in \Gamma(U \cap V, \mathbf{Z}/\ell\mathbf{Z})$ be a section whose boundary in the Mayer-Vietoris sequence (Lemma \ref{lemma-mayer-vietoris}) gives $\xi$. For $i = 0, 1, \ldots, \ell - 1$ let $A_i \subset U \cap V$ be the open and closed subset where $\tau$ has the value $i \bmod \ell$. Thus we have a finite disjoint union decomposition $$ U \cap V = A_0 \amalg \ldots \amalg A_{\ell - 1} $$ such that $\tau$ is constant on each $A_i$. For $i = 0, 1, \ldots, \ell - 1$ denote $\tau_i \in H^0(U \cap V, \mathbf{Z}/\ell\mathbf{Z})$ the element which is equal to $1$ on $A_i$ and equal to $0$ on $A_j$ for $j \not = i$. Then $\tau$ is a sum of multiples of the $\tau_i$\footnote{Modulo calculation errors we have $\tau = \sum i \tau_i$.}. Hence it suffices to show that the cohomology class corresponding to $\tau_i$ is trivial. This reduces us to the case where $\tau$ takes only two distinct values, namely $1$ and $0$. \medskip\noindent Assume $\tau$ takes only the values $1$ and $0$. Write $$ U \cap V = A \amalg B $$ where $A$ is the locus where $\tau = 0$ and $B$ is the locus where $\tau = 1$. Then $A$ and $B$ are disjoint closed subsets. Denote $\overline{A}$ and $\overline{B}$ the closures of $A$ and $B$ in $\Spec(R)$. Then we have a ``banana'': namely we have $$ \overline{A} \cap \overline{B} = Z_1 \amalg Z_2 $$ with $Z_1 \subset U$ and $Z_2 \subset V$ disjoint closed subsets. Set $T_1 = \Spec(R) \setminus V$ and $T_2 = \Spec(R) \setminus U$. Observe that $Z_1 \subset T_1 \subset U$, $Z_2 \subset T_2 \subset V$, and $T_1 \cap T_2 = \emptyset$. Topologically we can write $$ \Spec(R) = \overline{A} \cup \overline{B} \cup T_1 \cup T_2 $$ We suggest drawing a picture to visualize this. In order to prove that $\xi$ is zero, we may and do replace $R$ by its reduction (Proposition \ref{proposition-topological-invariance}). Below, we think of $A$, $\overline{A}$, $B$, $\overline{B}$, $T_1$, $T_2$ as reduced closed subschemes of $\Spec(R)$. Next, as scheme structures on $Z_1$ and $Z_2$ we use $$ Z_1 = \overline{A} \cap (\overline{B} \cup T_1) \quad\text{and}\quad Z_2 = \overline{A} \cap (\overline{B} \cup T_2) $$ (scheme theoretic unions and intersections as in Morphisms, Definition \ref{morphisms-definition-scheme-theoretic-intersection-union}). \medskip\noindent Denote $X$ the $G$-torsor over $\Spec(R)$ corresponding to the image of $\xi$ in $H^1(\Spec(R), G)$. If $X$ is trivial, then $\xi$ comes from an element $h \in H(R)$ (see exact sequence of cohomology above). However, then by Lemma \ref{lemma-lift-points-H-to-G} the element $h$ lifts to an element of $G(R)$ and we conclude $\xi = 0$ as desired. Thus our goal is to prove that $X$ is trivial. \medskip\noindent Recall that the embedding $\mathbf{Z}/\ell \mathbf{Z} \to G(R)$ sends $i \bmod \ell$ to $\sigma_i \in G(R)$. Observe that $\overline{A}$ is the spectrum of an absolutely integrally closed ring (namely a qotient of $R$). By Lemma \ref{lemma-interpolate} we can find $g \in G(\overline{A})$ with $g|_{\overline{A} \cap Z_1} = \sigma_0$ and $g|_{\overline{A} \cap Z_2} = \sigma_1$ (scheme theoretically). Then we can define \begin{enumerate} \item $g_1 \in G(U)$ which is $g$ on $\overline{A} \cap U$, which is $\sigma_0$ on $\overline{B} \cap U$, and $\sigma_0$ on $T_1$, and \item $g_2 \in G(V)$ which is $g$ on $\overline{A} \cap V$, which is $\sigma_1$ on $\overline{B} \cap V$, and $\sigma_1$ on $T_2$. \end{enumerate} Namely, to find $g_1$ as in (1) we glue the section $\sigma_0$ on $\Omega = (\overline{B} \cup T_1) \cap U$ to the restriction of the section $g$ on $\Omega' = \overline{A} \cap U$. Note that $U = \Omega \cup \Omega'$ (scheme theoretically) because $U$ is reduced and $\Omega \cap \Omega' = Z_1$ (scheme theoretically) by our choice of $Z_1$. Hence by Morphisms, Lemma \ref{morphisms-lemma-scheme-theoretic-union} we have that $U$ is the pushout of $\Omega$ and $\Omega'$ along $Z_1$. Thus we can find $g_1$. Similarly for the existence of $g_2$ in (2). Then we have $$ \tau = g_2|_{A \cup B} - g_1|_{A \cup B} \quad(\text{addition in group law}) $$ and we see that $X$ is trivial thereby finishing the proof. \end{proof} \section{Affine analog of proper base change} \label{section-gabber-affine-proper} \noindent In this section we discuss a result by Ofer Gabber, see \cite{gabber-affine-proper}. This was also proved by Roland Huber, see \cite{Huber-henselian}. We have already done some of the work needed for Gabber's proof in Section \ref{section-strictly-henselian-local-rings}. \begin{lemma} \label{lemma-efface-cohomology-on-closed-by-finite-cover} Let $X$ be an affine scheme. Let $\mathcal{F}$ be a torsion abelian sheaf on $X_\etale$. Let $Z \subset X$ be a closed subscheme. Let $\xi \in H^q_\etale(Z, \mathcal{F}|_Z)$ for some $q > 0$. Then there exists an injective map $\mathcal{F} \to \mathcal{F}'$ of torsion abelian sheaves on $X_\etale$ such that the image of $\xi$ in $H^q_\etale(Z, \mathcal{F}'|_Z)$ is zero. \end{lemma} \begin{proof} By Lemmas \ref{lemma-torsion-colimit-constructible} and \ref{lemma-colimit} we can find a map $\mathcal{G} \to \mathcal{F}$ with $\mathcal{G}$ a constructible abelian sheaf and $\xi$ coming from an element $\zeta$ of $H^q_\etale(Z, \mathcal{G}|_Z)$. Suppose we can find an injective map $\mathcal{G} \to \mathcal{G}'$ of torsion abelian sheaves on $X_\etale$ such that the image of $\zeta$ in $H^q_\etale(Z, \mathcal{G}'|_Z)$ is zero. Then we can take $\mathcal{F}'$ to be the pushout $$ \mathcal{F}' = \mathcal{G}' \amalg_{\mathcal{G}} \mathcal{F} $$ and we conclude the result of the lemma holds. (Observe that restriction to $Z$ is exact, so commutes with finite limits and colimits and moreover it commutes with arbitrary colimits as a left adjoint to pushforward.) Thus we may assume $\mathcal{F}$ is constructible. \medskip\noindent Assume $\mathcal{F}$ is constructible. By Lemma \ref{lemma-constructible-maps-into-constant-general} it suffices to prove the result when $\mathcal{F}$ is of the form $f_*\underline{M}$ where $M$ is a finite abelian group and $f : Y \to X$ is a finite morphism of finite presentation (such sheaves are still constructible by Lemma \ref{lemma-finite-pushforward-constructible} but we won't need this). Since formation of $f_*$ commutes with any base change (Lemma \ref{lemma-finite-pushforward-commutes-with-base-change}) we see that the restriction of $f_*\underline{M}$ to $Z$ is equal to the pushforward of $\underline{M}$ via $Y \times_X Z \to Z$. By the Leray spectral sequence (Proposition \ref{proposition-leray}) and vanishing of higher direct images (Proposition \ref{proposition-finite-higher-direct-image-zero}), we find $$ H^q_\etale(Z, f_*\underline{M}|_Z) = H^q_\etale(Y \times_X Z, \underline{M}). $$ By Lemma \ref{lemma-integral-cover-trivial-cohomology} we can find a finite surjective morphism $Y' \to Y$ of finite presentation such that $\xi$ maps to zero in $H^q(Y' \times_X Z, \underline{M})$. Denoting $f' : Y' \to X$ the composition $Y' \to Y \to X$ we claim the map $$ f_*\underline{M} \longrightarrow f'_*\underline{M} $$ is injective which finishes the proof by what was said above. To see the desired injectivity we can look at stalks. Namely, if $\overline{x} : \Spec(k) \to X$ is a geometric point, then $$ (f_*\underline{M})_{\overline{x}} = \bigoplus\nolimits_{f(\overline{y}) = \overline{x}} M $$ by Proposition \ref{proposition-finite-higher-direct-image-zero} and similarly for the other sheaf. Since $Y' \to Y$ is surjective and finite we see that the induced map on geometric points lifting $\overline{x}$ is surjective too and we conclude. \end{proof} \noindent The lemma above will take care of higher cohomology groups in Gabber's result. The following lemma will be used to deal with global sections. \begin{lemma} \label{lemma-gabber-h0} Let $X$ be a quasi-compact and quasi-separated scheme. Let $i : Z \to X$ be a closed immersion. Assume that \begin{enumerate} \item for any sheaf $\mathcal{F}$ on $X_{Zar}$ the map $\Gamma(X, \mathcal{F}) \to \Gamma(Z, i^{-1}\mathcal{F})$ is bijective, and \item for any finite morphism $X' \to X$ assumption (1) holds for $Z \times_X X' \to X'$. \end{enumerate} Then for any sheaf $\mathcal{F}$ on $X_\etale$ we have $\Gamma(X, \mathcal{F}) = \Gamma(Z, i^{-1}_{small}\mathcal{F})$. \end{lemma} \begin{proof} Let $\mathcal{F}$ be a sheaf on $X_\etale$. There is a canonical (base change) map $$ i^{-1}(\mathcal{F}|_{X_{Zar}}) \longrightarrow (i_{small}^{-1}\mathcal{F})|_{Z_{Zar}} $$ of sheaves on $Z_{Zar}$. We will show this map is injective by looking at stalks. The stalk on the left hand side at $z \in Z$ is the stalk of $\mathcal{F}|_{X_{Zar}}$ at $z$. The stalk on the right hand side is the colimit over all elementary \'etale neighbourhoods $(U, u) \to (X, z)$ such that $U \times_X Z \to Z$ has a section over a neighbourhood of $z$. As \'etale morphisms are open, the image of $U \to X$ is an open neighbourhood $U_0$ of $z$ in $X$. The map $\mathcal{F}(U_0) \to \mathcal{F}(U)$ is injective by the sheaf condition for $\mathcal{F}$ with respect to the \'etale covering $U \to U_0$. Taking the colimit over all $U$ and $U_0$ we obtain injectivity on stalks. \medskip\noindent It follows from this and assumption (1) that the map $\Gamma(X, \mathcal{F}) \to \Gamma(Z, i^{-1}_{small}\mathcal{F})$ is injective. By (2) the same thing is true on all $X'$ finite over $X$. \medskip\noindent Let $s \in \Gamma(Z, i^{-1}_{small}\mathcal{F})$. By construction of $i^{-1}_{small}\mathcal{F}$ there exists an \'etale covering $\{V_j \to Z\}$, \'etale morphisms $U_j \to X$, sections $s_j \in \mathcal{F}(U_j)$ and morphisms $V_j \to U_j$ over $X$ such that $s|_{V_j}$ is the pullback of $s_j$. Observe that every nonempty closed subscheme $T \subset X$ meets $Z$ by assumption (1) applied to the sheaf $(T \to X)_*\underline{\mathbf{Z}}$ for example. Thus we see that $\coprod U_j \to X$ is surjective. By More on Morphisms, Lemma \ref{more-morphisms-lemma-there-is-a-scheme-integral-over} we can find a finite surjective morphism $X' \to X$ such that $X' \to X$ Zariski locally factors through $\coprod U_j \to X$. It follows that $s|_{Z'}$ Zariski locally comes from a section of $\mathcal{F}|_{X'}$. In other words, $s|_{Z'}$ comes from $t' \in \Gamma(X', \mathcal{F}|_{X'})$ by assumption (2). By injectivity we conclude that the two pullbacks of $t'$ to $X' \times_X X'$ are the same (after all this is true for the pullbacks of $s$ to $Z' \times_Z Z'$). Hence we conclude $t'$ comes from a section of $\mathcal{F}$ over $X$ by Remark \ref{remark-cohomological-descent-finite}. \end{proof} \begin{lemma} \label{lemma-connected-topological} Let $Z \subset X$ be a closed subset of a topological space $X$. Assume \begin{enumerate} \item $X$ is a spectral space (Topology, Definition \ref{topology-definition-spectral-space}), and \item for $x \in X$ the intersection $Z \cap \overline{\{x\}}$ is connected (in particular nonempty). \end{enumerate} If $Z = Z_1 \amalg Z_2$ with $Z_i$ closed in $Z$, then there exists a decomposition $X = X_1 \amalg X_2$ with $X_i$ closed in $X$ and $Z_i = Z \cap X_i$. \end{lemma} \begin{proof} Observe that $Z_i$ is quasi-compact. Hence the set of points $W_i$ specializing to $Z_i$ is closed in the constructible topology by Topology, Lemma \ref{topology-lemma-make-spectral-space}. Assumption (2) implies that $X = W_1 \amalg W_2$. Let $x \in \overline{W_1}$. By Topology, Lemma \ref{topology-lemma-constructible-stable-specialization-closed} part (1) there exists a specialization $x_1 \leadsto x$ with $x_1 \in W_1$. Thus $\overline{\{x\}} \subset \overline{\{x_1\}}$ and we see that $x \in W_1$. In other words, setting $X_i = W_i$ does the job. \end{proof} \begin{lemma} \label{lemma-h0-topological} Let $Z \subset X$ be a closed subset of a topological space $X$. Assume \begin{enumerate} \item $X$ is a spectral space (Topology, Definition \ref{topology-definition-spectral-space}), and \item for $x \in X$ the intersection $Z \cap \overline{\{x\}}$ is connected (in particular nonempty). \end{enumerate} Then for any sheaf $\mathcal{F}$ on $X$ we have $\Gamma(X, \mathcal{F}) = \Gamma(Z, \mathcal{F}|_Z)$. \end{lemma} \begin{proof} If $x \leadsto x'$ is a specialization of points, then there is a canonical map $\mathcal{F}_{x'} \to \mathcal{F}_x$ compatible with sections over opens and functorial in $\mathcal{F}$. Since every point of $X$ specializes to a point of $Z$ it follows that $\Gamma(X, \mathcal{F}) \to \Gamma(Z, \mathcal{F}|_Z)$ is injective. The difficult part is to show that it is surjective. \medskip\noindent Denote $\mathcal{B}$ be the set of all quasi-compact opens of $X$. Write $\mathcal{F}$ as a filtered colimit $\mathcal{F} = \colim \mathcal{F}_i$ where each $\mathcal{F}_i$ is as in Modules, Equation (\ref{modules-equation-towards-constructible-sets}). See Modules, Lemma \ref{modules-lemma-filtered-colimit-constructibles}. Then $\mathcal{F}|_Z = \colim \mathcal{F}_i|_Z$ as restriction to $Z$ is a left adjoint (Categories, Lemma \ref{categories-lemma-adjoint-exact} and Sheaves, Lemma \ref{sheaves-lemma-f-map}). By Sheaves, Lemma \ref{sheaves-lemma-directed-colimits-sections} the functors $\Gamma(X, -)$ and $\Gamma(Z, -)$ commute with filtered colimits. Hence we may assume our sheaf $\mathcal{F}$ is as in Modules, Equation (\ref{modules-equation-towards-constructible-sets}). \medskip\noindent Suppose that we have an embedding $\mathcal{F} \subset \mathcal{G}$. Then we have $$ \Gamma(X, \mathcal{F}) = \Gamma(Z, \mathcal{F}|_Z) \cap \Gamma(X, \mathcal{G}) $$ where the intersection takes place in $\Gamma(Z, \mathcal{G}|_Z)$. This follows from the first remark of the proof because we can check whether a global section of $\mathcal{G}$ is in $\mathcal{F}$ by looking at the stalks and because every point of $X$ specializes to a point of $Z$. \medskip\noindent By Modules, Lemma \ref{modules-lemma-constructible-in-constant} there is an injection $\mathcal{F} \to \prod (Z_i \to X)_*\underline{S_i}$ where the product is finite, $Z_i \subset X$ is closed, and $S_i$ is finite. Thus it suffices to prove surjectivity for the sheaves $(Z_i \to X)_*\underline{S_i}$. Observe that $$ \Gamma(X, (Z_i \to X)_*\underline{S_i}) = \Gamma(Z_i, \underline{S_i}) \quad\text{and}\quad \Gamma(X, (Z_i \to X)_*\underline{S_i}|_Z) = \Gamma(Z \cap Z_i, \underline{S_i}) $$ Moreover, conditions (1) and (2) are inherited by $Z_i$; this is clear for (2) and follows from Topology, Lemma \ref{topology-lemma-spectral-sub} for (1). Thus it suffices to prove the lemma in the case of a (finite) constant sheaf. This case is a restatement of Lemma \ref{lemma-connected-topological} which finishes the proof. \end{proof} \begin{example} \label{example-quinard} Lemma \ref{lemma-h0-topological} is false if $X$ is not spectral. Here is an example: Let $Y$ be a $T_1$ topological space, and $y \in Y$ a non-open point. Let $X = Y \amalg \{ x \}$, endowed with the topology whose closed sets are $\emptyset$, $\{y\}$, and all $F \amalg \{ x \}$, where $F$ is a closed subset of $Y$. Then $Z = \{x, y\}$ is a closed subset of $X$, which satisfies assumption (2) of Lemma \ref{lemma-h0-topological}. But $X$ is connected, while $Z$ is not. The conclusion of the lemma thus fails for the constant sheaf with value $\{0, 1\}$ on $X$. \end{example} \begin{lemma} \label{lemma-h0-henselian-pair} Let $(A, I)$ be a henselian pair. Set $X = \Spec(A)$ and $Z = \Spec(A/I)$. For any sheaf $\mathcal{F}$ on $X_\etale$ we have $\Gamma(X, \mathcal{F}) = \Gamma(Z, \mathcal{F}|_Z)$. \end{lemma} \begin{proof} Recall that the spectrum of any ring is a spectral space, see Algebra, Lemma \ref{algebra-lemma-spec-spectral}. By More on Algebra, Lemma \ref{more-algebra-lemma-irreducible-henselian-pair-connected} we see that $\overline{\{x\}} \cap Z$ is connected for every $x \in X$. By Lemma \ref{lemma-h0-topological} we see that the statement is true for sheaves on $X_{Zar}$. For any finite morphism $X' \to X$ we have $X' = \Spec(A')$ and $Z \times_X X' = \Spec(A'/IA')$ with $(A', IA')$ a henselian pair, see More on Algebra, Lemma \ref{more-algebra-lemma-integral-over-henselian-pair} and we get the same statement for sheaves on $(X')_{Zar}$. Thus we can apply Lemma \ref{lemma-gabber-h0} to conclude. \end{proof} \noindent Finally, we can state and prove Gabber's theorem. \begin{theorem}[Gabber] \label{theorem-gabber} Let $(A, I)$ be a henselian pair. Set $X = \Spec(A)$ and $Z = \Spec(A/I)$. For any torsion abelian sheaf $\mathcal{F}$ on $X_\etale$ we have $H^q_\etale(X, \mathcal{F}) = H^q_\etale(Z, \mathcal{F}|_Z)$. \end{theorem} \begin{proof} The result holds for $q = 0$ by Lemma \ref{lemma-h0-henselian-pair}. Let $q \geq 1$. Suppose the result has been shown in all degrees $< q$. Let $\mathcal{F}$ be a torsion abelian sheaf. Let $\mathcal{F} \to \mathcal{F}'$ be an injective map of torsion abelian sheaves (to be chosen later) with cokernel $\mathcal{Q}$ so that we have the short exact sequence $$ 0 \to \mathcal{F} \to \mathcal{F}' \to \mathcal{Q} \to 0 $$ of torsion abelian sheaves on $X_\etale$. This gives a map of long exact cohomology sequences over $X$ and $Z$ part of which looks like $$ \xymatrix{ H^{q - 1}_\etale(X, \mathcal{F}') \ar[d] \ar[r] & H^{q - 1}_\etale(X, \mathcal{Q}) \ar[d] \ar[r] & H^q_\etale(X, \mathcal{F}) \ar[d] \ar[r] & H^q_\etale(X, \mathcal{F}') \ar[d] \\ H^{q - 1}_\etale(Z, \mathcal{F}'|_Z) \ar[r] & H^{q - 1}_\etale(Z, \mathcal{Q}|_Z) \ar[r] & H^q_\etale(Z, \mathcal{F}|_Z) \ar[r] & H^q_\etale(Z, \mathcal{F}'|_Z) } $$ Using this commutative diagram of abelian groups with exact rows we will finish the proof. \medskip\noindent Injectivity for $\mathcal{F}$. Let $\xi$ be a nonzero element of $H^q_\etale(X, \mathcal{F})$. By Lemma \ref{lemma-efface-cohomology-on-closed-by-finite-cover} applied with $Z = X$ (!) we can find $\mathcal{F} \subset \mathcal{F}'$ such that $\xi$ maps to zero to the right. Then $\xi$ is the image of an element of $H^{q - 1}_\etale(X, \mathcal{Q})$ and bijectivity for $q - 1$ implies $\xi$ does not map to zero in $H^q_\etale(Z, \mathcal{F}|_Z)$. \medskip\noindent Surjectivity for $\mathcal{F}$. Let $\xi$ be an element of $H^q_\etale(Z, \mathcal{F}|_Z)$. By Lemma \ref{lemma-efface-cohomology-on-closed-by-finite-cover} applied with $Z = Z$ we can find $\mathcal{F} \subset \mathcal{F}'$ such that $\xi$ maps to zero to the right. Then $\xi$ is the image of an element of $H^{q - 1}_\etale(Z, \mathcal{Q}|_Z)$ and bijectivity for $q - 1$ implies $\xi$ is in the image of the vertical map. \end{proof} \begin{lemma} \label{lemma-vanishing-restriction-injective} Let $X$ be a scheme with affine diagonal which can be covered by $n + 1$ affine opens. Let $Z \subset X$ be a closed subscheme. Let $\mathcal{A}$ be a torsion sheaf of rings on $X_\etale$ and let $\mathcal{I}$ be an injective sheaf of $\mathcal{A}$-modules on $X_\etale$. Then $H^q_\etale(Z, \mathcal{I}|_Z) = 0$ for $q > n$. \end{lemma} \begin{proof} We will prove this by induction on $n$. If $n = 0$, then $X$ is affine. Say $X = \Spec(A)$ and $Z = \Spec(A/I)$. Let $A^h$ be the filtered colimit of \'etale $A$-algebras $B$ such that $A/I \to B/IB$ is an isomorphism. Then $(A^h, IA^h)$ is a henselian pair and $A/I = A^h/IA^h$, see More on Algebra, Lemma \ref{more-algebra-lemma-henselization} and its proof. Set $X^h = \Spec(A^h)$. By Theorem \ref{theorem-gabber} we see that $$ H^q_\etale(Z, \mathcal{I}|_Z) = H^q_\etale(X^h, \mathcal{I}|_{X^h}) $$ By Theorem \ref{theorem-colimit} we have $$ H^q_\etale(X^h, \mathcal{I}|_{X^h}) = \colim_{A \to B} H^q_\etale(\Spec(B), \mathcal{I}|_{\Spec(B)}) $$ where the colimit is over the $A$-algebras $B$ as above. Since the morphisms $\Spec(B) \to \Spec(A)$ are \'etale, the restriction $\mathcal{I}|_{\Spec(B)}$ is an injective sheaf of $\mathcal{A}|_{\Spec(B)}$-modules (Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-cohomology-of-open}). Thus the cohomology groups on the right are zero and we get the result in this case. \medskip\noindent Induction step. We can use Mayer-Vietoris to do the induction step. Namely, suppose that $X = U \cup V$ where $U$ is a union of $n$ affine opens and $V$ is affine. Then, using that the diagonal of $X$ is affine, we see that $U \cap V$ is the union of $n$ affine opens. Mayer-Vietoris gives an exact sequence $$ H^{q - 1}_\etale(U \cap V \cap Z, \mathcal{I}|_Z) \to H^q_\etale(Z, \mathcal{I}|_Z) \to H^q_\etale(U \cap Z, \mathcal{I}|_Z) \oplus H^q_\etale(V \cap Z, \mathcal{I}|_Z) $$ and by our induction hypothesis we obtain vanishing for $q > n$ as desired. \end{proof} \section{Cohomology of torsion sheaves on curves} \label{section-vanishing-torsion} \noindent The goal of this section is to prove the basic finiteness and vanishing results for cohomology of torsion sheaves on curves, see Theorem \ref{theorem-vanishing-affine-curves}. In Section \ref{section-vanishing-torsion-coefficients} we will discuss constructible sheaves of torsion modules over a Noetherian ring. \begin{situation} \label{situation-what-to-prove} Here $k$ is an algebraically closed field, $X$ is a separated, finite type scheme of dimension $\leq 1$ over $k$, and $\mathcal{F}$ is a torsion abelian sheaf on $X_\etale$. \end{situation} \noindent In Situation \ref{situation-what-to-prove} we want to prove the following statements \begin{enumerate} \item \label{item-vanishing} $H^q_\etale(X, \mathcal{F}) = 0$ for $q > 2$, \item \label{item-vanishing-affine} $H^q_\etale(X, \mathcal{F}) = 0$ for $q > 1$ if $X$ is affine, \item \label{item-vanishing-p-p} $H^q_\etale(X, \mathcal{F}) = 0$ for $q > 1$ if $p = \text{char}(k) > 0$ and $\mathcal{F}$ is $p$-power torsion, \item \label{item-finite-prime-to-p} $H^q_\etale(X, \mathcal{F})$ is finite if $\mathcal{F}$ is constructible and torsion prime to $\text{char}(k)$, \item \label{item-finite-proper} $H^q_\etale(X, \mathcal{F})$ is finite if $X$ is proper and $\mathcal{F}$ constructible, \item \label{item-base-change-prime-to-p} $H^q_\etale(X, \mathcal{F}) \to H^q_\etale(X_{k'}, \mathcal{F}|_{X_{k'}})$ is an isomorphism for any extension $k'/k$ of algebraically closed fields if $\mathcal{F}$ is torsion prime to $\text{char}(k)$, \item \label{item-base-change-proper} $H^q_\etale(X, \mathcal{F}) \to H^q_\etale(X_{k'}, \mathcal{F}|_{X_{k'}})$ is an isomorphism for any extension $k'/k$ of algebraically closed fields if $X$ is proper, \item \label{item-surjective} $H^2_\etale(X, \mathcal{F}) \to H^2_\etale(U, \mathcal{F})$ is surjective for all $U \subset X$ open. \end{enumerate} Given any Situation \ref{situation-what-to-prove} we will say that ``statements (\ref{item-vanishing}) -- (\ref{item-surjective}) hold'' if those statements that apply to the given situation are true. We start the proof with the following consequence of our computation of cohomology with constant coefficients. \begin{lemma} \label{lemma-constant-smooth-statements} In Situation \ref{situation-what-to-prove} assume $X$ is smooth and $\mathcal{F} = \underline{\mathbf{Z}/\ell\mathbf{Z}}$ for some prime number $\ell$. Then statements (\ref{item-vanishing}) -- (\ref{item-surjective}) hold for $\mathcal{F}$. \end{lemma} \begin{proof} Since $X$ is smooth, we see that $X$ is a finite disjoint union of smooth curves. Hence we may assume $X$ is a smooth curve. \medskip\noindent Case I: $\ell$ different from the characteristic of $k$. This case follows from Lemma \ref{lemma-cohomology-smooth-projective-curve} (projective case) and Lemma \ref{lemma-vanishing-cohomology-mu-smooth-curve} (affine case). Statement (\ref{item-base-change-prime-to-p}) on cohomology and extension of algebraically closed ground field follows from the fact that the genus $g$ and the number of ``punctures'' $r$ do not change when passing from $k$ to $k'$. Statement (\ref{item-surjective}) follows as $H^2_\etale(U, \mathcal{F})$ is zero as soon as $U \not = X$, because then $U$ is affine (Varieties, Lemmas \ref{varieties-lemma-proper-minus-point} and \ref{varieties-lemma-curve-affine-projective}). \medskip\noindent Case II: $\ell$ is equal to the characteristic of $k$. Vanishing by Lemma \ref{lemma-vanishing-variety-char-p-p}. Statements (\ref{item-finite-proper}) and (\ref{item-base-change-proper}) follow from Lemma \ref{lemma-finiteness-proper-variety-char-p-p}. \end{proof} \begin{remark}[Invariance under extension of algebraically closed ground field] \label{remark-invariance} Let $k$ be an algebraically closed field of characteristic $p > 0$. In Section \ref{section-artin-schreier} we have seen that there is an exact sequence $$ k[x] \to k[x] \to H^1_\etale(\mathbf{A}^1_k, \mathbf{Z}/p\mathbf{Z}) \to 0 $$ where the first arrow maps $f(x)$ to $f^p - f$. A set of representatives for the cokernel is formed by the polynomials $$ \sum\nolimits_{p \not | n} \lambda_n x^n $$ with $\lambda_n \in k$. (If $k$ is not algebraically closed you have to add some constants to this as well.) In particular when $k'/k$ is an algebraically closed extension, then the map $$ H^1_\etale(\mathbf{A}^1_k, \mathbf{Z}/p\mathbf{Z}) \to H^1_\etale(\mathbf{A}^1_{k'}, \mathbf{Z}/p\mathbf{Z}) $$ is not an isomorphism in general. In particular, the map $\pi_1(\mathbf{A}^1_{k'}) \to \pi_1(\mathbf{A}^1_k)$ between \'etale fundamental groups (insert future reference here) is not an isomorphism either. Thus the \'etale homotopy type of the affine line depends on the algebraically closed ground field. From Lemma \ref{lemma-constant-smooth-statements} above we see that this is a phenomenon which only happens in characteristic $p$ with $p$-power torsion coefficients. \end{remark} \begin{lemma} \label{lemma-ses-statements} Let $k$ be an algebraically closed field. Let $X$ be a separated finite type scheme over $k$ of dimension $\leq 1$. Let $0 \to \mathcal{F}_1 \to \mathcal{F} \to \mathcal{F}_2 \to 0$ be a short exact sequence of torsion abelian sheaves on $X$. If statements (\ref{item-vanishing}) -- (\ref{item-surjective}) hold for $\mathcal{F}_1$ and $\mathcal{F}_2$, then they hold for $\mathcal{F}$. \end{lemma} \begin{proof} This is mostly immediate from the definitions and the long exact sequence of cohomology. Also observe that $\mathcal{F}$ is constructible (resp.\ of torsion prime to the characteristic of $k$) if and only if both $\mathcal{F}_1$ and $\mathcal{F}_2$ are constructible (resp.\ of torsion prime to the characteristic of $k$). See Proposition \ref{proposition-constructible-over-noetherian}. Some details omitted. \end{proof} \begin{lemma} \label{lemma-finite-pushforward-statements} Let $k$ be an algebraically closed field. Let $f : X \to Y$ be a finite morphism of separated finite type schemes over $k$ of dimension $\leq 1$. Let $\mathcal{F}$ be a torsion abelian sheaf on $X$. If statements (\ref{item-vanishing}) -- (\ref{item-surjective}) hold for $\mathcal{F}$, then they hold for $f_*\mathcal{F}$. \end{lemma} \begin{proof} Namely, we have $H^q_\etale(X, \mathcal{F}) = H^q_\etale(Y, f_*\mathcal{F})$ by the vanishing of $R^qf_*$ for $q > 0$ (Proposition \ref{proposition-finite-higher-direct-image-zero}) and the Leray spectral sequence (Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-apply-Leray}). For (\ref{item-surjective}) use that formation of $f_*$ commutes with arbitrary base change (Lemma \ref{lemma-finite-pushforward-commutes-with-base-change}). \end{proof} \begin{lemma} \label{lemma-restrict-to-open} In Situation \ref{situation-what-to-prove} assume $\mathcal{F}$ constructible. Let $j : X' \to X$ be the inclusion of a dense open subscheme. Then statements (\ref{item-vanishing}) -- (\ref{item-surjective}) hold for $\mathcal{F}$ if and only if they hold for $j_!j^{-1}\mathcal{F}$. \end{lemma} \begin{proof} Since $X'$ is dense, we see that $Z = X \setminus X'$ has dimension $0$ and hence is a finite set $Z = \{x_1, \ldots, x_n\}$ of $k$-rational points. Consider the short exact sequence $$ 0 \to j_!j^{-1}\mathcal{F} \to \mathcal{F} \to i_*i^{-1}\mathcal{F} \to 0 $$ of Lemma \ref{lemma-ses-associated-to-open}. Observe that $H^q_\etale(X, i_*i^{-1}\mathcal{F}) = H^q_\etale(Z, i^*\mathcal{F})$. Namely, $i : Z \to X$ is a closed immersion, hence finite, hence we have the vanishing of $R^qi_*$ for $q > 0$ by Proposition \ref{proposition-finite-higher-direct-image-zero}, and hence the equality follows from the Leray spectral sequence (Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-apply-Leray}). Since $Z$ is a disjoint union of spectra of algebraically closed fields, we conclude that $H^q_\etale(Z, i^*\mathcal{F}) = 0$ for $q > 0$ and $$ H^0_\etale(Z, i^{-1}\mathcal{F}) = \bigoplus\nolimits_{i = 1, \ldots, n} \mathcal{F}_{x_i} $$ which is finite as $\mathcal{F}_{x_i}$ is finite due to the assumption that $\mathcal{F}$ is constructible. The long exact cohomology sequence gives an exact sequence $$ 0 \to H^0_\etale(X, j_!j^{-1}\mathcal{F}) \to H^0_\etale(X, \mathcal{F}) \to H^0_\etale(Z, i^{-1}\mathcal{F}) \to H^1_\etale(X, j_!j^{-1}\mathcal{F}) \to H^1_\etale(X, \mathcal{F}) \to 0 $$ and isomorphisms $H^q_\etale(X, j_!j^{-1}\mathcal{F}) \to H^q_\etale(X, \mathcal{F})$ for $q > 1$. \medskip\noindent At this point it is easy to deduce each of (\ref{item-vanishing}) -- (\ref{item-surjective}) holds for $\mathcal{F}$ if and only if it holds for $j_!j^{-1}\mathcal{F}$. We make a few small remarks to help the reader: (a) if $\mathcal{F}$ is torsion prime to the characteristic of $k$, then so is $j_!j^{-1}\mathcal{F}$, (b) the sheaf $j_!j^{-1}\mathcal{F}$ is constructible, (c) we have $H^0_\etale(Z, i^{-1}\mathcal{F}) = H^0_\etale(Z_{k'}, i^{-1}\mathcal{F}|_{Z_{k'}})$, and (d) if $U \subset X$ is an open, then $U' = U \cap X'$ is dense in $U$. \end{proof} \begin{lemma} \label{lemma-even-easier} In Situation \ref{situation-what-to-prove} assume $X$ is smooth. Let $j : U \to X$ an open immersion. Let $\ell$ be a prime number. Let $\mathcal{F} = j_!\underline{\mathbf{Z}/\ell\mathbf{Z}}$. Then statements (\ref{item-vanishing}) -- (\ref{item-surjective}) hold for $\mathcal{F}$. \end{lemma} \begin{proof} Since $X$ is smooth, it is a disjoint union of smooth curves and hence we may assume $X$ is a curve (i.e., irreducible). Then either $U = \emptyset$ and there is nothing to prove or $U \subset X$ is dense. In this case the lemma follows from Lemmas \ref{lemma-constant-smooth-statements} and \ref{lemma-restrict-to-open}. \end{proof} \begin{lemma} \label{lemma-somewhat-easier} In Situation \ref{situation-what-to-prove} assume $X$ reduced. Let $j : U \to X$ an open immersion. Let $\ell$ be a prime number and $\mathcal{F} = j_!\underline{\mathbf{Z}/\ell\mathbf{Z}}$. Then statements (\ref{item-vanishing}) -- (\ref{item-surjective}) hold for $\mathcal{F}$. \end{lemma} \begin{proof} The difference with Lemma \ref{lemma-even-easier} is that here we do not assume $X$ is smooth. Let $\nu : X^\nu \to X$ be the normalization morphism. Then $\nu$ is finite (Varieties, Lemma \ref{varieties-lemma-normalization-locally-algebraic}) and $X^\nu$ is smooth (Varieties, Lemma \ref{varieties-lemma-regular-point-on-curve}). Let $j^\nu : U^\nu \to X^\nu$ be the inverse image of $U$. By Lemma \ref{lemma-even-easier} the result holds for $j^\nu_!\underline{\mathbf{Z}/\ell\mathbf{Z}}$. By Lemma \ref{lemma-finite-pushforward-statements} the result holds for $\nu_*j^\nu_!\underline{\mathbf{Z}/\ell\mathbf{Z}}$. In general it won't be true that $\nu_*j^\nu_!\underline{\mathbf{Z}/\ell\mathbf{Z}}$ is equal to $j_!\underline{\mathbf{Z}/\ell\mathbf{Z}}$ but we can work around this as follows. As $X$ is reduced the morphism $\nu : X^\nu \to X$ is an isomorphism over a dense open $j' : X' \to X$ (Varieties, Lemma \ref{varieties-lemma-normalization-locally-algebraic}). Over this open we have agreement $$ (j')^{-1}(\nu_*j^\nu_!\underline{\mathbf{Z}/\ell\mathbf{Z}}) = (j')^{-1}(j_!\underline{\mathbf{Z}/\ell\mathbf{Z}}) $$ Using Lemma \ref{lemma-restrict-to-open} twice for $j' : X' \to X$ and the sheaves above we conclude. \end{proof} \begin{lemma} \label{lemma-vanishing-easier} In Situation \ref{situation-what-to-prove} assume $X$ reduced. Let $j : U \to X$ an open immersion with $U$ connected. Let $\ell$ be a prime number. Let $\mathcal{G}$ a finite locally constant sheaf of $\mathbf{F}_\ell$-vector spaces on $U$. Let $\mathcal{F} = j_!\mathcal{G}$. Then statements (\ref{item-vanishing}) -- (\ref{item-surjective}) hold for $\mathcal{F}$. \end{lemma} \begin{proof} Let $f : V \to U$ be a finite \'etale morphism of degree prime to $\ell$ as in Lemma \ref{lemma-pullback-filtered}. The discussion in Section \ref{section-trace-method} gives maps $$ \mathcal{G} \to f_*f^{-1}\mathcal{G} \to \mathcal{G} $$ whose composition is an isomorphism. Hence it suffices to prove the lemma with $\mathcal{F} = j_!f_*f^{-1}\mathcal{G}$. By Zariski's Main theorem (More on Morphisms, Lemma \ref{more-morphisms-lemma-quasi-finite-separated-pass-through-finite}) we can choose a diagram $$ \xymatrix{ V \ar[r]_{j'} \ar[d]_f & Y \ar[d]^{\overline{f}} \\ U \ar[r]^j & X } $$ with $\overline{f} : Y \to X$ finite and $j'$ an open immersion with dense image. We may replace $Y$ by its reduction (this does not change $V$ as $V$ is reduced being \'etale over $U$). Since $f$ is finite and $V$ dense in $Y$ we have $V = U \times_X Y$. By Lemma \ref{lemma-compatible-shriek-push-finite} we have $$ j_!f_*f^{-1}\mathcal{G} = \overline{f}_*j'_!f^{-1}\mathcal{G} $$ By Lemma \ref{lemma-finite-pushforward-statements} it suffices to consider $j'_!f^{-1}\mathcal{G}$. The existence of the filtration given by Lemma \ref{lemma-pullback-filtered}, the fact that $j'_!$ is exact, and Lemma \ref{lemma-ses-statements} reduces us to the case $\mathcal{F} = j'_!\underline{\mathbf{Z}/\ell\mathbf{Z}}$ which is Lemma \ref{lemma-somewhat-easier}. \end{proof} %10.20.09 \begin{theorem} \label{theorem-vanishing-affine-curves} If $k$ is an algebraically closed field, $X$ is a separated, finite type scheme of dimension $\leq 1$ over $k$, and $\mathcal{F}$ is a torsion abelian sheaf on $X_\etale$, then \begin{enumerate} \item $H^q_\etale(X, \mathcal{F}) = 0$ for $q > 2$, \item $H^q_\etale(X, \mathcal{F}) = 0$ for $q > 1$ if $X$ is affine, \item $H^q_\etale(X, \mathcal{F}) = 0$ for $q > 1$ if $p = \text{char}(k) > 0$ and $\mathcal{F}$ is $p$-power torsion, \item $H^q_\etale(X, \mathcal{F})$ is finite if $\mathcal{F}$ is constructible and torsion prime to $\text{char}(k)$, \item $H^q_\etale(X, \mathcal{F})$ is finite if $X$ is proper and $\mathcal{F}$ constructible, \item $H^q_\etale(X, \mathcal{F}) \to H^q_\etale(X_{k'}, \mathcal{F}|_{X_{k'}})$ is an isomorphism for any extension $k'/k$ of algebraically closed fields if $\mathcal{F}$ is torsion prime to $\text{char}(k)$, \item $H^q_\etale(X, \mathcal{F}) \to H^q_\etale(X_{k'}, \mathcal{F}|_{X_{k'}})$ is an isomorphism for any extension $k'/k$ of algebraically closed fields if $X$ is proper, \item $H^2_\etale(X, \mathcal{F}) \to H^2_\etale(U, \mathcal{F})$ is surjective for all $U \subset X$ open. \end{enumerate} \end{theorem} \begin{proof} The theorem says that in Situation \ref{situation-what-to-prove} statements (\ref{item-vanishing}) -- (\ref{item-surjective}) hold. Our first step is to replace $X$ by its reduction, which is permissible by Proposition \ref{proposition-topological-invariance}. By Lemma \ref{lemma-torsion-colimit-constructible} we can write $\mathcal{F}$ as a filtered colimit of constructible abelian sheaves. Taking cohomology commutes with colimits, see Lemma \ref{lemma-colimit}. Moreover, pullback via $X_{k'} \to X$ commutes with colimits as a left adjoint. Thus it suffices to prove the statements for a constructible sheaf. \medskip\noindent In this paragraph we use Lemma \ref{lemma-ses-statements} without further mention. Writing $\mathcal{F} = \mathcal{F}_1 \oplus \ldots \oplus \mathcal{F}_r$ where $\mathcal{F}_i$ is $\ell_i$-primary for some prime $\ell_i$, we may assume that $\ell^n$ kills $\mathcal{F}$ for some prime $\ell$. Now consider the exact sequence $$ 0 \to \mathcal{F}[\ell] \to \mathcal{F} \to \mathcal{F}/\mathcal{F}[\ell] \to 0. $$ Thus we see that it suffices to assume that $\mathcal{F}$ is $\ell$-torsion. This means that $\mathcal{F}$ is a constructible sheaf of $\mathbf{F}_\ell$-vector spaces for some prime number $\ell$. \medskip\noindent By definition this means there is a dense open $U \subset X$ such that $\mathcal{F}|_U$ is finite locally constant sheaf of $\mathbf{F}_\ell$-vector spaces. Since $\dim(X) \leq 1$ we may assume, after shrinking $U$, that $U = U_1 \amalg \ldots \amalg U_n$ is a disjoint union of irreducible schemes (just remove the closed points which lie in the intersections of $\geq 2$ components of $U$). By Lemma \ref{lemma-restrict-to-open} we reduce to the case $\mathcal{F} = j_!\mathcal{G}$ where $\mathcal{G}$ is a finite locally constant sheaf of $\mathbf{F}_\ell$-vector spaces on $U$. \medskip\noindent Since we chose $U = U_1 \amalg \ldots \amalg U_n$ with $U_i$ irreducible we have $$ j_!\mathcal{G} = j_{1!}(\mathcal{G}|_{U_1}) \oplus \ldots \oplus j_{n!}(\mathcal{G}|_{U_n}) $$ where $j_i : U_i \to X$ is the inclusion morphism. The case of $j_{i!}(\mathcal{G}|_{U_i})$ is handled in Lemma \ref{lemma-vanishing-easier}. \end{proof} \begin{theorem} \label{theorem-vanishing-curves} Let $X$ be a finite type, dimension $1$ scheme over an algebraically closed field $k$. Let $\mathcal{F}$ be a torsion sheaf on $X_\etale$. Then $$ H_\etale^q(X, \mathcal{F}) = 0, \quad \forall q \geq 3. $$ If $X$ affine then also $H_\etale^2(X, \mathcal{F}) = 0$. \end{theorem} \begin{proof} If $X$ is separated, this follows immediately from the more precise Theorem \ref{theorem-vanishing-affine-curves}. If $X$ is nonseparated, choose an affine open covering $X = X_1 \cup \ldots \cup X_n$. By induction on $n$ we may assume the vanishing holds over $U = X_1 \cup \ldots \cup X_{n - 1}$. Then Mayer-Vietoris (Lemma \ref{lemma-mayer-vietoris}) gives $$ H^2_\etale(U, \mathcal{F}) \oplus H^2_\etale(X_n, \mathcal{F}) \to H^2_\etale(U \cap X_n, \mathcal{F}) \to H^3_\etale(X, \mathcal{F}) \to 0 $$ However, since $U \cap X_n$ is an open of an affine scheme and hence affine by our dimension assumption, the group $H^2_\etale(U \cap X_n, \mathcal{F})$ vanishes by Theorem \ref{theorem-vanishing-affine-curves}. \end{proof} \begin{lemma} \label{lemma-base-change-dim-1-separably-closed} Let $k'/k$ be an extension of separably closed fields. Let $X$ be a proper scheme over $k$ of dimension $\leq 1$. Let $\mathcal{F}$ be a torsion abelian sheaf on $X$. Then the map $H^q_\etale(X, \mathcal{F}) \to H^q_\etale(X_{k'}, \mathcal{F}|_{X_{k'}})$ is an isomorphism for $q \geq 0$. \end{lemma} \begin{proof} We have seen this for algebraically closed fields in Theorem \ref{theorem-vanishing-affine-curves}. Given $k \subset k'$ as in the statement of the lemma we can choose a diagram $$ \xymatrix{ k' \ar[r] & \overline{k}' \\ k \ar[u] \ar[r] & \overline{k} \ar[u] } $$ where $k \subset \overline{k}$ and $k' \subset \overline{k}'$ are the algebraic closures. Since $k$ and $k'$ are separably closed the field extensions $\overline{k}/k$ and $\overline{k}'/k'$ are algebraic and purely inseparable. In this case the morphisms $X_{\overline{k}} \to X$ and $X_{\overline{k}'} \to X_{k'}$ are universal homeomorphisms. Thus the cohomology of $\mathcal{F}$ may be computed on $X_{\overline{k}}$ and the cohomology of $\mathcal{F}|_{X_{k'}}$ may be computed on $X_{\overline{k}'}$, see Proposition \ref{proposition-topological-invariance}. Hence we deduce the general case from the case of algebraically closed fields. \end{proof} \section{Cohomology of torsion modules on curves} \label{section-vanishing-torsion-coefficients} \noindent In this section we repeat the arguments of Section \ref{section-vanishing-torsion} for constructible sheaves of modules over a Noetherian ring which are torsion. We start with the most interesting step. \begin{lemma} \label{lemma-constant-statements-coefficients} Let $\Lambda$ be a Noetherian ring, let $M$ be a finite $\Lambda$-module which is annihilated by an integer $n > 0$, let $k$ be an algebraically closed field, and let $X$ be a separated, finite type scheme of dimension $\leq 1$ over $k$. Then \begin{enumerate} \item $H^q_\etale(X, \underline{M})$ is a finite $\Lambda$-module if $n$ is prime to $\text{char}(k)$, \item $H^q_\etale(X, \underline{M})$ is a finite $\Lambda$-module if $X$ is proper. \end{enumerate} \end{lemma} \begin{proof} If $n = \ell n'$ for some prime number $\ell$, then we get a short exact sequence $0 \to M[\ell] \to M \to M' \to 0$ of finite $\Lambda$-modules and $M'$ is annihilated by $n'$. This produces a corresponding short exact sequence of constant sheaves, which in turn gives rise to an exact sequence of cohomology modules $$ H^q_\etale(X, \underline{M[n]}) \to H^q_\etale(X, \underline{M}) \to H^q_\etale(X, \underline{M'}) $$ Thus, if we can show the result in case $M$ is annihilated by a prime number, then by induction on $n$ we win. \medskip\noindent Let $\ell$ be a prime number such that $\ell$ annihilates $M$. Then we can replace $\Lambda$ by the $\mathbf{F}_\ell$-algebra $\Lambda/\ell \Lambda$. Namely, the cohomology of $\mathcal{F}$ as a sheaf of $\Lambda$-modules is the same as the cohomology of $\mathcal{F}$ as a sheaf of $\Lambda/\ell \Lambda$-modules, for example by Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-cohomology-modules-abelian-agree}. \medskip\noindent Assume $\ell$ be a prime number such that $\ell$ annihilates $M$ and $\Lambda$. Let us reduce to the case where $M$ is a finite free $\Lambda$-module. Namely, choose a short exact sequence $$ 0 \to N \to \Lambda^{\oplus m} \to M \to 0 $$ This determines an exact sequence $$ H^q_\etale(X, \underline{\Lambda^{\oplus m}}) \to H^q_\etale(X, \underline{M}) \to H^{q + 1}_\etale(X, \underline{N}) $$ By descending induction on $q$ we get the result for $M$ if we know the result for $\Lambda^{\oplus m}$. Here we use that we know that our cohomology groups vanish in degrees $> 2$ by Theorem \ref{theorem-vanishing-affine-curves}. \medskip\noindent Let $\ell$ be a prime number and assume that $\ell$ annihilates $\Lambda$. It remains to show that the cohomology groups $H^q_\etale(X, \underline{\Lambda})$ are finite $\Lambda$-modules. We will use a trick to show this; the ``correct'' argument uses a coefficient theorem which we will show later. Choose a basis $\Lambda = \bigoplus_{i \in I} \mathbf{F}_\ell e_i$ such that $e_0 = 1$ for some $0 \in I$. The choice of this basis determines an isomorphism $$ \underline{\Lambda} = \bigoplus \underline{\mathbf{F}_\ell} e_i $$ of sheaves on $X_\etale$. Thus we see that $$ H^q_\etale(X, \underline{\Lambda}) = H^q_\etale(X, \bigoplus \underline{\mathbf{F}_\ell} e_i) = \bigoplus H^q_\etale(X, \underline{\mathbf{F}_\ell})e_i $$ since taking cohomology over $X$ commutes with direct sums by Theorem \ref{theorem-colimit} (or Lemma \ref{lemma-colimit} or Lemma \ref{lemma-direct-sum-bounded-below-cohomology}). Since we already know that $H^q_\etale(X, \underline{\mathbf{F}_\ell})$ is a finite dimensional $\mathbf{F}_\ell$-vector space (by Theorem \ref{theorem-vanishing-affine-curves}), we see that $H^q_\etale(X, \underline{\Lambda})$ is free over $\Lambda$ of the same rank. Namely, given a basis $\xi_1, \ldots, \xi_m$ of $H^q_\etale(X, \underline{\mathbf{F}_\ell})$ we see that $\xi_1 e_0, \ldots, \xi_m e_0$ form a $\Lambda$-basis for $H^q_\etale(X, \underline{\Lambda})$. \end{proof} \begin{lemma} \label{lemma-finite-pushforward-coefficients} Let $\Lambda$ be a Noetherian ring, let $k$ be an algebraically closed field, let $f : X \to Y$ be a finite morphism of separated finite type schemes over $k$ of dimension $\leq 1$, and let $\mathcal{F}$ be a sheaf of $\Lambda$-modules on $X_\etale$. If $H^q_\etale(X, \mathcal{F})$ is a finite $\Lambda$-module, then so is $H^q_\etale(Y, f_*\mathcal{F})$. \end{lemma} \begin{proof} Namely, we have $H^q_\etale(X, \mathcal{F}) = H^q_\etale(Y, f_*\mathcal{F})$ by the vanishing of $R^qf_*$ for $q > 0$ (Proposition \ref{proposition-finite-higher-direct-image-zero}) and the Leray spectral sequence (Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-apply-Leray}). \end{proof} \begin{lemma} \label{lemma-restrict-to-open-coefficients} Let $\Lambda$ be a Noetherian ring, let $k$ be an algebraically closed field, let $X$ be a separated finite type scheme over $k$ of dimension $\leq 1$, let $\mathcal{F}$ be a constructible sheaf of $\Lambda$-modules on $X_\etale$, and let $j : X' \to X$ be the inclusion of a dense open subscheme. Then $H^q_\etale(X, \mathcal{F})$ is a finite $\Lambda$-module if and only if $H^q_\etale(X, j_!j^{-1}\mathcal{F})$ is a finite $\Lambda$-module. \end{lemma} \begin{proof} Since $X'$ is dense, we see that $Z = X \setminus X'$ has dimension $0$ and hence is a finite set $Z = \{x_1, \ldots, x_n\}$ of $k$-rational points. Consider the short exact sequence $$ 0 \to j_!j^{-1}\mathcal{F} \to \mathcal{F} \to i_*i^{-1}\mathcal{F} \to 0 $$ of Lemma \ref{lemma-ses-associated-to-open}. Observe that $H^q_\etale(X, i_*i^{-1}\mathcal{F}) = H^q_\etale(Z, i^*\mathcal{F})$. Namely, $i : Z \to X$ is a closed immersion, hence finite, hence we have the vanishing of $R^qi_*$ for $q > 0$ by Proposition \ref{proposition-finite-higher-direct-image-zero}, and hence the equality follows from the Leray spectral sequence (Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-apply-Leray}). Since $Z$ is a disjoint union of spectra of algebraically closed fields, we conclude that $H^q_\etale(Z, i^*\mathcal{F}) = 0$ for $q > 0$ and $$ H^0_\etale(Z, i^{-1}\mathcal{F}) = \bigoplus\nolimits_{i = 1, \ldots, n} \mathcal{F}_{x_i} $$ which is a finite $\Lambda$-module $\mathcal{F}_{x_i}$ is finite due to the assumption that $\mathcal{F}$ is a constructible sheaf of $\Lambda$-modules. The long exact cohomology sequence gives an exact sequence $$ 0 \to H^0_\etale(X, j_!j^{-1}\mathcal{F}) \to H^0_\etale(X, \mathcal{F}) \to H^0_\etale(Z, i^{-1}\mathcal{F}) \to H^1_\etale(X, j_!j^{-1}\mathcal{F}) \to H^1_\etale(X, \mathcal{F}) \to 0 $$ and isomorphisms $H^0_\etale(X, j_!j^{-1}\mathcal{F}) \to H^0_\etale(X, \mathcal{F})$ for $q > 1$. The lemma follows easily from this. \end{proof} \begin{lemma} \label{lemma-somewhat-easier-coefficients} Let $\Lambda$ be a Noetherian ring, let $M$ be a finite $\Lambda$-module which is annihilated by an integer $n > 0$, let $k$ be an algebraically closed field, let $X$ be a separated, finite type scheme of dimension $\leq 1$ over $k$, and let $j : U \to X$ be an open immersion. Then \begin{enumerate} \item $H^q_\etale(X, j_!\underline{M})$ is a finite $\Lambda$-module if $n$ is prime to $\text{char}(k)$, \item $H^q_\etale(X, j_!\underline{M})$ is a finite $\Lambda$-module if $X$ is proper. \end{enumerate} \end{lemma} \begin{proof} Since $\dim(X) \leq 1$ there is an open $V \subset X$ which is disjoint from $U$ such that $X' = U \cup V$ is dense open in $X$ (details omitted). If $j' : X' \to X$ denotes the inclusion morphism, then we see that $j_!\underline{M}$ is a direct summand of $j'_!\underline{M}$. Hence it suffices to prove the lemma in case $U$ is open and dense in $X$. This case follows from Lemmas \ref{lemma-restrict-to-open-coefficients} and \ref{lemma-constant-statements-coefficients}. \end{proof} \begin{lemma} \label{lemma-ses-statements-coefficients} Let $\Lambda$ be a Noetherian ring, let $k$ be an algebraically closed field, let $X$ be a separated finite type scheme over $k$ of dimension $\leq 1$, and let $0 \to \mathcal{F}_1 \to \mathcal{F} \to \mathcal{F}_2 \to 0$ be a short exact sequence of sheaves of $\Lambda$-modules on $X_\etale$. If $H^q_\etale(X, \mathcal{F}_i)$, $i = 1, 2$ are finite $\Lambda$-modules then $H^q_\etale(X, \mathcal{F})$ is a finite $\Lambda$-module. \end{lemma} \begin{proof} Immediate from the long exact sequence of cohomology. \end{proof} \begin{lemma} \label{lemma-vanishing-easier-coefficients} Let $\Lambda$ be a Noetherian ring, let $k$ be an algebraically closed field, let $X$ be a separated, finite type scheme of dimension $\leq 1$ over $k$, let $j : U \to X$ be an open immersion with $U$ connected, let $\ell$ be a prime number, let $n > 0$, and let $\mathcal{G}$ be a finite type, locally constant sheaf of $\Lambda$-modules on $U_\etale$ annihilated by $\ell^n$. Then \begin{enumerate} \item $H^q_\etale(X, j_!\mathcal{G})$ is a finite $\Lambda$-module if $\ell$ is prime to $\text{char}(k)$, \item $H^q_\etale(X, j_!\mathcal{G})$ is a finite $\Lambda$-module if $X$ is proper. \end{enumerate} \end{lemma} \begin{proof} Let $f : V \to U$ be a finite \'etale morphism of degree prime to $\ell$ as in Lemma \ref{lemma-pullback-filtered-modules}. The discussion in Section \ref{section-trace-method} gives maps $$ \mathcal{G} \to f_*f^{-1}\mathcal{G} \to \mathcal{G} $$ whose composition is an isomorphism. Hence it suffices to prove the finiteness of $H^q_\etale(X, j_!f_*f^{-1}\mathcal{G})$. By Zariski's Main theorem (More on Morphisms, Lemma \ref{more-morphisms-lemma-quasi-finite-separated-pass-through-finite}) we can choose a diagram $$ \xymatrix{ V \ar[r]_{j'} \ar[d]_f & Y \ar[d]^{\overline{f}} \\ U \ar[r]^j & X } $$ with $\overline{f} : Y \to X$ finite and $j'$ an open immersion with dense image. Since $f$ is finite and $V$ dense in $Y$ we have $V = U \times_X Y$. By Lemma \ref{lemma-compatible-shriek-push-finite} we have $$ j_!f_*f^{-1}\mathcal{G} = \overline{f}_*j'_!f^{-1}\mathcal{G} $$ By Lemma \ref{lemma-finite-pushforward-coefficients} it suffices to consider $j'_!f^{-1}\mathcal{G}$. The existence of the filtration given by Lemma \ref{lemma-pullback-filtered-modules}, the fact that $j'_!$ is exact, and Lemma \ref{lemma-ses-statements-coefficients} reduces us to the case $\mathcal{F} = j'_!\underline{M}$ for a finite $\Lambda$-module $M$ which is Lemma \ref{lemma-somewhat-easier-coefficients}. \end{proof} \begin{theorem} \label{theorem-vanishing-affine-curves-coefficients} Let $\Lambda$ be a Noetherian ring, let $k$ be an algebraically closed field, let $X$ be a separated, finite type scheme of dimension $\leq 1$ over $k$, and let $\mathcal{F}$ be a constructible sheaf of $\Lambda$-modules on $X_\etale$ which is torsion. Then \begin{enumerate} \item \label{item-finite-prime-to-p-coefficients} $H^q_\etale(X, \mathcal{F})$ is a finite $\Lambda$-module if $\mathcal{F}$ is torsion prime to $\text{char}(k)$, \item \label{item-finite-proper-coefficients} $H^q_\etale(X, \mathcal{F})$ is a finite $\Lambda$-module if $X$ is proper. \end{enumerate} \end{theorem} \begin{proof} without further mention. Write $\mathcal{F} = \mathcal{F}_1 \oplus \ldots \oplus \mathcal{F}_r$ where $\mathcal{F}_i$ is annihilated by $\ell_i^{n_i}$ for some prime $\ell_i$ and integer $n_i > 0$. By Lemma \ref{lemma-ses-statements-coefficients} it suffices to prove the theorem for $\mathcal{F}_i$. Thus we may and do assume that $\ell^n$ kills $\mathcal{F}$ for some prime $\ell$ and integer $n > 0$. \medskip\noindent Since $\mathcal{F}$ is constructible as a sheaf of $\Lambda$-modules, there is a dense open $U \subset X$ such that $\mathcal{F}|_U$ is a finite type, locally constant sheaf of $\Lambda$-modules. Since $\dim(X) \leq 1$ we may assume, after shrinking $U$, that $U = U_1 \amalg \ldots \amalg U_n$ is a disjoint union of irreducible schemes (just remove the closed points which lie in the intersections of $\geq 2$ components of $U$). By Lemma \ref{lemma-restrict-to-open-coefficients} we reduce to the case $\mathcal{F} = j_!\mathcal{G}$ where $\mathcal{G}$ is a finite type, locally constant sheaf of $\Lambda$-modules on $U$ (and annihilated by $\ell^n$). \medskip\noindent Since we chose $U = U_1 \amalg \ldots \amalg U_n$ with $U_i$ irreducible we have $$ j_!\mathcal{G} = j_{1!}(\mathcal{G}|_{U_1}) \oplus \ldots \oplus j_{n!}(\mathcal{G}|_{U_n}) $$ where $j_i : U_i \to X$ is the inclusion morphism. The case of $j_{i!}(\mathcal{G}|_{U_i})$ is handled in Lemma \ref{lemma-vanishing-easier-coefficients}. \end{proof} \section{First cohomology of proper schemes} \label{section-finite-etale-over-proper} \noindent In Fundamental Groups, Section \ref{pione-section-finite-etale-over-proper} we have seen, in some sense, that taking $R^1f_*\underline{G}$ commutes with base change if $f : X \to Y$ is a proper morphism and $G$ is a finite group (not necessarily commutative). In this section we deduce a useful consequence of these results. \begin{lemma} \label{lemma-proper-over-henselian-and-h1} Let $A$ be a henselian local ring. Let $X$ be a proper scheme over $A$ with closed fibre $X_0$. Let $M$ be a finite abelian group. Then $H^1_\etale(X, \underline{M}) = H^1_\etale(X_0, \underline{M})$. \end{lemma} \begin{proof} By Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-torsors-h1} an element of $H^1_\etale(X, \underline{M})$ corresponds to a $\underline{M}$-torsor $\mathcal{F}$ on $X_\etale$. Such a torsor is clearly a finite locally constant sheaf. Hence $\mathcal{F}$ is representable by a scheme $V$ finite \'etale over $X$, Lemma \ref{lemma-characterize-finite-locally-constant}. Conversely, a scheme $V$ finite \'etale over $X$ with an $M$-action which turns it into an $M$-torsor over $X$ gives rise to a cohomology class. The same translation between cohomology classes over $X_0$ and torsors finite \'etale over $X_0$ holds. Thus the lemma is a consequence of the equivalence of categories of Fundamental Groups, Lemma \ref{pione-lemma-finite-etale-on-proper-over-henselian}. \end{proof} \noindent The following technical lemma is a key ingredient in the proof of the proper base change theorem. The argument works word for word for any proper scheme over $A$ whose special fibre has dimension $\leq 1$, but in fact the conclusion will be a consequence of the proper base change theorem and we only need this particular version in its proof. \begin{lemma} \label{lemma-efface-cohomology-on-fibre-by-finite-cover} Let $A$ be a henselian local ring. Let $X = \mathbf{P}^1_A$. Let $X_0 \subset X$ be the closed fibre. Let $\ell$ be a prime number. Let $\mathcal{I}$ be an injective sheaf of $\mathbf{Z}/\ell\mathbf{Z}$-modules on $X_\etale$. Then $H^q_\etale(X_0, \mathcal{I}|_{X_0}) = 0$ for $q > 0$. \end{lemma} \begin{proof} Observe that $X$ is a separated scheme which can be covered by $2$ affine opens. Hence for $q > 1$ this follows from Gabber's affine variant of the proper base change theorem, see Lemma \ref{lemma-vanishing-restriction-injective}. Thus we may assume $q = 1$. Let $\xi \in H^1_\etale(X_0, \mathcal{I}|_{X_0})$. Goal: show that $\xi$ is $0$. By Lemmas \ref{lemma-torsion-colimit-constructible} and \ref{lemma-colimit} we can find a map $\mathcal{F} \to \mathcal{I}$ with $\mathcal{F}$ a constructible sheaf of $\mathbf{Z}/\ell\mathbf{Z}$-modules and $\xi$ coming from an element $\zeta$ of $H^1_\etale(X_0, \mathcal{F}|_{X_0})$. Suppose we have an injective map $\mathcal{F} \to \mathcal{F}'$ of sheaves of $\mathbf{Z}/\ell\mathbf{Z}$-modules on $X_\etale$. Since $\mathcal{I}$ is injective we can extend the given map $\mathcal{F} \to \mathcal{I}$ to a map $\mathcal{F}' \to \mathcal{I}$. In this situation we may replace $\mathcal{F}$ by $\mathcal{F}'$ and $\zeta$ by the image of $\zeta$ in $H^1_\etale(X_0, \mathcal{F}'|_{X_0})$. Also, if $\mathcal{F} = \mathcal{F}_1 \oplus \mathcal{F}_2$ is a direct sum, then we may replace $\mathcal{F}$ by $\mathcal{F}_i$ and $\zeta$ by the image of $\zeta$ in $H^1_\etale(X_0, \mathcal{F}_i|_{X_0})$. \medskip\noindent By Lemma \ref{lemma-constructible-maps-into-constant-general} and the remarks above we may assume $\mathcal{F}$ is of the form $f_*\underline{M}$ where $M$ is a finite $\mathbf{Z}/\ell\mathbf{Z}$-module and $f : Y \to X$ is a finite morphism of finite presentation (such sheaves are still constructible by Lemma \ref{lemma-finite-pushforward-constructible} but we won't need this). Since formation of $f_*$ commutes with any base change (Lemma \ref{lemma-finite-pushforward-commutes-with-base-change}) we see that the restriction of $f_*\underline{M}$ to $X_0$ is equal to the pushforward of $\underline{M}$ via the induced morphism $Y_0 \to X_0$ of special fibres. By the Leray spectral sequence (Proposition \ref{proposition-leray}) and vanishing of higher direct images (Proposition \ref{proposition-finite-higher-direct-image-zero}), we find $$ H^1_\etale(X_0, f_*\underline{M}|_{X_0}) = H^1_\etale(Y_0, \underline{M}). $$ Since $Y \to \Spec(A)$ is proper we can use Lemma \ref{lemma-proper-over-henselian-and-h1} to see that the $H^1_\etale(Y_0, \underline{M})$ is equal to $H^1_\etale(Y, \underline{M})$. Thus we see that our cohomology class $\zeta$ lifts to a cohomology class $$ \tilde\zeta \in H^1_\etale(Y, \underline{M}) = H^1_\etale(X, f_*\underline{M}) $$ However, $\tilde \zeta$ maps to zero in $H^1_\etale(X, \mathcal{I})$ as $\mathcal{I}$ is injective and by commutativity of $$ \xymatrix{ H^1_\etale(X, f_*\underline{M}) \ar[r] \ar[d] & H^1_\etale(X, \mathcal{I}) \ar[d] \\ H^1_\etale(X_0, (f_*\underline{M})|_{X_0}) \ar[r] & H^1_\etale(X_0, \mathcal{I}|_{X_0}) } $$ we conclude that the image $\xi$ of $\zeta$ is zero as well. \end{proof} \section{Preliminaries on base change} \label{section-base-change-preliminaries} \noindent If you are interested in either the smooth base change theorem or the proper base change theorem, you should skip directly to the corresponding sections. In this section and the next few sections we consider commutative diagrams $$ \xymatrix{ X \ar[d]_f & Y \ar[l]^h \ar[d]^e \\ S & T \ar[l]_g } $$ of schemes; we usually assume this diagram is cartesian, i.e., $Y = X \times_S T$. A commutative diagram as above gives rise to a commutative diagram $$ \xymatrix{ X_\etale \ar[d]_{f_{small}} & Y_\etale \ar[d]^{e_{small}} \ar[l]^{h_{small}} \\ S_\etale & T_\etale \ar[l]_{g_{small}} } $$ of small \'etale sites. Let us use the notation $$ f^{-1} = f_{small}^{-1}, \quad g_* = g_{small, *}, \quad e^{-1} = e_{small}^{-1}, \text{ and}\quad h_* = h_{small, *}. $$ By Sites, Section \ref{sites-section-pullback} we get a base change or pullback map $$ f^{-1}g_*\mathcal{F} \longrightarrow h_*e^{-1}\mathcal{F} $$ for a sheaf $\mathcal{F}$ on $T_\etale$. If $\mathcal{F}$ is an abelian sheaf on $T_\etale$, then we get a derived base change map $$ f^{-1}Rg_*\mathcal{F} \longrightarrow Rh_*e^{-1}\mathcal{F} $$ see Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-base-change-map-flat-case}. Finally, if $K$ is an arbitrary object of $D(T_\etale)$ there is a base change map $$ f^{-1}Rg_*K \longrightarrow Rh_*e^{-1}K $$ see Cohomology on Sites, Remark \ref{sites-cohomology-remark-base-change}. \begin{lemma} \label{lemma-base-change-local} Consider a cartesian diagram of schemes $$ \xymatrix{ X \ar[d]_f & Y \ar[l]^h \ar[d]^e \\ S & T \ar[l]_g } $$ Let $\{U_i \to X\}$ be an \'etale covering such that $U_i \to S$ factors as $U_i \to V_i \to S$ with $V_i \to S$ \'etale and consider the cartesian diagrams $$ \xymatrix{ U_i \ar[d]_{f_i} & U_i \times_X Y \ar[l]^{h_i} \ar[d]^{e_i} \\ V_i & V_i \times_S T \ar[l]_{g_i} } $$ Let $\mathcal{F}$ be a sheaf on $T_\etale$. Let $K$ in $D(T_\etale)$. Set $K_i = K|_{V_i \times_S T}$ and $\mathcal{F}_i = \mathcal{F}|_{V_i \times_S T}$. \begin{enumerate} \item If $f_i^{-1}g_{i, *}\mathcal{F}_i = h_{i, *}e_i^{-1}\mathcal{F}_i$ for all $i$, then $f^{-1}g_*\mathcal{F} = h_*e^{-1}\mathcal{F}$. \item If $f_i^{-1}Rg_{i, *}K_i = Rh_{i, *}e_i^{-1}K_i$ for all $i$, then $f^{-1}Rg_*K = Rh_*e^{-1}K$. \item If $\mathcal{F}$ is an abelian sheaf and $f_i^{-1}R^qg_{i, *}\mathcal{F}_i = R^qh_{i, *}e_i^{-1}\mathcal{F}_i$ for all $i$, then $f^{-1}R^qg_*\mathcal{F} = R^qh_*e^{-1}\mathcal{F}$. \end{enumerate} \end{lemma} \begin{proof} Proof of (1). First we observe that $$ (f^{-1}g_*\mathcal{F})|_{U_i} = f_i^{-1}(g_*\mathcal{F}|_{V_i}) = f_i^{-1}g_{i, *}\mathcal{F}_i $$ The first equality because $U_i \to X \to S$ is equal to $U_i \to V_i \to S$ and the second equality because $g_*\mathcal{F}|_{V_i} = g_{i, *}\mathcal{F}_i$ by Sites, Lemma \ref{sites-lemma-localize-morphism-strong}. Similarly we have $$ (h_*e^{-1}\mathcal{F})|_{U_i} = h_{i, *}(e^{-1}\mathcal{F}|_{U_i \times_X Y}) = h_{i, *}e_i^{-1}\mathcal{F}_i $$ Thus if the base change maps $f_i^{-1}g_{i, *}\mathcal{F}_i \to h_{i, *}e_i^{-1}\mathcal{F}_i$ are isomorphisms for all $i$, then the base change map $f^{-1}g_*\mathcal{F} \to h_*e^{-1}\mathcal{F}$ restricts to an isomorphism over $U_i$ for all $i$ and we conclude it is an isomorphism as $\{U_i \to X\}$ is an \'etale covering. \medskip\noindent For the other two statements we replace the appeal to Sites, Lemma \ref{sites-lemma-localize-morphism-strong} by an appeal to Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-restrict-direct-image-open}. \end{proof} \begin{lemma} \label{lemma-base-change-compose} Consider a tower of cartesian diagrams of schemes $$ \xymatrix{ W \ar[d]_i & Z \ar[l]^j \ar[d]^k \\ X \ar[d]_f & Y \ar[l]^h \ar[d]^e \\ S & T \ar[l]_g } $$ Let $K$ in $D(T_\etale)$. If $$ f^{-1}Rg_*K \to Rh_*e^{-1}K \quad\text{and}\quad i^{-1}Rh_*e^{-1}K \to Rj_*k^{-1}e^{-1}K $$ are isomorphisms, then $(f \circ i)^{-1}Rg_*K \to Rj_*(e \circ k)^{-1}K$ is an isomorphism. Similarly, if $\mathcal{F}$ is an abelian sheaf on $T_\etale$ and if $$ f^{-1}R^qg_*\mathcal{F} \to R^qh_*e^{-1}\mathcal{F} \quad\text{and}\quad i^{-1}R^qh_*e^{-1}\mathcal{F} \to R^qj_*k^{-1}e^{-1}\mathcal{F} $$ are isomorphisms, then $(f \circ i)^{-1}R^qg_*\mathcal{F} \to R^qj_*(e \circ k)^{-1}\mathcal{F}$ is an isomorphism. \end{lemma} \begin{proof} This is formal, provided one checks that the composition of these base change maps is the base change maps for the outer rectangle, see Cohomology on Sites, Remark \ref{sites-cohomology-remark-compose-base-change-horizontal}. \end{proof} \begin{lemma} \label{lemma-base-change-Rf-star-colim} Let $I$ be a directed set. Consider an inverse system of cartesian diagrams of schemes $$ \xymatrix{ X_i \ar[d]_{f_i} & Y_i \ar[l]^{h_i} \ar[d]^{e_i} \\ S_i & T_i \ar[l]_{g_i} } $$ with affine transition morphisms and with $g_i$ quasi-compact and quasi-separated. Set $X = \lim X_i$, $S = \lim S_i$, $T = \lim T_i$ and $Y = \lim Y_i$ to obtain the cartesian diagram $$ \xymatrix{ X \ar[d]_f & Y \ar[l]^h \ar[d]^e \\ S & T \ar[l]_g } $$ Let $(\mathcal{F}_i, \varphi_{i'i})$ be a system of sheaves on $(T_i)$ as in Definition \ref{definition-inverse-system-sheaves}. Set $\mathcal{F} = \colim p_i^{-1}\mathcal{F}_i$ on $T$ where $p_i : T \to T_i$ is the projection. Then we have the following \begin{enumerate} \item If $f_i^{-1}g_{i, *}\mathcal{F}_i = h_{i, *}e_i^{-1}\mathcal{F}_i$ for all $i$, then $f^{-1}g_*\mathcal{F} = h_*e^{-1}\mathcal{F}$. \item If $\mathcal{F}_i$ is an abelian sheaf for all $i$ and $f_i^{-1}R^qg_{i, *}\mathcal{F}_i = R^qh_{i, *}e_i^{-1}\mathcal{F}_i$ for all $i$, then $f^{-1}R^qg_*\mathcal{F} = R^qh_*e^{-1}\mathcal{F}$. \end{enumerate} \end{lemma} \begin{proof} We prove (2) and we omit the proof of (1). We will use without further mention that pullback of sheaves commutes with colimits as it is a left adjoint. Observe that $h_i$ is quasi-compact and quasi-separated as a base change of $g_i$. Denoting $q_i : Y \to Y_i$ the projections, observe that $e^{-1}\mathcal{F} = \colim e^{-1}p_i^{-1}\mathcal{F}_i = \colim q_i^{-1}e_i^{-1}\mathcal{F}_i$. By Lemma \ref{lemma-relative-colimit-general} this gives $$ R^qh_*e^{-1}\mathcal{F} = \colim r_i^{-1}R^qh_{i, *}e_i^{-1}\mathcal{F}_i $$ where $r_i : X \to X_i$ is the projection. Similarly, we have $$ f^{-1}Rg_*\mathcal{F} = f^{-1}\colim s_i^{-1}R^qg_{i, *}\mathcal{F}_i = \colim r_i^{-1}f_i^{-1}R^qg_{i, *}\mathcal{F}_i $$ where $s_i : S \to S_i$ is the projection. The lemma follows. \end{proof} \begin{lemma} \label{lemma-base-change-Rf-star-colim-complexes} Let $I$, $X_i$, $Y_i$, $S_i$, $T_i$, $f_i$, $h_i$, $e_i$, $g_i$, $X$, $Y$, $S$, $T$, $f$, $h$, $e$, $g$ be as in the statement of Lemma \ref{lemma-base-change-Rf-star-colim}. Let $0 \in I$ and let $K_0 \in D^+(T_{0, \etale})$. For $i \in I$, $i \geq 0$ denote $K_i$ the pullback of $K_0$ to $T_i$. Denote $K$ the pullback of $K_0$ to $T$. If $f_i^{-1}Rg_{i, *}K_i = Rh_{i, *}e_i^{-1}K_i$ for all $i \geq 0$, then $f^{-1}Rg_*K = Rh_*e^{-1}K$. \end{lemma} \begin{proof} It suffices to show that the base change map $f^{-1}Rg_*K \to Rh_*e^{-1}K$ induces an isomorphism on cohomology sheaves. In other words, we have to show that $f^{-1}R^pg_*K \to R^ph_*e^{-1}K$ is an isomorphism for all $p \in \mathbf{Z}$ if we are given that $f_i^{-1}R^pg_{i, *}K_i \to R^ph_{i, *}e_i^{-1}K_i$ is an isomorphism for all $i \geq 0$ and $p \in \mathbf{Z}$. At this point we can argue exactly as in the proof of Lemma \ref{lemma-base-change-Rf-star-colim} replacing reference to Lemma \ref{lemma-relative-colimit-general} by a reference to Lemma \ref{lemma-relative-colimit-general-complexes}. \end{proof} \begin{lemma} \label{lemma-base-change-f-star-general-stalks} Consider a cartesian diagram of schemes $$ \xymatrix{ X \ar[d]_f & Y \ar[l]^h \ar[d]^e \\ S & T \ar[l]_g } $$ where $g : T \to S$ is quasi-compact and quasi-separated. Let $\mathcal{F}$ be an abelian sheaf on $T_\etale$. Let $q \geq 0$. The following are equivalent \begin{enumerate} \item For every geometric point $\overline{x}$ of $X$ with image $\overline{s} = f(\overline{x})$ we have $$ H^q(\Spec(\mathcal{O}^{sh}_{X, \overline{x}}) \times_S T, \mathcal{F}) = H^q(\Spec(\mathcal{O}^{sh}_{S, \overline{s}}) \times_S T, \mathcal{F}) $$ \item $f^{-1}R^qg_*\mathcal{F} \to R^qh_*e^{-1}\mathcal{F}$ is an isomorphism. \end{enumerate} \end{lemma} \begin{proof} Since $Y = X \times_S T$ we have $\Spec(\mathcal{O}^{sh}_{X, \overline{x}}) \times_X Y = \Spec(\mathcal{O}^{sh}_{X, \overline{x}}) \times_S T$. Thus the map in (1) is the map of stalks at $\overline{x}$ for the map in (2) by Theorem \ref{theorem-higher-direct-images} (and Lemma \ref{lemma-stalk-pullback}). Thus the result by Theorem \ref{theorem-exactness-stalks}. \end{proof} \begin{lemma} \label{lemma-check-stalks-better} Let $f : X \to S$ be a morphism of schemes. Let $\overline{x}$ be a geometric point of $X$ with image $\overline{s}$ in $S$. Let $\Spec(K) \to \Spec(\mathcal{O}^{sh}_{S, \overline{s}})$ be a morphism with $K$ a separably closed field. Let $\mathcal{F}$ be an abelian sheaf on $\Spec(K)_\etale$. Let $q \geq 0$. The following are equivalent \begin{enumerate} \item $H^q(\Spec(\mathcal{O}^{sh}_{X, \overline{x}}) \times_S \Spec(K), \mathcal{F}) = H^q(\Spec(\mathcal{O}^{sh}_{S, \overline{s}}) \times_S \Spec(K), \mathcal{F})$ \item $H^q(\Spec(\mathcal{O}^{sh}_{X, \overline{x}}) \times_{\Spec(\mathcal{O}^{sh}_{S, \overline{s}})} \Spec(K), \mathcal{F}) = H^q(\Spec(K), \mathcal{F})$ \end{enumerate} \end{lemma} \begin{proof} Observe that $\Spec(K) \times_S \Spec(\mathcal{O}^{sh}_{S, \overline{s}})$ is the spectrum of a filtered colimit of \'etale algebras over $K$. Since $K$ is separably closed, each \'etale $K$-algebra is a finite product of copies of $K$. Thus we can write $$ \Spec(K) \times_S \Spec(\mathcal{O}^{sh}_{S, \overline{s}}) = \lim_{i \in I} \coprod\nolimits_{a \in A_i} \Spec(K) $$ as a cofiltered limit where each term is a disjoint union of copies of $\Spec(K)$ over a finite set $A_i$. Note that $A_i$ is nonempty as we are given $\Spec(K) \to \Spec(\mathcal{O}^{sh}_{S, \overline{s}})$. It follows that \begin{align*} \Spec(\mathcal{O}^{sh}_{X, \overline{x}}) \times_S \Spec(K) & = \Spec(\mathcal{O}^{sh}_{X, \overline{x}}) \times_{\Spec(\mathcal{O}^{sh}_{S, \overline{s}})} \left( \Spec(\mathcal{O}^{sh}_{S, \overline{s}}) \times_S \Spec(K)\right) \\ & = \lim_{i \in I} \coprod\nolimits_{a \in A_i} \Spec(\mathcal{O}^{sh}_{X, \overline{x}}) \times_{\Spec(\mathcal{O}^{sh}_{S, \overline{s}})} \Spec(K) \end{align*} Since taking cohomology in our setting commutes with limits of schemes (Theorem \ref{theorem-colimit}) we conclude. \end{proof} \section{Base change for pushforward} \label{section-base-change-f-star} \noindent This section is preliminary and should be skipped on a first reading. In this section we discuss for what morphisms $f : X \to S$ we have $f^{-1}g_* = h_*e^{-1}$ on all sheaves (of sets) for every cartesian diagram $$ \xymatrix{ X \ar[d]_f & Y \ar[l]^h \ar[d]^e \\ S & T \ar[l]_g } $$ with $g$ quasi-compact and quasi-separated. \begin{lemma} \label{lemma-base-change-f-star-general} Consider the cartesian diagram of schemes $$ \xymatrix{ X \ar[d]_f & Y \ar[l]^h \ar[d]^e \\ S & T \ar[l]_g } $$ Assume that $f$ is flat and every object $U$ of $X_\etale$ has a covering $\{U_i \to U\}$ such that $U_i \to S$ factors as $U_i \to V_i \to S$ with $V_i \to S$ \'etale and $U_i \to V_i$ quasi-compact with geometrically connected fibres. Then for any sheaf $\mathcal{F}$ of sets on $T_\etale$ we have $f^{-1}g_*\mathcal{F} = h_*e^{-1}\mathcal{F}$. \end{lemma} \begin{proof} Let $U \to X$ be an \'etale morphism such that $U \to S$ factors as $U \to V \to S$ with $V \to S$ \'etale and $U \to V$ quasi-compact with geometrically connected fibres. Observe that $U \to V$ is flat (More on Flatness, Lemma \ref{flat-lemma-etale-flat-up-down}). We claim that \begin{align*} f^{-1}g_*\mathcal{F}(U) & = g_*\mathcal{F}(V) \\ & = \mathcal{F}(V \times_S T) \\ & = e^{-1}\mathcal{F}(U \times_X Y) \\ & = h_*e^{-1}\mathcal{F}(U) \end{align*} Namely, thinking of $U$ as an object of $X_\etale$ and $V$ as an object of $S_\etale$ we see that the first equality follows from Lemma \ref{lemma-sections-upstairs}\footnote{Strictly speaking, we are also using that the restriction of $f^{-1}g_*\mathcal{F}$ to $U_\etale$ is the pullback via $U \to V$ of the restriction of $g_*\mathcal{F}$ to $V_\etale$. See Sites, Lemma \ref{sites-lemma-localize-morphism-strong}.}. Thinking of $V \times_S T$ as an object of $T_\etale$ the second equality follows from the definition of $g_*$. Observe that $U \times_X Y = U \times_S T$ (because $Y = X \times_S T$) and hence $U \times_X Y \to V \times_S T$ has geometrically connected fibres as a base change of $U \to V$. Thinking of $U \times_X Y$ as an object of $Y_\etale$, we see that the third equality follows from Lemma \ref{lemma-sections-upstairs} as before. Finally, the fourth equality follows from the definition of $h_*$. \medskip\noindent Since by assumption every object of $X_\etale$ has an \'etale covering to which the argument of the previous paragraph applies we see that the lemma is true. \end{proof} \begin{lemma} \label{lemma-fppf-reduced-fibres-base-change-f-star} Consider a cartesian diagram of schemes $$ \xymatrix{ X \ar[d]_f & Y \ar[l]^h \ar[d]^e \\ S & T \ar[l]_g } $$ where $f$ is flat and locally of finite presentation with geometrically reduced fibres. Then $f^{-1}g_*\mathcal{F} = h_*e^{-1}\mathcal{F}$ for any sheaf $\mathcal{F}$ on $T_\etale$. \end{lemma} \begin{proof} Combine Lemma \ref{lemma-base-change-f-star-general} with More on Morphisms, Lemma \ref{more-morphisms-lemma-cover-by-geometrically-connected}. \end{proof} \begin{lemma} \label{lemma-base-change-f-star-field} Consider the cartesian diagrams of schemes $$ \xymatrix{ X \ar[d]_f & Y \ar[l]^h \ar[d]^e \\ S & T \ar[l]_g } $$ Assume that $S$ is the spectrum of a separably closed field. Then $f^{-1}g_*\mathcal{F} = h_*e^{-1}\mathcal{F}$ for any sheaf $\mathcal{F}$ on $T_\etale$. \end{lemma} \begin{proof} We may work locally on $X$. Hence we may assume $X$ is affine. Then we can write $X$ as a cofiltered limit of affine schemes of finite type over $S$. By Lemma \ref{lemma-base-change-Rf-star-colim} we may assume that $X$ is of finite type over $S$. Then Lemma \ref{lemma-base-change-f-star-general} applies because any scheme of finite type over a separably closed field is a finite disjoint union of connected and geometrically connected schemes (see Varieties, Lemma \ref{varieties-lemma-separably-closed-field-connected-components}). \end{proof} \begin{lemma} \label{lemma-base-change-f-star-valuation} Consider a cartesian diagram of schemes $$ \xymatrix{ X \ar[d]_f & Y \ar[l]^h \ar[d]^e \\ S & T \ar[l]_g } $$ Assume that \begin{enumerate} \item $f$ is flat and open, \item the residue fields of $S$ are separably algebraically closed, \item given an \'etale morphism $U \to X$ with $U$ affine we can write $U$ as a finite disjoint union of open subschemes of $X$ (for example if $X$ is a normal integral scheme with separably closed function field), \item any nonempty open of a fibre $X_s$ of $f$ is connected (for example if $X_s$ is irreducible or empty). \end{enumerate} Then for any sheaf $\mathcal{F}$ of sets on $T_\etale$ we have $f^{-1}g_*\mathcal{F} = h_*e^{-1}\mathcal{F}$. \end{lemma} \begin{proof} Omitted. Hint: the assumptions almost trivially imply the condition of Lemma \ref{lemma-base-change-f-star-general}. The for example in part (3) follows from Lemma \ref{lemma-normal-scheme-with-alg-closed-function-field}. \end{proof} \noindent The following lemma doesn't really belong here but there does not seem to be a good place for it anywhere. \begin{lemma} \label{lemma-fppf-reduced-fibres-pullback-products} Let $f : X \to S$ be a morphism of schemes which is flat and locally of finite presentation with geometrically reduced fibres. Then $f^{-1} : \Sh(S_\etale) \to \Sh(X_\etale)$ commutes with products. \end{lemma} \begin{proof} Let $I$ be a set and let $\mathcal{G}_i$ be a sheaf on $S_\etale$ for $i \in I$. Let $U \to X$ be an \'etale morphism such that $U \to S$ factors as $U \to V \to S$ with $V \to S$ \'etale and $U \to V$ flat of finite presentation with geometrically connected fibres. Then we have \begin{align*} f^{-1}(\prod \mathcal{G}_i)(U) & = (\prod \mathcal{G}_i)(V) \\ & = \prod \mathcal{G}_i(V) \\ & = \prod f^{-1}\mathcal{G}_i(U) \\ & = (\prod f^{-1}\mathcal{G}_i)(U) \end{align*} where we have used Lemma \ref{lemma-sections-upstairs} in the first and third equality (we are also using that the restriction of $f^{-1}\mathcal{G}$ to $U_\etale$ is the pullback via $U \to V$ of the restriction of $\mathcal{G}$ to $V_\etale$, see Sites, Lemma \ref{sites-lemma-localize-morphism-strong}). By More on Morphisms, Lemma \ref{more-morphisms-lemma-cover-by-geometrically-connected} every object $U$ of $X_\etale$ has an \'etale covering $\{U_i \to U\}$ such that the discussion in the previous paragraph applies to $U_i$. The lemma follows. \end{proof} \begin{lemma} \label{lemma-base-change-f-star} Let $f : X \to S$ be a flat morphism of schemes such that for every geometric point $\overline{x}$ of $X$ the map $$ \mathcal{O}_{S, f(\overline{x})}^{sh} \longrightarrow \mathcal{O}_{X, \overline{x}}^{sh} $$ has geometrically connected fibres. Then for every cartesian diagram of schemes $$ \xymatrix{ X \ar[d]_f & Y \ar[l]^h \ar[d]^e \\ S & T \ar[l]_g } $$ with $g$ quasi-compact and quasi-separated we have $f^{-1}g_*\mathcal{F} = h_*e^{-1}\mathcal{F}$ for any sheaf $\mathcal{F}$ of sets on $T_\etale$. \end{lemma} \begin{proof} It suffices to check equality on stalks, see Theorem \ref{theorem-exactness-stalks}. By Theorem \ref{theorem-higher-direct-images} we have $$ (h_*e^{-1}\mathcal{F})_{\overline{x}} = \Gamma(\Spec(\mathcal{O}_{X, \overline{x}}^{sh}) \times_X Y, e^{-1}\mathcal{F}) $$ and we have similarly $$ (f^{-1}g_*^{-1}\mathcal{F})_{\overline{x}} = (g_*^{-1}\mathcal{F})_{f(\overline{x})} = \Gamma(\Spec(\mathcal{O}_{S, f(\overline{x})}^{sh}) \times_S T, \mathcal{F}) $$ These sets are equal by an application of Lemma \ref{lemma-sections-upstairs} to the morphism $$ \Spec(\mathcal{O}_{X, \overline{x}}^{sh}) \times_X Y \longrightarrow \Spec(\mathcal{O}_{S, f(\overline{x})}^{sh}) \times_S T $$ which is a base change of $\Spec(\mathcal{O}_{X, \overline{x}}^{sh}) \to \Spec(\mathcal{O}_{S, f(\overline{x})}^{sh})$ because $Y = X \times_S T$. \end{proof} \section{Base change for higher direct images} \label{section-base-change} \noindent This section is the analogue of Section \ref{section-base-change-f-star} for higher direct images. This section is preliminary and should be skipped on a first reading. \begin{remark} \label{remark-base-change-holds} Let $f : X \to S$ be a morphism of schemes. Let $n$ be an integer. We will say $BC(f, n, q_0)$ is true if for every commutative diagram $$ \xymatrix{ X \ar[d]_f & X' \ar[l] \ar[d]_{f'} & Y \ar[l]^h \ar[d]^e \\ S & S' \ar[l] & T \ar[l]_g } $$ with $X' = X \times_S S'$ and $Y = X' \times_{S'} T$ and $g$ quasi-compact and quasi-separated, and every abelian sheaf $\mathcal{F}$ on $T_\etale$ annihilated by $n$ the base change map $$ (f')^{-1}R^qg_*\mathcal{F} \longrightarrow R^qh_*e^{-1}\mathcal{F} $$ is an isomorphism for $q \leq q_0$. \end{remark} \begin{lemma} \label{lemma-base-change-q-injective} With $f : X \to S$ and $n$ as in Remark \ref{remark-base-change-holds} assume for some $q \geq 1$ we have $BC(f, n, q - 1)$. Then for every commutative diagram $$ \xymatrix{ X \ar[d]_f & X' \ar[l] \ar[d]_{f'} & Y \ar[l]^h \ar[d]^e \\ S & S' \ar[l] & T \ar[l]_g } $$ with $X' = X \times_S S'$ and $Y = X' \times_{S'} T$ and $g$ quasi-compact and quasi-separated, and every abelian sheaf $\mathcal{F}$ on $T_\etale$ annihilated by $n$ \begin{enumerate} \item the base change map $(f')^{-1}R^qg_*\mathcal{F}\to R^qh_*e^{-1}\mathcal{F}$ is injective, \item if $\mathcal{F} \subset \mathcal{G}$ where $\mathcal{G}$ on $T_\etale$ is annihilated by $n$, then $$ \Coker\left( (f')^{-1}R^qg_*\mathcal{F}\to R^qh_*e^{-1}\mathcal{F} \right) \subset \Coker\left( (f')^{-1}R^qg_*\mathcal{G}\to R^qh_*e^{-1}\mathcal{G} \right) $$ \item if in (2) the sheaf $\mathcal{G}$ is an injective sheaf of $\mathbf{Z}/n\mathbf{Z}$-modules, then $$ \Coker\left((f')^{-1}R^qg_*\mathcal{F}\to R^qh_*e^{-1}\mathcal{F} \right) \subset R^qh_*e^{-1}\mathcal{G} $$ \end{enumerate} \end{lemma} \begin{proof} Choose a short exact sequence $0 \to \mathcal{F} \to \mathcal{I} \to \mathcal{Q} \to 0$ where $\mathcal{I}$ is an injective sheaf of $\mathbf{Z}/n\mathbf{Z}$-modules. Consider the induced diagram $$ \xymatrix{ (f')^{-1}R^{q - 1}g_*\mathcal{I} \ar[d]_{\cong} \ar[r] & (f')^{-1}R^{q - 1}g_*\mathcal{Q} \ar[d]_{\cong} \ar[r] & (f')^{-1}R^qg_*\mathcal{F} \ar[d] \ar[r] & 0 \ar[d] \\ R^{q - 1}h_*e^{-1}\mathcal{I} \ar[r] & R^{q - 1}h_*e^{-1}\mathcal{Q} \ar[r] & R^qh_*e^{-1}\mathcal{F} \ar[r] & R^qh_*e^{-1}\mathcal{I} } $$ with exact rows. We have the zero in the right upper corner as $\mathcal{I}$ is injective. The left two vertical arrows are isomorphisms by $BC(f, n, q - 1)$. We conclude that part (1) holds. The above also shows that $$ \Coker\left( (f')^{-1}R^qg_*\mathcal{F}\to R^qh_*e^{-1}\mathcal{F} \right) \subset R^qh_*e^{-1}\mathcal{I} $$ hence part (3) holds. To prove (2) choose $\mathcal{F} \subset \mathcal{G} \subset \mathcal{I}$. \end{proof} \begin{lemma} \label{lemma-base-change-q-integral-top} With $f : X \to S$ and $n$ as in Remark \ref{remark-base-change-holds} assume for some $q \geq 1$ we have $BC(f, n, q - 1)$. Consider commutative diagrams $$ \vcenter{ \xymatrix{ X \ar[d]_f & X' \ar[d]_{f'} \ar[l] & Y \ar[l]^h \ar[d]^e & Y' \ar[l]^{\pi'} \ar[d]^{e'} \\ S & S' \ar[l] & T \ar[l]_g & T' \ar[l]_\pi } } \quad\text{and}\quad \vcenter{ \xymatrix{ X' \ar[d]_{f'} & & Y' \ar[ll]^{h' = h \circ \pi'} \ar[d]^{e'} \\ S' & & T' \ar[ll]_{g' = g \circ \pi} } } $$ where all squares are cartesian, $g$ quasi-compact and quasi-separated, and $\pi$ is integral surjective. Let $\mathcal{F}$ be an abelian sheaf on $T_\etale$ annihilated by $n$ and set $\mathcal{F}' = \pi^{-1}\mathcal{F}$. If the base change map $$ (f')^{-1}R^qg'_*\mathcal{F}' \longrightarrow R^qh'_*(e')^{-1}\mathcal{F}' $$ is an isomorphism, then the base change map $(f')^{-1}R^qg_*\mathcal{F} \to R^qh_*e^{-1}\mathcal{F}$ is an isomorphism. \end{lemma} \begin{proof} Observe that $\mathcal{F} \to \pi_*\pi^{-1}\mathcal{F}'$ is injective as $\pi$ is surjective (check on stalks). Thus by Lemma \ref{lemma-base-change-q-injective} we see that it suffices to show that the base change map $$ (f')^{-1}R^qg_*\pi_*\mathcal{F}' \longrightarrow R^qh_*e^{-1}\pi_*\mathcal{F}' $$ is an isomorphism. This follows from the assumption because we have $R^qg_*\pi_*\mathcal{F}' = R^qg'_*\mathcal{F}'$, we have $e^{-1}\pi_*\mathcal{F}' =\pi'_*(e')^{-1}\mathcal{F}'$, and we have $R^qh_*\pi'_*(e')^{-1}\mathcal{F}' = R^qh'_*(e')^{-1}\mathcal{F}'$. This follows from Lemmas \ref{lemma-integral-pushforward-commutes-with-base-change} and \ref{lemma-what-integral} and the relative leray spectral sequence (Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-relative-Leray}). \end{proof} \begin{lemma} \label{lemma-base-change-q-integral-bottom} With $f : X \to S$ and $n$ as in Remark \ref{remark-base-change-holds} assume for some $q \geq 1$ we have $BC(f, n, q - 1)$. Consider commutative diagrams $$ \vcenter{ \xymatrix{ X \ar[d]_f & X' \ar[d]_{f'} \ar[l] & X'' \ar[l]^{\pi'} \ar[d]_{f''} & Y \ar[l]^{h'} \ar[d]^e \\ S & S' \ar[l] & S'' \ar[l]_\pi & T \ar[l]_{g'} } } \quad\text{and}\quad \vcenter{ \xymatrix{ X' \ar[d]_{f'} & & Y \ar[ll]^{h = h' \circ \pi'} \ar[d]^e \\ S' & & T \ar[ll]_{g = g' \circ \pi} } } $$ where all squares are cartesian, $g'$ quasi-compact and quasi-separated, and $\pi$ is integral. Let $\mathcal{F}$ be an abelian sheaf on $T_\etale$ annihilated by $n$. If the base change map $$ (f')^{-1}R^qg_*\mathcal{F} \longrightarrow R^qh_*e^{-1}\mathcal{F} $$ is an isomorphism, then the base change map $(f'')^{-1}R^qg'_*\mathcal{F} \to R^qh'_*e^{-1}\mathcal{F}$ is an isomorphism. \end{lemma} \begin{proof} Since $\pi$ and $\pi'$ are integral we have $R\pi_* = \pi_*$ and $R\pi'_* = \pi'_*$, see Lemma \ref{lemma-what-integral}. We also have $(f')^{-1}\pi_* = \pi'_*(f'')^{-1}$. Thus we see that $\pi'_*(f'')^{-1}R^qg'_*\mathcal{F} = (f')^{-1}R^qg_*\mathcal{F}$ and $\pi'_*R^qh'_*e^{-1}\mathcal{F} = R^qh_*e^{-1}\mathcal{F}$. Thus the assumption means that our map becomes an isomorphism after applying the functor $\pi'_*$. Hence we see that it is an isomorphism by Lemma \ref{lemma-what-integral}. \end{proof} \begin{lemma} \label{lemma-formal-argument} Let $T$ be a quasi-compact and quasi-separated scheme. Let $P$ be a property for quasi-compact and quasi-separated schemes over $T$. Assume \begin{enumerate} \item If $T'' \to T'$ is a thickening of quasi-compact and quasi-separated schemes over $T$, then $P(T'')$ if and only if $P(T')$. \item If $T' = \lim T_i$ is a limit of an inverse system of quasi-compact and quasi-separated schemes over $T$ with affine transition morphisms and $P(T_i)$ holds for all $i$, then $P(T')$ holds. \item If $Z \subset T'$ is a closed subscheme with quasi-compact complement $V \subset T'$ and $P(T')$ holds, then either $P(V)$ or $P(Z)$ holds. \end{enumerate} Then $P(T)$ implies $P(\Spec(K))$ for some morphism $\Spec(K) \to T$ where $K$ is a field. \end{lemma} \begin{proof} Consider the set $\mathfrak T$ of closed subschemes $T' \subset T$ such that $P(T')$. By assumption (2) this set has a minimal element, say $T'$. By assumption (1) we see that $T'$ is reduced. Let $\eta \in T'$ be the generic point of an irreducible component of $T'$. Then $\eta = \Spec(K)$ for some field $K$ and $\eta = \lim V$ where the limit is over the affine open subschemes $V \subset T'$ containing $\eta$. By assumption (3) and the minimality of $T'$ we see that $P(V)$ holds for all these $V$. Hence $P(\eta)$ by (2) and the proof is complete. \end{proof} \begin{lemma} \label{lemma-base-change-does-not-hold-pre} With $f : X \to S$ and $n$ as in Remark \ref{remark-base-change-holds} assume for some $q \geq 1$ we have that $BC(f, n, q - 1)$ is true, but $BC(f, n, q)$ is not. Then there exist a commutative diagram $$ \xymatrix{ X \ar[d]_f & X' \ar[d]_{f'} \ar[l] & Y \ar[l]^h \ar[d]^e \\ S & S' \ar[l] & \Spec(K) \ar[l]_g } $$ where $X' = X \times_S S'$, $Y = X' \times_{S'} \Spec(K)$, $K$ is a field, and $\mathcal{F}$ is an abelian sheaf on $\Spec(K)$ annihilated by $n$ such that $(f')^{-1}R^qg_*\mathcal{F} \to R^qh_*e^{-1}\mathcal{F}$ is not an isomorphism. \end{lemma} \begin{proof} Choose a commutative diagram $$ \xymatrix{ X \ar[d]_f & X' \ar[l] \ar[d]_{f'} & Y \ar[l]^h \ar[d]^e \\ S & S' \ar[l] & T \ar[l]_g } $$ with $X' = X \times_S S'$ and $Y = X' \times_{S'} T$ and $g$ quasi-compact and quasi-separated, and an abelian sheaf $\mathcal{F}$ on $T_\etale$ annihilated by $n$ such that the base change map $(f')^{-1}R^qg_*\mathcal{F} \to R^qh_*e^{-1}\mathcal{F}$ is not an isomorphism. Of course we may and do replace $S'$ by an affine open of $S'$; this implies that $T$ is quasi-compact and quasi-separated. By Lemma \ref{lemma-base-change-q-injective} we see $(f')^{-1}R^qg_*\mathcal{F} \to R^qh_*e^{-1}\mathcal{F}$ is injective. Pick a geometric point $\overline{x}$ of $X'$ and an element $\xi$ of $(R^qh_*q^{-1}\mathcal{F})_{\overline{x}}$ which is not in the image of the map $((f')^{-1}R^qg_*\mathcal{F})_{\overline{x}} \to (R^qh_*e^{-1}\mathcal{F})_{\overline{x}}$. \medskip\noindent Consider a morphism $\pi : T' \to T$ with $T'$ quasi-compact and quasi-separated and denote $\mathcal{F}' = \pi^{-1}\mathcal{F}$. Denote $\pi' : Y' = Y \times_T T' \to Y$ the base change of $\pi$ and $e' : Y' \to T'$ the base change of $e$. Picture $$ \vcenter{ \xymatrix{ X' \ar[d]_{f'} & Y \ar[l]^h \ar[d]^e & Y' \ar[l]^{\pi'} \ar[d]^{e'} \\ S' & T \ar[l]_g & T' \ar[l]_\pi } } \quad\text{and}\quad \vcenter{ \xymatrix{ X' \ar[d]_{f'} & & Y' \ar[ll]^{h' = h \circ \pi'} \ar[d]^{e'} \\ S' & & T' \ar[ll]_{g' = g \circ \pi} } } $$ Using pullback maps we obtain a canonical commutative diagram $$ \xymatrix{ (f')^{-1}R^qg_*\mathcal{F} \ar[r] \ar[d] & (f')^{-1}R^qg'_*\mathcal{F}' \ar[d] \\ R^qh_*e^{-1}\mathcal{F} \ar[r] & R^qh'_*(e')^{-1}\mathcal{F}' } $$ of abelian sheaves on $X'$. Let $P(T')$ be the property \begin{itemize} \item The image $\xi'$ of $\xi$ in $(Rh'_*(e')^{-1}\mathcal{F}')_{\overline{x}}$ is not in the image of the map $(f^{-1}R^qg'_*\mathcal{F}')_{\overline{x}} \to (R^qh'_*(e')^{-1}\mathcal{F}')_{\overline{x}}$. \end{itemize} We claim that hypotheses (1), (2), and (3) of Lemma \ref{lemma-formal-argument} hold for $P$ which proves our lemma. \medskip\noindent Condition (1) of Lemma \ref{lemma-formal-argument} holds for $P$ because the \'etale topology of a scheme and a thickening of the scheme is the same. See Proposition \ref{proposition-topological-invariance}. \medskip\noindent Suppose that $I$ is a directed set and that $T_i$ is an inverse system over $I$ of quasi-compact and quasi-separated schemes over $T$ with affine transition morphisms. Set $T' = \lim T_i$. Denote $\mathcal{F}'$ and $\mathcal{F}_i$ the pullback of $\mathcal{F}$ to $T'$, resp.\ $T_i$. Consider the diagrams $$ \vcenter{ \xymatrix{ X \ar[d]_{f'} & Y \ar[l]^h \ar[d]^e & Y_i \ar[l]^{\pi_i'} \ar[d]^{e_i} \\ S & T \ar[l]_g & T_i \ar[l]_{\pi_i} } } \quad\text{and}\quad \vcenter{ \xymatrix{ X \ar[d]_{f'} & & Y_i \ar[ll]^{h_i = h \circ \pi_i'} \ar[d]^{e_i} \\ S & & T_i \ar[ll]_{g_i = g \circ \pi_i} } } $$ as in the previous paragraph. It is clear that $\mathcal{F}'$ on $T'$ is the colimit of the pullbacks of $\mathcal{F}_i$ to $T'$ and that $(e')^{-1}\mathcal{F}'$ is the colimit of the pullbacks of $e_i^{-1}\mathcal{F}_i$ to $Y'$. By Lemma \ref{lemma-relative-colimit-general} we have $$ R^qh'_*(e')^{-1}\mathcal{F}' = \colim R^qh_{i, *}e_i^{-1}\mathcal{F}_i \quad\text{and}\quad (f')^{-1}R^qg'_*\mathcal{F}' = \colim (f')^{-1}R^qg_{i, *}\mathcal{F}_i $$ It follows that if $P(T_i)$ is true for all $i$, then $P(T')$ holds. Thus condition (2) of Lemma \ref{lemma-formal-argument} holds for $P$. \medskip\noindent The most interesting is condition (3) of Lemma \ref{lemma-formal-argument}. Assume $T'$ is a quasi-compact and quasi-separated scheme over $T$ such that $P(T')$ is true. Let $Z \subset T'$ be a closed subscheme with complement $V \subset T'$ quasi-compact. Consider the diagram $$ \xymatrix{ Y' \times_{T'} Z \ar[d]_{e_Z} \ar[r]_{i'} & Y' \ar[d]_{e'} & Y' \times_{T'} V \ar[l]^{j'} \ar[d]^{e_V} \\ Z \ar[r]^i & T' & V \ar[l]_j } $$ Choose an injective map $j^{-1}\mathcal{F}' \to \mathcal{J}$ where $\mathcal{J}$ is an injective sheaf of $\mathbf{Z}/n\mathbf{Z}$-modules on $V$. Looking at stalks we see that the map $$ \mathcal{F}' \to \mathcal{G} = j_*\mathcal{J} \oplus i_*i^{-1}\mathcal{F}' $$ is injective. Thus $\xi'$ maps to a nonzero element of \begin{align*} & \Coker\left( ((f')^{-1}R^qg'_*\mathcal{G})_{\overline{x}} \to (R^qh'_*(e')^{-1}\mathcal{G})_{\overline{x}} \right) = \\ & \Coker\left( ((f')^{-1}R^qg'_*j_*\mathcal{J})_{\overline{x}} \to (R^qh'_*(e')^{-1}j_*\mathcal{J})_{\overline{x}} \right) \oplus \\ & \Coker\left( ((f')^{-1}R^qg'_*i_*i^{-1}\mathcal{F}')_{\overline{x}} \to (R^qh'_*(e')^{-1}i_*i^{-1}\mathcal{F}')_{\overline{x}} \right) \end{align*} by part (2) of Lemma \ref{lemma-base-change-q-injective}. If $\xi'$ does not map to zero in the second summand, then we use $$ (f')^{-1}R^qg'_*i_*i^{-1}\mathcal{F}' = (f')^{-1}R^q(g' \circ i)_*i^{-1}\mathcal{F}' $$ (because $Ri_* = i_*$ by Proposition \ref{proposition-finite-higher-direct-image-zero}) and $$ R^qh'_*(e')^{-1}i_*i^{-1}\mathcal{F} = R^qh'_*i'_*e_Z^{-1}i^{-1}\mathcal{F} = R^q(h' \circ i')_*e_Z^{-1}i^{-1}\mathcal{F}' $$ (first equality by Lemma \ref{lemma-finite-pushforward-commutes-with-base-change} and the second because $Ri'_* = i'_*$ by Proposition \ref{proposition-finite-higher-direct-image-zero}) to we see that we have $P(Z)$. Finally, suppose $\xi'$ does not map to zero in the first summand. We have $$ (e')^{-1}j_*\mathcal{J} = j'_*e_V^{-1}\mathcal{J} \quad\text{and}\quad R^aj'_*e_V^{-1}\mathcal{J} = 0, \quad a = 1, \ldots, q - 1 $$ by $BC(f, n, q - 1)$ applied to the diagram $$ \xymatrix{ X \ar[d]_f & Y' \ar[l] \ar[d]_{e'} & Y \ar[l]^{j'} \ar[d]^{e_V} \\ S & T' \ar[l] & V \ar[l]_j } $$ and the fact that $\mathcal{J}$ is injective. By the relative Leray spectral sequence for $h' \circ j'$ (Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-relative-Leray}) we deduce that $$ R^qh'_*(e')^{-1}j_*\mathcal{J} = R^qh'_*j'_*e_V^{-1}\mathcal{J} \longrightarrow R^q(h' \circ j')_* e_V^{-1}\mathcal{J} $$ is injective. Thus $\xi$ maps to a nonzero element of $(R^q(h' \circ j')_* e_V^{-1}\mathcal{J})_{\overline{x}}$. Applying part (3) of Lemma \ref{lemma-base-change-q-injective} to the injection $j^{-1}\mathcal{F}' \to \mathcal{J}$ we conclude that $P(V)$ holds. \end{proof} \begin{lemma} \label{lemma-base-change-does-not-hold} With $f : X \to S$ and $n$ as in Remark \ref{remark-base-change-holds} assume for some $q \geq 1$ we have that $BC(f, n, q - 1)$ is true, but $BC(f, n, q)$ is not. Then there exist a commutative diagram $$ \xymatrix{ X \ar[d]_f & X' \ar[d] \ar[l] & Y \ar[l]^h \ar[d] \\ S & S' \ar[l] & \Spec(K) \ar[l] } $$ with both squares cartesian, where \begin{enumerate} \item $S'$ is affine, integral, and normal with algebraically closed function field, \item $K$ is algebraically closed and $\Spec(K) \to S'$ is dominant (in other words $K$ is an extension of the function field of $S'$) \end{enumerate} and there exists an integer $d | n$ such that $R^qh_*(\mathbf{Z}/d\mathbf{Z})$ is nonzero. \end{lemma} \noindent Conversely, nonvanishing of $R^qh_*(\mathbf{Z}/d\mathbf{Z})$ in the lemma implies $BC(f, n, q)$ isn't true as Lemma \ref{lemma-Rf-star-zero-normal-with-alg-closed-function-field} shows that $R^q(\Spec(K) \to S')_*\mathbf{Z}/d\mathbf{Z} = 0$. \begin{proof} First choose a diagram and $\mathcal{F}$ as in Lemma \ref{lemma-base-change-does-not-hold-pre}. We may and do assume $S'$ is affine (this is obvious, but see proof of the lemma in case of doubt). By Lemma \ref{lemma-base-change-q-integral-top} we may assume $K$ is algebraically closed. Then $\mathcal{F}$ corresponds to a $\mathbf{Z}/n\mathbf{Z}$-module. Such a modules is a direct sum of copies of $\mathbf{Z}/d\mathbf{Z}$ for varying $d | n$ hence we may assume $\mathcal{F}$ is constant with value $\mathbf{Z}/d\mathbf{Z}$. By Lemma \ref{lemma-base-change-q-integral-bottom} we may replace $S'$ by the normalization of $S'$ in $\Spec(K)$ which finishes the proof. \end{proof} \section{Smooth base change} \label{section-smooth-base-change} \noindent In this section we prove the smooth base change theorem. \begin{lemma} \label{lemma-smooth-base-change-fields} Let $K/k$ be an extension of fields. Let $X$ be a smooth affine curve over $k$ with a rational point $x \in X(k)$. Let $\mathcal{F}$ be an abelian sheaf on $\Spec(K)$ annihilated by an integer $n$ invertible in $k$. Let $q > 0$ and $$ \xi \in H^q(X_K, (X_K \to \Spec(K))^{-1}\mathcal{F}) $$ There exist \begin{enumerate} \item finite extensions $K'/K$ and $k'/k$ with $k' \subset K'$, \item a finite \'etale Galois cover $Z \to X_{k'}$ with group $G$ \end{enumerate} such that the order of $G$ divides a power of $n$, such that $Z \to X_{k'}$ is split over $x_{k'}$, and such that $\xi$ dies in $H^q(Z_{K'}, (Z_{K'} \to \Spec(K))^{-1}\mathcal{F})$. \end{lemma} \begin{proof} For $q > 1$ we know that $\xi$ dies in $H^q(X_{\overline{K}}, (X_{\overline{K}} \to \Spec(K))^{-1}\mathcal{F})$ (Theorem \ref{theorem-vanishing-affine-curves}). By Lemma \ref{lemma-directed-colimit-cohomology} we see that this means there is a finite extension $K'/K$ such that $\xi$ dies in $H^q(X_{K'}, (X_{K'} \to \Spec(K))^{-1}\mathcal{F})$. Thus we can take $k' = k$ and $Z = X$ in this case. \medskip\noindent Assume $q = 1$. Recall that $\mathcal{F}$ corresponds to a discrete module $M$ with continuous $\text{Gal}_K$-action, see Lemma \ref{lemma-equivalence-abelian-sheaves-point}. Since $M$ is $n$-torsion, it is the uninon of finite $\text{Gal}_K$-stable subgroups. Thus we reduce to the case where $M$ is a finite abelian group annihilated by $n$, see Lemma \ref{lemma-colimit}. After replacing $K$ by a finite extension we may assume that the action of $\text{Gal}_K$ on $M$ is trivial. Thus we may assume $\mathcal{F} = \underline{M}$ is the constant sheaf with value a finite abelian group $M$ annihilated by $n$. \medskip\noindent We can write $M$ as a direct sum of cyclic groups. Any two finite \'etale Galois coverings whose Galois groups have order invertible in $k$, can be dominated by a third one whose Galois group has order invertible in $k$ (Fundamental Groups, Section \ref{pione-section-finite-etale-under-galois}). Thus it suffices to prove the lemma when $M = \mathbf{Z}/d\mathbf{Z}$ where $d | n$. \medskip\noindent Assume $M = \mathbf{Z}/d\mathbf{Z}$ where $d | n$. In this case $\overline{\xi} = \xi|_{X_{\overline{K}}}$ is an element of $$ H^1(X_{\overline{k}}, \mathbf{Z}/d\mathbf{Z}) = H^1(X_{\overline{K}}, \mathbf{Z}/d\mathbf{Z}) $$ See Theorem \ref{theorem-vanishing-affine-curves}. This group classifies $\mathbf{Z}/d\mathbf{Z}$-torsors, see Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-torsors-h1}. The torsor corresponding to $\overline{\xi}$ (viewed as a sheaf on $X_{\overline{k}, \etale}$) in turn gives rise to a finite \'etale morphism $T \to X_{\overline{k}}$ endowed an action of $\mathbf{Z}/d\mathbf{Z}$ transitive on the fibre of $T$ over $x_{\overline{k}}$, see Lemma \ref{lemma-characterize-finite-locally-constant}. Choose a connected component $T' \subset T$ (if $\overline{\xi}$ has order $d$, then $T$ is already connected). Then $T' \to X_{\overline{k}}$ is a finite \'etale Galois cover whose Galois group is a subgroup $G \subset \mathbf{Z}/d\mathbf{Z}$ (small detail omitted). Moreover the element $\overline{\xi}$ maps to zero under the map $H^1(X_{\overline{k}}, \mathbf{Z}/d\mathbf{Z}) \to H^1(T', \mathbf{Z}/d\mathbf{Z})$ as this is one of the defining properties of $T$. \medskip\noindent Next, we use a limit argument to choose a finite extension $k'/k$ contained in $\overline{k}$ such that $T' \to X_{\overline{k}}$ descends to a finite \'etale Galois cover $Z \to X_{k'}$ with group $G$. See Limits, Lemmas \ref{limits-lemma-descend-finite-presentation}, \ref{limits-lemma-descend-finite-finite-presentation}, and \ref{limits-lemma-descend-etale}. After increasing $k'$ we may assume that $Z$ splits over $x_{k'}$. The image of $\xi$ in $H^1(Z_{\overline{K}}, \mathbf{Z}/d\mathbf{Z})$ is zero by construction. Thus by Lemma \ref{lemma-directed-colimit-cohomology} we can find a finite subextension $\overline{K}/K'/K$ containing $k'$ such that $\xi$ dies in $H^1(Z_{K'}, \mathbf{Z}/d\mathbf{Z})$ and this finishes the proof. \end{proof} \begin{theorem}[Smooth base change] \label{theorem-smooth-base-change} Consider a cartesian diagram of schemes $$ \xymatrix{ X \ar[d]_f & Y \ar[l]^h \ar[d]^e \\ S & T \ar[l]_g } $$ where $f$ is smooth and $g$ quasi-compact and quasi-separated. Then $$ f^{-1}R^qg_*\mathcal{F} = R^qh_*e^{-1}\mathcal{F} $$ for any $q$ and any abelian sheaf $\mathcal{F}$ on $T_\etale$ all of whose stalks at geometric points are torsion of orders invertible on $S$. \end{theorem} \begin{proof}[First proof of smooth base change] This proof is very long but more direct (using less general theory) than the second proof given below. \medskip\noindent The theorem is local on $X_\etale$. More precisely, suppose we have $U \to X$ \'etale such that $U \to S$ factors as $U \to V \to S$ with $V \to S$ \'etale. Then we can consider the cartesian square $$ \xymatrix{ U \ar[d]_{f'} & U \times_X Y \ar[l]^{h'} \ar[d]^{e'} \\ V & V \times_S T \ar[l]_{g'} } $$ and setting $\mathcal{F}' = \mathcal{F}|_{V \times_S T}$ we have $f^{-1}R^qg_*\mathcal{F}|_U = (f')^{-1}R^qg'_*\mathcal{F}'$ and $R^qh_*e^{-1}\mathcal{F}|_U = R^qh'_*(e')^{-1}\mathcal{F}'$ (as follows from the compatibility of localization with morphisms of sites, see Sites, Lemma \ref{sites-lemma-localize-morphism-strong} and and Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-restrict-direct-image-open}). Thus it suffices to produce an \'etale covering of $X$ by $U \to X$ and factorizations $U \to V \to S$ as above such that the theorem holds for the diagram with $f'$, $h'$, $g'$, $e'$. \medskip\noindent By the local structure of smooth morphisms, see Morphisms, Lemma \ref{morphisms-lemma-smooth-etale-over-affine-space}, we may assume $X$ and $S$ are affine and $X \to S$ factors through an \'etale morphism $X \to \mathbf{A}^d_S$. If we have a tower of cartesian diagrams $$ \xymatrix{ W \ar[d]_i & Z \ar[l]^j \ar[d]^k \\ X \ar[d]_f & Y \ar[l]^h \ar[d]^e \\ S & T \ar[l]_g } $$ and the theorem holds for the bottom and top squares, then the theorem holds for the outer rectangle; this is formal. Writing $X \to S$ as the composition $$ X \to \mathbf{A}^{d - 1}_S \to \mathbf{A}^{d - 2}_S \to \ldots \to \mathbf{A}^1_S \to S $$ we conclude that it suffices to prove the theorem when $X$ and $S$ are affine and $X \to S$ has relative dimension $1$. \medskip\noindent For every $n \geq 1$ invertible on $S$, let $\mathcal{F}[n]$ be the subsheaf of sections of $\mathcal{F}$ annihilated by $n$. Then $\mathcal{F} = \colim \mathcal{F}[n]$ by our assumption on the stalks of $\mathcal{F}$. The functors $e^{-1}$ and $f^{-1}$ commute with colimits as they are left adjoints. The functors $R^qh_*$ and $R^qg_*$ commute with filtered colimits by Lemma \ref{lemma-relative-colimit}. Thus it suffices to prove the theorem for $\mathcal{F}[n]$. From now on we fix an integer $n$, we work with sheaves of $\mathbf{Z}/n\mathbf{Z}$-modules and we assume $S$ is a scheme over $\Spec(\mathbf{Z}[1/n])$. \medskip\noindent Next, we reduce to the case where $T$ is affine. Since $g$ is quasi-compact and quasi-separate and $S$ is affine, the scheme $T$ is quasi-compact and quasi-separated. Thus we can use the induction principle of Cohomology of Schemes, Lemma \ref{coherent-lemma-induction-principle}. Hence it suffices to show that if $T = W \cup W'$ is an open covering and the theorem holds for the squares $$ \xymatrix{ X \ar[d] & e^{-1}(W) \ar[l]^i \ar[d] \\ S & W \ar[l]_a } \quad \xymatrix{ X \ar[d] & e^{-1}(W') \ar[l]^j \ar[d] \\ S & W' \ar[l]_b } \quad \xymatrix{ X \ar[d] & e^{-1}(W \cap W') \ar[l]^-k \ar[d] \\ S & W \cap W' \ar[l]_c } $$ then the theorem holds for the original diagram. To see this we consider the diagram $$ \xymatrix{ f^{-1}R^{q - 1}c_*\mathcal{F}|_{W \cap W'} \ar[d]^{\cong} \ar[r] & f^{-1}R^qg_*\mathcal{F} \ar[d] \ar[r] & f^{-1}R^qa_*\mathcal{F}|_W \oplus f^{-1}R^qb_*\mathcal{F}|_{W'} \ar[d]_{\cong} \\ R^qk_*e^{-1}\mathcal{F}|_{e^{-1}(W \cap W')} \ar[r] & R^qh_*e^{-1}\mathcal{F} \ar[r] & R^qi_*e^{-1}\mathcal{F}|_{e^{-1}(W)} \oplus R^qj_*e^{-1}\mathcal{F}|_{e^{-1}(W')} } $$ whose rows are the long exact sequences of Lemma \ref{lemma-relative-mayer-vietoris}. Thus the $5$-lemma gives the desired conclusion. \medskip\noindent Summarizing, we may assume $S$, $X$, $T$, and $Y$ affine, $\mathcal{F}$ is $n$ torsion, $X \to S$ is smooth of relative dimension $1$, and $S$ is a scheme over $\mathbf{Z}[1/n]$. We will prove the theorem by induction on $q$. The base case $q = 0$ is handled by Lemma \ref{lemma-fppf-reduced-fibres-base-change-f-star}. Assume $q > 0$ and the theorem holds for all smaller degrees. Choose a short exact sequence $0 \to \mathcal{F} \to \mathcal{I} \to \mathcal{Q} \to 0$ where $\mathcal{I}$ is an injective sheaf of $\mathbf{Z}/n\mathbf{Z}$-modules. Consider the induced diagram $$ \xymatrix{ f^{-1}R^{q - 1}g_*\mathcal{I} \ar[d]_{\cong} \ar[r] & f^{-1}R^{q - 1}g_*\mathcal{Q} \ar[d]_{\cong} \ar[r] & f^{-1}R^qg_*\mathcal{F} \ar[d] \ar[r] & 0 \ar[d] \\ R^{q - 1}h_*e^{-1}\mathcal{I} \ar[r] & R^{q - 1}h_*e^{-1}\mathcal{Q} \ar[r] & R^qh_*e^{-1}\mathcal{F} \ar[r] & R^qh_*e^{-1}\mathcal{I} } $$ with exact rows. We have the zero in the right upper corner as $\mathcal{I}$ is injective. The left two vertical arrows are isomorphisms by induction hypothesis. Thus it suffices to prove that $R^qh_*e^{-1}\mathcal{I} = 0$. \medskip\noindent Write $S = \Spec(A)$ and $T = \Spec(B)$ and say the morphism $T \to S$ is given by the ring map $A \to B$. We can write $A \to B = \colim_{i \in I} (A_i \to B_i)$ as a filtered colimit of maps of rings of finite type over $\mathbf{Z}[1/n]$ (see Algebra, Lemma \ref{algebra-lemma-limit-no-condition}). For $i \in I$ we set $S_i = \Spec(A_i)$ and $T_i = \Spec(B_i)$. For $i$ large enough we can find a smooth morphism $X_i \to S_i$ of relative dimension $1$ such that $X = X_i \times_{S_i} S$, see Limits, Lemmas \ref{limits-lemma-descend-finite-presentation}, \ref{limits-lemma-descend-smooth}, and \ref{limits-lemma-descend-dimension-d}. Set $Y_i = X_i \times_{S_i} T_i$ to get squares $$ \xymatrix{ X_i \ar[d]_{f_i} & Y_i \ar[l]^{h_i} \ar[d]^{e_i} \\ S_i & T_i \ar[l]_{g_i} } $$ Observe that $\mathcal{I}_i = (T \to T_i)_*\mathcal{I}$ is an injective sheaf of $\mathbf{Z}/n\mathbf{Z}$-modules on $T_i$, see Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-pushforward-injective-flat}. We have $\mathcal{I} = \colim (T \to T_i)^{-1}\mathcal{I}_i$ by Lemma \ref{lemma-linus-hamann}. Pulling back by $e$ we get $e^{-1}\mathcal{I} = \colim (Y \to Y_i)^{-1}e_i^{-1}\mathcal{I}_i$. By Lemma \ref{lemma-relative-colimit-general} applied to the system of morphisms $Y_i \to X_i$ with limit $Y \to X$ we have $$ R^qh_*e^{-1}\mathcal{I} = \colim (X \to X_i)^{-1} R^qh_{i, *} e_i^{-1}\mathcal{I}_i $$ This reduces us to the case where $T$ and $S$ are affine of finite type over $\mathbf{Z}[1/n]$. \medskip\noindent Summarizing, we have an integer $q \geq 1$ such that the theorem holds in degrees $< q$, the schemes $S$ and $T$ affine of finite type type over $\mathbf{Z}[1/n]$, we have $X \to S$ smooth of relative dimension $1$ with $X$ affine, and $\mathcal{I}$ is an injective sheaf of $\mathbf{Z}/n\mathbf{Z}$-modules and we have to show that $R^qh_*e^{-1}\mathcal{I} = 0$. We will do this by induction on $\dim(T)$. \medskip\noindent The base case is $T = \emptyset$, i.e., $\dim(T) < 0$. If you don't like this, you can take as your base case the case $\dim(T) = 0$. In this case $T \to S$ is finite (in fact even $T \to \Spec(\mathbf{Z}[1/n])$ is finite as the target is Jacobson; details omitted), so $h$ is finite too and hence has vanishing higher direct images (see references below). \medskip\noindent Assume $\dim(T) = d \geq 0$ and we know the result for all situations where $T$ has lower dimension. Pick $U$ affine and \'etale over $X$ and a section $\xi$ of $R^qh_*q^{-1}\mathcal{I}$ over $U$. We have to show that $\xi$ is zero. Of course, we may replace $X$ by $U$ (and correspondingly $Y$ by $U \times_X Y$) and assume $\xi \in H^0(X, R^qh_*e^{-1}\mathcal{I})$. Moreover, since $R^qh_*e^{-1}\mathcal{I}$ is a sheaf, it suffices to prove that $\xi$ is zero locally on $X$. Hence we may replace $X$ by the members of an \'etale covering. In particular, using Lemma \ref{lemma-higher-direct-images} we may assume that $\xi$ is the image of an element $\tilde \xi \in H^q(Y, e^{-1}\mathcal{I})$. In terms of $\tilde \xi$ our task is to show that $\tilde \xi$ dies in $H^q(U_i \times_X Y, e^{-1}\mathcal{I})$ for some \'etale covering $\{U_i \to X\}$. \medskip\noindent By More on Morphisms, Lemma \ref{more-morphisms-lemma-cover-smooth-by-special} we may assume that $X \to S$ factors as $X \to V \to S$ where $V \to S$ is \'etale and $X \to V$ is a smooth morphism of affine schemes of relative dimension $1$, has a section, and has geometrically connected fibres. Observe that $\dim(V \times_S T) \leq \dim(T) = d$ for example by More on Algebra, Lemma \ref{more-algebra-lemma-dimension-etale-extension}. Hence we may then replace $S$ by $V$ and $T$ by $V \times_S T$ (exactly as in the discussion in the first paragraph of the proof). Thus we may assume $X \to S$ is smooth of relative dimension $1$, geometrically connected fibres, and has a section $\sigma : S \to X$. \medskip\noindent Let $\pi : T' \to T$ be a finite surjective morphism. We will use below that $\dim(T') \leq \dim(T) = d$, see Algebra, Lemma \ref{algebra-lemma-integral-dim-up}. Choose an injective map $\pi^{-1}\mathcal{I} \to \mathcal{I}'$ into an injective sheaf of $\mathbf{Z}/n\mathbf{Z}$-modules. Then $\mathcal{I} \to \pi_*\mathcal{I}'$ is injective and hence has a splitting (as $\mathcal{I}$ is an injective sheaf of $\mathbf{Z}/n\mathbf{Z}$-modules). Denote $\pi' : Y' = Y \times_T T' \to Y$ the base change of $\pi$ and $e' : Y' \to T'$ the base change of $e$. Picture $$ \xymatrix{ X \ar[d]_f & Y \ar[l]^h \ar[d]^e & Y' \ar[l]^{\pi'} \ar[d]^{e'} \\ S & T \ar[l]_g & T' \ar[l]_\pi } $$ By Proposition \ref{proposition-finite-higher-direct-image-zero} and Lemma \ref{lemma-finite-pushforward-commutes-with-base-change} we have $R\pi'_*(e')^{-1}\mathcal{I}' = e^{-1}\pi_*\mathcal{I}'$. Thus by the Leray spectral sequence (Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-Leray}) we have $$ H^q(Y', (e')^{-1}\mathcal{I}') = H^q(Y, e^{-1}\pi_*\mathcal{I}') \supset H^q(Y, e^{-1}\mathcal{I}) $$ and this remains true after base change by any $U \to X$ \'etale. Thus we may replace $T$ by $T'$, $\mathcal{I}$ by $\mathcal{I}'$ and $\tilde \xi$ by its image in $H^q(Y', (e')^{-1}\mathcal{I}')$. \medskip\noindent Suppose we have a factorization $T \to S' \to S$ where $\pi : S' \to S$ is finite. Setting $X' = S' \times_S X$ we can consider the induced diagram $$ \xymatrix{ X \ar[d]_f & X' \ar[l]^{\pi'} \ar[d]^{f'} & Y \ar[l]^{h'} \ar[d]^e \\ S & S' \ar[l]_\pi & T \ar[l]_g } $$ Since $\pi'$ has vanishing higher direct images we see that $R^qh_*e^{-1}\mathcal{I} = \pi'_*R^qh'_*e^{-1}\mathcal{I}$ by the Leray spectral sequence. Hence $H^0(X, R^qh_*e^{-1}\mathcal{I}) = H^0(X', R^qh'_*e^{-1}\mathcal{I})$. Thus $\xi$ is zero if and only if the corresponding section of $R^qh'_*e^{-1}\mathcal{I}$ is zero\footnote{This step can also be seen another way. Namely, we have to show that there is an \'etale covering $\{U_i \to X\}$ such that $\tilde \xi$ dies in $H^q(U_i \times_X Y, e^{-1}\mathcal{I})$. However, if we prove there is an \'etale covering $\{U'_j \to X'\}$ such that $\tilde \xi$ dies in $H^q(U'_i \times_{X'} Y, e^{-1}\mathcal{I})$, then by property (B) for $X' \to X$ (Lemma \ref{lemma-finite-B}) there exists an \'etale covering $\{U_i \to X\}$ such that $U_i \times_X X'$ is a disjoint union of schemes over $X'$ each of which factors through $U'_j$ for some $j$. Thus we see that $\tilde \xi$ dies in $H^q(U_i \times_X Y, e^{-1}\mathcal{I})$ as desired.}. Thus we may replace $S$ by $S'$ and $X$ by $X'$. Observe that $\sigma : S \to X$ base changes to $\sigma' : S' \to X'$ and hence after this replacement it is still true that $X \to S$ has a section $\sigma$ and geometrically connected fibres. \medskip\noindent We will use that $S$ and $T$ are Nagata schemes, see Algebra, Proposition \ref{algebra-proposition-ubiquity-nagata} which will guarantee that various normalizations are finite, see Morphisms, Lemmas \ref{morphisms-lemma-nagata-normalization-finite} and \ref{morphisms-lemma-nagata-normalization}. In particular, we may first replace $T$ by its normalization and then replace $S$ by the normalization of $S$ in $T$. Then $T \to S$ is a disjoint union of dominant morphisms of integral normal schemes, see Morphisms, Lemma \ref{morphisms-lemma-normal-normalization}. Clearly we may argue one connnected component at a time, hence we may assume $T \to S$ is a dominant morphism of integral normal schemes. \medskip\noindent Let $s \in S$ and $t \in T$ be the generic points. By Lemma \ref{lemma-smooth-base-change-fields} there exist finite field extensions $K/\kappa(t)$ and $k/\kappa(s)$ such that $k$ is contained in $K$ and a finite \'etale Galois covering $Z \to X_k$ with Galois group $G$ of order dividing a power of $n$ split over $\sigma(\Spec(k))$ such that $\tilde \xi$ maps to zero in $H^q(Z_K, e^{-1}\mathcal{I}|_{Z_K})$. Let $T' \to T$ be the normalization of $T$ in $\Spec(K)$ and let $S' \to S$ be the normalization of $S$ in $\Spec(k)$. Then we obtain a commutative diagram $$ \xymatrix{ S' \ar[d] & T' \ar[l] \ar[d] \\ S & T \ar[l] } $$ whose vertical arrows are finite. By the arguments given above we may and do replace $S$ and $T$ by $S'$ and $T'$ (and correspondingly $X$ by $X \times_S S'$ and $Y$ by $Y \times_T T'$). After this replacement we conclude we have a finite \'etale Galois covering $Z \to X_s$ of the generic fibre of $X \to S$ with Galois group $G$ of order dividing a power of $n$ split over $\sigma(s)$ such that $\tilde \xi$ maps to zero in $H^q(Z_t, (Z_t \to Y)^{-1}e^{-1}\mathcal{I})$. Here $Z_t = Z \times_S t = Z \times_s t = Z \times_{X_s} Y_t$. Since $n$ is invertible on $S$, by Fundamental Groups, Lemma \ref{pione-lemma-extend-covering} we can find a finite \'etale morphism $U \to X$ whose restriction to $X_s$ is $Z$. \medskip\noindent At this point we replace $X$ by $U$ and $Y$ by $U \times_X Y$. After this replacement it may no longer be the case that the fibres of $X \to S$ are geometrically connected (there still is a section but we won't use this), but what we gain is that after this replacement $\tilde \xi$ maps to zero in $H^q(Y_t, e^{-1}\mathcal{I})$, i.e., $\tilde \xi$ restricts to zero on the generic fibre of $Y \to T$. \medskip\noindent Recall that $t$ is the spectrum of the function field of $T$, i.e., as a scheme $t$ is the limit of the nonempty affine open subschemes of $T$. By Lemma \ref{lemma-directed-colimit-cohomology} we conclude there exists a nonempty open subscheme $V \subset T$ such that $\tilde \xi$ maps to zero in $H^q(Y \times_T V, e^{-1}\mathcal{I}|_{Y \times_T V})$. \medskip\noindent Denote $Z = T \setminus V$. Consider the diagram $$ \xymatrix{ Y \times_T Z \ar[d]_{e_Z} \ar[r]_{i'} & Y \ar[d]_e & Y \times_T V \ar[l]^{j'} \ar[d]^{e_V} \\ Z \ar[r]^i & T & V \ar[l]_j } $$ Choose an injection $i^{-1}\mathcal{I} \to \mathcal{I}'$ into an injective sheaf of $\mathbf{Z}/n\mathbf{Z}$-modules on $Z$. Looking at stalks we see that the map $$ \mathcal{I} \to j_*\mathcal{I}|_V \oplus i_*\mathcal{I}' $$ is injective and hence splits as $\mathcal{I}$ is an injective sheaf of $\mathbf{Z}/n\mathbf{Z}$-modules. Thus it suffices to show that $\tilde \xi$ maps to zero in $$ H^q(Y, e^{-1}j_*\mathcal{I}|_V) \oplus H^q(Y, e^{-1}i_*\mathcal{I}') $$ at least after replacing $X$ by the members of an \'etale covering. Observe that $$ e^{-1}j_*\mathcal{I}|_V = j'_*e_V^{-1}\mathcal{I}|_V,\quad e^{-1}i_*\mathcal{I}' = i'_*e_Z^{-1}\mathcal{I}' $$ By induction hypothesis on $q$ we see that $$ R^aj'_*e_V^{-1}\mathcal{I}|_V = 0, \quad a = 1, \ldots, q - 1 $$ By the Leray spectral sequence for $j'$ and the vanishing above it follows that $$ H^q(Y, j'_*(e_V^{-1}\mathcal{I}|_V)) \longrightarrow H^q(Y \times_T V, e_V^{-1}\mathcal{I}_V) = H^q(Y \times_T V, e^{-1}\mathcal{I}|_{Y \times_T V}) $$ is injective. Thus the vanishing of the image of $\tilde \xi$ in the first summand above because we know $\tilde \xi$ vanishes in $H^q(Y \times_T V, e^{-1}\mathcal{I}|_{Y \times_T V})$. Since $\dim(Z) < \dim(T) = d$ by induction the image of $\tilde \xi$ in the second summand $$ H^q(Y, e^{-1}i_*\mathcal{I}') = H^q(Y, i'_*e_Z^{-1}\mathcal{I}') = H^q(Y \times_T Z, e_Z^{-1}\mathcal{I}') $$ dies after replacing $X$ by the members of a suitable \'etale covering. This finishes the proof of the smooth base change theorem. \end{proof} \begin{proof}[Second proof of smooth base change] This proof is the same as the longer first proof; it is shorter only in that we have split out the arguments used in a number of lemmas. \medskip\noindent The case of $q = 0$ is Lemma \ref{lemma-fppf-reduced-fibres-base-change-f-star}. Thus we may assume $q > 0$ and the result is true for all smaller degrees. \medskip\noindent For every $n \geq 1$ invertible on $S$, let $\mathcal{F}[n]$ be the subsheaf of sections of $\mathcal{F}$ annihilated by $n$. Then $\mathcal{F} = \colim \mathcal{F}[n]$ by our assumption on the stalks of $\mathcal{F}$. The functors $e^{-1}$ and $f^{-1}$ commute with colimits as they are left adjoints. The functors $R^qh_*$ and $R^qg_*$ commute with filtered colimits by Lemma \ref{lemma-relative-colimit}. Thus it suffices to prove the theorem for $\mathcal{F}[n]$. From now on we fix an integer $n$ invertible on $S$ and we work with sheaves of $\mathbf{Z}/n\mathbf{Z}$-modules. \medskip\noindent By Lemma \ref{lemma-base-change-local} the question is \'etale local on $X$ and $S$. By the local structure of smooth morphisms, see Morphisms, Lemma \ref{morphisms-lemma-smooth-etale-over-affine-space}, we may assume $X$ and $S$ are affine and $X \to S$ factors through an \'etale morphism $X \to \mathbf{A}^d_S$. Writing $X \to S$ as the composition $$ X \to \mathbf{A}^{d - 1}_S \to \mathbf{A}^{d - 2}_S \to \ldots \to \mathbf{A}^1_S \to S $$ we conclude from Lemma \ref{lemma-base-change-compose} that it suffices to prove the theorem when $X$ and $S$ are affine and $X \to S$ has relative dimension $1$. \medskip\noindent By Lemma \ref{lemma-base-change-does-not-hold} it suffices to show that $R^qh_*\mathbf{Z}/d\mathbf{Z} = 0$ for $d | n$ whenever we have a cartesian diagram $$ \xymatrix{ X \ar[d] & Y \ar[d] \ar[l]^h \\ S & \Spec(K) \ar[l] } $$ where $X \to S$ is affine and smooth of relative dimension $1$, $S$ is the spectrum of a normal domain $A$ with algebraically closed fraction field $L$, and $K/L$ is an extension of algebraically closed fields. \medskip\noindent Recall that $R^qh_*\mathbf{Z}/d\mathbf{Z}$ is the sheaf associated to the presheaf $$ U \longmapsto H^q(U \times_X Y, \mathbf{Z}/d\mathbf{Z}) = H^q(U \times_S \Spec(K), \mathbf{Z}/d\mathbf{Z}) $$ on $X_\etale$ (Lemma \ref{lemma-higher-direct-images}). Thus it suffices to show: given $U$ and $\xi \in H^q(U \times_S \Spec(K), \mathbf{Z}/d\mathbf{Z})$ there exists an \'etale covering $\{U_i \to U\}$ such that $\xi$ dies in $H^q(U_i \times_S \Spec(K), \mathbf{Z}/d\mathbf{Z})$. \medskip\noindent Of course we may take $U$ affine. Then $U \times_S \Spec(K)$ is a (smooth) affine curve over $K$ and hence we have vanishing for $q > 1$ by Theorem \ref{theorem-vanishing-affine-curves}. \medskip\noindent Final case: $q = 1$. We may replace $U$ by the members of an \'etale covering as in More on Morphisms, Lemma \ref{more-morphisms-lemma-cover-smooth-by-special}. Then $U \to S$ factors as $U \to V \to S$ where $U \to V$ has geometrically connected fibres, $U$, $V$ are affine, $V \to S$ is \'etale, and there is a section $\sigma : V \to U$. By Lemma \ref{lemma-normal-scheme-with-alg-closed-function-field} we see that $V$ is isomorphic to a (finite) disjoint union of (affine) open subschemes of $S$. Clearly we may replace $S$ by one of these and $X$ by the corresponding component of $U$. Thus we may assume $X \to S$ has geometrically connected fibres, has a section $\sigma$, and $\xi \in H^1(Y, \mathbf{Z}/d\mathbf{Z})$. Since $K$ and $L$ are algebraically closed we have $$ H^1(X_L, \mathbf{Z}/d\mathbf{Z}) = H^1(Y, \mathbf{Z}/d\mathbf{Z}) $$ See Lemma \ref{lemma-base-change-dim-1-separably-closed}. Thus there is a finite \'etale Galois covering $Z \to X_L$ with Galois group $G \subset \mathbf{Z}/d\mathbf{Z}$ which annihilates $\xi$. You can either see this by looking at the statement or proof of Lemma \ref{lemma-smooth-base-change-fields} or by using directly that $\xi$ corresponds to a $\mathbf{Z}/d\mathbf{Z}$-torsor over $X_L$. Finally, by Fundamental Groups, Lemma \ref{pione-lemma-extend-covering-general} we find a (necessarily surjective) finite \'etale morphism $X' \to X$ whose restriction to $X_L$ is $Z \to X_L$. Since $\xi$ dies in $X'_K$ this finishes the proof. \end{proof} \noindent The following immediate consquence of the smooth base change theorem is what is often used in practice. \begin{lemma} \label{lemma-smooth-base-change-general} Let $S$ be a scheme. Let $S' = \lim S_i$ be a directed inverse limit of schemes $S_i$ smooth over $S$ with affine transition morphisms. Let $f : X \to S$ be quasi-compact and quasi-separated and form the fibre square $$ \xymatrix{ X' \ar[d]_{f'} \ar[r]_{g'} & X \ar[d]^f \\ S' \ar[r]^g & S } $$ Then $$ g^{-1}Rf_*E = R(f')_*(g')^{-1}E $$ for any $E \in D^+(X_\etale)$ whose cohomology sheaves $H^q(E)$ have stalks which are torsion of orders invertible on $S$. \end{lemma} \begin{proof} Consider the spectral sequences $$ E_2^{p, q} = R^pf_*H^q(E) \quad\text{and}\quad {E'}_2^{p, q} = R^pf'_*H^q((g')^{-1}E) = R^pf'_*(g')^{-1}H^q(E) $$ converging to $R^nf_*E$ and $R^nf'_*(g')^{-1}E$. These spectral sequences are constructed in Derived Categories, Lemma \ref{derived-lemma-two-ss-complex-functor}. Combining the smooth base change theorem (Theorem \ref{theorem-smooth-base-change}) with Lemma \ref{lemma-base-change-Rf-star-colim} we see that $$ g^{-1}R^pf_*H^q(E) = R^p(f')_*(g')^{-1}H^q(E) $$ Combining all of the above we get the lemma. \end{proof} \section{Applications of smooth base change} \label{section-applications-smooth-base-change} \noindent In this section we discuss some more or less immediate consequences of the smooth base change theorem. \begin{lemma} \label{lemma-base-change-field-extension} Let $L/K$ be an extension of fields. Let $g : T \to S$ be a quasi-compact and quasi-separated morphism of schemes over $K$. Denote $g_L : T_L \to S_L$ the base change of $g$ to $\Spec(L)$. Let $E \in D^+(T_\etale)$ have cohomology sheaves whose stalks are torsion of orders invertible in $K$. Let $E_L$ be the pullback of $E$ to $(T_L)_\etale$. Then $Rg_{L, *}E_L$ is the pullback of $Rg_*E$ to $S_L$. \end{lemma} \begin{proof} If $L/K$ is separable, then $L$ is a filtered colimit of smooth $K$-algebras, see Algebra, Lemma \ref{algebra-lemma-colimit-syntomic}. Thus the lemma in this case follows immediately from Lemma \ref{lemma-smooth-base-change-general}. In the general case, let $K'$ and $L'$ be the perfect closures (Algebra, Definition \ref{algebra-definition-perfection}) of $K$ and $L$. Then $\Spec(K') \to \Spec(K)$ and $\Spec(L') \to \Spec(L)$ are universal homeomorphisms as $K'/K$ and $L'/L$ are purely inseparable (see Algebra, Lemma \ref{algebra-lemma-p-ring-map}). Thus we have $(T_{K'})_\etale = T_\etale$, $(S_{K'})_\etale = S_\etale$, $(T_{L'})_\etale = (T_L)\etale$, and $(S_{L'})_\etale = (S_L)_\etale$ by the topological invariance of \'etale cohomology, see Proposition \ref{proposition-topological-invariance}. This reduces the lemma to the case of the field extension $L'/K'$ which is separable (by definition of perfect fields, see Algebra, Definition \ref{algebra-definition-perfect}). \end{proof} \begin{lemma} \label{lemma-smooth-base-change-separably-closed} Let $K/k$ be an extension of separably closed fields. Let $X$ be a quasi-compact and quasi-separated scheme over $k$. Let $E \in D^+(X_\etale)$ have cohomology sheaves whose stalks are torsion of orders invertible in $k$. Then \begin{enumerate} \item the maps $H^q_\etale(X, E) \to H^q_\etale(X_K, E|_{X_K})$ are isomorphisms, and \item $E \to R(X_K \to X)_*E|_{X_K}$ is an isomorphism. \end{enumerate} \end{lemma} \begin{proof} Proof of (1). First let $\overline{k}$ and $\overline{K}$ be the algebraic closures of $k$ and $K$. The morphisms $\Spec(\overline{k}) \to \Spec(k)$ and $\Spec(\overline{K}) \to \Spec(K)$ are universal homeomorphisms as $\overline{k}/k$ and $\overline{K}/K$ are purely inseparable (see Algebra, Lemma \ref{algebra-lemma-p-ring-map}). Thus $H^q_\etale(X, \mathcal{F}) = H^q_\etale(X_{\overline{k}}, \mathcal{F}_{X_{\overline{k}}})$ by the topological invariance of \'etale cohomology, see Proposition \ref{proposition-topological-invariance}. Similarly for $X_K$ and $X_{\overline{K}}$. Thus we may assume $k$ and $K$ are algebraically closed. In this case $K$ is a limit of smooth $k$-algebras, see Algebra, Lemma \ref{algebra-lemma-colimit-syntomic}. We conclude our lemma is a special case of Theorem \ref{theorem-smooth-base-change} as reformulated in Lemma \ref{lemma-smooth-base-change-general}. \medskip\noindent Proof of (2). For any quasi-compact and quasi-separated $U$ in $X_\etale$ the above shows that the restriction of the map $E \to R(X_K \to X)_*E|_{X_K}$ determines an isomorphism on cohomology. Since every object of $X_\etale$ has an \'etale covering by such $U$ this proves the desired statement. \end{proof} \begin{lemma} \label{lemma-base-change-does-not-hold-post} With $f : X \to S$ and $n$ as in Remark \ref{remark-base-change-holds} assume $n$ is invertible on $S$ and that for some $q \geq 1$ we have that $BC(f, n, q - 1)$ is true, but $BC(f, n, q)$ is not. Then there exist a commutative diagram $$ \xymatrix{ X \ar[d]_f & X' \ar[d] \ar[l] & Y \ar[l]^h \ar[d] \\ S & S' \ar[l] & \Spec(K) \ar[l] } $$ with both squares cartesian, where $S'$ is affine, integral, and normal with algebraically closed function field $K$ and there exists an integer $d | n$ such that $R^qh_*(\mathbf{Z}/d\mathbf{Z})$ is nonzero. \end{lemma} \begin{proof} First choose a diagram and $\mathcal{F}$ as in Lemma \ref{lemma-base-change-does-not-hold}. We may and do assume $S'$ is affine (this is obvious, but see proof of the lemma in case of doubt). Let $K'$ be the function field of $S'$ and let $Y' = X' \times_{S'} \Spec(K')$ to get the diagram $$ \xymatrix{ X \ar[d]_f & X' \ar[d] \ar[l] & Y' \ar[l]^{h'} \ar[d] & Y \ar[l] \ar[d] \\ S & S' \ar[l] & \Spec(K') \ar[l] & \Spec(K) \ar[l] } $$ By Lemma \ref{lemma-smooth-base-change-separably-closed} the total direct image $R(Y \to Y')_*\mathbf{Z}/d\mathbf{Z}$ is isomorphic to $\mathbf{Z}/d\mathbf{Z}$ in $D(Y'_\etale)$; here we use that $n$ is invertible on $S$. Thus $Rh'_*\mathbf{Z}/d\mathbf{Z} = Rh_*\mathbf{Z}/d\mathbf{Z}$ by the relative Leray spectral sequence. This finishes the proof. \end{proof} \section{The proper base change theorem} \label{section-proper-base-change} \noindent The proper base change theorem is stated and proved in this section. Our approach follows roughly the proof in \cite[XII, Theorem 5.1]{SGA4} using Gabber's ideas (from the affine case) to slightly simplify the arguments. \begin{lemma} \label{lemma-zariski-h0-proper-over-henselian-pair} Let $(A, I)$ be a henselian pair. Let $f : X \to \Spec(A)$ be a proper morphism of schemes. Let $Z = X \times_{\Spec(A)} \Spec(A/I)$. For any sheaf $\mathcal{F}$ on the topological space associated to $X$ we have $\Gamma(X, \mathcal{F}) = \Gamma(Z, \mathcal{F}|_Z)$. \end{lemma} \begin{proof} We will use Lemma \ref{lemma-h0-topological} to prove this. First observe that the underlying topological space of $X$ is spectral by Properties, Lemma \ref{properties-lemma-quasi-compact-quasi-separated-spectral}. Let $Y \subset X$ be an irreducible closed subscheme. To finish the proof we show that $Y \cap Z = Y \times_{\Spec(A)} \Spec(A/I)$ is connected. Replacing $X$ by $Y$ we may assume that $X$ is irreducible and we have to show that $Z$ is connected. Let $X \to \Spec(B) \to \Spec(A)$ be the Stein factorization of $f$ (More on Morphisms, Theorem \ref{more-morphisms-theorem-stein-factorization-general}). Then $A \to B$ is integral and $(B, IB)$ is a henselian pair (More on Algebra, Lemma \ref{more-algebra-lemma-integral-over-henselian-pair}). Thus we may assume the fibres of $X \to \Spec(A)$ are geometrically connected. On the other hand, the image $T \subset \Spec(A)$ of $f$ is irreducible and closed as $X$ is proper over $A$. Hence $T \cap V(I)$ is connected by More on Algebra, Lemma \ref{more-algebra-lemma-irreducible-henselian-pair-connected}. Now $Y \times_{\Spec(A)} \Spec(A/I) \to T \cap V(I)$ is a surjective closed map with connected fibres. The result now follows from Topology, Lemma \ref{topology-lemma-connected-fibres-quotient-topology-connected-components}. \end{proof} \begin{lemma} \label{lemma-h0-proper-over-henselian-pair} Let $(A, I)$ be a henselian pair. Let $f : X \to \Spec(A)$ be a proper morphism of schemes. Let $i : Z \to X$ be the closed immersion of $X \times_{\Spec(A)} \Spec(A/I)$ into $X$. For any sheaf $\mathcal{F}$ on $X_\etale$ we have $\Gamma(X, \mathcal{F}) = \Gamma(Z, i_{small}^{-1}\mathcal{F})$. \end{lemma} \begin{proof} This follows from Lemma \ref{lemma-gabber-h0} and \ref{lemma-zariski-h0-proper-over-henselian-pair} and the fact that any scheme finite over $X$ is proper over $\Spec(A)$. \end{proof} \begin{lemma} \label{lemma-h0-proper-over-henselian-local} Let $A$ be a henselian local ring. Let $f : X \to \Spec(A)$ be a proper morphism of schemes. Let $X_0 \subset X$ be the fibre of $f$ over the closed point. For any sheaf $\mathcal{F}$ on $X_\etale$ we have $\Gamma(X, \mathcal{F}) = \Gamma(X_0, \mathcal{F}|_{X_0})$. \end{lemma} \begin{proof} This is a special case of Lemma \ref{lemma-h0-proper-over-henselian-pair}. \end{proof} \noindent Let $f : X \to S$ be a morphism of schemes. Let $\overline{s} : \Spec(k) \to S$ be a geometric point. The fibre of $f$ at $\overline{s}$ is the scheme $X_{\overline{s}} = \Spec(k) \times_{\overline{s}, S} X$ viewed as a scheme over $\Spec(k)$. If $\mathcal{F}$ is a sheaf on $X_\etale$, then denote $\mathcal{F}_{\overline{s}} = p_{small}^{-1}\mathcal{F}$ the pullback of $\mathcal{F}$ to $(X_{\overline{s}})_\etale$. In the following we will consider the set $$ \Gamma(X_{\overline{s}}, \mathcal{F}_{\overline{s}}) $$ Let $s \in S$ be the image point of $\overline{s}$. Let $\kappa(s)^{sep}$ be the separable algebraic closure of $\kappa(s)$ in $k$ as in Definition \ref{definition-algebraic-geometric-point}. By Lemma \ref{lemma-sections-base-field-extension} pullback defines a bijection $$ \Gamma(X_{\kappa(s)^{sep}}, p_{sep}^{-1} \mathcal{F}) \longrightarrow \Gamma(X_{\overline{s}}, \mathcal{F}_{\overline{s}}) $$ where $p_{sep} : X_{\kappa(s)^{sep}} = \Spec(\kappa(s)^{sep}) \times_S X \to X$ is the projection. \begin{lemma} \label{lemma-proper-pushforward-stalk} Let $f : X \to S$ be a proper morphism of schemes. Let $\overline{s} \to S$ be a geometric point. For any sheaf $\mathcal{F}$ on $X_\etale$ the canonical map $$ (f_*\mathcal{F})_{\overline{s}} \longrightarrow \Gamma(X_{\overline{s}}, \mathcal{F}_{\overline{s}}) $$ is bijective. \end{lemma} \begin{proof} By Theorem \ref{theorem-higher-direct-images} (for sheaves of sets) we have $$ (f_*\mathcal{F})_{\overline{s}} = \Gamma(X \times_S \Spec(\mathcal{O}_{S, \overline{s}}^{sh}), p_{small}^{-1}\mathcal{F}) $$ where $p : X \times_S \Spec(\mathcal{O}_{S, \overline{s}}^{sh}) \to X$ is the projection. Since the residue field of the strictly henselian local ring $\mathcal{O}_{S, \overline{s}}^{sh}$ is $\kappa(s)^{sep}$ we conclude from the discussion above the lemma and Lemma \ref{lemma-h0-proper-over-henselian-local}. \end{proof} \begin{lemma} \label{lemma-proper-base-change-f-star} Let $f : X \to Y$ be a proper morphism of schemes. Let $g : Y' \to Y$ be a morphism of schemes. Set $X' = Y' \times_Y X$ with projections $f' : X' \to Y'$ and $g' : X' \to X$. Let $\mathcal{F}$ be any sheaf on $X_\etale$. Then $g^{-1}f_*\mathcal{F} = f'_*(g')^{-1}\mathcal{F}$. \end{lemma} \begin{proof} There is a canonical map $g^{-1}f_*\mathcal{F} \to f'_*(g')^{-1}\mathcal{F}$. Namely, it is adjoint to the map $$ f_*\mathcal{F} \longrightarrow g_*f'_*(g')^{-1}\mathcal{F} = f_*g'_*(g')^{-1}\mathcal{F} $$ which is $f_*$ applied to the canonical map $\mathcal{F} \to g'_*(g')^{-1}\mathcal{F}$. To check this map is an isomorphism we can compute what happens on stalks. Let $y' : \Spec(k) \to Y'$ be a geometric point with image $y$ in $Y$. By Lemma \ref{lemma-proper-pushforward-stalk} the stalks are $\Gamma(X'_{y'}, \mathcal{F}_{y'})$ and $\Gamma(X_y, \mathcal{F}_y)$ respectively. Here the sheaves $\mathcal{F}_y$ and $\mathcal{F}_{y'}$ are the pullbacks of $\mathcal{F}$ by the projections $X_y \to X$ and $X'_{y'} \to X$. Thus we see that the groups agree by Lemma \ref{lemma-sections-base-field-extension}. We omit the verification that this isomorphism is compatible with our map. \end{proof} \noindent At this point we start discussing the proper base change theorem. To do so we introduce some notation. consider a commutative diagram \begin{equation} \label{equation-base-change-diagram} \vcenter{ \xymatrix{ X' \ar[r]_{g'} \ar[d]_{f'} & X \ar[d]^f \\ Y' \ar[r]^g & Y } } \end{equation} of morphisms of schemes. Then we obtain a commutative diagram of sites $$ \xymatrix{ X'_\etale \ar[r]_{g'_{small}} \ar[d]_{f'_{small}} & X_\etale \ar[d]^{f_{small}} \\ Y'_\etale \ar[r]^{g_{small}} & Y_\etale } $$ For any object $E$ of $D(X_\etale)$ we obtain a canonical base change map \begin{equation} \label{equation-base-change} g_{small}^{-1}Rf_{small, *}E \longrightarrow Rf'_{small, *}(g'_{small})^{-1}E \end{equation} in $D(Y'_\etale)$. See Cohomology on Sites, Remark \ref{sites-cohomology-remark-base-change} where we use the constant sheaf $\mathbf{Z}$ as our sheaf of rings. We will usually omit the subscripts ${}_{small}$ in this formula. For example, if $E = \mathcal{F}[0]$ where $\mathcal{F}$ is an abelian sheaf on $X_\etale$, the base change map is a map \begin{equation} \label{equation-base-change-sheaf} g^{-1}Rf_*\mathcal{F} \longrightarrow Rf'_*(g')^{-1}\mathcal{F} \end{equation} in $D(Y'_\etale)$. \medskip\noindent The map (\ref{equation-base-change}) has no chance of being an isomorphism in the generality given above. The goal is to show it is an isomorphism if the diagram (\ref{equation-base-change-diagram}) is cartesian, $f : X \to Y$ proper, the cohomology sheaves of $E$ are torsion, and $E$ is bounded below. To study this question we introduce the following terminology. Let us say that {\it cohomology commutes with base change for $f : X \to Y$} if (\ref{equation-base-change-sheaf}) is an isomorphism for every diagram (\ref{equation-base-change-diagram}) where $X' = Y' \times_Y X$ and every torsion abelian sheaf $\mathcal{F}$. \begin{lemma} \label{lemma-proper-base-change-in-terms-of-injectives} Let $f : X \to Y$ be a proper morphism of schemes. The following are equivalent \begin{enumerate} \item cohomology commutes with base change for $f$ (see above), \item for every prime number $\ell$ and every injective sheaf of $\mathbf{Z}/\ell\mathbf{Z}$-modules $\mathcal{I}$ on $X_\etale$ and every diagram (\ref{equation-base-change-diagram}) where $X' = Y' \times_Y X$ the sheaves $R^qf'_*(g')^{-1}\mathcal{I}$ are zero for $q > 0$. \end{enumerate} \end{lemma} \begin{proof} It is clear that (1) implies (2). Conversely, assume (2) and let $\mathcal{F}$ be a torsion abelian sheaf on $X_\etale$. Let $Y' \to Y$ be a morphism of schemes and let $X' = Y' \times_Y X$ with projections $g' : X' \to X$ and $f' : X' \to Y'$ as in diagram (\ref{equation-base-change-diagram}). We want to show the maps of sheaves $$ g^{-1}R^qf_*\mathcal{F} \longrightarrow R^qf'_*(g')^{-1}\mathcal{F} $$ are isomorphisms for all $q \geq 0$. \medskip\noindent For every $n \geq 1$, let $\mathcal{F}[n]$ be the subsheaf of sections of $\mathcal{F}$ annihilated by $n$. Then $\mathcal{F} = \colim \mathcal{F}[n]$. The functors $g^{-1}$ and $(g')^{-1}$ commute with arbitrary colimits (as left adjoints). Taking higher direct images along $f$ or $f'$ commutes with filtered colimits by Lemma \ref{lemma-relative-colimit}. Hence we see that $$ g^{-1}R^qf_*\mathcal{F} = \colim g^{-1}R^qf_*\mathcal{F}[n] \quad\text{and}\quad R^qf'_*(g')^{-1}\mathcal{F} = \colim R^qf'_*(g')^{-1}\mathcal{F}[n] $$ Thus it suffices to prove the result in case $\mathcal{F}$ is annihilated by a positive integer $n$. \medskip\noindent If $n = \ell n'$ for some prime number $\ell$, then we obtain a short exact sequence $$ 0 \to \mathcal{F}[\ell] \to \mathcal{F} \to \mathcal{F}/\mathcal{F}[\ell] \to 0 $$ Observe that $\mathcal{F}/\mathcal{F}[\ell]$ is annihilated by $n'$. Moreover, if the result holds for both $\mathcal{F}[\ell]$ and $\mathcal{F}/\mathcal{F}[\ell]$, then the result holds by the long exact sequence of higher direct images (and the $5$ lemma). In this way we reduce to the case that $\mathcal{F}$ is annihilated by a prime number $\ell$. \medskip\noindent Assume $\mathcal{F}$ is annihilated by a prime number $\ell$. Choose an injective resolution $\mathcal{F} \to \mathcal{I}^\bullet$ in $D(X_\etale, \mathbf{Z}/\ell\mathbf{Z})$. Applying assumption (2) and Leray's acyclicity lemma (Derived Categories, Lemma \ref{derived-lemma-leray-acyclicity}) we see that $$ f'_*(g')^{-1}\mathcal{I}^\bullet $$ computes $Rf'_*(g')^{-1}\mathcal{F}$. We conclude by applying Lemma \ref{lemma-proper-base-change-f-star}. \end{proof} \begin{lemma} \label{lemma-sandwich} Let $f : X \to Y$ and $g : Y \to Z$ be proper morphisms of schemes. Assume \begin{enumerate} \item cohomology commutes with base change for $f$, \item cohomology commutes with base change for $g \circ f$, and \item $f$ is surjective. \end{enumerate} Then cohomology commutes with base change for $g$. \end{lemma} \begin{proof} We will use the equivalence of Lemma \ref{lemma-proper-base-change-in-terms-of-injectives} without further mention. Let $\ell$ be a prime number. Let $\mathcal{I}$ be an injective sheaf of $\mathbf{Z}/\ell\mathbf{Z}$-modules on $Y_\etale$. Choose an injective map of sheaves $f^{-1}\mathcal{I} \to \mathcal{J}$ where $\mathcal{J}$ is an injective sheaf of $\mathbf{Z}/\ell\mathbf{Z}$-modules on $Z_\etale$. Since $f$ is surjective the map $\mathcal{I} \to f_*\mathcal{J}$ is injective (look at stalks in geometric points). Since $\mathcal{I}$ is injective we see that $\mathcal{I}$ is a direct summand of $f_*\mathcal{J}$. Thus it suffices to prove the desired vanishing for $f_*\mathcal{J}$. \medskip\noindent Let $Z' \to Z$ be a morphism of schemes and set $Y' = Z' \times_Z Y$ and $X' = Z' \times_Z X = Y' \times_ Y X$. Denote $a : X' \to X$, $b : Y' \to Y$, and $c : Z' \to Z$ the projections. Similarly for $f' : X' \to Y'$ and $g' : Y' \to Z'$. By Lemma \ref{lemma-proper-base-change-f-star} we have $b^{-1}f_*\mathcal{J} = f'_*a^{-1}\mathcal{J}$. On the other hand, we know that $R^qf'_*a^{-1}\mathcal{J}$ and $R^q(g' \circ f')_*a^{-1}\mathcal{J}$ are zero for $q > 0$. Using the spectral sequence (Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-relative-Leray}) $$ R^pg'_* R^qf'_* a^{-1}\mathcal{J} \Rightarrow R^{p + q}(g' \circ f')_* a^{-1}\mathcal{J} $$ we conclude that $ R^pg'_*(b^{-1}f_*\mathcal{J}) = R^pg'_*(f'_*a^{-1}\mathcal{J}) = 0$ for $p > 0$ as desired. \end{proof} \begin{lemma} \label{lemma-composition} Let $f : X \to Y$ and $g : Y \to Z$ be proper morphisms of schemes. Assume \begin{enumerate} \item cohomology commutes with base change for $f$, and \item cohomology commutes with base change for $g$. \end{enumerate} Then cohomology commutes with base change for $g \circ f$. \end{lemma} \begin{proof} We will use the equivalence of Lemma \ref{lemma-proper-base-change-in-terms-of-injectives} without further mention. Let $\ell$ be a prime number. Let $\mathcal{I}$ be an injective sheaf of $\mathbf{Z}/\ell\mathbf{Z}$-modules on $X_\etale$. Then $f_*\mathcal{I}$ is an injective sheaf of $\mathbf{Z}/\ell\mathbf{Z}$-modules on $Y_\etale$ (Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-pushforward-injective-flat}). The result follows formally from this, but we will also spell it out. \medskip\noindent Let $Z' \to Z$ be a morphism of schemes and set $Y' = Z' \times_Z Y$ and $X' = Z' \times_Z X = Y' \times_ Y X$. Denote $a : X' \to X$, $b : Y' \to Y$, and $c : Z' \to Z$ the projections. Similarly for $f' : X' \to Y'$ and $g' : Y' \to Z'$. By Lemma \ref{lemma-proper-base-change-f-star} we have $b^{-1}f_*\mathcal{I} = f'_*a^{-1}\mathcal{I}$. On the other hand, we know that $R^qf'_*a^{-1}\mathcal{I}$ and $R^q(g')_*b^{-1}f_*\mathcal{I}$ are zero for $q > 0$. Using the spectral sequence (Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-relative-Leray}) $$ R^pg'_* R^qf'_* a^{-1}\mathcal{I} \Rightarrow R^{p + q}(g' \circ f')_* a^{-1}\mathcal{I} $$ we conclude that $R^p(g' \circ f')_*a^{-1}\mathcal{I} = 0$ for $p > 0$ as desired. \end{proof} \begin{lemma} \label{lemma-finite} \begin{slogan} Proper base change for \'etale cohomology holds for finite morphisms. \end{slogan} Let $f : X \to Y$ be a finite morphism of schemes. Then cohomology commutes with base change for $f$. \end{lemma} \begin{proof} Observe that a finite morphism is proper, see Morphisms, Lemma \ref{morphisms-lemma-finite-proper}. Moreover, the base change of a finite morphism is finite, see Morphisms, Lemma \ref{morphisms-lemma-base-change-finite}. Thus the result follows from Lemma \ref{lemma-proper-base-change-in-terms-of-injectives} combined with Proposition \ref{proposition-finite-higher-direct-image-zero}. \end{proof} \begin{lemma} \label{lemma-reduce-to-P1} To prove that cohomology commutes with base change for every proper morphism of schemes it suffices to prove it holds for the morphism $\mathbf{P}^1_S \to S$ for every scheme $S$. \end{lemma} \begin{proof} Let $f : X \to Y$ be a proper morphism of schemes. Let $Y = \bigcup Y_i$ be an affine open covering and set $X_i = f^{-1}(Y_i)$. If we can prove cohomology commutes with base change for $X_i \to Y_i$, then cohomology commutes with base change for $f$. Namely, the formation of the higher direct images commutes with Zariski (and even \'etale) localization on the base, see Lemma \ref{lemma-higher-direct-images}. Thus we may assume $Y$ is affine. \medskip\noindent Let $Y$ be an affine scheme and let $X \to Y$ be a proper morphism. By Chow's lemma there exists a commutative diagram $$ \xymatrix{ X \ar[rd] & X' \ar[d] \ar[l]^\pi \ar[r] & \mathbf{P}^n_Y \ar[dl] \\ & Y & } $$ where $X' \to \mathbf{P}^n_Y$ is an immersion, and $\pi : X' \to X$ is proper and surjective, see Limits, Lemma \ref{limits-lemma-chow-finite-type}. Since $X \to Y$ is proper, we find that $X' \to Y$ is proper (Morphisms, Lemma \ref{morphisms-lemma-composition-proper}). Hence $X' \to \mathbf{P}^n_Y$ is a closed immersion (Morphisms, Lemma \ref{morphisms-lemma-image-proper-scheme-closed}). It follows that $X' \to X \times_Y \mathbf{P}^n_Y = \mathbf{P}^n_X$ is a closed immersion (as an immersion with closed image). \medskip\noindent By Lemma \ref{lemma-sandwich} it suffices to prove cohomology commutes with base change for $\pi$ and $X' \to Y$. These morphisms both factor as a closed immersion followed by a projection $\mathbf{P}^n_S \to S$ (for some $S$). By Lemma \ref{lemma-finite} the result holds for closed immersions (as closed immersions are finite). By Lemma \ref{lemma-composition} it suffices to prove the result for projections $\mathbf{P}^n_S \to S$. \medskip\noindent For every $n \geq 1$ there is a finite surjective morphism $$ \mathbf{P}^1_S \times_S \ldots \times_S \mathbf{P}^1_S \longrightarrow \mathbf{P}^n_S $$ given on coordinates by $$ ((x_1 : y_1), (x_2 : y_2), \ldots, (x_n : y_n)) \longmapsto (F_0 : \ldots : F_n) $$ where $F_0, \ldots, F_n$ in $x_1, \ldots, y_n$ are the polynomials with integer coefficients such that $$ \prod (x_i t + y_i) = F_0 t^n + F_1 t^{n - 1} + \ldots + F_n $$ Applying Lemmas \ref{lemma-sandwich}, \ref{lemma-finite}, and \ref{lemma-composition} one more time we conclude that the lemma is true. \end{proof} \begin{theorem} \label{theorem-proper-base-change} Let $f : X \to Y$ be a proper morphism of schemes. Let $g : Y' \to Y$ be a morphism of schemes. Set $X' = Y' \times_Y X$ and consider the cartesian diagram $$ \xymatrix{ X' \ar[r]_{g'} \ar[d]_{f'} & X \ar[d]^f \\ Y' \ar[r]^g & Y } $$ Let $\mathcal{F}$ be an abelian torsion sheaf on $X_\etale$. Then the base change map $$ g^{-1}Rf_*\mathcal{F} \longrightarrow Rf'_*(g')^{-1}\mathcal{F} $$ is an isomorphism. \end{theorem} \begin{proof} In the terminology introduced above, this means that cohomology commutes with base change for every proper morphism of schemes. By Lemma \ref{lemma-reduce-to-P1} it suffices to prove that cohomology commutes with base change for the morphism $\mathbf{P}^1_S \to S$ for every scheme $S$. \medskip\noindent Let $S$ be the spectrum of a strictly henselian local ring with closed point $s$. Set $X = \mathbf{P}^1_S$ and $X_0 = X_s = \mathbf{P}^1_s$. Let $\mathcal{F}$ be a sheaf of $\mathbf{Z}/\ell\mathbf{Z}$-modules on $X_\etale$. The key to our proof is that $$ H^q_\etale(X, \mathcal{F}) = H^q_\etale(X_0, \mathcal{F}|_{X_0}). $$ Namely, choose a resolution $\mathcal{F} \to \mathcal{I}^\bullet$ by injective sheaves of $\mathbf{Z}/\ell\mathbf{Z}$-modules. Then $\mathcal{I}^\bullet|_{X_0}$ is a resolution of $\mathcal{F}|_{X_0}$ by right $H^0_\etale(X_0, -)$-acyclic objects, see Lemma \ref{lemma-efface-cohomology-on-fibre-by-finite-cover}. Leray's acyclicity lemma tells us the right hand side is computed by the complex $H^0_\etale(X_0, \mathcal{I}^\bullet|_{X_0})$ which is equal to $H^0_\etale(X, \mathcal{I}^\bullet)$ by Lemma \ref{lemma-h0-proper-over-henselian-local}. This complex computes the left hand side. \medskip\noindent Assume $S$ is general and $\mathcal{F}$ is a sheaf of $\mathbf{Z}/\ell\mathbf{Z}$-modules on $X_\etale$. Let $\overline{s} : \Spec(k) \to S$ be a geometric point of $S$ lying over $s \in S$. We have $$ (R^qf_*\mathcal{F})_{\overline{s}} = H^q_\etale(\mathbf{P}^1_{\mathcal{O}_{S, \overline{s}}^{sh}}, \mathcal{F}|_{\mathbf{P}^1_{\mathcal{O}_{S, \overline{s}}^{sh}}}) = H^q_\etale(\mathbf{P}^1_{\kappa(s)^{sep}}, \mathcal{F}|_{\mathbf{P}^1_{\kappa(s)^{sep}}}) $$ where $\kappa(s)^{sep}$ is the residue field of $\mathcal{O}_{S, \overline{s}}^{sh}$, i.e., the separable algebraic closure of $\kappa(s)$ in $k$. The first equality by Theorem \ref{theorem-higher-direct-images} and the second equality by the displayed formula in the previous paragraph. \medskip\noindent Finally, consider any morphism of schemes $g : T \to S$ where $S$ and $\mathcal{F}$ are as above. Set $f' : \mathbf{P}^1_T \to T$ the projection and let $g' : \mathbf{P}^1_T \to \mathbf{P}^1_S$ the morphism induced by $g$. Consider the base change map $$ g^{-1}R^qf_*\mathcal{F} \longrightarrow R^qf'_*(g')^{-1}\mathcal{F} $$ Let $\overline{t}$ be a geometric point of $T$ with image $\overline{s} = g(\overline{t})$. By our discussion above the map on stalks at $\overline{t}$ is the map $$ H^q_\etale(\mathbf{P}^1_{\kappa(s)^{sep}}, \mathcal{F}|_{\mathbf{P}^1_{\kappa(s)^{sep}}}) \longrightarrow H^q_\etale(\mathbf{P}^1_{\kappa(t)^{sep}}, \mathcal{F}|_{\mathbf{P}^1_{\kappa(t)^{sep}}}) $$ Since $\kappa(s)^{sep} \subset \kappa(t)^{sep}$ this map is an isomorphism by Lemma \ref{lemma-base-change-dim-1-separably-closed}. \medskip\noindent This proves cohomology commutes with base change for $\mathbf{P}^1_S \to S$ and sheaves of $\mathbf{Z}/\ell\mathbf{Z}$-modules. In particular, for an injective sheaf of $\mathbf{Z}/\ell\mathbf{Z}$-modules the higher direct images of any base change are zero. In other words, condition (2) of Lemma \ref{lemma-proper-base-change-in-terms-of-injectives} holds and the proof is complete. \end{proof} \begin{lemma} \label{lemma-proper-base-change} Let $f : X \to Y$ be a proper morphism of schemes. Let $g : Y' \to Y$ be a morphism of schemes. Set $X' = Y' \times_Y X$ and denote $f' : X' \to Y'$ and $g' : X' \to X$ the projections. Let $E \in D^+(X_\etale)$ have torsion cohomology sheaves. Then the base change map (\ref{equation-base-change}) $g^{-1}Rf_*E \to Rf'_*(g')^{-1}E$ is an isomorphism. \end{lemma} \begin{proof} This is a simple consequence of the proper base change theorem (Theorem \ref{theorem-proper-base-change}) using the spectral sequences $$ E_2^{p, q} = R^pf_*H^q(E) \quad\text{and}\quad {E'}_2^{p, q} = R^pf'_*(g')^{-1}H^q(E) $$ converging to $R^nf_*E$ and $R^nf'_*(g')^{-1}E$. The spectral sequences are constructed in Derived Categories, Lemma \ref{derived-lemma-two-ss-complex-functor}. Some details omitted. \end{proof} \begin{lemma} \label{lemma-proper-base-change-stalk} Let $f : X \to Y$ be a proper morphism of schemes. Let $\overline{y} \to Y$ be a geometric point. \begin{enumerate} \item For a torsion abelian sheaf $\mathcal{F}$ on $X_\etale$ we have $(R^nf_*\mathcal{F})_{\overline{y}} = H^n_\etale(X_{\overline{y}}, \mathcal{F}_{\overline{y}})$. \item For $E \in D^+(X_\etale)$ with torsion cohomology sheaves we have $(R^nf_*E)_{\overline{y}} = H^n_\etale(X_{\overline{y}}, E|_{X_{\overline{y}}})$. \end{enumerate} \end{lemma} \begin{proof} In the statement, $\mathcal{F}_{\overline{y}}$ denotes the pullback of $\mathcal{F}$ to the scheme theoretic fibre $X_{\overline{y}} = \overline{y} \times_Y X$. Since pulling back by $\overline{y} \to Y$ produces the stalk of $\mathcal{F}$, the first statement of the lemma is a special case of Theorem \ref{theorem-proper-base-change}. The second one is a special case of Lemma \ref{lemma-proper-base-change}. \end{proof} \section{Applications of proper base change} \label{section-applications-proper-base-change} \noindent In this section we discuss some more or less immediate consequences of the proper base change theorem. \begin{lemma} \label{lemma-base-change-separably-closed} Let $K/k$ be an extension of separably closed fields. Let $X$ be a proper scheme over $k$. Let $\mathcal{F}$ be a torsion abelian sheaf on $X_\etale$. Then the map $H^q_\etale(X, \mathcal{F}) \to H^q_\etale(X_K, \mathcal{F}|_{X_K})$ is an isomorphism for $q \geq 0$. \end{lemma} \begin{proof} Looking at stalks we see that this is a special case of Theorem \ref{theorem-proper-base-change}. \end{proof} \begin{lemma} \label{lemma-cohomological-dimension-proper} Let $f : X \to Y$ be a proper morphism of schemes all of whose fibres have dimension $\leq n$. Then for any abelian torsion sheaf $\mathcal{F}$ on $X_\etale$ we have $R^qf_*\mathcal{F} = 0$ for $q > 2n$. \end{lemma} \begin{proof} We will prove this by induction on $n$ for all proper morphisms. \medskip\noindent If $n = 0$, then $f$ is a finite morphism (More on Morphisms, Lemma \ref{more-morphisms-lemma-characterize-finite}) and the result is true by Proposition \ref{proposition-finite-higher-direct-image-zero}. \medskip\noindent If $n > 0$, then using Lemma \ref{lemma-proper-base-change-stalk} we see that it suffices to prove $H^i_\etale(X, \mathcal{F}) = 0$ for $i > 2n$ and $X$ a proper scheme, $\dim(X) \leq n$ over an algebraically closed field $k$ and $\mathcal{F}$ is a torsion abelian sheaf on $X$. \medskip\noindent If $n = 1$ this follows from Theorem \ref{theorem-vanishing-curves}. Assume $n > 1$. By Proposition \ref{proposition-topological-invariance} we may replace $X$ by its reduction. Let $\nu : X^\nu \to X$ be the normalization. This is a surjective birational finite morphism (see Varieties, Lemma \ref{varieties-lemma-normalization-locally-algebraic}) and hence an isomorphism over a dense open $U \subset X$ (Morphisms, Lemma \ref{morphisms-lemma-birational-birational}). Then we see that $c : \mathcal{F} \to \nu_*\nu^{-1}\mathcal{F}$ is injective (as $\nu$ is surjective) and an isomorphism over $U$. Denote $i : Z \to X$ the inclusion of the complement of $U$. Since $U$ is dense in $X$ we have $\dim(Z) < \dim(X) = n$. By Proposition \ref{proposition-closed-immersion-pushforward} have $\Coker(c) = i_*\mathcal{G}$ for some abelian torsion sheaf $\mathcal{G}$ on $Z_\etale$. Then $H^q_\etale(X, \Coker(c)) = H^q_\etale(Z, \mathcal{F})$ (by Proposition \ref{proposition-finite-higher-direct-image-zero} and the Leray spectral sequence) and by induction hypothesis we conclude that the cokernel of $c$ has cohomology in degrees $\leq 2(n - 1)$. Thus it suffices to prove the result for $\nu_*\nu^{-1}\mathcal{F}$. As $\nu$ is finite this reduces us to showing that $H^i_\etale(X^\nu, \nu^{-1}\mathcal{F})$ is zero for $i > 2n$. This case is treated in the next paragraph. \medskip\noindent Assume $X$ is integral normal proper scheme over $k$ of dimension $n$. Choose a nonconstant rational function $f$ on $X$. The graph $X' \subset X \times \mathbf{P}^1_k$ of $f$ sits into a diagram $$ X \xleftarrow{b} X' \xrightarrow{f} \mathbf{P}^1_k $$ Observe that $b$ is an isomorphism over an open subscheme $U \subset X$ whose complement is a closed subscheme $Z \subset X$ of codimension $\geq 2$. Namely, $U$ is the domain of definition of $f$ which contains all codimension $1$ points of $X$, see Morphisms, Lemmas \ref{morphisms-lemma-rational-map-from-reduced-to-separated} and \ref{morphisms-lemma-extend-across} (combined with Serre's criterion for normality, see Properties, Lemma \ref{properties-lemma-criterion-normal}). Moreover the fibres of $b$ have dimension $\leq 1$ (as closed subschemes of $\mathbf{P}^1$). Hence $R^ib_*b^{-1}\mathcal{F}$ is nonzero only if $i \in \{0, 1, 2\}$ by induction. Choose a distinguished triangle $$ \mathcal{F} \to Rb_*b^{-1}\mathcal{F} \to Q \to \mathcal{F}[1] $$ Using that $\mathcal{F} \to b_*b^{-1}\mathcal{F}$ is injective as before and using what we just said, we see that $Q$ has nonzero cohomology sheaves only in degrees $0, 1, 2$ sitting on $Z$. Moreover, these cohomology sheaves are torsion by Lemma \ref{lemma-torsion-direct-image}. By induction we see that $H^i(X, Q)$ is zero for $i > 2 + 2\dim(Z) \leq 2 + 2(n - 2) = 2n - 2$. Thus it suffices to prove that $H^i(X', b^{-1}\mathcal{F}) = 0$ for $i > 2n$. At this point we use the morphism $$ f : X' \to \mathbf{P}^1_k $$ whose fibres have dimension $< n$. Hence by induction we see that $R^if_*b^{-1}\mathcal{F} = 0$ for $i > 2(n - 1)$. We conclude by the Leray spectral seqence $$ H^i(\mathbf{P}^1_k, R^jf_*b^{-1}\mathcal{F}) \Rightarrow H^{i + j}(X', b^{-1}\mathcal{F}) $$ and the fact that $\dim(\mathbf{P}^1_k) = 1$. \end{proof} \noindent When working with mod $n$ coefficients we can do proper base change for unbounded complexes. \begin{lemma} \label{lemma-proper-base-change-mod-n} Let $f : X \to Y$ be a proper morphism of schemes. Let $g : Y' \to Y$ be a morphism of schemes. Set $X' = Y' \times_Y X$ and denote $f' : X' \to Y'$ and $g' : X' \to X$ the projections. Let $n \geq 1$ be an integer. Let $E \in D(X_\etale, \mathbf{Z}/n\mathbf{Z})$. Then the base change map (\ref{equation-base-change}) $g^{-1}Rf_*E \to Rf'_*(g')^{-1}E$ is an isomorphism. \end{lemma} \begin{proof} It is enough to prove this when $Y$ and $Y'$ are quasi-compact. By Morphisms, Lemma \ref{morphisms-lemma-morphism-finite-type-bounded-dimension} we see that the dimension of the fibres of $f : X \to Y$ and $f' : X' \to Y'$ are bounded. Thus Lemma \ref{lemma-cohomological-dimension-proper} implies that $$ f_* : \textit{Mod}(X_\etale, \mathbf{Z}/n\mathbf{Z}) \longrightarrow \textit{Mod}(Y_\etale, \mathbf{Z}/n\mathbf{Z}) $$ and $$ f'_* : \textit{Mod}(X'_\etale, \mathbf{Z}/n\mathbf{Z}) \longrightarrow \textit{Mod}(Y'_\etale, \mathbf{Z}/n\mathbf{Z}) $$ have finite cohomological dimension in the sense of Derived Categories, Lemma \ref{derived-lemma-unbounded-right-derived}. Choose a K-injective complex $\mathcal{I}^\bullet$ of $\mathbf{Z}/n\mathbf{Z}$-modules each of whose terms $\mathcal{I}^n$ is an injective sheaf of $\mathbf{Z}/n\mathbf{Z}$-modules representing $E$. See Injectives, Theorem \ref{injectives-theorem-K-injective-embedding-grothendieck}. By the usual proper base change theorem we find that $R^qf'_*(g')^{-1}\mathcal{I}^n = 0$ for $q > 0$, see Theorem \ref{theorem-proper-base-change}. Hence we conclude by Derived Categories, Lemma \ref{derived-lemma-unbounded-right-derived} that we may compute $Rf'_*(g')^{-1}E$ by the complex $f'_*(g')^{-1}\mathcal{I}^\bullet$. Another application of the usual proper base change theorem shows that this is equal to $g^{-1}f_*\mathcal{I}^\bullet$ as desired. \end{proof} \begin{lemma} \label{lemma-pull-out-constant} Let $X$ be a quasi-compact and quasi-separated scheme. Let $E \in D^+(X_\etale)$ and $K \in D^+(\mathbf{Z})$. Then $$ R\Gamma(X, E \otimes_\mathbf{Z}^\mathbf{L} \underline{K}) = R\Gamma(X, E) \otimes_\mathbf{Z}^\mathbf{L} K $$ \end{lemma} \begin{proof} Say $H^i(E) = 0$ for $i \geq a$ and $H^j(K) = 0$ for $j \geq b$. We may represent $K$ by a bounded below complex $K^\bullet$ of torsion free $\mathbf{Z}$-modules. (Choose a K-flat complex $L^\bullet$ representing $K$ and then take $K^\bullet = \tau_{\geq b - 1}L^\bullet$. This works because $\mathbf{Z}$ has global dimension $1$. See More on Algebra, Lemma \ref{more-algebra-lemma-last-one-flat}.) We may represent $E$ by a bounded below complex $\mathcal{E}^\bullet$. Then $E \otimes_\mathbf{Z}^\mathbf{L} \underline{K}$ is represented by $$ \text{Tot}(\mathcal{E}^\bullet \otimes_\mathbf{Z} \underline{K}^\bullet) $$ Using distinguished triangles $$ \sigma_{\geq -b + n + 1}K^\bullet \to K^\bullet \to \sigma_{\leq -b + n}K^\bullet $$ and the trivial vanishing $$ H^n(X, \text{Tot}(\mathcal{E}^\bullet \otimes_\mathbf{Z} \sigma_{\geq -a + n + 1}\underline{K}^\bullet) = 0 $$ and $$ H^n(R\Gamma(X, E) \otimes_\mathbf{Z}^\mathbf{L} \sigma_{\geq -a + n + 1}K^\bullet) = 0 $$ we reduce to the case where $K^\bullet$ is a bounded complex of flat $\mathbf{Z}$-modules. Repeating the argument we reduce to the case where $K^\bullet$ is equal to a single flat $\mathbf{Z}$-module sitting in some degree. Next, using the stupid trunctions for $\mathcal{E}^\bullet$ we reduce in exactly the same manner to the case where $\mathcal{E}^\bullet$ is a single abelian sheaf sitting in some degree. Thus it suffices to show that $$ H^n(X, \mathcal{E} \otimes_\mathbf{Z} \underline{M}) = H^n(X, \mathcal{E}) \otimes_\mathbf{Z} M $$ when $M$ is a flat $\mathbf{Z}$-module and $\mathcal{E}$ is an abelian sheaf on $X$. In this case we write $M$ is a filtered colimit of finite free $\mathbf{Z}$-modules (Lazard's theorem, see Algebra, Theorem \ref{algebra-theorem-lazard}). By Theorem \ref{theorem-colimit} this reduces us to the case of finite free $\mathbf{Z}$-module $M$ in which case the result is trivially true. \end{proof} \begin{lemma} \label{lemma-projection-formula-proper} Let $f : X \to Y$ be a proper morphism of schemes. Let $E \in D^+(X_\etale)$ have torsion cohomology sheaves. Let $K \in D^+(Y_\etale)$. Then $$ Rf_*E \otimes_\mathbf{Z}^\mathbf{L} K = Rf_*(E \otimes_\mathbf{Z}^\mathbf{L} f^{-1}K) $$ in $D^+(Y_\etale)$. \end{lemma} \begin{proof} There is a canonical map from left to right by Cohomology on Sites, Section \ref{sites-cohomology-section-projection-formula}. We will check the equality on stalks. Recall that computing derived tensor products commutes with pullbacks. See Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-pullback-tensor-product}. Thus we have $$ (E \otimes_\mathbf{Z}^\mathbf{L} f^{-1}K)_{\overline{x}} = E_{\overline{x}} \otimes_\mathbf{Z}^\mathbf{L} K_{\overline{y}} $$ where $\overline{y}$ is the image of $\overline{x}$ in $Y$. Since $\mathbf{Z}$ has global dimension $1$ we see that this complex has vanishing cohomology in degree $< - 1 + a + b$ if $H^i(E) = 0$ for $i \geq a$ and $H^j(K) = 0$ for $j \geq b$. Moreover, since $H^i(E)$ is a torsion abelian sheaf for each $i$, the same is true for the cohomology sheaves of the complex $E \otimes_\mathbf{Z}^\mathbf{L} K$. Namely, we have $$ (E \otimes_\mathbf{Z}^\mathbf{L} f^{-1}K) \otimes_{\mathbf{Z}}^\mathbf{L} \mathbf{Q} = (E \otimes_\mathbf{Z}^\mathbf{L} \mathbf{Q}) \otimes_{\mathbf{Q}}^\mathbf{L} (f^{-1}K \otimes_{\mathbf{Z}}^\mathbf{L} \mathbf{Q}) $$ which is zero in the derived category. In this way we see that Lemma \ref{lemma-proper-base-change-stalk} applies to both sides to see that it suffices to show $$ R\Gamma(X_{\overline{y}}, E|_{X_{\overline{y}}} \otimes_\mathbf{Z}^\mathbf{L} (X_{\overline{y}} \to \overline{y})^{-1}K_{\overline{y}}) = R\Gamma(X_{\overline{y}}, E|_{X_{\overline{y}}}) \otimes_\mathbf{Z}^\mathbf{L} K_{\overline{y}} $$ This is shown in Lemma \ref{lemma-pull-out-constant}. \end{proof} \section{Local acyclicity} \label{section-local-acyclicity} \noindent In this section we deduce local acyclicity of smooth morphisms from the smooth base change theorem. In SGA 4 or SGA 4.5 the authors first prove a version of local acyclicity for smooth morphisms and then deduce the smooth base change theorem. \medskip\noindent We will use the formulation of local acyclicity given by Deligne \cite[Definition 2.12, page 242]{SGA4.5}. Let $f : X \to S$ be a morphism of schemes. Let $\overline{x}$ be a geometric point of $X$ with image $\overline{s} = f(\overline{x})$ in $S$. Let $\overline{t}$ be a geometric point of $\Spec(\mathcal{O}^{sh}_{S, \overline{s}})$. We obtain a commutative diagram $$ \xymatrix{ F_{\overline{x}, \overline{t}} = \overline{t} \times_{\Spec(\mathcal{O}^{sh}_{S, \overline{s}})} \Spec(\mathcal{O}^{sh}_{X, \overline{x}}) \ar[r] \ar[d] & \Spec(\mathcal{O}^{sh}_{X, \overline{x}}) \ar[r] \ar[d] & X \ar[d] \\ \overline{t} \ar[r] & \Spec(\mathcal{O}^{sh}_{S, \overline{s}}) \ar[r] & S } $$ The scheme $F_{\overline{x}, \overline{t}}$ is called a {\it variety of vanishing cycles of $f$ at $\overline{x}$}. Let $K$ be an object of $D(X_\etale)$. For any morphism of schemes $g : Y\to X$ we write $R\Gamma(Y, K)$ instead of $R\Gamma(Y_\etale, g_{small}^{-1}K)$. Since $\mathcal{O}^{sh}_{X, \overline{x}}$ is strictly henselian we have $K_{\overline{x}} = R\Gamma(\Spec(\mathcal{O}^{sh}_{X, \overline{x}}), K)$. Thus we obtain a canonical map \begin{equation} \label{equation-alpha-K} \alpha_{K, \overline{x}, \overline{t}} : K_{\overline{x}} \longrightarrow R\Gamma(F_{\overline{x}, \overline{t}}, K) \end{equation} by pulling back cohomology along $F_{\overline{x}, \overline{t}} \to \Spec(\mathcal{O}^{sh}_{X, \overline{x}})$. \begin{definition} \label{definition-locally-acyclic} \begin{reference} \cite[Definition 2.12, page 242]{SGA4.5} and \cite[Definition (1.3), page 54]{SGA4.5} \end{reference} Let $f : X \to S$ be a morphism of schemes. Let $K$ be an object of $D(X_\etale)$. \begin{enumerate} \item Let $\overline{x}$ be a geometric point of $X$ with image $\overline{s} = f(\overline{x})$. We say $f$ is {\it locally acyclic at $\overline{x}$ relative to $K$} if for every geometric point $\overline{t}$ of $\Spec(\mathcal{O}^{sh}_{S, \overline{s}})$ the map (\ref{equation-alpha-K}) is an isomorphism\footnote{We do not assume $\overline{t}$ is an algebraic geometric point of $\Spec(\mathcal{O}^{sh}_{S, \overline{s}})$. Often using Lemma \ref{lemma-smooth-base-change-separably-closed} one may reduce to this case.}. \item We say $f$ is {\it locally acyclic relative to $K$} if $f$ is locally acyclic at $\overline{x}$ relative to $K$ for every geometric point $\overline{x}$ of $X$. \item We say $f$ is {\it universally locally acyclic relative to $K$} if for any morphism $S' \to S$ of schemes the base change $f' : X' \to S'$ is locally acyclic relative to the pullback of $K$ to $X'$. \item We say $f$ is {\it locally acyclic} if for all geometric points $\overline{x}$ of $X$ and any integer $n$ prime to the characteristic of $\kappa(\overline{x})$, the morphism $f$ is locally acyclic at $\overline{x}$ relative to the constant sheaf with value $\mathbf{Z}/n\mathbf{Z}$. \item We say $f$ is {\it universally locally acyclic} if for any morphism $S' \to S$ of schemes the base change $f' : X' \to S'$ is locally acyclic. \end{enumerate} \end{definition} \noindent Let $M$ be an abelian group. Then local acyclicity of $f : X \to S$ with respect to the constant sheaf $\underline{M}$ boils down to the requirement that $$ H^q(F_{\overline{x}, \overline{t}}, \underline{M}) = \left\{ \begin{matrix} M & \text{if} & q = 0 \\ 0 & \text{if} & q \not = 0 \end{matrix} \right. $$ for any geometric point $\overline{x}$ of $X$ and any geometric point $\overline{t}$ of $\Spec(\mathcal{O}^{sh}_{S, f(\overline{x})})$. In this way we see that being locally acyclic corresponds to the vanishing of the higher cohomology groups of the geometric fibres $F_{\overline{x}, \overline{t}}$ of the maps between the strict henselizations at $\overline{x}$ and $\overline{s}$. \begin{proposition} \label{proposition-smooth-locally-acyclic} Let $f : X \to S$ be a smooth morphism of schemes. Then $f$ is universally locally acyclic. \end{proposition} \begin{proof} Since the base change of a smooth morphism is smooth, it suffices to show that smooth morphisms are locally acyclic. Let $\overline{x}$ be a geometric point of $X$ with image $\overline{s} = f(\overline{x})$. Let $\overline{t}$ be a geometric point of $\Spec(\mathcal{O}^{sh}_{S, f(\overline{x})})$. Since we are trying to prove a property of the ring map $\mathcal{O}^{sh}_{S, \overline{s}} \to \mathcal{O}^{sh}_{X, \overline{x}}$ (see discussion following Definition \ref{definition-locally-acyclic}) we may and do replace $f : X \to S$ by the base change $X \times_S \Spec(\mathcal{O}^{sh}_{S, \overline{s}}) \to \Spec(\mathcal{O}^{sh}_{S, \overline{s}})$. Thus we may and do assume that $S$ is the spectrum of a strictly henselian local ring and that $\overline{s}$ lies over the closed point of $S$. \medskip\noindent We will apply Lemma \ref{lemma-base-change-f-star-general-stalks} to the diagram $$ \xymatrix{ X \ar[d]_f & X_{\overline{t}} \ar[l]^h \ar[d]^e \\ S & \overline{t} \ar[l]_g } $$ and the sheaf $\mathcal{F} = \underline{M}$ where $M = \mathbf{Z}/n\mathbf{Z}$ for some integer $n$ prime to the characteristic of the residue field of $\overline{x}$. We know that the map $f^{-1}R^qg_*\mathcal{F} \to R^qh_*e^{-1}\mathcal{F}$ is an isomorphism by smooth base change, see Theorem \ref{theorem-smooth-base-change} (the assumption on torsion holds by our choice of $n$). Thus Lemma \ref{lemma-base-change-f-star-general-stalks} gives us the middle equality in $$ H^q(F_{\overline{x}, \overline{t}}, \underline{M}) = H^q(\Spec(\mathcal{O}^{sh}_{X, \overline{x}}) \times_S \overline{t}, \underline{M}) = H^q(\Spec(\mathcal{O}^{sh}_{S, \overline{s}}) \times_S \overline{t}, \underline{M}) = H^q(\overline{t}, \underline{M}) $$ For the outer two equalities we use that $S = \Spec(\mathcal{O}^{sh}_{S, \overline{s}})$. Since $\overline{t}$ is the spectrum of a separably closed field we conclude that $$ H^q(F_{\overline{x}, \overline{t}}, \underline{M}) = \left\{ \begin{matrix} M & \text{if} & q = 0 \\ 0 & \text{if} & q \not = 0 \end{matrix} \right. $$ which is what we had to show (see discussion following Definition \ref{definition-locally-acyclic}). \end{proof} \begin{lemma} \label{lemma-locally-acyclic-locally-constant} Let $f : X \to S$ be a morphism of schemes. Let $\mathcal{F}$ be a locally constant abelian sheaf on $X_\etale$ such that for every geometric point $\overline{x}$ of $X$ the abelian group $\mathcal{F}_{\overline{x}}$ is a torsion group all of whose elements have order prime to the characteristic of the residue field of $\overline{x}$. If $f$ is locally acyclic, then $f$ is locally acyclic relative to $\mathcal{F}$. \end{lemma} \begin{proof} Namely, let $\overline{x}$ be a geometric point of $X$. Since $\mathcal{F}$ is locally constant we see that the restriction of $\mathcal{F}$ to $\Spec(\mathcal{O}^{sh}_{X, \overline{x}})$ is isomorphic to the constant sheaf $\underline{M}$ with $M = \mathcal{F}_{\overline{x}}$. By assumption we can write $M = \colim M_i$ as a filtered colimit of finite abelian groups $M_i$ of order prime to the characteristic of the residue field of $\overline{x}$. Consider a geometric point $\overline{t}$ of $\Spec(\mathcal{O}^{sh}_{S, f(\overline{x})})$. Since $F_{\overline{x}, \overline{t}}$ is affine, we have $$ H^q(F_{\overline{x}, \overline{t}}, \underline{M}) = \colim H^q(F_{\overline{x}, \overline{t}}, \underline{M_i}) $$ by Lemma \ref{lemma-colimit}. For each $i$ we can write $M_i = \bigoplus \mathbf{Z}/n_{i, j}\mathbf{Z}$ as a finite direct sum for some integers $n_{i, j}$ prime to the characteristic of the residue field of $\overline{x}$. Since $f$ is locally acyclic we see that $$ H^q(F_{\overline{x}, \overline{t}}, \underline{\mathbf{Z}/n_{i, j}\mathbf{Z}}) = \left\{ \begin{matrix} \mathbf{Z}/n_{i, j}\mathbf{Z} & \text{if} & q = 0 \\ 0 & \text{if} & q \not = 0 \end{matrix} \right. $$ See discussion following Definition \ref{definition-locally-acyclic}. Taking the direct sums and the colimit we conclude that $$ H^q(F_{\overline{x}, \overline{t}}, \underline{M}) = \left\{ \begin{matrix} M & \text{if} & q = 0 \\ 0 & \text{if} & q \not = 0 \end{matrix} \right. $$ and we win. \end{proof} \begin{lemma} \label{lemma-locally-acyclic-quasi-finite-base-change} Let $$ \xymatrix{ X' \ar[r]_{g'} \ar[d]_{f'} & X \ar[d]^f \\ S' \ar[r]^g & S } $$ be a cartesian diagram of schemes. Let $K$ be an object of $D(X_\etale)$. Let $\overline{x}'$ be a geometric point of $X'$ with image $\overline{x}$ in $X$. If \begin{enumerate} \item $f$ is locally acyclic at $\overline{x}$ relative to $K$ and \item $g$ is locally quasi-finite, or $S' = \lim S_i$ is a directed inverse limit of schemes locally quasi-finite over $S$ with affine transition morphisms, or $g : S' \to S$ is integral, \end{enumerate} then $f'$ locally acyclic at $\overline{x}'$ relative to $(g')^{-1}K$. \end{lemma} \begin{proof} Denote $\overline{s}'$ and $\overline{s}$ the images of $\overline{x}'$ and $\overline{x}$ in $S'$ and $S$. Let $\overline{t}'$ be a geometric point of the spectrum of $\Spec(\mathcal{O}^{sh}_{S', \overline{s}'})$ and denote $\overline{t}$ the image in $\Spec(\mathcal{O}^{sh}_{S, \overline{s}})$. By Algebra, Lemma \ref{algebra-lemma-base-change-strict-henselization-quasi-finite} and our assumptions on $g$ we have $$ \mathcal{O}^{sh}_{X, \overline{x}} \otimes_{\mathcal{O}^{sh}_{S, \overline{s}}} \mathcal{O}^{sh}_{S', \overline{s}'} \longrightarrow \mathcal{O}^{sh}_{X', \overline{x}'} $$ is an isomorphism. Since by our conventions $\kappa(\overline{t}) = \kappa(\overline{t}')$ we conclude that $$ F_{\overline{x}', \overline{t}'} = \Spec\left( \mathcal{O}^{sh}_{X', \overline{x}'} \otimes_{\mathcal{O}^{sh}_{S', \overline{s}'}} \kappa(\overline{t}')\right) = \Spec\left( \mathcal{O}^{sh}_{X, \overline{x}} \otimes_{\mathcal{O}^{sh}_{S, \overline{s}}} \kappa(\overline{t})\right) = F_{\overline{x}, \overline{t}} $$ In other words, the varieties of vanishing cycles of $f'$ at $\overline{x}'$ are examples of varieties of vanishing cycles of $f$ at $\overline{x}$. The lemma follows immediately from this and the definitions. \end{proof} \section{The cospecialization map} \label{section-cospecialization} \noindent Let $f : X \to S$ be a morphism of schemes. Let $\overline{x}$ be a geometric point of $X$ with image $\overline{s} = f(\overline{x})$ in $S$. Let $\overline{t}$ be a geometric point of $\Spec(\mathcal{O}^{sh}_{S, \overline{s}})$. Let $K \in D(X_\etale)$. For any morphism $g : Y \to X$ of schemes we write $K|_Y$ instead of $g_{small}^{-1}K$ and $R\Gamma(Y, K)$ instead of $R\Gamma(Y_\etale, g_{small}^{-1}K)$. We claim that if \begin{enumerate} \item $K$ is bounded below, i.e., $K \in D^+(X_\etale)$, \item $f$ is locally acyclic relative to $K$ \end{enumerate} then there is a {\it cospecialization map} $$ cosp : R\Gamma(X_{\overline{t}}, K) \longrightarrow R\Gamma(X_{\overline{s}}, K) $$ which will be closely related to the specialization map considered in Section \ref{section-specialization} and especially Remark \ref{remark-specialization-map-and-fibres}. \medskip\noindent To construct the map we consider the morphisms $$ X_{\overline{t}} \xrightarrow{h} X \times_S \Spec(\mathcal{O}^{sh}_{S, \overline{s}}) \xleftarrow{i} X_{\overline{s}} $$ The unit of the adjunction between $h^{-1}$ and $Rh_*$ gives a map $$ \beta_{K, \overline{s}, \overline{t}} : K|_{X \times_S \Spec(\mathcal{O}^{sh}_{S, \overline{s}})} \longrightarrow Rh_*(K|_{X_{\overline{t}}}) $$ in $D((X \times_S \Spec(\mathcal{O}^{sh}_{S, \overline{s}}))_\etale)$. Lemma \ref{lemma-beta-is-isomorphism} below shows that the pullback $i^{-1}\beta_{K, \overline{s}, \overline{t}}$ is an isomorphism under the assumptions above. Thus we can define the cospecialization map as the composition \begin{align*} R\Gamma(X_{\overline{t}}, K) & = R\Gamma(X \times_S \Spec(\mathcal{O}^{sh}_{S, \overline{s}}), Rh_*(K|_{X_{\overline{t}}})) \\ & \xrightarrow{i^{-1}} R\Gamma(X_{\overline{s}}, i^{-1}Rh_*(K|_{X_{\overline{t}}})) \\ & \xrightarrow{(i^{-1}\beta_{K, \overline{s}, \overline{t}})^{-1}} R\Gamma(X_{\overline{s}}, i^{-1}(K|_{X \times_S \Spec(\mathcal{O}^{sh}_{S, \overline{s}})})) \\ & = R\Gamma(X_{\overline{s}}, K) \end{align*} \begin{lemma} \label{lemma-beta-is-isomorphism} The map $i^{-1}\beta_{K, \overline{s}, \overline{t}}$ is an isomorphism. \end{lemma} \begin{proof} The construction of the maps $h$, $i$, $\beta_{K, \overline{s}, \overline{t}}$ only depends on the base change of $X$ and $K$ to $\Spec(\mathcal{O}^{sh}_{S, \overline{s}})$. Thus we may and do assume that $S$ is a strictly henselian scheme with closed point $\overline{s}$. Observe that the local acyclicity of $f$ relative to $K$ is preserved by this base change (for example by Lemma \ref{lemma-locally-acyclic-quasi-finite-base-change} or just directly by comparing strictly henselian rings in this very special case). \medskip\noindent Let $\overline{x}$ be a geometric point of $X_{\overline{s}}$. Or equivalently, let $\overline{x}$ be a geometric point whose image by $f$ is $\overline{s}$. Let us compute the stalk of $i^{-1}\beta_{K, \overline{s}, \overline{t}}$ at $\overline{x}$. First, we have $$ (i^{-1}\beta_{K, \overline{s}, \overline{t}})_{\overline{x}} = (\beta_{K, \overline{s}, \overline{t}})_{\overline{x}} $$ since pullback preserves stalks, see Lemma \ref{lemma-stalk-pullback}. Since we are in the situation $S = \Spec(\mathcal{O}^{sh}_{S, \overline{s}})$ we see that $h : X_{\overline{t}} \to X$ has the property that $X_{\overline{t}} \times_X \Spec(\mathcal{O}^{sh}_{X, \overline{x}}) = F_{\overline{x}, \overline{t}}$. Thus we see that $$ (\beta_{K, \overline{s}, \overline{t}})_{\overline{x}} : K_{\overline{x}} \longrightarrow Rh_*(K|_{X_{\overline{t}}})_{\overline{x}} = R\Gamma(F_{\overline{x}, \overline{t}}, K) $$ where the equal sign is Theorem \ref{theorem-higher-direct-images}. It follows that the map $(\beta_{K, \overline{s}, \overline{t}})_{\overline{x}}$ is none other than the map $\alpha_{K, \overline{x}, \overline{t}}$ used in Definition \ref{definition-locally-acyclic}. The result follows as we may check whether a map is an isomorphism in stalks by Theorem \ref{theorem-exactness-stalks}. \end{proof} \noindent The cospecialization map when it exists is trying to be the inverse of the specialization map. \begin{lemma} \label{lemma-specialization-cospecialization} In the situation above, if in addition $f$ is quasi-compact and quasi-separated, then the diagram $$ \xymatrix{ (Rf_*K)_{\overline{s}} \ar[r] \ar[d]_{sp} & R\Gamma(X_{\overline{s}}, K) \\ (Rf_*K)_{\overline{t}} \ar[r] & R\Gamma(X_{\overline{t}}, K) \ar[u]_{cosp} } $$ is commutative. \end{lemma} \begin{proof} As in the proof of Lemma \ref{lemma-beta-is-isomorphism} we may replace $S$ by $\Spec(\mathcal{O}^{sh}_{S, \overline{s}})$. Then our maps simplify to $h : X_{\overline{t}} \to X$, $i : X_{\overline{s}} \to X$, and $\beta_{K, \overline{s}, \overline{t}} : K \to Rh_*(K|_{X_{\overline{t}}})$. Using that $(Rf_*K)_{\overline{s}} = R\Gamma(X, K)$ by Theorem \ref{theorem-higher-direct-images} the composition of $sp$ with the base change map $(Rf_*K)_{\overline{t}} \to R\Gamma(X_{\overline{t}}, K)$ is just pullback of cohomology along $h$. This is the same as the map $$ R\Gamma(X, K) \xrightarrow{\beta_{K, \overline{s}, \overline{t}}} R\Gamma(X, Rh_*(K|_{X_{\overline{t}}})) = R\Gamma(X_{\overline{t}}, K) $$ Now the map $cosp$ first inverts the $=$ sign in this displayed formula, then pulls back along $i$, and finally applies the inverse of $i^{-1}\beta_{K, \overline{s}, \overline{t}}$. Hence we get the desired commutativity. \end{proof} \begin{lemma} \label{lemma-sp-isom-proper-torsion-loc-ac} Let $f : X \to S$ be a morphism of schemes. Let $K \in D(X_\etale)$. Assume \begin{enumerate} \item $K$ is bounded below, i.e., $K \in D^+(X_\etale)$, \item $f$ is locally acyclic relative to $K$, \item $f$ is proper, and \item $K$ has torsion cohomology sheaves. \end{enumerate} Then for every geometric point $\overline{s}$ of $S$ and every geometric point $\overline{t}$ of $\Spec(\mathcal{O}^{sh}_{S, \overline{s}})$ both the specialization map $sp : (Rf_*K)_{\overline{s}} \to (Rf_*K)_{\overline{t}}$ and the cospecialization map $cosp : R\Gamma(X_{\overline{t}}, K) \to R\Gamma(X_{\overline{s}}, K)$ are isomorphisms. \end{lemma} \begin{proof} By the proper base change theorem (in the form of Lemma \ref{lemma-proper-base-change-stalk}) we have $(Rf_*K)_{\overline{s}} = R\Gamma(X_{\overline{s}}, K)$ and similarly for $\overline{t}$. The ``correct'' proof would be to show that the argument in Lemma \ref{lemma-specialization-cospecialization} shows that $sp$ and $cosp$ are inverse isomorphisms in this case. Instead we will show directly that $cosp$ is an isomorphism. From the discussion above we see that $cosp$ is an isomorphism if and only if pullback by $i$ $$ R\Gamma(X \times_S \Spec(\mathcal{O}^{sh}_{S, \overline{s}}), Rh_*(K|_{X_{\overline{t}}})) \longrightarrow R\Gamma(X_{\overline{s}}, i^{-1}Rh_*(K|_{X_{\overline{t}}})) $$ is an isomorphism in $D^+(\textit{Ab})$. This is true by the proper base change theorem for the proper morphism $f' : X \times_S \Spec(\mathcal{O}^{sh}_{S, \overline{s}}) \to \Spec(\mathcal{O}^{sh}_{S, \overline{s}})$ by the morphism $\overline{s} \to \Spec(\mathcal{O}^{sh}_{S, \overline{s}})$ and the complex $K' = Rh_*(K|_{X_{\overline{t}}})$. The complex $K'$ is bounded below and has torsion cohomology sheaves by Lemma \ref{lemma-torsion-direct-image}. Since $\Spec(\mathcal{O}^{sh}_{S, \overline{s}})$ is strictly henselian with $\overline{s}$ lying over the closed point, we see that the source of the displayed arrow equals $(Rf'_*K')_{\overline{s}}$ and the target equals $R\Gamma(X_{\overline{s}}, K')$ and the displayed map is an isomorphism by the already used Lemma \ref{lemma-proper-base-change-stalk}. Thus we see that three out of the four arrows in the diagram of Lemma \ref{lemma-specialization-cospecialization} are isomorphisms and we conclude. \end{proof} \begin{lemma} \label{lemma-sp-isom-proper-loc-cst-torsion} Let $f : X \to S$ be a morphism of schemes. Let $\mathcal{F}$ be an abelian sheaf on $X_\etale$. Assume \begin{enumerate} \item $f$ is smooth and proper \item $\mathcal{F}$ is locally constant, and \item $\mathcal{F}_{\overline{x}}$ is a torsion group all of whose elements have order prime to the residue characteristic of $\overline{x}$ for every geometric point $\overline{x}$ of $X$. \end{enumerate} Then for every geometric point $\overline{s}$ of $S$ and every geometric point $\overline{t}$ of $\Spec(\mathcal{O}^{sh}_{S, \overline{s}})$ the specialization map $sp : (Rf_*\mathcal{F})_{\overline{s}} \to (Rf_*\mathcal{F})_{\overline{t}}$ is an isomorphism. \end{lemma} \begin{proof} This follows from Lemmas \ref{lemma-sp-isom-proper-torsion-loc-ac} and \ref{lemma-locally-acyclic-locally-constant} and Proposition \ref{proposition-smooth-locally-acyclic}. \end{proof} \section{Cohomological dimension} \label{section-cd} \noindent We can deduce some bounds on the cohomological dimension of schemes and on the cohomological dimension of fields using the results in Section \ref{section-vanishing-torsion} and one, seemingly innocuous, application of the proper base change theorem (in the proof of Proposition \ref{proposition-cd-affine}). \begin{definition} \label{definition-cd} Let $X$ be a quasi-compact and quasi-separated scheme. The {\it cohomological dimension of $X$} is the smallest element $$ \text{cd}(X) \in \{0, 1, 2, \ldots\} \cup \{\infty\} $$ such that for any abelian torsion sheaf $\mathcal{F}$ on $X_\etale$ we have $H^i_\etale(X, \mathcal{F}) = 0$ for $i > \text{cd}(X)$. If $X = \Spec(A)$ we sometimes call this the cohomological dimension of $A$. \end{definition} \noindent If the scheme is in characteristic $p$, then we often can obtain sharper bounds for the vanishing of cohomology of $p$-power torsion sheaves. We will address this elsewhere (insert future reference here). \begin{lemma} \label{lemma-cd-limit} Let $X = \lim X_i$ be a directed limit of a system of quasi-compact and quasi-separated schemes with affine transition morphisms. Then $\text{cd}(X) \leq \max \text{cd}(X_i)$. \end{lemma} \begin{proof} Denote $f_i : X \to X_i$ the projections. Let $\mathcal{F}$ be an abelian torsion sheaf on $X_\etale$. Then we have $\mathcal{F} = \lim f_i^{-1}f_{i, *}\mathcal{F}$ by Lemma \ref{lemma-linus-hamann}. Thus $H^q_\etale(X, \mathcal{F}) = \colim H^q_\etale(X_i, f_{i, *}\mathcal{F})$ by Theorem \ref{theorem-colimit}. The lemma follows. \end{proof} \begin{lemma} \label{lemma-cd-curve-over-field} Let $K$ be a field. Let $X$ be a $1$-dimensional affine scheme of finite type over $K$. Then $\text{cd}(X) \leq 1 + \text{cd}(K)$. \end{lemma} \begin{proof} Let $\mathcal{F}$ be an abelian torsion sheaf on $X_\etale$. Consider the Leray spectral sequence for the morphism $f : X \to \Spec(K)$. We obtain $$ E_2^{p, q} = H^p(\Spec(K), R^qf_*\mathcal{F}) $$ converging to $H^{p + q}_\etale(X, \mathcal{F})$. The stalk of $R^qf_*\mathcal{F}$ at a geometric point $\Spec(\overline{K}) \to \Spec(K)$ is the cohomology of the pullback of $\mathcal{F}$ to $X_{\overline{K}}$. Hence it vanishes in degrees $\geq 2$ by Theorem \ref{theorem-vanishing-affine-curves}. \end{proof} \begin{lemma} \label{lemma-cd-field-extension} Let $L/K$ be a field extension. Then we have $\text{cd}(L) \leq \text{cd}(K) + \text{trdeg}_K(L)$. \end{lemma} \begin{proof} If $\text{trdeg}_K(L) = \infty$, then this is clear. If not then we can find a sequence of extensions $L= L_r/L_{r - 1}/ \ldots /L_1/L_0 = K$ such that $\text{trdeg}_{L_i}(L_{i + 1}) = 1$ and $r = \text{trdeg}_K(L)$. Hence it suffices to prove the lemma in the case that $r = 1$. In this case we can write $L = \colim A_i$ as a filtered colimit of its finite type $K$-subalgebras. By Lemma \ref{lemma-cd-limit} it suffices to prove that $\text{cd}(A_i) \leq 1 + \text{cd}(K)$. This follows from Lemma \ref{lemma-cd-curve-over-field}. \end{proof} \begin{lemma} \label{lemma-strictly-henselian} Let $K$ be a field. Let $X$ be a scheme of finite type over $K$. Let $x \in X$. Set $a = \text{trdeg}_K(\kappa(x))$ and $d = \dim_x(X)$. Then there is a map $$ K(t_1, \ldots, t_a)^{sep} \longrightarrow \mathcal{O}_{X, x}^{sh} $$ such that \begin{enumerate} \item the residue field of $\mathcal{O}_{X, x}^{sh}$ is a purely inseparable extension of $K(t_1, \ldots, t_a)^{sep}$, \item $\mathcal{O}_{X, x}^{sh}$ is a filtered colimit of finite type $K(t_1, \ldots, t_a)^{sep}$-algebras of dimension $\leq d - a$. \end{enumerate} \end{lemma} \begin{proof} We may assume $X$ is affine. By Noether normalization, after possibly shrinking $X$ again, we can choose a finite morphism $\pi : X \to \mathbf{A}^d_K$, see Algebra, Lemma \ref{algebra-lemma-Noether-normalization-at-point}. Since $\kappa(x)$ is a finite extension of the residue field of $\pi(x)$, this residue field has transcendence degree $a$ over $K$ as well. Thus we can find a finite morphism $\pi' : \mathbf{A}^d_K \to \mathbf{A}^d_K$ such that $\pi'(\pi(x))$ corresponds to the generic point of the linear subspace $\mathbf{A}^a_K \subset \mathbf{A}^d_K$ given by setting the last $d - a$ coordinates equal to zero. Hence the composition $$ X \xrightarrow{\pi' \circ \pi} \mathbf{A}^d_K \xrightarrow{p} \mathbf{A}^a_K $$ of $\pi' \circ \pi$ and the projection $p$ onto the first $a$ coordinates maps $x$ to the generic point $\eta \in \mathbf{A}^a_K$. The induced map $$ K(t_1, \ldots, t_a)^{sep} = \mathcal{O}_{\mathbf{A}^a_k, \eta}^{sh} \longrightarrow \mathcal{O}_{X, x}^{sh} $$ on \'etale local rings satisfies (1) since it is clear that the residue field of $\mathcal{O}_{X, x}^{sh}$ is an algebraic extension of the separably closed field $K(t_1, \ldots, t_a)^{sep}$. On the other hand, if $X = \Spec(B)$, then $\mathcal{O}_{X, x}^{sh} = \colim B_j$ is a filtered colimit of \'etale $B$-algebras $B_j$. Observe that $B_j$ is quasi-finite over $K[t_1, \ldots, t_d]$ as $B$ is finite over $K[t_1, \ldots, t_d]$. We may similarly write $K(t_1, \ldots, t_a)^{sep} = \colim A_i$ as a filtered colimit of \'etale $K[t_1, \ldots, t_a]$-algebras. For every $i$ we can find an $j$ such that $A_i \to K(t_1, \ldots, t_a)^{sep} \to \mathcal{O}_{X, x}^{sh}$ factors through a map $\psi_{i, j} : A_i \to B_j$. Then $B_j$ is quasi-finite over $A_i[t_{a + 1}, \ldots, t_d]$. Hence $$ B_{i, j} = B_j \otimes_{\psi_{i, j}, A_i} K(t_1, \ldots, t_a)^{sep} $$ has dimension $\leq d - a$ as it is quasi-finite over $K(t_1, \ldots, t_a)^{sep}[t_{a + 1}, \ldots, t_d]$. The proof of (2) is now finished as $\mathcal{O}_{X, x}^{sh}$ is a filtered colimit\footnote{Let $R$ be a ring. Let $A = \colim_{i \in I} A_i$ be a filtered colimit of finitely presented $R$-algebras. Let $B = \colim_{j \in J} B_j$ be a filtered colimit of $R$-algebras. Let $A \to B$ be an $R$-algebra map. Assume that for all $i \in I$ there is a $j \in J$ and an $R$-algebra map $\psi_{i, j} : A_i \to B_j$. Say $(i', j', \psi_{i', j'}) \geq (i, j, \psi_{i, j})$ if $i' \geq i$, $j' \geq j$, and $\psi_{i, j}$ and $\psi_{i', j'}$ are compatible. Then the collection of triples forms a directed set and $B = \colim B_j \otimes_{\psi_{i, j} A_i} A$.} of the algebras $B_{i, j}$. Some details omitted. \end{proof} \begin{proposition} \label{proposition-cd-affine} Let $K$ be a field. Let $X$ be an affine scheme of finite type over $K$. Then we have $\text{cd}(X) \leq \dim(X) + \text{cd}(K)$. \end{proposition} \begin{proof} We will prove this by induction on $\dim(X)$. Let $\mathcal{F}$ be an abelian torsion sheaf on $X_\etale$. \medskip\noindent The case $\dim(X) = 0$. In this case the structure morphism $f : X \to \Spec(K)$ is finite. Hence we see that $R^if_*\mathcal{F} = 0$ for $i > 0$, see Proposition \ref{proposition-finite-higher-direct-image-zero}. Thus $H^i_\etale(X, \mathcal{F}) = H^i_\etale(\Spec(K), f_*\mathcal{F})$ by the Leray spectral sequence for $f$ (Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-Leray}) and the result is clear. \medskip\noindent The case $\dim(X) = 1$. This is Lemma \ref{lemma-cd-curve-over-field}. \medskip\noindent Assume $d = \dim(X) > 1$ and the proposition holds for finite type affine schemes of dimension $< d$ over fields. By Noether normalization, see for example Varieties, Lemma \ref{varieties-lemma-noether-normalization-affine}, there exists a finite morphism $f : X \to \mathbf{A}^d_K$. Recall that $R^if_*\mathcal{F} = 0$ for $i > 0$ by Proposition \ref{proposition-finite-higher-direct-image-zero}. By the Leray spectral sequence for $f$ (Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-Leray}) we conclude that it suffices to prove the result for $\pi_*\mathcal{F}$ on $\mathbf{A}^d_K$. \medskip\noindent Interlude I. Let $j : X \to Y$ be an open immersion of smooth $d$-dimensional varieties over $K$ (not necessarily affine) whose complement is the support of an effective Cartier divisor $D$. The sheaves $R^qj_*\mathcal{F}$ for $q > 0$ are supported on $D$. We claim that $(R^qj_*\mathcal{F})_{\overline{y}} = 0$ for $a = \text{trdeg}_K(\kappa(y)) > d - q$. Namely, by Theorem \ref{theorem-higher-direct-images} we have $$ (R^qj_*\mathcal{F})_{\overline{y}} = H^q(\Spec(\mathcal{O}_{Y, y}^{sh}) \times_Y X, \mathcal{F}) $$ Choose a local equation $f \in \mathfrak m_y = \mathcal{O}_{Y, y}$ for $D$. Then we have $$ \Spec(\mathcal{O}_{Y, y}^{sh}) \times_Y X = \Spec(\mathcal{O}_{Y, y}^{sh}[1/f]) $$ Using Lemma \ref{lemma-strictly-henselian} we get an embedding $$ K(t_1, \ldots, t_a)^{sep}(x) = K(t_1, \ldots, t_a)^{sep}[x]_{(x)}[1/x] \longrightarrow \mathcal{O}_{Y, y}^{sh}[1/f] $$ Since the transcendence degree over $K$ of the fraction field of $\mathcal{O}_{Y, y}^{sh}$ is $d$, we see that $\mathcal{O}_{Y, y}^{sh}[1/f]$ is a filtered colimit of $(d - a - 1)$-dimensional finite type algebras over the field $K(t_1, \ldots, t_a)^{sep}(x)$ which itself has cohomological dimension $1$ by Lemma \ref{lemma-cd-field-extension}. Thus by induction hypothesis and Lemma \ref{lemma-cd-limit} we obtain the desired vanishing. \medskip\noindent Interlude II. Let $Z$ be a smooth variety over $K$ of dimension $d - 1$. Let $E_a \subset Z$ be the set of points $z \in Z$ with $\text{trdeg}_K(\kappa(z)) \leq a$. Observe that $E_a$ is closed under specialization, see Varieties, Lemma \ref{varieties-lemma-dimension-locally-algebraic}. Suppose that $\mathcal{G}$ is a torsion abelian sheaf on $Z$ whose support is contained in $E_a$. Then we claim that $H^b_\etale(Z, \mathcal{G}) = 0$ for $b > a + \text{cd}(K)$. Namely, we can write $\mathcal{G} = \colim \mathcal{G}_i$ with $\mathcal{G}_i$ a torsion abelian sheaf supported on a closed subscheme $Z_i$ contained in $E_a$, see Lemma \ref{lemma-support-in-subset}. Then the induction hypothesis kicks in to imply the desired vanishing for $\mathcal{G}_i$\footnote{Here we first use Proposition \ref{proposition-closed-immersion-pushforward} to write $\mathcal{G}_i$ as the pushforward of a sheaf on $Z_i$, the induction hypothesis gives the vanishing for this sheaf on $Z_i$, and the Leray spectral sequence for $Z_i \to Z$ gives the vanishing for $\mathcal{G}_i$.}. Finally, we conclude by Theorem \ref{theorem-colimit}. \medskip\noindent Consider the commutative diagram $$ \xymatrix{ \mathbf{A}^d_K \ar[rd]_f \ar[rr]_-j & & \mathbf{P}^1_K \times_K \mathbf{A}^{d - 1}_K \ar[ld]^g \\ & \mathbf{A}^{d - 1}_K } $$ Observe that $j$ is an open immersion of smooth $d$-dimensional varieties whose complement is an effective Cartier divisor $D$. Thus we may use the results obtained in interlude I. We are going to study the relative Leray spectral sequence $$ E_2^{p, q} = R^pg_*R^qj_*\mathcal{F} \Rightarrow R^{p + q}f_*\mathcal{F} $$ Since $R^qj_*\mathcal{F}$ for $q > 0$ is supported on $D$ and since $g|_D : D \to \mathbf{A}^{d - 1}_K$ is an isomorphism, we find $R^pg_*R^qj_*\mathcal{F} = 0$ for $p > 0$ and $q > 0$. Moreover, we have $R^qj_*\mathcal{F} = 0$ for $q > d$. On the other hand, $g$ is a proper morphism of relative dimension $1$. Hence by Lemma \ref{lemma-cohomological-dimension-proper} we see that $R^pg_*j_*\mathcal{F} = 0$ for $p > 2$. Thus the $E_2$-page of the spectral sequence looks like this $$ \begin{matrix} g_*R^dj_*\mathcal{F} & 0 & 0 \\ \ldots & \ldots & \ldots \\ g_*R^2j_*\mathcal{F} & 0 & 0 \\ g_*R^1j_*\mathcal{F} & 0 & 0 \\ g_*j_*\mathcal{F} & R^1g_*j_*\mathcal{F} & R^2g_*j_*\mathcal{F} \end{matrix} $$ We conclude that $R^qf_*\mathcal{F} = g_*R^qj_*\mathcal{F}$ for $q > 2$. By interlude I we see that the support of $R^qf_*\mathcal{F}$ for $q > 2$ is contained in the set of points of $\mathbf{A}^{d - 1}_K$ whose residue field has transcendence degree $\leq d - q$. By interlude II $$ H^p(\mathbf{A}^{d - 1}_K, R^qf_*\mathcal{F}) = 0 \text{ for }p > d - q + \text{cd}(K)\text{ and }q > 2 $$ On the other hand, by Theorem \ref{theorem-higher-direct-images} we have $R^2f_*\mathcal{F}_{\overline{\eta}} = H^2(\mathbf{A}^1_{\overline{\eta}}, \mathcal{F}) = 0$ (vanishing by the case of dimension $1$) where $\eta$ is the generic point of $\mathbf{A}^{d - 1}_K$. Hence by interlude II again we see $$ H^p(\mathbf{A}^{d - 1}_K, R^2f_*\mathcal{F}) = 0 \text{ for }p > d - 2 + \text{cd}(K) $$ Finally, we have $$ H^p(\mathbf{A}^{d - 1}_K, R^qf_*\mathcal{F}) = 0 \text{ for }p > d - 1 + \text{cd}(K)\text{ and }q = 0, 1 $$ by induction hypothesis. Combining everything we just said with the Leray spectral sequence $H^p(\mathbf{A}^{d - 1}_K, R^qf_*\mathcal{F}) \Rightarrow H^{p + q}(\mathbf{A}^d_K, \mathcal{F})$ we conclude. \end{proof} \begin{lemma} \label{lemma-interlude-II} Let $K$ be a field. Let $X$ be an affine scheme of finite type over $K$. Let $E_a \subset X$ be the set of points $x \in X$ with $\text{trdeg}_K(\kappa(x)) \leq a$. Let $\mathcal{F}$ be an abelian torsion sheaf on $X_\etale$ whose support is contained in $E_a$. Then $H^b_\etale(X, \mathcal{F}) = 0$ for $b > a + \text{cd}(K)$. \end{lemma} \begin{proof} We can write $\mathcal{F} = \colim \mathcal{F}_i$ with $\mathcal{F}_i$ a torsion abelian sheaf supported on a closed subscheme $Z_i$ contained in $E_a$, see Lemma \ref{lemma-support-in-subset}. Then Proposition \ref{proposition-cd-affine} gives the desired vanishing for $\mathcal{F}_i$. Details omitted; hints: first use Proposition \ref{proposition-closed-immersion-pushforward} to write $\mathcal{F}_i$ as the pushforward of a sheaf on $Z_i$, use the vanishing for this sheaf on $Z_i$, and use the Leray spectral sequence for $Z_i \to Z$ to get the vanishing for $\mathcal{F}_i$. Finally, we conclude by Theorem \ref{theorem-colimit}. \end{proof} \begin{lemma} \label{lemma-interlude-I} Let $f : X \to Y$ be an affine morphism of schemes of finite type over a field $K$. Let $E_a(X)$ be the set of points $x \in X$ with $\text{trdeg}_K(\kappa(x)) \leq a$. Let $\mathcal{F}$ be an abelian torsion sheaf on $X_\etale$ whose support is contained in $E_a$. Then $R^qf_*\mathcal{F}$ has support contained in $E_{a - q}(Y)$. \end{lemma} \begin{proof} The question is local on $Y$ hence we can assume $Y$ is affine. Then $X$ is affine too and we can choose a diagram $$ \xymatrix{ X \ar[d]_f \ar[r]_i & \mathbf{A}^{n + m}_K \ar[d]^{\text{pr}} \\ Y \ar[r]^j & \mathbf{A}^n_K } $$ where the horizontal arrows are closed immersions and the vertical arrow on the right is the projection (details omitted). Then $j_*R^qf_*\mathcal{F} = R^q\text{pr}_*i_*\mathcal{F}$ by the vanishing of the higher direct images of $i$ and $j$, see Proposition \ref{proposition-finite-higher-direct-image-zero}. Moreover, the description of the stalks of $j_*$ in the proposition shows that it suffices to prove the vanishing for $j_*R^qf_*\mathcal{F}$. Thus we may assume $f$ is the projection morphism $\text{pr} : \mathbf{A}^{n + m}_K \to \mathbf{A}^n_K$ and an abelian torsion sheaf $\mathcal{F}$ on $\mathbf{A}^{n + m}_K$ satisfying the assumption in the statement of the lemma. \medskip\noindent Let $y$ be a point in $\mathbf{A}^n_K$. By Theorem \ref{theorem-higher-direct-images} we have $$ (R^q\text{pr}_*\mathcal{F})_{\overline{y}} = H^q(\mathbf{A}^{n + m}_K \times_{A^n_K} \Spec(\mathcal{O}_{Y, y}^{sh}), \mathcal{F}) = H^q(\mathbf{A}^m_{\mathcal{O}_{Y, y}^{sh}}, \mathcal{F}) $$ Say $b = \text{trdeg}_K(\kappa(y))$. From Lemma \ref{lemma-strictly-henselian} we get an embedding $$ L = K(t_1, \ldots, t_b)^{sep} \longrightarrow \mathcal{O}_{Y, y}^{sh} $$ Write $\mathcal{O}_{Y, y}^{sh} = \colim B_i$ as the filtered colimit of finite type $L$-subalgebras $B_i \subset \mathcal{O}_{Y, y}^{sh}$ containing the ring $K[T_1, \ldots, T_n]$ of regular functions on $\mathbf{A}^n_K$. Then we get $$ \mathbf{A}^m_{\mathcal{O}_{Y, y}^{sh}} = \lim \mathbf{A}^m_{B_i} $$ If $z \in \mathbf{A}^m_{B_i}$ is a point in the support of $\mathcal{F}$, then the image $x$ of $z$ in $\mathbf{A}^{m + n}_K$ satisfies $\text{trdeg}_K(\kappa(x)) \leq a$ by our assumption on $\mathcal{F}$ in the lemma. Since $\mathcal{O}_{Y, y}^{sh}$ is a filtered colimit of \'etale algebras over $K[T_1, \ldots, T_n]$ and since $B_i \subset \mathcal{O}_{Y, y}^{sh}$ we see that $\kappa(z)/\kappa(x)$ is algebraic (some details omitted). Then $\text{trdeg}_K(\kappa(z)) \leq a$ and hence $\text{trdeg}_L(\kappa(z)) \leq a - b$. By Lemma \ref{lemma-interlude-II} we see that $$ H^q(\mathbf{A}^m_{B_i}, \mathcal{F}) = 0\text{ for }q > a - b $$ Thus by Theorem \ref{theorem-colimit} we get $(Rf_*\mathcal{F})_{\overline{y}} = 0$ for $q > a - b$ as desired. \end{proof} \section{Finite cohomological dimension} \label{section-finite-cd} \noindent We continue the discussion started in Section \ref{section-cd}. \begin{definition} \label{definition-cd-f} Let $f : X \to Y$ be a quasi-compact and quasi-separated morphism of schemes. The {\it cohomological dimension of $f$} is the smallest element $$ \text{cd}(f) \in \{0, 1, 2, \ldots\} \cup \{\infty\} $$ such that for any abelian torsion sheaf $\mathcal{F}$ on $X_\etale$ we have $R^if_*\mathcal{F} = 0$ for $i > \text{cd}(f)$. \end{definition} \begin{lemma} \label{lemma-finite-cd} Let $K$ be a field. \begin{enumerate} \item If $f : X \to Y$ is a morphism of finite type schemes over $K$, then $\text{cd}(f) < \infty$. \item If $\text{cd}(K) < \infty$, then $\text{cd}(X) < \infty$ for any finite type scheme $X$ over $K$. \end{enumerate} \end{lemma} \begin{proof} Proof of (1). We may assume $Y$ is affine. We will use the induction principle of Cohomology of Schemes, Lemma \ref{coherent-lemma-induction-principle} to prove this. If $X$ is affine too, then the result holds by Lemma \ref{lemma-interlude-I}. Thus it suffices to show that if $X = U \cup V$ and the result is true for $U \to Y$, $V \to Y$, and $U \cap V \to Y$, then it is true for $f$. This follows from the relative Mayer-Vietoris sequence, see Lemma \ref{lemma-relative-mayer-vietoris}. \medskip\noindent Proof of (2). We will use the induction principle of Cohomology of Schemes, Lemma \ref{coherent-lemma-induction-principle} to prove this. If $X$ is affine, then the result holds by Proposition \ref{proposition-cd-affine}. Thus it suffices to show that if $X = U \cup V$ and the result is true for $U$, $V$, and $U \cap V $, then it is true for $X$. This follows from the Mayer-Vietoris sequence, see Lemma \ref{lemma-mayer-vietoris}. \end{proof} \begin{lemma} \label{lemma-finite-cd-mod-n-direct-sums} Cohomology and direct sums. Let $n \geq 1$ be an integer. \begin{enumerate} \item Let $f : X \to Y$ be a quasi-compact and quasi-separated morphism of schemes with $\text{cd}(f) < \infty$. Then the functor $$ Rf_* : D(X_\etale, \mathbf{Z}/n\mathbf{Z}) \longrightarrow D(Y_\etale, \mathbf{Z}/n\mathbf{Z}) $$ commutes with direct sums. \item Let $X$ be a quasi-compact and quasi-separated scheme with $\text{cd}(X) < \infty$. Then the functor $$ R\Gamma(X, -) : D(X_\etale, \mathbf{Z}/n\mathbf{Z}) \longrightarrow D(\mathbf{Z}/n\mathbf{Z}) $$ commutes with direct sums. \end{enumerate} \end{lemma} \begin{proof} Proof of (1). Since $\text{cd}(f) < \infty$ we see that $$ f_* : \textit{Mod}(X_\etale, \mathbf{Z}/n\mathbf{Z}) \longrightarrow \textit{Mod}(Y_\etale, \mathbf{Z}/n\mathbf{Z}) $$ has finite cohomological dimension in the sense of Derived Categories, Lemma \ref{derived-lemma-unbounded-right-derived}. Let $I$ be a set and for $i \in I$ let $E_i$ be an object of $D(X_\etale, \mathbf{Z}/n\mathbf{Z})$. Choose a K-injective complex $\mathcal{I}_i^\bullet$ of $\mathbf{Z}/n\mathbf{Z}$-modules each of whose terms $\mathcal{I}_i^n$ is an injective sheaf of $\mathbf{Z}/n\mathbf{Z}$-modules representing $E_i$. See Injectives, Theorem \ref{injectives-theorem-K-injective-embedding-grothendieck}. Then $\bigoplus E_i$ is represented by the complex $\bigoplus \mathcal{I}_i^\bullet$ (termwise direct sum), see Injectives, Lemma \ref{injectives-lemma-derived-products}. By Lemma \ref{lemma-relative-colimit} we have $$ R^qf_*(\bigoplus \mathcal{I}_i^n) = \bigoplus R^qf_*(\mathcal{I}_i^n) = 0 $$ for $q > 0$ and any $n$. Hence we conclude by Derived Categories, Lemma \ref{derived-lemma-unbounded-right-derived} that we may compute $Rf_*(\bigoplus E_i)$ by the complex $$ f_*(\bigoplus \mathcal{I}_i^\bullet) = \bigoplus f_*(\mathcal{I}_i^\bullet) $$ (equality again by Lemma \ref{lemma-relative-colimit}) which represents $\bigoplus Rf_*E_i$ by the already used Injectives, Lemma \ref{injectives-lemma-derived-products}. \medskip\noindent Proof of (2). This is identical to the proof of (1) and we omit it. \end{proof} \begin{lemma} \label{lemma-proper-mod-n-direct-sums} Let $f : X \to Y$ be a proper morphism of schemes. Let $n \geq 1$ be an integer. Then the functor $$ Rf_* : D(X_\etale, \mathbf{Z}/n\mathbf{Z}) \longrightarrow D(Y_\etale, \mathbf{Z}/n\mathbf{Z}) $$ commutes with direct sums. \end{lemma} \begin{proof} It is enough to prove this when $Y$ is quasi-compact. By Morphisms, Lemma \ref{morphisms-lemma-morphism-finite-type-bounded-dimension} we see that the dimension of the fibres of $f : X \to Y$ is bounded. Thus Lemma \ref{lemma-cohomological-dimension-proper} implies that $\text{cd}(f) < \infty$. Hence the result by Lemma \ref{lemma-finite-cd-mod-n-direct-sums}. \end{proof} \begin{lemma} \label{lemma-pull-out-constant-mod-n} Let $X$ be a quasi-compact and quasi-separated scheme such that $\text{cd}(X) < \infty$. Let $\Lambda$ be a torsion ring. Let $E \in D(X_\etale, \Lambda)$ and $K \in D(\Lambda)$. Then $$ R\Gamma(X, E \otimes_\Lambda^\mathbf{L} \underline{K}) = R\Gamma(X, E) \otimes_\Lambda^\mathbf{L} K $$ \end{lemma} \begin{proof} There is a canonical map from left to right by Cohomology on Sites, Section \ref{sites-cohomology-section-projection-formula}. Let $T(K)$ be the property that the statement of the lemma holds for $K \in D(\Lambda)$. We will check conditions (1), (2), and (3) of More on Algebra, Remark \ref{more-algebra-remark-P-resolution} hold for $T$ to conclude. Property (1) holds because both sides of the equality commute with direct sums, see Lemma \ref{lemma-finite-cd-mod-n-direct-sums}. Property (2) holds because we are comparing exact functors between triangulated categories and we can use Derived Categories, Lemma \ref{derived-lemma-third-isomorphism-triangle}. Property (3) says the lemma holds when $K = \Lambda[k]$ for any shift $k \in \mathbf{Z}$ and this is obvious. \end{proof} \begin{lemma} \label{lemma-projection-formula-proper-mod-n} Let $f : X \to Y$ be a proper morphism of schemes. Let $\Lambda$ be a torsion ring. Let $E \in D(X_\etale, \Lambda)$ and $K \in D(Y_\etale, \Lambda)$. Then $$ Rf_*E \otimes_\Lambda^\mathbf{L} K = Rf_*(E \otimes_\Lambda^\mathbf{L} f^{-1}K) $$ in $D(Y_\etale, \Lambda)$. \end{lemma} \begin{proof} There is a canonical map from left to right by Cohomology on Sites, Section \ref{sites-cohomology-section-projection-formula}. We will check the equality on stalks at $\overline{y}$. By the proper base change (in the form of Lemma \ref{lemma-proper-base-change-mod-n} where $Y' = \overline{y}$) this reduces to the case where $Y$ is the spectrum of an algebraically closed field. This is shown in Lemma \ref{lemma-pull-out-constant-mod-n} where we use that $\text{cd}(X) < \infty$ by Lemma \ref{lemma-cohomological-dimension-proper}. \end{proof} \section{K\"unneth in \'etale cohomology} \label{section-kunneth} \noindent We first prove a K\"unneth formula in case one of the factors is proper. Then we use this formula to prove a base change property for open immersions. This then gives a ``base change by morphisms towards spectra of fields'' (akin to smooth base change). Finally we use this to get a more general K\"unneth formula. \begin{remark} \label{remark-define-kunneth-map} Consider a cartesian diagram in the category of schemes: $$ \xymatrix{ X \times_S Y \ar[d]_p \ar[r]_q \ar[rd]_c & Y \ar[d]^g \\ X \ar[r]^f & S } $$ Let $\Lambda$ be a ring and let $E \in D(X_\etale, \Lambda)$ and $K \in D(Y_\etale, \Lambda)$. Then there is a canonical map $$ Rf_*E \otimes_\Lambda^\mathbf{L} Rg_*K \longrightarrow Rc_*(p^{-1}E \otimes_\Lambda^\mathbf{L} q^{-1}K) $$ For example we can define this using the canonical maps $Rf_*E \to Rc_*p^{-1}E$ and $Rg_*K \to Rc_*q^{-1}K$ and the relative cup product defined in Cohomology on Sites, Remark \ref{sites-cohomology-remark-cup-product}. Or you can use the adjoint to the map $$ c^{-1}(Rf_*E \otimes_\Lambda^\mathbf{L} Rg_*K) = p^{-1}f^{-1}Rf_*E \otimes_\Lambda^\mathbf{L} q^{-1} g^{-1}Rg_*K \to p^{-1}E \otimes_\Lambda^\mathbf{L} q^{-1}K $$ which uses the adjunction maps $f^{-1}Rf_*E \to E$ and $g^{-1}Rg_*K \to K$. \end{remark} \begin{lemma} \label{lemma-kunneth-one-proper} Let $k$ be a separably closed field. Let $X$ be a proper scheme over $k$. Let $Y$ be a quasi-compact and quasi-separated scheme over $k$. \begin{enumerate} \item If $E \in D^+(X_\etale)$ has torsion cohomology sheaves and $K \in D^+(Y_\etale)$, then $$ R\Gamma(X \times_{\Spec(k)} Y, \text{pr}_1^{-1}E \otimes_\mathbf{Z}^\mathbf{L} \text{pr}_2^{-1}K ) = R\Gamma(X, E) \otimes_\mathbf{Z}^\mathbf{L} R\Gamma(Y, K) $$ \item If $n \geq 1$ is an integer, $Y$ is of finite type over $k$, $E \in D(X_\etale, \mathbf{Z}/n\mathbf{Z})$, and $K \in D(Y_\etale, \mathbf{Z}/n\mathbf{Z})$, then $$ R\Gamma(X \times_{\Spec(k)} Y, \text{pr}_1^{-1}E \otimes_{\mathbf{Z}/n\mathbf{Z}}^\mathbf{L} \text{pr}_2^{-1}K ) = R\Gamma(X, E) \otimes_{\mathbf{Z}/n\mathbf{Z}}^\mathbf{L} R\Gamma(Y, K) $$ \end{enumerate} \end{lemma} \begin{proof} Proof of (1). By Lemma \ref{lemma-projection-formula-proper} we have $$ R\text{pr}_{2, *}( \text{pr}_1^{-1}E \otimes_\mathbf{Z}^\mathbf{L} \text{pr}_2^{-1}K) = R\text{pr}_{2, *}(\text{pr}_1^{-1}E) \otimes_\mathbf{Z}^\mathbf{L} K $$ By proper base change (in the form of Lemma \ref{lemma-proper-base-change}) this is equal to the object $$ \underline{R\Gamma(X, E)} \otimes_\mathbf{Z}^\mathbf{L} K $$ of $D(Y_\etale)$. Taking $R\Gamma(Y, -)$ on this object reproduces the left hand side of the equality in (1) by the Leray spectral sequence for $\text{pr}_2$. Thus we conclude by Lemma \ref{lemma-pull-out-constant}. \medskip\noindent Proof of (2). This is exactly the same as the proof of (1) except that we use Lemmas \ref{lemma-projection-formula-proper-mod-n}, \ref{lemma-proper-base-change-mod-n}, and \ref{lemma-pull-out-constant-mod-n} as well as $\text{cd}(Y) < \infty$ by Lemma \ref{lemma-finite-cd}. \end{proof} \begin{lemma} \label{lemma-supported-in-closed-points} Let $K$ be a separably closed field. Let $X$ be a scheme of finite type over $K$. Let $\mathcal{F}$ be an abelian sheaf on $X_\etale$ whose support is contained in the set of closed points of $X$. Then $H^q(X, \mathcal{F}) = 0$ for $q > 0$ and $\mathcal{F}$ is globally generated. \end{lemma} \begin{proof} (If $\mathcal{F}$ is torsion, then the vanishing follows immediately from Lemma \ref{lemma-interlude-II}.) By Lemma \ref{lemma-support-in-subset} we can write $\mathcal{F}$ as a filtered colimit of constructible sheaves $\mathcal{F}_i$ of $\mathbf{Z}$-modules whose supports $Z_i \subset X$ are finite sets of closed points. By Proposition \ref{proposition-closed-immersion-pushforward} such a sheaf is of the form $(Z_i \to X)_*\mathcal{G}_i$ where $\mathcal{G}_i$ is a sheaf on $Z_i$. As $K$ is separably closed, the scheme $Z_i$ is a finite disjoint union of spectra of separably closed fields. Recall that $H^q(Z_i, \mathcal{G}_i) = H^q(X, \mathcal{F}_i)$ by the Leray spectral sequence for $Z_i \to X$ and vanising of higher direct images for this morphism (Proposition \ref{proposition-finite-higher-direct-image-zero}). By Lemmas \ref{lemma-equivalence-abelian-sheaves-point} and \ref{lemma-compare-cohomology-point} we see that $H^q(Z_i, \mathcal{G}_i)$ is zero for $q > 0$ and that $H^0(Z_i, \mathcal{G}_i)$ generates $\mathcal{G}_i$. We conclude the vanishing of $H^q(X, \mathcal{F}_i)$ for $q > 0$ and that $\mathcal{F}_i$ is generated by global sections. By Theorem \ref{theorem-colimit} we see that $H^q(X, \mathcal{F}) = 0$ for $q > 0$. The proof is now done because a filtered colimit of globally generated sheaves of abelian groups is globally generated (details omitted). \end{proof} \begin{lemma} \label{lemma-vanishing-closed-points} Let $K$ be a separably closed field. Let $X$ be a scheme of finite type over $K$. Let $Q \in D(X_\etale)$. Assume that $Q_{\overline{x}}$ is nonzero only if $x$ is a closed point of $X$. Then $$ Q = 0 \Leftrightarrow H^i(X, Q) = 0 \text{ for all }i $$ \end{lemma} \begin{proof} The implication from left to right is trivial. Thus we need to prove the reverse implication. \medskip\noindent Assume $Q$ is bounded below; this cases suffices for almost all applications. If $Q$ is not zero, then we can look at the smallest $i$ such that the cohomology sheaf $H^i(Q)$ is nonzero. By Lemma \ref{lemma-supported-in-closed-points} we have $H^i(X, Q) = H^0(X, H^i(Q)) \not = 0$ and we conclude. \medskip\noindent General case. Let $\mathcal{B} \subset \Ob(X_\etale)$ be the quasi-compact objects. By Lemma \ref{lemma-supported-in-closed-points} the assumptions of Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-cohomology-over-U-trivial} are satisfied. We conclude that $H^q(U, Q) = H^0(U, H^q(Q))$ for all $U \in \mathcal{B}$. In particular, this holds for $U = X$. Thus the conclusion by Lemma \ref{lemma-supported-in-closed-points} as $Q$ is zero in $D(X_\etale)$ if and only if $H^q(Q)$ is zero for all $q$. \end{proof} \begin{lemma} \label{lemma-kunneth-localize-on-X} Let $K$ be a field. Let $j : U \to X$ be an open immersion of schemes of finite type over $K$. Let $Y$ be a scheme of finite type over $K$. Consider the diagram $$ \xymatrix{ Y \times_{\Spec(K)} X \ar[d]_q & Y \times_{\Spec(K)} U \ar[l]^h \ar[d]^p \\ X & U \ar[l]_j } $$ Then the base change map $q^{-1}Rj_*\mathcal{F} \to Rh_*p^{-1}\mathcal{F}$ is an isomorphism for $\mathcal{F}$ an abelian sheaf on $U_\etale$ whose stalks are torsion of orders invertible in $K$. \end{lemma} \begin{proof} Write $\mathcal{F} = \colim \mathcal{F}[n]$ where the colimit is over the multiplicative system of integers invertible in $K$. Since cohomology commutes with filtered colimits in our situation (for a precise reference see Lemma \ref{lemma-base-change-Rf-star-colim}), it suffices to prove the lemma for $\mathcal{F}[n]$. Thus we may assume $\mathcal{F}$ is a sheaf of $\mathbf{Z}/n\mathbf{Z}$-modules for some $n$ invertible in $K$ (we will use this at the very end of the proof). In the proof we use the short hand $X \times_K Y$ for the fibre product over $\Spec(K)$. We will prove the lemma by induction on $\dim(X) + \dim(Y)$. The lemma is trivial if $\dim(X) \leq 0$, since in this case $U$ is an open and closed subscheme of $X$. Choose a point $z \in X \times_K Y$. We will show the stalk at $\overline{z}$ is an isomorphism. \medskip\noindent Suppose that $z \mapsto x \in X$ and assume $\text{trdeg}_K(\kappa(x)) > 0$. Set $X' = \Spec(\mathcal{O}_{X, x}^{sh})$ and denote $U' \subset X'$ the inverse image of $U$. Consider the base change $$ \xymatrix{ Y \times_K X' \ar[d]_{q'} & Y \times_K U' \ar[l]^{h'} \ar[d]^{p'} \\ X' & U' \ar[l]_{j'} } $$ of our diagram by $X' \to X$. Observe that $X' \to X$ is a filtered colimit of \'etale morphisms. By smooth base change in the form of Lemma \ref{lemma-smooth-base-change-general} the pullback of $q^{-1}Rj_*\mathcal{F} \to Rh_*p^{-1}\mathcal{F}$ to $X'$ to $Y \times_K X'$ is the map $(q')^{-1}Rj'_*\mathcal{F}' \to Rj'_*(p')^{-1}\mathcal{F}'$ where $\mathcal{F}'$ is the pullback of $\mathcal{F}$ to $U'$. (In this step it would suffice to use \'etale base change which is an essentially trivial result.) So it suffices to show that $(q')^{-1}Rj'_*\mathcal{F}' \to Rj'_*(p')^{-1}\mathcal{F}'$ is an isomorphism in order to prove that our original map is an isomorphism on stalks at $\overline{z}$. By Lemma \ref{lemma-strictly-henselian} there is a separably closed field $L/K$ such that $X' = \lim X_i$ with $X_i$ affine of finite type over $L$ and $\dim(X_i) < \dim(X)$. For $i$ large enough there exists an open $U_i \subset X_i$ restricting to $U'$ in $X'$. We may apply the induction hypothesis to the diagram $$ \vcenter{ \xymatrix{ Y \times_K X_i \ar[d]_{q_i} & Y \times_K U_i \ar[l]^{h_i} \ar[d]^{p_i} \\ X_i & U_i \ar[l]_{j_i} } } \quad\text{equal to}\quad \vcenter{ \xymatrix{ Y_L \times_L X_i \ar[d]_{q_i} & Y_L \times_L U_i \ar[l]^{h_i} \ar[d]^{p_i} \\ X_i & U_i \ar[l]_{j_i} } } $$ over the field $L$ and the pullback of $\mathcal{F}$ to these diagrams. By Lemma \ref{lemma-base-change-Rf-star-colim} we conclude that the map $(q')^{-1}Rj'_*\mathcal{F}' \to Rj'_*(p')^{-1}\mathcal{F}$ is an isomorphism. \medskip\noindent Suppose that $z \mapsto y \in Y$ and assume $\text{trdeg}_K(\kappa(y)) > 0$. Let $Y' = \Spec(\mathcal{O}_{X, x}^{sh})$. By Lemma \ref{lemma-strictly-henselian} there is a separably closed field $L/K$ such that $Y' = \lim Y_i$ with $Y_i$ affine of finite type over $L$ and $\dim(Y_i) < \dim(Y)$. In particular $Y'$ is a scheme over $L$. Denote with a subscript $L$ the base change from schemes over $K$ to schemes over $L$. Consider the commutative diagrams $$ \vcenter{ \xymatrix{ Y' \times_K X \ar[d]_f & Y' \times_K U \ar[l]^{h'} \ar[d]^{f'} \\ Y \times_K X \ar[d]_q & Y \times_K U \ar[l]^h \ar[d]^p \\ X & U \ar[l]_j } } \quad\text{and}\quad \vcenter{ \xymatrix{ Y' \times_L X_L \ar[d]_{q'} & Y' \times_L U_L \ar[l]^{h'} \ar[d]^{p'} \\ X_L \ar[d] & U_L \ar[l]^{j_L} \ar[d] \\ X & U \ar[l]_j } } $$ and observe the top and bottom rows are the same on the left and the right. By smooth base change we see that $f^{-1}Rh_*p^{-1}\mathcal{F} = Rh'_*(f')^{-1}p^{-1}\mathcal{F}$ (similarly to the previous paragraph). By smooth base change for $\Spec(L) \to \Spec(K)$ (Lemma \ref{lemma-base-change-field-extension}) we see that $Rj_{L, *}\mathcal{F}_L$ is the pullback of $Rj_*\mathcal{F}$ to $X_L$. Combining these two observations, we conclude that it suffices to prove the base change map for the upper square in the diagram on the right is an isomorphism in order to prove that our original map is an isomorphism on stalks at $\overline{z}$\footnote{Here we use that a ``vertical composition'' of base change maps is a base change map as explained in Cohomology on Sites, Remark \ref{sites-cohomology-remark-compose-base-change}.}. Then using that $Y' = \lim Y_i$ and argueing exactly as in the previous paragraph we see that the induction hypothesis forces our map over $Y' \times_K X$ to be an isomorphism. \medskip\noindent Thus any counter example with $\dim(X) + \dim(Y)$ minimal would only have nonisomorphisms $q^{-1}Rj_*\mathcal{F} \to Rh_*p^{-1}\mathcal{F}$ on stalks at closed points of $X \times_K Y$ (because a point $z$ of $X \times_K Y$ is a closed point if and only if both the image of $z$ in $X$ and in $Y$ are closed). Since it is enough to prove the isomorphism locally, we may assume $X$ and $Y$ are affine. However, then we can choose an open dense immersion $Y \to Y'$ with $Y'$ projective. (Choose a closed immersion $Y \to \mathbf{A}^n_K$ and let $Y'$ be the scheme theoretic closure of $Y$ in $\mathbf{P}^n_K$.) Then $\dim(Y') = \dim(Y)$ and hence we get a ``minimal'' counter example with $Y$ projective over $K$. In the next paragraph we show that this can't happen. \medskip\noindent Consider a diagram as in the statement of the lemma such that $q^{-1}Rj_*\mathcal{F} \to Rh_*p^{-1}\mathcal{F}$ is an isomorphism at all non-closed points of $X \times_K Y$ and such that $Y$ is projective. The restriction of the map to $(X \times_K Y)_{K^{sep}}$ is the corresponding map for the diagram of the lemma base changed to $K^{sep}$. Thus we may and do assume $K$ is separably algebraically closed. Choose a distinguished triangle $$ q^{-1}Rj_*\mathcal{F} \to Rh_*p^{-1}\mathcal{F} \to Q \to (q^{-1}Rj_*\mathcal{F})[1] $$ in $D((X \times_K Y)_\etale)$. Since $Q$ is supported in closed points we see that it suffices to prove $H^i(X \times_K Y, Q) = 0$ for all $i$, see Lemma \ref{lemma-vanishing-closed-points}. Thus it suffices to prove that $q^{-1}Rj_*\mathcal{F} \to Rh_*p^{-1}\mathcal{F}$ induces an isomorphism on cohomology. Recall that $\mathcal{F}$ is annihilated by $n$ invertible in $K$. By the K\"unneth formula of Lemma \ref{lemma-kunneth-one-proper} we have \begin{align*} R\Gamma(X \times_K Y, q^{-1}Rj_*\mathcal{F}) &= R\Gamma(X, Rj_*\mathcal{F}) \otimes_{\mathbf{Z}/n\mathbf{Z}}^\mathbf{L} R\Gamma(Y, \mathbf{Z}/n\mathbf{Z}) \\ & = R\Gamma(U, \mathcal{F}) \otimes_{\mathbf{Z}/n\mathbf{Z}}^\mathbf{L} R\Gamma(Y, \mathbf{Z}/n\mathbf{Z}) \end{align*} and $$ R\Gamma(X \times_K Y, Rh_*p^{-1}\mathcal{F}) = R\Gamma(U \times_K Y, p^{-1}\mathcal{F}) = R\Gamma(U, \mathcal{F}) \otimes_{\mathbf{Z}/n\mathbf{Z}}^\mathbf{L} R\Gamma(Y, \mathbf{Z}/n\mathbf{Z}) $$ This finishes the proof. \end{proof} \begin{lemma} \label{lemma-punctual-base-change} Let $K$ be a field. For any commutative diagram $$ \xymatrix{ X \ar[d] & X' \ar[l] \ar[d]_{f'} & Y \ar[l]^h \ar[d]^e \\ \Spec(K) & S' \ar[l] & T \ar[l]_g } $$ of schemes over $K$ with $X' = X \times_{\Spec(K)} S'$ and $Y = X' \times_{S'} T$ and $g$ quasi-compact and quasi-separated, and every abelian sheaf $\mathcal{F}$ on $T_\etale$ whose stalks are torsion of orders invertible in $K$ the base change map $$ (f')^{-1}Rg_*\mathcal{F} \longrightarrow Rh_*e^{-1}\mathcal{F} $$ is an isomorphism. \end{lemma} \begin{proof} The question is local on $X$, hence we may assume $X$ is affine. By Limits, Lemma \ref{limits-lemma-relative-approximation} we can write $X = \lim X_i$ as a cofiltered limit with affine transition morphisms of schemes $X_i$ of finite type over $K$. Denote $X'_i = X_i \times_{\Spec(K)} S'$ and $Y_i = X'_i \times_{S'} T$. By Lemma \ref{lemma-base-change-Rf-star-colim} it suffices to prove the statement for the squares with corners $X_i, Y_i, S_i, T_i$. Thus we may assume $X$ is of finite type over $K$. Similarly, we may write $\mathcal{F} = \colim \mathcal{F}[n]$ where the colimit is over the multiplicative system of integers invertible in $K$. The same lemma used above reduces us to the case where $\mathcal{F}$ is a sheaf of $\mathbf{Z}/n\mathbf{Z}$-modules for some $n$ invertible in $K$. \medskip\noindent We may replace $K$ by its algebraic closure $\overline{K}$. Namely, formation of direct image commutes with base change to $\overline{K}$ according to Lemma \ref{lemma-base-change-field-extension} (works for both $g$ and $h$). And it suffices to prove the agreement after restriction to $X'_{\overline{K}}$. Next, we may replace $X$ by its reduction as we have the topological invariance of \'etale cohomology, see Proposition \ref{proposition-topological-invariance}. After this replacement the morphism $X \to \Spec(K)$ is flat, finite presentation, with geometrically reduced fibres and the same is true for any base change, in particular for $X' \to S'$. Hence $(f')^{-1}g_*\mathcal{F} \to Rh_*e^{-1}\mathcal{F}$ is an isomorphism by Lemma \ref{lemma-fppf-reduced-fibres-base-change-f-star}. \medskip\noindent At this point we may apply Lemma \ref{lemma-base-change-does-not-hold-post} to see that it suffices to prove: given a commutative diagram $$ \xymatrix{ X \ar[d]_f & X' \ar[d] \ar[l] & Y \ar[l]^h \ar[d] \\ \Spec(K) & S' \ar[l] & \Spec(L) \ar[l] } $$ with both squares cartesian, where $S'$ is affine, integral, and normal with algebraically closed function field $K$, then $R^qh_*(\mathbf{Z}/d\mathbf{Z})$ is zero for $q > 0$ and $d | n$. Observe that this vanishing is equivalent to the statement that $$ (f')^{-1}R^q(\Spec(L) \to S')_*\mathbf{Z}/d\mathbf{Z} \longrightarrow R^qh_*\mathbf{Z}/d\mathbf{Z} $$ is an isomorphism, because the left hand side is zero for example by Lemma \ref{lemma-Rf-star-zero-normal-with-alg-closed-function-field}. \medskip\noindent Write $S' = \Spec(B)$ so that $L$ is the fraction field of $B$. Write $B = \bigcup_{i \in I} B_i$ as the union of its finite type $K$-subalgebras $B_i$. Let $J$ be the set of pairs $(i, g)$ where $i \in I$ and $g \in B_i$ nonzero with ordering $(i', g') \geq (i, g)$ if and only if $i' \geq i$ and $g$ maps to an invertible element of $(B_{i'})_{g'}$. Then $L = \colim_{(i, g) \in J} (B_i)_g$. For $j = (i, g) \in J$ set $S_j = \Spec(B_i)$ and $U_j = \Spec((B_i)_g)$. Then $$ \vcenter{ \xymatrix{ X' \ar[d] & Y \ar[l]^h \ar[d] \\ S' & \Spec(L) \ar[l] } } \quad\text{is the colimit of}\quad \vcenter{ \xymatrix{ X \times_K S_j \ar[d] & X \times_K U_j \ar[l]^{h_j} \ar[d] \\ S_j & U_j \ar[l] } } $$ Thus we may apply Lemma \ref{lemma-base-change-Rf-star-colim} to see that it suffices to prove base change holds in the diagrams on the right which is what we proved in Lemma \ref{lemma-kunneth-localize-on-X}. \end{proof} \begin{lemma} \label{lemma-punctual-base-change-upgrade} Let $K$ be a field. Let $n \geq 1$ be invertible in $K$. Consider a commutative diagram $$ \xymatrix{ X \ar[d] & X' \ar[l]^p \ar[d]_{f'} & Y \ar[l]^h \ar[d]^e \\ \Spec(K) & S' \ar[l] & T \ar[l]_g } $$ of schemes with $X' = X \times_{\Spec(K)} S'$ and $Y = X' \times_{S'} T$ and $g$ quasi-compact and quasi-separated. The canonical map $$ p^{-1}E \otimes_{\mathbf{Z}/n\mathbf{Z}}^\mathbf{L} (f')^{-1}Rg_*F \longrightarrow Rh_*(h^{-1}p^{-1}E \otimes_{\mathbf{Z}/n\mathbf{Z}}^\mathbf{L} e^{-1}F) $$ is an isomorphism if $E$ in $D^+(X_\etale, \mathbf{Z}/n\mathbf{Z})$ has tor amplitude in $[a, \infty]$ for some $a \in \mathbf{Z}$ and $F$ in $D^+(T_\etale, \mathbf{Z}/n\mathbf{Z})$. \end{lemma} \begin{proof} This lemma is a generalization of Lemma \ref{lemma-punctual-base-change} to objects of the derived category; the assertion of our lemma is true because in Lemma \ref{lemma-punctual-base-change} the scheme $X$ over $K$ is arbitrary. We strongly urge the reader to skip the laborious proof (alternative: read only the last paragraph). \medskip\noindent We may represent $E$ by a bounded below K-flat complex $\mathcal{E}^\bullet$ consisting of flat $\mathbf{Z}/n\mathbf{Z}$-modules. See Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-bounded-below-tor-amplitude}. Choose an integer $b$ such that $H^i(F) = 0$ for $i < b$. Choose a large integer $N$ and consider the short exact sequence $$ 0 \to \sigma_{\geq N + 1}\mathcal{E}^\bullet \to \mathcal{E}^\bullet \to \sigma_{\leq N}\mathcal{E}^\bullet \to 0 $$ of stupid truncations. This produces a distinguished triangle $E'' \to E \to E' \to E''[1]$ in $D(X_\etale, \mathbf{Z}/n\mathbf{Z})$. For fixed $F$ both sides of the arrow in the statement of the lemma are exact functors in $E$. Observe that $$ p^{-1}E'' \otimes_{\mathbf{Z}/n\mathbf{Z}}^\mathbf{L} (f')^{-1}Rg_*F \quad\text{and}\quad Rh_*(h^{-1}p^{-1}E'' \otimes_{\mathbf{Z}/n\mathbf{Z}}^\mathbf{L} e^{-1}F) $$ are sitting in degrees $\geq N + b$. Hence, if we can prove the lemma for the object $E'$, then we see that the lemma holds in degrees $\leq N + b$ and we will conclude. Some details omitted. Thus we may assume $E$ is represented by a bounded complex of flat $\mathbf{Z}/n\mathbf{Z}$-modules. Doing another argument of the same nature, we may assume $E$ is given by a single flat $\mathbf{Z}/n\mathbf{Z}$-module $\mathcal{E}$. \medskip\noindent Next, we use the same arguments for the variable $F$ to reduce to the case where $F$ is given by a single sheaf of $\mathbf{Z}/n\mathbf{Z}$-modules $\mathcal{F}$. Say $\mathcal{F}$ is annihilated by an integer $m | n$. If $\ell$ is a prime number dividing $m$ and $m > \ell$, then we can look at the short exact sequence $0 \to \mathcal{F}[\ell] \to \mathcal{F} \to \mathcal{F}/\mathcal{F}[\ell] \to 0$ and reduce to smaller $m$. This finally reduces us to the case where $\mathcal{F}$ is annihilated by a prime number $\ell$ dividing $n$. In this case observe that $$ p^{-1}\mathcal{E} \otimes_{\mathbf{Z}/n\mathbf{Z}}^\mathbf{L} (f')^{-1}Rg_*\mathcal{F} = p^{-1}(\mathcal{E}/\ell \mathcal{E}) \otimes_{\mathbf{F}_\ell}^\mathbf{L} (f')^{-1}Rg_*\mathcal{F} $$ by the flatness of $\mathcal{E}$. Similarly for the other term. This reduces us to the case where we are working with sheaves of $\mathbf{F}_\ell$-vector spaces which is discussed \medskip\noindent Assume $\ell$ is a prime number invertible in $K$. Assume $\mathcal{E}$, $\mathcal{F}$ are sheaves of $\mathbf{F}_\ell$-vector spaces on $X_\etale$ and $T_\etale$. We want to show that $$ p^{-1}\mathcal{E} \otimes_{\mathbf{F}_\ell} (f')^{-1}R^qg_*\mathcal{F} \longrightarrow R^qh_*(h^{-1}p^{-1}\mathcal{E} \otimes_{\mathbf{F}_\ell} e^{-1}\mathcal{F}) $$ is an isomorphism for every $q \geq 0$. This question is local on $X$ hence we may assume $X$ is affine. We can write $\mathcal{E}$ as a filtered colimit of constructible sheaves of $\mathbf{F}_\ell$-vector spaces on $X_\etale$, see Lemma \ref{lemma-torsion-colimit-constructible}. Since tensor products commute with filtered colimits and since higher direct images do too (Lemma \ref{lemma-relative-colimit}) we may assume $\mathcal{E}$ is a constructible sheaf of $\mathbf{F}_\ell$-vector spaces on $X_\etale$. Then we can choose an integer $m$ and finite and finitely presented morphisms $\pi_i : X_i \to X$, $i = 1, \ldots, m$ such that there is an injective map $$ \mathcal{E} \to \bigoplus\nolimits_{i = 1, \ldots, m} \pi_{i, *}\mathbf{F}_\ell $$ See Lemma \ref{lemma-constructible-maps-into-constant-general}. Observe that the direct sum is a constructible sheaf as well (Lemma \ref{lemma-finite-pushforward-constructible}). Thus the cokernel is constructible too (Lemma \ref{lemma-constructible-abelian}). By dimension shifting, i.e., induction on $q$, on the category of constructible sheaves of $\mathbf{F}_\ell$-vector spaces on $X_\etale$, it suffices to prove the result for the sheaves $\pi_{i, *}\mathbf{F}_\ell$ (details omitted; hint: start with proving injectivity for $q = 0$ for all constructible $\mathcal{E}$). To prove this case we extend the diagram of the lemma to $$ \xymatrix{ X_i \ar[d]^{\pi_i} & X'_i \ar[l]^{p_i} \ar[d]^{\pi'_i} & Y_i \ar[l]^{h_i} \ar[d]^{\rho_i} \\ X \ar[d] & X' \ar[l]^p \ar[d]_{f'} & Y \ar[l]^h \ar[d]^e \\ \Spec(K) & S' \ar[l] & T \ar[l]_g } $$ with all squares cartesian. In the equations below we are going to use that $R\pi_{i, *} = \pi_{i, *}$ and similarly for $\pi'_i$, $\rho_i$, we are going to use the Leray spectral sequence, we are going to use Lemma \ref{lemma-finite-pushforward-commutes-with-base-change}, and we are going to use Lemma \ref{lemma-projection-formula-proper-mod-n} (although this lemma is almost trivial for finite morphisms) for $\pi_i$, $\pi'_i$, $\rho_i$. Doing so we see that \begin{align*} p^{-1}\pi_{i, *}\mathbf{F}_\ell \otimes_{\mathbf{F}_\ell} (f')^{-1}R^qg_*\mathcal{F} & = \pi'_{i, *}\mathbf{F}_\ell \otimes_{\mathbf{F}_\ell} (f')^{-1}R^qg_*\mathcal{F} \\ & = \pi'_{i, *}((\pi'_i)^{-1} (f')^{-1}R^qg_*\mathcal{F}) \end{align*} Similarly, we have \begin{align*} R^qh_*(h^{-1}p^{-1} \pi_{i, *}\mathbf{F}_\ell \otimes_{\mathbf{F}_\ell} e^{-1}\mathcal{F}) & = R^qh_*(\rho_{i, *}\mathbf{F}_\ell \otimes_{\mathbf{F}_\ell} e^{-1}\mathcal{F}) \\ & = R^qh_*(\rho_i^{-1}e^{-1}\mathcal{F}) \\ & = \pi'_{i, *}R^qh_{i, *} \rho_i^{-1}e^{-1}\mathcal{F}) \end{align*} Simce $R^qh_{i, *} \rho_i^{-1}e^{-1}\mathcal{F} = (\pi'_i)^{-1} (f')^{-1}R^qg_*\mathcal{F}$ by Lemma \ref{lemma-punctual-base-change} we conclude. \end{proof} \begin{lemma} \label{lemma-punctual-base-change-upgrade-unbounded} Let $K$ be a field. Let $n \geq 1$ be invertible in $K$. Consider a commutative diagram $$ \xymatrix{ X \ar[d] & X' \ar[l]^p \ar[d]_{f'} & Y \ar[l]^h \ar[d]^e \\ \Spec(K) & S' \ar[l] & T \ar[l]_g } $$ of schemes of finite type over $K$ with $X' = X \times_{\Spec(K)} S'$ and $Y = X' \times_{S'} T$. The canonical map $$ p^{-1}E \otimes_{\mathbf{Z}/n\mathbf{Z}}^\mathbf{L} (f')^{-1}Rg_*F \longrightarrow Rh_*(h^{-1}p^{-1}E \otimes_{\mathbf{Z}/n\mathbf{Z}}^\mathbf{L} e^{-1}F) $$ is an isomorphism for $E$ in $D(X_\etale, \mathbf{Z}/n\mathbf{Z})$ and $F$ in $D(T_\etale, \mathbf{Z}/n\mathbf{Z})$. \end{lemma} \begin{proof} We will reduce this to Lemma \ref{lemma-punctual-base-change-upgrade} using that our functors commute with direct sums. We suggest the reader skip the proof. Recall that derived tensor product commutes with direct sums. Recall that (derived) pullback commutes with direct sums. Recall that $Rh_*$ and $Rg_*$ commute with direct sums, see Lemmas \ref{lemma-finite-cd} and \ref{lemma-finite-cd-mod-n-direct-sums} (this is where we use our schemes are of finite type over $K$). \medskip\noindent To finish the proof we can argue as follows. First we write $E = \text{hocolim} \tau_{\leq N} E$. Since our functors commute with direct sums, they commute with homotopy colimits. Hence it suffices to prove the lemma for $E$ bounded above. Similarly for $F$ we may assume $F$ is bounded above. Then we can represent $E$ by a bounded above complex $\mathcal{E}^\bullet$ of sheaves of $\mathbf{Z}/n\mathbf{Z}$-modules. Then $$ \mathcal{E}^\bullet = \colim \sigma_{\geq -N}\mathcal{E}^\bullet $$ (stupid truncations). Thus we may assume $\mathcal{E}^\bullet$ is a bounded complex of sheaves of $\mathbf{Z}/n\mathbf{Z}$-modules. For $F$ we choose a bounded above complex of flat(!) sheaves of $\mathbf{Z}/n\mathbf{Z}$-modules. Then we reduce to the case where $F$ is represented by a bounded complex of flat sheaves of $\mathbf{Z}/n\mathbf{Z}$-modules. At this point Lemma \ref{lemma-punctual-base-change-upgrade} kicks in and we conclude. \end{proof} \begin{lemma} \label{lemma-kunneth} Let $k$ be a separably closed field. Let $X$ and $Y$ be finite type schemes over $k$. Let $n \geq 1$ be an integer invertible in $k$. Then for $E \in D(X_\etale, \mathbf{Z}/n\mathbf{Z})$ and $K \in D(Y_\etale, \mathbf{Z}/n\mathbf{Z})$ we have $$ R\Gamma(X \times_{\Spec(k)} Y, \text{pr}_1^{-1}E \otimes_{\mathbf{Z}/n\mathbf{Z}}^\mathbf{L} \text{pr}_2^{-1}K ) = R\Gamma(X, E) \otimes_{\mathbf{Z}/n\mathbf{Z}}^\mathbf{L} R\Gamma(Y, K) $$ \end{lemma} \begin{proof} By Lemma \ref{lemma-punctual-base-change-upgrade-unbounded} we have $$ R\text{pr}_{1, *}( \text{pr}_1^{-1}E \otimes_{\mathbf{Z}/n\mathbf{Z}}^\mathbf{L} \text{pr}_2^{-1}K) = E \otimes_{\mathbf{Z}/n\mathbf{Z}}^\mathbf{L} \underline{R\Gamma(Y, K)} $$ We conclude by Lemma \ref{lemma-pull-out-constant-mod-n} which we may use because $\text{cd}(X) < \infty$ by Lemma \ref{lemma-finite-cd}. \end{proof} \section{Comparing chaotic and Zariski topologies} \label{section-compare-chaotic-Zariski} \noindent When constructing the structure sheaf of an affine scheme, we first construct the values on affine opens, and then we extend to all opens. A similar construction is often useful for constructing complexes of abelian groups on a scheme $X$. Recall that $X_{affine, Zar}$ denotes the category of affine opens of $X$ with topology given by standard Zariski coverings, see Topologies, Definition \ref{topologies-definition-big-small-Zariski}. We remind the reader that the topos of $X_{affine, Zar}$ is the small Zariski topos of $X$, see Topologies, Lemma \ref{topologies-lemma-alternative-zariski}. In this section we denote $X_{affine}$ the same underlying category with the chaotic topology, i.e., such that sheaves agree with presheaves. We obtain a morphisms of sites $$ \epsilon : X_{affine, Zar} \longrightarrow X_{affine} $$ as in Cohomology on Sites, Section \ref{sites-cohomology-section-compare}. \begin{lemma} \label{lemma-check-zar} In the situation above let $K$ be an object of $D^+(X_{affine})$. Then $K$ is in the essential image of the (fully faithful) functor $R\epsilon_* ; D(X_{affine, Zar}) \to D(X_{affine})$ if and only if the following two conditions hold \begin{enumerate} \item $R\Gamma(\emptyset, K)$ is zero in $D(\textit{Ab})$, and \item if $U = V \cup W$ with $U, V, W \subset X$ affine open and $V, W \subset U$ standard open (Algebra, Definition \ref{algebra-definition-Zariski-topology}), then the map $c^K_{U, V, W, V \cap W}$ of Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-c-square} is a quasi-isomorphism. \end{enumerate} \end{lemma} \begin{proof} (The functor $R\epsilon_*$ is fully faithful by the discussion in Cohomology on Sites, Section \ref{sites-cohomology-section-compare}.) Except for a snafu having to do with the empty set, this follows from the very general Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-descent-squares} whose hypotheses hold by Schemes, Lemma \ref{schemes-lemma-sheaf-on-affines} and Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-descent-squares-helper}. \medskip\noindent To get around the snafu, denote $X_{affine, almost-chaotic}$ the site where the empty object $\emptyset$ has two coverings, namely, $\{\emptyset \to \emptyset\}$ and the empty covering (see Sites, Example \ref{sites-example-site-topological} for a discussion). Then we have morphisms of sites $$ X_{affine, Zar} \to X_{affine, almost-chaotic} \to X_{affine} $$ The argument above works for the first arrow. Then we leave it to the reader to see that an object $K$ of $D^+(X_{affine})$ is in the essential image of the (fully faithful) functor $D(X_{affine, almost-chaotic}) \to D(X_{affine})$ if and only if $R\Gamma(\emptyset, K)$ is zero in $D(\textit{Ab})$. \end{proof} \section{Comparing big and small topoi} \label{section-compare} \noindent Let $S$ be a scheme. In Topologies, Lemma \ref{topologies-lemma-at-the-bottom-etale} we have introduced comparison morphisms $\pi_S : (\Sch/S)_\etale \to S_\etale$ and $i_S : \Sh(S_\etale) \to \Sh((\Sch/S)_\etale)$ with $\pi_S \circ i_S = \text{id}$ and $\pi_{S, *} = i_S^{-1}$. More generally, if $f : T \to S$ is an object of $(\Sch/S)_\etale$, then there is a morphism $i_f : \Sh(T_\etale) \to \Sh((\Sch/S)_\etale)$ such that $f_{small} = \pi_S \circ i_f$, see Topologies, Lemmas \ref{topologies-lemma-put-in-T-etale} and \ref{topologies-lemma-morphism-big-small-etale}. In Descent, Remark \ref{descent-remark-change-topologies-ringed} we have extended these to a morphism of ringed sites $$ \pi_S : ((\Sch/S)_\etale, \mathcal{O}) \to (S_\etale, \mathcal{O}_S) $$ and morphisms of ringed topoi $$ i_S : (\Sh(S_\etale), \mathcal{O}_S) \to (\Sh((\Sch/S)_\etale), \mathcal{O}) $$ and $$ i_f : (\Sh(T_\etale), \mathcal{O}_T) \to (\Sh((\Sch/S)_\etale, \mathcal{O})) $$ Note that the restriction $i_S^{-1} = \pi_{S, *}$ (see Topologies, Definition \ref{topologies-definition-restriction-small-etale}) transforms $\mathcal{O}$ into $\mathcal{O}_S$. Similarly, $i_f^{-1}$ transforms $\mathcal{O}$ into $\mathcal{O}_T$. See Descent, Remark \ref{descent-remark-change-topologies-ringed}. Hence $i_S^*\mathcal{F} = i_S^{-1}\mathcal{F}$ and $i_f^*\mathcal{F} = i_f^{-1}\mathcal{F}$ for any $\mathcal{O}$-module $\mathcal{F}$ on $(\Sch/S)_\etale$. In particular $i_S^*$ and $i_f^*$ are exact functors. The functor $i_S^*$ is often denoted $\mathcal{F} \mapsto \mathcal{F}|_{S_\etale}$ (and this does not conflict with the notation in Topologies, Definition \ref{topologies-definition-restriction-small-etale}). \begin{lemma} \label{lemma-compare-injectives} Let $S$ be a scheme. Let $T$ be an object of $(\Sch/S)_\etale$. \begin{enumerate} \item If $\mathcal{I}$ is injective in $\textit{Ab}((\Sch/S)_\etale)$, then \begin{enumerate} \item $i_f^{-1}\mathcal{I}$ is injective in $\textit{Ab}(T_\etale)$, \item $\mathcal{I}|_{S_\etale}$ is injective in $\textit{Ab}(S_\etale)$, \end{enumerate} \item If $\mathcal{I}^\bullet$ is a K-injective complex in $\textit{Ab}((\Sch/S)_\etale)$, then \begin{enumerate} \item $i_f^{-1}\mathcal{I}^\bullet$ is a K-injective complex in $\textit{Ab}(T_\etale)$, \item $\mathcal{I}^\bullet|_{S_\etale}$ is a K-injective complex in $\textit{Ab}(S_\etale)$, \end{enumerate} \end{enumerate} The corresponding statements for modules do not hold. \end{lemma} \begin{proof} Parts (1)(b) and (2)(b) follow formally from the fact that the restriction functor $\pi_{S, *} = i_S^{-1}$ is a right adjoint of the exact functor $\pi_S^{-1}$, see Homology, Lemma \ref{homology-lemma-adjoint-preserve-injectives} and Derived Categories, Lemma \ref{derived-lemma-adjoint-preserve-K-injectives}. \medskip\noindent Parts (1)(a) and (2)(a) can be seen in two ways. First proof: We can use that $i_f^{-1}$ is a right adjoint of the exact functor $i_{f, !}$. This functor is constructed in Topologies, Lemma \ref{topologies-lemma-put-in-T-etale} for sheaves of sets and for abelian sheaves in Modules on Sites, Lemma \ref{sites-modules-lemma-g-shriek-adjoint}. It is shown in Modules on Sites, Lemma \ref{sites-modules-lemma-exactness-lower-shriek} that it is exact. Second proof. We can use that $i_f = i_T \circ f_{big}$ as is shown in Topologies, Lemma \ref{topologies-lemma-morphism-big-small-etale}. Since $f_{big}$ is a localization, we see that pullback by it preserves injectives and K-injectives, see Cohomology on Sites, Lemmas \ref{sites-cohomology-lemma-cohomology-of-open} and \ref{sites-cohomology-lemma-restrict-K-injective-to-open}. Then we apply the already proved parts (1)(b) and (2)(b) to the functor $i_T^{-1}$ to conclude. \medskip\noindent Let $S = \Spec(\mathbf{Z})$ and consider the map $2 : \mathcal{O}_S \to \mathcal{O}_S$. This is an injective map of $\mathcal{O}_S$-modules on $S_\etale$. However, the pullback $\pi_S^*(2) : \mathcal{O} \to \mathcal{O}$ is not injective as we see by evaluating on $\Spec(\mathbf{F}_2)$. Now choose an injection $\alpha : \mathcal{O} \to \mathcal{I}$ into an injective $\mathcal{O}$-module $\mathcal{I}$ on $(\Sch/S)_\etale$. Then consider the diagram $$ \xymatrix{ \mathcal{O}_S \ar[d]_2 \ar[rr]_{\alpha|_{S_\etale}} & & \mathcal{I}|_{S_\etale} \\ \mathcal{O}_S \ar@{..>}[rru] } $$ Then the dotted arrow cannot exist in the category of $\mathcal{O}_S$-modules because it would mean (by adjunction) that the injective map $\alpha$ factors through the noninjective map $\pi_S^*(2)$ which cannot be the case. Thus $\mathcal{I}|_{S_\etale}$ is not an injective $\mathcal{O}_S$-module. \end{proof} \noindent Let $f : T \to S$ be a morphism of schemes. The commutative diagram of Topologies, Lemma \ref{topologies-lemma-morphism-big-small-etale} (3) leads to a commutative diagram of ringed sites $$ \xymatrix{ (T_\etale, \mathcal{O}_T) \ar[d]_{f_{small}} & ((\Sch/T)_\etale, \mathcal{O}) \ar[d]^{f_{big}} \ar[l]^{\pi_T} \\ (S_\etale, \mathcal{O}_S) & ((\Sch/S)_\etale, \mathcal{O}) \ar[l]_{\pi_S} } $$ as one easily sees by writing out the definitions of $f_{small}^\sharp$, $f_{big}^\sharp$, $\pi_S^\sharp$, and $\pi_T^\sharp$. In particular this means that \begin{equation} \label{equation-compare-big-small} (f_{big, *}\mathcal{F})|_{S_\etale} = f_{small, *}(\mathcal{F}|_{T_\etale}) \end{equation} for any sheaf $\mathcal{F}$ on $(\Sch/T)_\etale$ and if $\mathcal{F}$ is a sheaf of $\mathcal{O}$-modules, then (\ref{equation-compare-big-small}) is an isomorphism of $\mathcal{O}_S$-modules on $S_\etale$. \begin{lemma} \label{lemma-compare-higher-direct-image} Let $f : T \to S$ be a morphism of schemes. \begin{enumerate} \item For $K$ in $D((\Sch/T)_\etale)$ we have $ (Rf_{big, *}K)|_{S_\etale} = Rf_{small, *}(K|_{T_\etale}) $ in $D(S_\etale)$. \item For $K$ in $D((\Sch/T)_\etale, \mathcal{O})$ we have $ (Rf_{big, *}K)|_{S_\etale} = Rf_{small, *}(K|_{T_\etale}) $ in $D(\textit{Mod}(S_\etale, \mathcal{O}_S))$. \end{enumerate} More generally, let $g : S' \to S$ be an object of $(\Sch/S)_\etale$. Consider the fibre product $$ \xymatrix{ T' \ar[r]_{g'} \ar[d]_{f'} & T \ar[d]^f \\ S' \ar[r]^g & S } $$ Then \begin{enumerate} \item[(3)] For $K$ in $D((\Sch/T)_\etale)$ we have $i_g^{-1}(Rf_{big, *}K) = Rf'_{small, *}(i_{g'}^{-1}K)$ in $D(S'_\etale)$. \item[(4)] For $K$ in $D((\Sch/T)_\etale, \mathcal{O})$ we have $i_g^*(Rf_{big, *}K) = Rf'_{small, *}(i_{g'}^*K)$ in $D(\textit{Mod}(S'_\etale, \mathcal{O}_{S'}))$. \item[(5)] For $K$ in $D((\Sch/T)_\etale)$ we have $g_{big}^{-1}(Rf_{big, *}K) = Rf'_{big, *}((g'_{big})^{-1}K)$ in $D((\Sch/S')_\etale)$. \item[(6)] For $K$ in $D((\Sch/T)_\etale, \mathcal{O})$ we have $g_{big}^*(Rf_{big, *}K) = Rf'_{big, *}((g'_{big})^*K)$ in $D(\textit{Mod}(S'_\etale, \mathcal{O}_{S'}))$. \end{enumerate} \end{lemma} \begin{proof} Part (1) follows from Lemma \ref{lemma-compare-injectives} and (\ref{equation-compare-big-small}) on choosing a K-injective complex of abelian sheaves representing $K$. \medskip\noindent Part (3) follows from Lemma \ref{lemma-compare-injectives} and Topologies, Lemma \ref{topologies-lemma-morphism-big-small-cartesian-diagram-etale} on choosing a K-injective complex of abelian sheaves representing $K$. \medskip\noindent Part (5) is Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-localize-cartesian-square}. \medskip\noindent Part (6) is Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-localize-cartesian-square-modules}. \medskip\noindent Part (2) can be proved as follows. Above we have seen that $\pi_S \circ f_{big} = f_{small} \circ \pi_T$ as morphisms of ringed sites. Hence we obtain $R\pi_{S, *} \circ Rf_{big, *} = Rf_{small, *} \circ R\pi_{T, *}$ by Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-derived-pushforward-composition}. Since the restriction functors $\pi_{S, *}$ and $\pi_{T, *}$ are exact, we conclude. \medskip\noindent Part (4) follows from part (6) and part (2) applied to $f' : T' \to S'$. \end{proof} \noindent Let $S$ be a scheme and let $\mathcal{H}$ be an abelian sheaf on $(\Sch/S)_\etale$. Recall that $H^n_\etale(U, \mathcal{H})$ denotes the cohomology of $\mathcal{H}$ over an object $U$ of $(\Sch/S)_\etale$. \begin{lemma} \label{lemma-compare-cohomology} Let $f : T \to S$ be a morphism of schemes. Then \begin{enumerate} \item For $K$ in $D(S_\etale)$ we have $H^n_\etale(S, \pi_S^{-1}K) = H^n(S_\etale, K)$. \item For $K$ in $D(S_\etale, \mathcal{O}_S)$ we have $H^n_\etale(S, L\pi_S^*K) = H^n(S_\etale, K)$. \item For $K$ in $D(S_\etale)$ we have $H^n_\etale(T, \pi_S^{-1}K) = H^n(T_\etale, f_{small}^{-1}K)$. \item For $K$ in $D(S_\etale, \mathcal{O}_S)$ we have $H^n_\etale(T, L\pi_S^*K) = H^n(T_\etale, Lf_{small}^*K)$. \item For $M$ in $D((\Sch/S)_\etale)$ we have $H^n_\etale(T, M) = H^n(T_\etale, i_f^{-1}M)$. \item For $M$ in $D((\Sch/S)_\etale, \mathcal{O})$ we have $H^n_\etale(T, M) = H^n(T_\etale, i_f^*M)$. \end{enumerate} \end{lemma} \begin{proof} To prove (5) represent $M$ by a K-injective complex of abelian sheaves and apply Lemma \ref{lemma-compare-injectives} and work out the definitions. Part (3) follows from this as $i_f^{-1}\pi_S^{-1} = f_{small}^{-1}$. Part (1) is a special case of (3). \medskip\noindent Part (6) follows from the very general Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-pullback-same-cohomology}. Then part (4) follows because $Lf_{small}^* = i_f^* \circ L\pi_S^*$. Part (2) is a special case of (4). \end{proof} \begin{lemma} \label{lemma-cohomological-descent-etale} Let $S$ be a scheme. For $K \in D(S_\etale)$ the map $$ K \longrightarrow R\pi_{S, *}\pi_S^{-1}K $$ is an isomorphism. \end{lemma} \begin{proof} This is true because both $\pi_S^{-1}$ and $\pi_{S, *} = i_S^{-1}$ are exact functors and the composition $\pi_{S, *} \circ \pi_S^{-1}$ is the identity functor. \end{proof} \begin{lemma} \label{lemma-compare-higher-direct-image-proper} Let $f : T \to S$ be a proper morphism of schemes. Then we have \begin{enumerate} \item $\pi_S^{-1} \circ f_{small, *} = f_{big, *} \circ \pi_T^{-1}$ as functors $\Sh(T_\etale) \to \Sh((\Sch/S)_\etale)$, \item $\pi_S^{-1}Rf_{small, *}K = Rf_{big, *}\pi_T^{-1}K$ for $K$ in $D^+(T_\etale)$ whose cohomology sheaves are torsion, \item $\pi_S^{-1}Rf_{small, *}K = Rf_{big, *}\pi_T^{-1}K$ for $K$ in $D(T_\etale, \mathbf{Z}/n\mathbf{Z})$, and \item $\pi_S^{-1}Rf_{small, *}K = Rf_{big, *}\pi_T^{-1}K$ for all $K$ in $D(T_\etale)$ if $f$ is finite. \end{enumerate} \end{lemma} \begin{proof} Proof of (1). Let $\mathcal{F}$ be a sheaf on $T_\etale$. Let $g : S' \to S$ be an object of $(\Sch/S)_\etale$. Consider the fibre product $$ \xymatrix{ T' \ar[r]_{f'} \ar[d]_{g'} & S' \ar[d]^g \\ T \ar[r]^f & S } $$ Then we have $$ (f_{big, *}\pi_T^{-1}\mathcal{F})(S') = (\pi_T^{-1}\mathcal{F})(T') = ((g'_{small})^{-1}\mathcal{F})(T') = (f'_{small, *}(g'_{small})^{-1}\mathcal{F})(S') $$ the second equality by Lemma \ref{lemma-describe-pullback}. On the other hand $$ (\pi_S^{-1}f_{small, *}\mathcal{F})(S') = (g_{small}^{-1}f_{small, *}\mathcal{F})(S') $$ again by Lemma \ref{lemma-describe-pullback}. Hence by proper base change for sheaves of sets (Lemma \ref{lemma-proper-base-change-f-star}) we conclude the two sets are canonically isomorphic. The isomorphism is compatible with restriction mappings and defines an isomorphism $\pi_S^{-1}f_{small, *}\mathcal{F} = f_{big, *}\pi_T^{-1}\mathcal{F}$. Thus an isomorphism of functors $\pi_S^{-1} \circ f_{small, *} = f_{big, *} \circ \pi_T^{-1}$. \medskip\noindent Proof of (2). There is a canonical base change map $\pi_S^{-1}Rf_{small, *}K \to Rf_{big, *}\pi_T^{-1}K$ for any $K$ in $D(T_\etale)$, see Cohomology on Sites, Remark \ref{sites-cohomology-remark-base-change}. To prove it is an isomorphism, it suffices to prove the pull back of the base change map by $i_g : \Sh(S'_\etale) \to \Sh((\Sch/S)_\etale)$ is an isomorphism for any object $g : S' \to S$ of $(\Sch/S)_\etale$. Let $T', g', f'$ be as in the previous paragraph. The pullback of the base change map is \begin{align*} g_{small}^{-1}Rf_{small, *}K & = i_g^{-1}\pi_S^{-1}Rf_{small, *}K \\ & \to i_g^{-1}Rf_{big, *}\pi_T^{-1}K \\ & = Rf'_{small, *}(i_{g'}^{-1}\pi_T^{-1}K) \\ & = Rf'_{small, *}((g'_{small})^{-1}K) \end{align*} where we have used $\pi_S \circ i_g = g_{small}$, $\pi_T \circ i_{g'} = g'_{small}$, and Lemma \ref{lemma-compare-higher-direct-image}. This map is an isomorphism by the proper base change theorem (Lemma \ref{lemma-proper-base-change}) provided $K$ is bounded below and the cohomology sheaves of $K$ are torsion. \medskip\noindent The proof of part (3) is the same as the proof of part (2), except we use Lemma \ref{lemma-proper-base-change-mod-n} instead of Lemma \ref{lemma-proper-base-change}. \medskip\noindent Proof of (4). If $f$ is finite, then the functors $f_{small, *}$ and $f_{big, *}$ are exact. This follows from Proposition \ref{proposition-finite-higher-direct-image-zero} for $f_{small}$. Since any base change $f'$ of $f$ is finite too, we conclude from Lemma \ref{lemma-compare-higher-direct-image} part (3) that $f_{big, *}$ is exact too (as the higher derived functors are zero). Thus this case follows from part (1). \end{proof} \section{Comparing fppf and \'etale topologies} \label{section-fppf-etale} \noindent A model for this section is the section on the comparison of the usual topology and the qc topology on locally compact topological spaces as discussed in Cohomology on Sites, Section \ref{sites-cohomology-section-cohomology-LC}. We first review some material from Topologies, Sections \ref{topologies-section-change-topologies} and \ref{topologies-section-etale}. \medskip\noindent Let $S$ be a scheme and let $(\Sch/S)_{fppf}$ be an fppf site. On the same underlying category we have a second topology, namely the \'etale topology, and hence a second site $(\Sch/S)_\etale$. The identity functor $(\Sch/S)_\etale \to (\Sch/S)_{fppf}$ is continuous and defines a morphism of sites $$ \epsilon_S : (\Sch/S)_{fppf} \longrightarrow (\Sch/S)_\etale $$ See Cohomology on Sites, Section \ref{sites-cohomology-section-compare}. Please note that $\epsilon_{S, *}$ is the identity functor on underlying presheaves and that $\epsilon_S^{-1}$ associates to an \'etale sheaf the fppf sheafification. Let $S_\etale$ be the small \'etale site. There is a morphism of sites $$ \pi_S : (\Sch/S)_\etale \longrightarrow S_\etale $$ given by the continuous functor $S_\etale \to (\Sch/S)_\etale$, $U \mapsto U$. Namely, $S_\etale$ has fibre products and a final object and the functor above commutes with these and Sites, Proposition \ref{sites-proposition-get-morphism} applies. \begin{lemma} \label{lemma-describe-pullback-pi-fppf} With notation as above. Let $\mathcal{F}$ be a sheaf on $S_\etale$. The rule $$ (\Sch/S)_{fppf} \longrightarrow \textit{Sets},\quad (f : X \to S) \longmapsto \Gamma(X, f_{small}^{-1}\mathcal{F}) $$ is a sheaf and a fortiori a sheaf on $(\Sch/S)_\etale$. In fact this sheaf is equal to $\pi_S^{-1}\mathcal{F}$ on $(\Sch/S)_\etale$ and $\epsilon_S^{-1}\pi_S^{-1}\mathcal{F}$ on $(\Sch/S)_{fppf}$. \end{lemma} \begin{proof} The statement about the \'etale topology is the content of Lemma \ref{lemma-describe-pullback}. To finish the proof it suffices to show that $\pi_S^{-1}\mathcal{F}$ is a sheaf for the fppf topology. This is shown in Lemma \ref{lemma-describe-pullback} as well. \end{proof} \noindent In the situation of Lemma \ref{lemma-describe-pullback-pi-fppf} the composition of $\epsilon_S$ and $\pi_S$ and the equality determine a morphism of sites $$ a_S : (\Sch/S)_{fppf} \longrightarrow S_\etale $$ \begin{lemma} \label{lemma-push-pull-fppf-etale} With notation as above. Let $f : X \to Y$ be a morphism of $(\Sch/S)_{fppf}$. Then there are commutative diagrams of topoi $$ \xymatrix{ \Sh((\Sch/X)_{fppf}) \ar[rr]_{f_{big, fppf}} \ar[d]_{\epsilon_X} & & \Sh((\Sch/Y)_{fppf}) \ar[d]^{\epsilon_Y} \\ \Sh((\Sch/X)_\etale) \ar[rr]^{f_{big, \etale}} & & \Sh((\Sch/Y)_\etale) } $$ and $$ \xymatrix{ \Sh((\Sch/X)_{fppf}) \ar[rr]_{f_{big, fppf}} \ar[d]_{a_X} & & \Sh((\Sch/Y)_{fppf}) \ar[d]^{a_Y} \\ \Sh(X_\etale) \ar[rr]^{f_{small}} & & \Sh(Y_\etale) } $$ with $a_X = \pi_X \circ \epsilon_X$ and $a_Y = \pi_X \circ \epsilon_X$. \end{lemma} \begin{proof} The commutativity of the diagrams follows from the discussion in Topologies, Section \ref{topologies-section-change-topologies}. \end{proof} \begin{lemma} \label{lemma-proper-push-pull-fppf-etale} In Lemma \ref{lemma-push-pull-fppf-etale} if $f$ is proper, then we have $a_Y^{-1} \circ f_{small, *} = f_{big, fppf, *} \circ a_X^{-1}$. \end{lemma} \begin{proof} You can prove this by repeating the proof of Lemma \ref{lemma-compare-higher-direct-image-proper} part (1); we will instead deduce the result from this. As $\epsilon_{Y, *}$ is the identity functor on underlying presheaves, it reflects isomorphisms. The description in Lemma \ref{lemma-describe-pullback-pi-fppf} shows that $\epsilon_{Y, *} \circ a_Y^{-1} = \pi_Y^{-1}$ and similarly for $X$. To show that the canonical map $a_Y^{-1}f_{small, *}\mathcal{F} \to f_{big, fppf, *}a_X^{-1}\mathcal{F}$ is an isomorphism, it suffices to show that \begin{align*} \pi_Y^{-1}f_{small, *}\mathcal{F} & = \epsilon_{Y, *}a_Y^{-1}f_{small, *}\mathcal{F} \\ & \to \epsilon_{Y, *}f_{big, fppf, *}a_X^{-1}\mathcal{F} \\ & = f_{big, \etale, *} \epsilon_{X, *}a_X^{-1}\mathcal{F} \\ & = f_{big, \etale, *}\pi_X^{-1}\mathcal{F} \end{align*} is an isomorphism. This is part (1) of Lemma \ref{lemma-compare-higher-direct-image-proper}. \end{proof} \begin{lemma} \label{lemma-descent-sheaf-fppf-etale} In Lemma \ref{lemma-push-pull-fppf-etale} assume $f$ is flat, locally of finite presentation, and surjective. Then the functor $$ \Sh(Y_\etale) \longrightarrow \left\{ (\mathcal{G}, \mathcal{H}, \alpha) \middle| \begin{matrix} \mathcal{G} \in \Sh(X_\etale),\ \mathcal{H} \in \Sh((\Sch/Y)_{fppf}), \\ \alpha : a_X^{-1}\mathcal{G} \to f_{big, fppf}^{-1}\mathcal{H} \text{ an isomorphism} \end{matrix} \right\} $$ sending $\mathcal{F}$ to $(f_{small}^{-1}\mathcal{F}, a_Y^{-1}\mathcal{F}, can)$ is an equivalence. \end{lemma} \begin{proof} The functor $a_X^{-1}$ is fully faithful (as $a_{X, *}a_X^{-1} = \text{id}$ by Lemma \ref{lemma-describe-pullback-pi-fppf}). Hence the forgetful functor $(\mathcal{G}, \mathcal{H}, \alpha) \mapsto \mathcal{H}$ identifies the category of triples with a full subcategory of $\Sh((\Sch/Y)_{fppf})$. Moreover, the functor $a_Y^{-1}$ is fully faithful, hence the functor in the lemma is fully faithful as well. \medskip\noindent Suppose that we have an \'etale covering $\{Y_i \to Y\}$. Let $f_i : X_i \to Y_i$ be the base change of $f$. Denote $f_{ij} = f_i \times f_j : X_i \times_X X_j \to Y_i \times_Y Y_j$. Claim: if the lemma is true for $f_i$ and $f_{ij}$ for all $i, j$, then the lemma is true for $f$. To see this, note that the given \'etale covering determines an \'etale covering of the final object in each of the four sites $Y_\etale, X_\etale, (\Sch/Y)_{fppf}, (\Sch/X)_{fppf}$. Thus the category of sheaves is equivalent to the category of glueing data for this covering (Sites, Lemma \ref{sites-lemma-mapping-property-glue}) in each of the four cases. A huge commutative diagram of categories then finishes the proof of the claim. We omit the details. The claim shows that we may work \'etale locally on $Y$. \medskip\noindent Note that $\{X \to Y\}$ is an fppf covering. Working \'etale locally on $Y$, we may assume there exists a morphism $s : X' \to X$ such that the composition $f' = f \circ s : X' \to Y$ is surjective finite locally free, see More on Morphisms, Lemma \ref{more-morphisms-lemma-dominate-fppf-etale-locally}. Claim: if the lemma is true for $f'$, then it is true for $f$. Namely, given a triple $(\mathcal{G}, \mathcal{H}, \alpha)$ for $f$, we can pullback by $s$ to get a triple $(s_{small}^{-1}\mathcal{G}, \mathcal{H}, s_{big, fppf}^{-1}\alpha)$ for $f'$. A solution for this triple gives a sheaf $\mathcal{F}$ on $Y_\etale$ with $a_Y^{-1}\mathcal{F} = \mathcal{H}$. By the first paragraph of the proof this means the triple is in the essential image. This reduces us to the case described in the next paragraph. \medskip\noindent Assume $f$ is surjective finite locally free. Let $(\mathcal{G}, \mathcal{H}, \alpha)$ be a triple. In this case consider the triple $$ (\mathcal{G}_1, \mathcal{H}_1, \alpha_1) = (f_{small}^{-1}f_{small, *}\mathcal{G}, f_{big, fppf, *}f_{big, fppf}^{-1}\mathcal{H}, \alpha_1) $$ where $\alpha_1$ comes from the identifications \begin{align*} a_X^{-1}f_{small}^{-1}f_{small, *}\mathcal{G} & = f_{big, fppf}^{-1}a_Y^{-1}f_{small, *}\mathcal{G} \\ & = f_{big, fppf}^{-1}f_{big, fppf, *}a_X^{-1}\mathcal{G} \\ & \to f_{big, fppf}^{-1}f_{big, fppf, *}f_{big, fppf}^{-1}\mathcal{H} \end{align*} where the third equality is Lemma \ref{lemma-proper-push-pull-fppf-etale} and the arrow is given by $\alpha$. This triple is in the image of our functor because $\mathcal{F}_1 = f_{small, *}\mathcal{F}$ is a solution (to see this use Lemma \ref{lemma-proper-push-pull-fppf-etale} again; details omitted). There is a canonical map of triples $$ (\mathcal{G}, \mathcal{H}, \alpha) \to (\mathcal{G}_1, \mathcal{H}_1, \alpha_1) $$ which uses the unit $\text{id} \to f_{big, fppf, *}f_{big, fppf}^{-1}$ on the second entry (it is enough to prescribe morphisms on the second entry by the first paragraph of the proof). Since $\{f : X \to Y\}$ is an fppf covering the map $\mathcal{H} \to \mathcal{H}_1$ is injective (details omitted). Set $$ \mathcal{G}_2 = \mathcal{G}_1 \amalg_\mathcal{G} \mathcal{G}_1\quad \mathcal{H}_2 = \mathcal{H}_1 \amalg_\mathcal{H} \mathcal{H}_1 $$ and let $\alpha_2$ be the induced isomorphism (pullback functors are exact, so this makes sense). Then $\mathcal{H}$ is the equalizer of the two maps $\mathcal{H}_1 \to \mathcal{H}_2$. Repeating the arguments above for the triple $(\mathcal{G}_2, \mathcal{H}_2, \alpha_2)$ we find an injective morphism of triples $$ (\mathcal{G}_2, \mathcal{H}_2, \alpha_2) \to (\mathcal{G}_3, \mathcal{H}_3, \alpha_3) $$ such that this last triple is in the image of our functor. Say it corresponds to $\mathcal{F}_3$ in $\Sh(Y_\etale)$. By fully faithfulness we obtain two maps $\mathcal{F}_1 \to \mathcal{F}_3$ and we can let $\mathcal{F}$ be the equalizer of these two maps. By exactness of the pullback functors involved we find that $a_Y^{-1}\mathcal{F} = \mathcal{H}$ as desired. \end{proof} \begin{lemma} \label{lemma-compare-fppf-etale} Consider the comparison morphism $\epsilon : (\Sch/S)_{fppf} \to (\Sch/S)_\etale$. Let $\mathcal{P}$ denote the class of finite morphisms of schemes. For $X$ in $(\Sch/S)_\etale$ denote $\mathcal{A}'_X \subset \textit{Ab}((\Sch/X)_\etale)$ the full subcategory consisting of sheaves of the form $\pi_X^{-1}\mathcal{F}$ with $\mathcal{F}$ in $\textit{Ab}(X_\etale)$. Then Cohomology on Sites, Properties (\ref{sites-cohomology-item-base-change-P}), (\ref{sites-cohomology-item-restriction-A}), (\ref{sites-cohomology-item-A-sheaf}), (\ref{sites-cohomology-item-A-and-P}), and (\ref{sites-cohomology-item-refine-tau-by-P}) of Cohomology on Sites, Situation \ref{sites-cohomology-situation-compare} hold. \end{lemma} \begin{proof} We first show that $\mathcal{A}'_X \subset \textit{Ab}((\Sch/X)_\etale)$ is a weak Serre subcategory by checking conditions (1), (2), (3), and (4) of Homology, Lemma \ref{homology-lemma-characterize-weak-serre-subcategory}. Parts (1), (2), (3) are immediate as $\pi_X^{-1}$ is exact and fully faithful for example by Lemma \ref{lemma-cohomological-descent-etale}. If $0 \to \pi_X^{-1}\mathcal{F} \to \mathcal{G} \to \pi_X^{-1}\mathcal{F}' \to 0$ is a short exact sequence in $\textit{Ab}((\Sch/X)_\etale)$ then $0 \to \mathcal{F} \to \pi_{X, *}\mathcal{G} \to \mathcal{F}' \to 0$ is exact by Lemma \ref{lemma-cohomological-descent-etale}. Hence $\mathcal{G} = \pi_X^{-1}\pi_{X, *}\mathcal{G}$ is in $\mathcal{A}'_X$ which checks the final condition. \medskip\noindent Cohomology on Sites, Property (\ref{sites-cohomology-item-base-change-P}) holds by the existence of fibre products of schemes and the fact that the base change of a finite morphism of schemes is a finite morphism of schemes, see Morphisms, Lemma \ref{morphisms-lemma-base-change-finite}. \medskip\noindent Cohomology on Sites, Property (\ref{sites-cohomology-item-restriction-A}) follows from the commutative diagram (3) in Topologies, Lemma \ref{topologies-lemma-morphism-big-small-etale}. \medskip\noindent Cohomology on Sites, Property (\ref{sites-cohomology-item-A-sheaf}) is Lemma \ref{lemma-describe-pullback-pi-fppf}. \medskip\noindent Cohomology on Sites, Property (\ref{sites-cohomology-item-A-and-P}) holds by Lemma \ref{lemma-compare-higher-direct-image-proper} part (4). \medskip\noindent Cohomology on Sites, Property (\ref{sites-cohomology-item-refine-tau-by-P}) is implied by More on Morphisms, Lemma \ref{more-morphisms-lemma-dominate-fppf-etale-locally}. \end{proof} \begin{lemma} \label{lemma-V-C-all-n-etale-fppf} With notation as above. \begin{enumerate} \item For $X \in \Ob((\Sch/S)_{fppf})$ and an abelian sheaf $\mathcal{F}$ on $X_\etale$ we have $\epsilon_{X, *}a_X^{-1}\mathcal{F} = \pi_X^{-1}\mathcal{F}$ and $R^i\epsilon_{X, *}(a_X^{-1}\mathcal{F}) = 0$ for $i > 0$. \item For a finite morphism $f : X \to Y$ in $(\Sch/S)_{fppf}$ and abelian sheaf $\mathcal{F}$ on $X$ we have $a_Y^{-1}(R^if_{small, *}\mathcal{F}) = R^if_{big, fppf, *}(a_X^{-1}\mathcal{F})$ for all $i$. \item For a scheme $X$ and $K$ in $D^+(X_\etale)$ the map $\pi_X^{-1}K \to R\epsilon_{X, *}(a_X^{-1}K)$ is an isomorphism. \item For a finite morphism $f : X \to Y$ of schemes and $K$ in $D^+(X_\etale)$ we have $a_Y^{-1}(Rf_{small, *}K) = Rf_{big, fppf, *}(a_X^{-1}K)$. \item For a proper morphism $f : X \to Y$ of schemes and $K$ in $D^+(X_\etale)$ with torsion cohomology sheaves we have $a_Y^{-1}(Rf_{small, *}K) = Rf_{big, fppf, *}(a_X^{-1}K)$. \end{enumerate} \end{lemma} \begin{proof} By Lemma \ref{lemma-compare-fppf-etale} the lemmas in Cohomology on Sites, Section \ref{sites-cohomology-section-compare-general} all apply to our current setting. To translate the results observe that the category $\mathcal{A}_X$ of Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-A} is the essential image of $a_X^{-1} : \textit{Ab}(X_\etale) \to \textit{Ab}((\Sch/X)_{fppf})$. \medskip\noindent Part (1) is equivalent to $(V_n)$ for all $n$ which holds by Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-V-C-all-n-general}. \medskip\noindent Part (2) follows by applying $\epsilon_Y^{-1}$ to the conclusion of Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-V-implies-C-general}. \medskip\noindent Part (3) follows from Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-V-C-all-n-general} part (1) because $\pi_X^{-1}K$ is in $D^+_{\mathcal{A}'_X}((\Sch/X)_\etale)$ and $a_X^{-1} = \epsilon_X^{-1} \circ a_X^{-1}$. \medskip\noindent Part (4) follows from Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-V-C-all-n-general} part (2) for the same reason. \medskip\noindent Part (5). We use that \begin{align*} R\epsilon_{Y, *}Rf_{big, fppf, *}a_X^{-1}K & = Rf_{big, \etale, *}R\epsilon_{X, *}a_X^{-1}K \\ & = Rf_{big, \etale, *}\pi_X^{-1}K \\ & = \pi_Y^{-1}Rf_{small, *}K \\ & = R\epsilon_{Y, *} a_Y^{-1}Rf_{small, *}K \end{align*} The first equality by the commutative diagram in Lemma \ref{lemma-push-pull-fppf-etale} and Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-derived-pushforward-composition}. The second equality is (3). The third is Lemma \ref{lemma-compare-higher-direct-image-proper} part (2). The fourth is (3) again. Thus the base change map $a_Y^{-1}(Rf_{small, *}K) \to Rf_{big, fppf, *}(a_X^{-1}K)$ induces an isomorphism $$ R\epsilon_{Y, *}a_Y^{-1}Rf_{small, *}K \to R\epsilon_{Y, *}Rf_{big, fppf, *}a_X^{-1}K $$ The proof is finished by the following remark: a map $\alpha : a_Y^{-1}L \to M$ with $L$ in $D^+(Y_\etale)$ and $M$ in $D^+((\Sch/Y)_{fppf})$ such that $R\epsilon_{Y, *}\alpha$ is an isomorphism, is an isomorphism. Namely, we show by induction on $i$ that $H^i(\alpha)$ is an isomorphism. This is true for all sufficiently small $i$. If it holds for $i \leq i_0$, then we see that $R^j\epsilon_{Y, *}H^i(M) = 0$ for $j > 0$ and $i \leq i_0$ by (1) because $H^i(M) = a_Y^{-1}H^i(L)$ in this range. Hence $\epsilon_{Y, *}H^{i_0 + 1}(M) = H^{i_0 + 1}(R\epsilon_{Y, *}M)$ by a spectral sequence argument. Thus $\epsilon_{Y, *}H^{i_0 + 1}(M) = \pi_Y^{-1}H^{i_0 + 1}(L) = \epsilon_{Y, *}a_Y^{-1}H^{i_0 + 1}(L)$. This implies $H^{i_0 + 1}(\alpha)$ is an isomorphism (because $\epsilon_{Y, *}$ reflects isomorphisms as it is the identity on underlying presheaves) as desired. \end{proof} \begin{lemma} \label{lemma-cohomological-descent-etale-fppf} Let $X$ be a scheme. For $K \in D^+(X_\etale)$ the map $$ K \longrightarrow Ra_{X, *}a_X^{-1}K $$ is an isomorphism with $a_X : \Sh((\Sch/X)_{fppf}) \to \Sh(X_\etale)$ as above. \end{lemma} \begin{proof} We first reduce the statement to the case where $K$ is given by a single abelian sheaf. Namely, represent $K$ by a bounded below complex $\mathcal{F}^\bullet$. By the case of a sheaf we see that $\mathcal{F}^n = a_{X, *} a_X^{-1} \mathcal{F}^n$ and that the sheaves $R^qa_{X, *}a_X^{-1}\mathcal{F}^n$ are zero for $q > 0$. By Leray's acyclicity lemma (Derived Categories, Lemma \ref{derived-lemma-leray-acyclicity}) applied to $a_X^{-1}\mathcal{F}^\bullet$ and the functor $a_{X, *}$ we conclude. From now on assume $K = \mathcal{F}$. \medskip\noindent By Lemma \ref{lemma-describe-pullback-pi-fppf} we have $a_{X, *}a_X^{-1}\mathcal{F} = \mathcal{F}$. Thus it suffices to show that $R^qa_{X, *}a_X^{-1}\mathcal{F} = 0$ for $q > 0$. For this we can use $a_X = \epsilon_X \circ \pi_X$ and the Leray spectral sequence (Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-relative-Leray}). By Lemma \ref{lemma-V-C-all-n-etale-fppf} we have $R^i\epsilon_{X, *}(a_X^{-1}\mathcal{F}) = 0$ for $i > 0$ and $\epsilon_{X, *}a_X^{-1}\mathcal{F} = \pi_X^{-1}\mathcal{F}$. By Lemma \ref{lemma-cohomological-descent-etale} we have $R^j\pi_{X, *}(\pi_X^{-1}\mathcal{F}) = 0$ for $j > 0$. This concludes the proof. \end{proof} \begin{lemma} \label{lemma-compare-cohomology-etale-fppf} For a scheme $X$ and $a_X : \Sh((\Sch/X)_{fppf}) \to \Sh(X_\etale)$ as above: \begin{enumerate} \item $H^q(X_\etale, \mathcal{F}) = H^q_{fppf}(X, a_X^{-1}\mathcal{F})$ for an abelian sheaf $\mathcal{F}$ on $X_\etale$, \item $H^q(X_\etale, K) = H^q_{fppf}(X, a_X^{-1}K)$ for $K \in D^+(X_\etale)$. \end{enumerate} Example: if $A$ is an abelian group, then $H^q_\etale(X, \underline{A}) = H^q_{fppf}(X, \underline{A})$. \end{lemma} \begin{proof} This follows from Lemma \ref{lemma-cohomological-descent-etale-fppf} by Cohomology on Sites, Remark \ref{sites-cohomology-remark-before-Leray}. \end{proof} \section{Comparing fppf and \'etale topologies: modules} \label{section-fppf-etale-modules} \noindent We continue the discussion in Section \ref{section-fppf-etale} but in this section we briefly discuss what happens for sheaves of modules. \medskip\noindent Let $S$ be a scheme. The morphisms of sites $\epsilon_S$, $\pi_S$, and their composition $a_S$ introduced in Section \ref{section-fppf-etale} have natural enhancements to morphisms of ringed sites. The first is written as $$ \epsilon_S : ((\Sch/S)_{fppf}, \mathcal{O}) \longrightarrow ((\Sch/S)_\etale, \mathcal{O}) $$ Note that we can use the same symbol for the structure sheaf as indeed the sheaves have the same underlying presheaf. The second is $$ \pi_S : ((\Sch/S)_\etale, \mathcal{O}) \longrightarrow (S_\etale, \mathcal{O}_S) $$ The third is the morphism $$ a_S : ((\Sch/S)_{fppf}, \mathcal{O}) \longrightarrow (S_\etale, \mathcal{O}_S) $$ We already know that the category of quasi-coherent modules on the scheme $S$ is the same as the category of quasi-coherent modules on $(S_\etale, \mathcal{O}_S)$, see Descent, Proposition \ref{descent-proposition-equivalence-quasi-coherent}. Since we are interested in stating a comparison between \'etale and fppf cohomology, we will in the rest of this section think of quasi-coherent sheaves in terms of the small \'etale site. Let us review what we already know about quasi-coherent modules on these sites. \begin{lemma} \label{lemma-review-quasi-coherent} Let $S$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_S$-module on $S_\etale$. \begin{enumerate} \item The rule $$ \mathcal{F}^a : (\Sch/S)_\etale \longrightarrow \textit{Ab},\quad (f : T \to S) \longmapsto \Gamma(T, f_{small}^*\mathcal{F}) $$ satisfies the sheaf condition for fppf and a fortiori \'etale coverings, \item $\mathcal{F}^a = \pi_S^*\mathcal{F}$ on $(\Sch/S)_\etale$, \item $\mathcal{F}^a = a_S^*\mathcal{F}$ on $(\Sch/S)_{fppf}$, \item the rule $\mathcal{F} \mapsto \mathcal{F}^a$ defines an equivalence between quasi-coherent $\mathcal{O}_S$-modules and quasi-coherent modules on $((\Sch/S)_\etale, \mathcal{O})$, \item the rule $\mathcal{F} \mapsto \mathcal{F}^a$ defines an equivalence between quasi-coherent $\mathcal{O}_S$-modules and quasi-coherent modules on $((\Sch/S)_{fppf}, \mathcal{O})$, \item we have $\epsilon_{S, *}a_S^*\mathcal{F} = \pi_S^*\mathcal{F}$ and $a_{S, *}a_S^*\mathcal{F} = \mathcal{F}$, \item we have $R^i\epsilon_{S, *}(a_S^*\mathcal{F}) = 0$ and $R^ia_{S, *}(a_S^*\mathcal{F}) = 0$ for $i > 0$. \end{enumerate} \end{lemma} \begin{proof} We urge the reader to find their own proof of these results based on the material in Descent, Sections \ref{descent-section-quasi-coherent-sheaves}, \ref{descent-section-quasi-coherent-cohomology}, and \ref{descent-section-quasi-coherent-sheaves-bis}. \medskip\noindent We first explain why the notation in this lemma is consistent with our earlier use of the notation $\mathcal{F}^a$ in Sections \ref{section-quasi-coherent} and \ref{section-cohomology-quasi-coherent} and in Descent, Section \ref{descent-section-quasi-coherent-sheaves}. Namely, we know by Descent, Proposition \ref{descent-proposition-equivalence-quasi-coherent} that there exists a quasi-coherent module $\mathcal{F}_0$ on the scheme $S$ (in other words on the small Zariski site) such that $\mathcal{F}$ is the restriction of the rule $$ \mathcal{F}_0^a : (\Sch/S)_\etale \longrightarrow \textit{Ab},\quad (f : T \to S) \longmapsto \Gamma(T, f^*\mathcal{F}) $$ to the subcategory $S_\etale \subset (\Sch/S)_\etale$ where here $f^*$ denotes usual pullback of sheaves of modules on schemes. Since $\mathcal{F}_0^a$ is pullback by the morphism of ringed sites $$ ((\Sch/S)_\etale, \mathcal{O}) \longrightarrow (S_{Zar}, \mathcal{O}_{S_{Zar}}) $$ by Descent, Remark \ref{descent-remark-change-topologies-ringed-sites} it follows immediately (from composition of pullbacks) that $\mathcal{F}^a = \mathcal{F}_0^a$. This proves the sheaf property even for fpqc coverings by Descent, Lemma \ref{descent-lemma-sheaf-condition-holds} (see also Proposition \ref{proposition-quasi-coherent-sheaf-fpqc}). Then (2) and (3) follow again by Descent, Remark \ref{descent-remark-change-topologies-ringed-sites} and (4) and (5) follow from Descent, Proposition \ref{descent-proposition-equivalence-quasi-coherent} (see also the meta result Theorem \ref{theorem-quasi-coherent}). \medskip\noindent Part (6) is immediate from the description of the sheaf $\mathcal{F}^a = \pi_S^*\mathcal{F} = a_S^*\mathcal{F}$. \medskip\noindent For any abelian $\mathcal{H}$ on $(\Sch/S)_{fppf}$ the higher direct image $R^p\epsilon_{S, *}\mathcal{H}$ is the sheaf associated to the presheaf $U \mapsto H^p_{fppf}(U, \mathcal{H})$ on $(\Sch/S)_\etale$. See Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-higher-direct-images}. Hence to prove $R^p\epsilon_{S, *}a_S^*\mathcal{F} = R^p\epsilon_{S, *}\mathcal{F}^a = 0$ for $p > 0$ it suffices to show that any scheme $U$ over $S$ has an \'etale covering $\{U_i \to U\}_{i \in I}$ such that $H^p_{fppf}(U_i, \mathcal{F}^a) = 0$ for $p > 0$. If we take an open covering by affines, then the required vanishing follows from comparison with usual cohomology (Descent, Proposition \ref{descent-proposition-same-cohomology-quasi-coherent} or Theorem \ref{theorem-zariski-fpqc-quasi-coherent}) and the vanishing of cohomology of quasi-coherent sheaves on affine schemes afforded by Cohomology of Schemes, Lemma \ref{coherent-lemma-quasi-coherent-affine-cohomology-zero}. \medskip\noindent To show that $R^pa_{S, *}a_S^{-1}\mathcal{F} = R^pa_{S, *}\mathcal{F}^a = 0$ for $p > 0$ we argue in exactly the same manner. This finishes the proof. \end{proof} \begin{lemma} \label{lemma-cohomological-descent-etale-fppf-modules} Let $S$ be a scheme. For $\mathcal{F}$ a quasi-coherent $\mathcal{O}_S$-module on $S_\etale$ the maps $$ \pi_S^*\mathcal{F} \longrightarrow R\epsilon_{S, *}(a_S^*\mathcal{F}) \quad\text{and}\quad \mathcal{F} \longrightarrow Ra_{S, *}(a_S^*\mathcal{F}) $$ are isomorphisms with $a_S : \Sh((\Sch/S)_{fppf}) \to \Sh(S_\etale)$ as above. \end{lemma} \begin{proof} This is an immediate consequence of parts (6) and (7) of Lemma \ref{lemma-review-quasi-coherent}. \end{proof} \begin{lemma} \label{lemma-cohomological-descent-complex-modules} Let $S = \Spec(A)$ be an affine scheme. Let $M^\bullet$ be a complex of $A$-modules. Consider the complex $\mathcal{F}^\bullet$ of presheaves of $\mathcal{O}$-modules on $(\textit{Aff}/S)_{fppf}$ given by the rule $$ (U/S) = (\Spec(B)/\Spec(A)) \longmapsto M^\bullet \otimes_A B $$ Then this is a complex of modules and the canonical map $$ M^\bullet \longrightarrow R\Gamma((\textit{Aff}/S)_{fppf}, \mathcal{F}^\bullet) $$ is a quasi-isomorphism. \end{lemma} \begin{proof} Each $\mathcal{F}^n$ is a sheaf of modules as it agrees with the restriction of the module $\mathcal{G}^n = (\widetilde{M}^n)^a$ of Lemma \ref{lemma-review-quasi-coherent} to $(\textit{Aff}/S)_{fppf} \subset (\Sch/S)_{fppf}$. Since this inclusion defines an equivalence of ringed topoi (Topologies, Lemma \ref{topologies-lemma-affine-big-site-fppf}), we have $$ R\Gamma((\textit{Aff}/S)_{fppf}, \mathcal{F}^\bullet) = R\Gamma((\Sch/S)_{fppf}, \mathcal{G}^\bullet) $$ We observe that $M^\bullet = R\Gamma(S, \widetilde{M}^\bullet)$ for example by Derived Categories of Schemes, Lemma \ref{perfect-lemma-affine-compare-bounded}. Hence we are trying to show the comparison map $$ R\Gamma(S, \widetilde{M}^\bullet) \longrightarrow R\Gamma((\Sch/S)_{fppf}, (\widetilde{M}^\bullet)^a) $$ is an isomorphism. If $M^\bullet$ is bounded below, then this holds by Descent, Proposition \ref{descent-proposition-same-cohomology-quasi-coherent} and the first spectral sequence of Derived Categories, Lemma \ref{derived-lemma-two-ss-complex-functor}. For the general case, let us write $M^\bullet = \lim M_n^\bullet$ with $M_n^\bullet = \tau_{\geq -n}M^\bullet$. Whence the system $M_n^p$ is eventually constant with value $M^p$. We claim that $$ (\widetilde{M}^\bullet)^a = R\lim (\widetilde{M}_n^\bullet)^a $$ Namely, it suffices to show that the natural map from left to right induces an isomorphism on cohomology over any affine object $U = \Spec(B)$ of $(\Sch/S)_{fppf}$. For $i \in \mathbf{Z}$ and $n > |i|$ we have $$ H^i(U, (\widetilde{M}_n^\bullet)^a) = H^i(\tau_{\geq -n}M^\bullet \otimes_A B) = H^i(M^\bullet \otimes_A B) $$ The first equality holds by the bounded below case treated above. Thus we see from Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-RGamma-commutes-with-Rlim} that the claim holds. Then we finally get \begin{align*} R\Gamma((\Sch/S)_{fppf}, (\widetilde{M}^\bullet)^a) & = R\Gamma((\Sch/S)_{fppf}, R\lim (\widetilde{M}_n^\bullet)^a) \\ & = R\lim R\Gamma((\Sch/S)_{fppf}, (\widetilde{M}_n^\bullet)^a) \\ & = R\lim M_n^\bullet \\ & = M^\bullet \end{align*} as desired. The second equality holds because $R\lim$ commutes with $R\Gamma$, see Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-RGamma-commutes-with-Rlim}. \end{proof} \section{Comparing ph and \'etale topologies} \label{section-ph-etale} \noindent A model for this section is the section on the comparison of the usual topology and the qc topology on locally compact topological spaces as discussed in Cohomology on Sites, Section \ref{sites-cohomology-section-cohomology-LC}. We first review some material from Topologies, Sections \ref{topologies-section-change-topologies} and \ref{topologies-section-etale}. \medskip\noindent Let $S$ be a scheme and let $(\Sch/S)_{ph}$ be a ph site. On the same underlying category we have a second topology, namely the \'etale topology, and hence a second site $(\Sch/S)_\etale$. The identity functor $(\Sch/S)_\etale \to (\Sch/S)_{ph}$ is continuous (by More on Morphisms, Lemma \ref{more-morphisms-lemma-fppf-ph} and Topologies, Lemma \ref{topologies-lemma-zariski-etale-smooth-syntomic-fppf}) and defines a morphism of sites $$ \epsilon_S : (\Sch/S)_{ph} \longrightarrow (\Sch/S)_\etale $$ See Cohomology on Sites, Section \ref{sites-cohomology-section-compare}. Please note that $\epsilon_{S, *}$ is the identity functor on underlying presheaves and that $\epsilon_S^{-1}$ associates to an \'etale sheaf the ph sheafification. Let $S_\etale$ be the small \'etale site. There is a morphism of sites $$ \pi_S : (\Sch/S)_\etale \longrightarrow S_\etale $$ given by the continuous functor $S_\etale \to (\Sch/S)_\etale$, $U \mapsto U$. Namely, $S_\etale$ has fibre products and a final object and the functor above commutes with these and Sites, Proposition \ref{sites-proposition-get-morphism} applies. \begin{lemma} \label{lemma-describe-pullback-pi-ph} With notation as above. Let $\mathcal{F}$ be a sheaf on $S_\etale$. The rule $$ (\Sch/S)_{ph} \longrightarrow \textit{Sets},\quad (f : X \to S) \longmapsto \Gamma(X, f_{small}^{-1}\mathcal{F}) $$ is a sheaf and a fortiori a sheaf on $(\Sch/S)_\etale$. In fact this sheaf is equal to $\pi_S^{-1}\mathcal{F}$ on $(\Sch/S)_\etale$ and $\epsilon_S^{-1}\pi_S^{-1}\mathcal{F}$ on $(\Sch/S)_{ph}$. \end{lemma} \begin{proof} The statement about the \'etale topology is the content of Lemma \ref{lemma-describe-pullback}. To finish the proof it suffices to show that $\pi_S^{-1}\mathcal{F}$ is a sheaf for the ph topology. By Topologies, Lemma \ref{topologies-lemma-characterize-sheaf} it suffices to show that given a proper surjective morphism $V \to U$ of schemes over $S$ we have an equalizer diagram $$ \xymatrix{ (\pi_S^{-1}\mathcal{F})(U) \ar[r] & (\pi_S^{-1}\mathcal{F})(V) \ar@<1ex>[r] \ar@<-1ex>[r] & (\pi_S^{-1}\mathcal{F})(V \times_U V) } $$ Set $\mathcal{G} = \pi_S^{-1}\mathcal{F}|_{U_\etale}$. Consider the commutative diagram $$ \xymatrix{ V \times_U V \ar[r] \ar[rd]_g \ar[d] & V \ar[d]^f \\ V \ar[r]^f & U } $$ We have $$ (\pi_S^{-1}\mathcal{F})(V) = \Gamma(V, f^{-1}\mathcal{G}) = \Gamma(U, f_*f^{-1}\mathcal{G}) $$ where we use $f_*$ and $f^{-1}$ to denote functorialities between small \'etale sites. Second, we have $$ (\pi_S^{-1}\mathcal{F})(V \times_U V) = \Gamma(V \times_U V, g^{-1}\mathcal{G}) = \Gamma(U, g_*g^{-1}\mathcal{G}) $$ The two maps in the equalizer diagram come from the two maps $$ f_*f^{-1}\mathcal{G} \longrightarrow g_*g^{-1}\mathcal{G} $$ Thus it suffices to prove $\mathcal{G}$ is the equalizer of these two maps of sheaves. Let $\overline{u}$ be a geometric point of $U$. Set $\Omega = \mathcal{G}_{\overline{u}}$. Taking stalks at $\overline{u}$ by Lemma \ref{lemma-proper-pushforward-stalk} we obtain the two maps $$ H^0(V_{\overline{u}}, \underline{\Omega}) \longrightarrow H^0((V \times_U V)_{\overline{u}}, \underline{\Omega}) = H^0(V_{\overline{u}} \times_{\overline{u}} V_{\overline{u}}, \underline{\Omega}) $$ where $\underline{\Omega}$ indicates the constant sheaf with value $\Omega$. Of course these maps are the pullback by the projection maps. Then it is clear that the sections coming from pullback by projection onto the first factor are constant on the fibres of the first projection, and sections coming from pullback by projection onto the first factor are constant on the fibres of the first projection. The sections in the intersection of the images of these pullback maps are constant on all of $V_{\overline{u}} \times_{\overline{u}} V_{\overline{u}}$, i.e., these come from elements of $\Omega$ as desired. \end{proof} \noindent In the situation of Lemma \ref{lemma-describe-pullback-pi-ph} the composition of $\epsilon_S$ and $\pi_S$ and the equality determine a morphism of sites $$ a_S : (\Sch/S)_{ph} \longrightarrow S_\etale $$ \begin{lemma} \label{lemma-push-pull-ph-etale} With notation as above. Let $f : X \to Y$ be a morphism of $(\Sch/S)_{ph}$. Then there are commutative diagrams of topoi $$ \xymatrix{ \Sh((\Sch/X)_{ph}) \ar[rr]_{f_{big, ph}} \ar[d]_{\epsilon_X} & & \Sh((\Sch/Y)_{ph}) \ar[d]^{\epsilon_Y} \\ \Sh((\Sch/X)_\etale) \ar[rr]^{f_{big, \etale}} & & \Sh((\Sch/Y)_\etale) } $$ and $$ \xymatrix{ \Sh((\Sch/X)_{ph}) \ar[rr]_{f_{big, ph}} \ar[d]_{a_X} & & \Sh((\Sch/Y)_{ph}) \ar[d]^{a_Y} \\ \Sh(X_\etale) \ar[rr]^{f_{small}} & & \Sh(Y_\etale) } $$ with $a_X = \pi_X \circ \epsilon_X$ and $a_Y = \pi_X \circ \epsilon_X$. \end{lemma} \begin{proof} The commutativity of the diagrams follows from the discussion in Topologies, Section \ref{topologies-section-change-topologies}. \end{proof} \begin{lemma} \label{lemma-proper-push-pull-ph-etale} In Lemma \ref{lemma-push-pull-ph-etale} if $f$ is proper, then we have $a_Y^{-1} \circ f_{small, *} = f_{big, ph, *} \circ a_X^{-1}$. \end{lemma} \begin{proof} You can prove this by repeating the proof of Lemma \ref{lemma-compare-higher-direct-image-proper} part (1); we will instead deduce the result from this. As $\epsilon_{Y, *}$ is the identity functor on underlying presheaves, it reflects isomorphisms. The description in Lemma \ref{lemma-describe-pullback-pi-ph} shows that $\epsilon_{Y, *} \circ a_Y^{-1} = \pi_Y^{-1}$ and similarly for $X$. To show that the canonical map $a_Y^{-1}f_{small, *}\mathcal{F} \to f_{big, ph, *}a_X^{-1}\mathcal{F}$ is an isomorphism, it suffices to show that \begin{align*} \pi_Y^{-1}f_{small, *}\mathcal{F} & = \epsilon_{Y, *}a_Y^{-1}f_{small, *}\mathcal{F} \\ & \to \epsilon_{Y, *}f_{big, ph, *}a_X^{-1}\mathcal{F} \\ & = f_{big, \etale, *} \epsilon_{X, *}a_X^{-1}\mathcal{F} \\ & = f_{big, \etale, *}\pi_X^{-1}\mathcal{F} \end{align*} is an isomorphism. This is part (1) of Lemma \ref{lemma-compare-higher-direct-image-proper}. \end{proof} \begin{lemma} \label{lemma-compare-ph-etale} Consider the comparison morphism $\epsilon : (\Sch/S)_{ph} \to (\Sch/S)_\etale$. Let $\mathcal{P}$ denote the class of proper morphisms of schemes. For $X$ in $(\Sch/S)_\etale$ denote $\mathcal{A}'_X \subset \textit{Ab}((\Sch/X)_\etale)$ the full subcategory consisting of sheaves of the form $\pi_X^{-1}\mathcal{F}$ where $\mathcal{F}$ is a torsion abelian sheaf on $X_\etale$ Then Cohomology on Sites, Properties (\ref{sites-cohomology-item-base-change-P}), (\ref{sites-cohomology-item-restriction-A}), (\ref{sites-cohomology-item-A-sheaf}), (\ref{sites-cohomology-item-A-and-P}), and (\ref{sites-cohomology-item-refine-tau-by-P}) of Cohomology on Sites, Situation \ref{sites-cohomology-situation-compare} hold. \end{lemma} \begin{proof} We first show that $\mathcal{A}'_X \subset \textit{Ab}((\Sch/X)_\etale)$ is a weak Serre subcategory by checking conditions (1), (2), (3), and (4) of Homology, Lemma \ref{homology-lemma-characterize-weak-serre-subcategory}. Parts (1), (2), (3) are immediate as $\pi_X^{-1}$ is exact and fully faithful for example by Lemma \ref{lemma-cohomological-descent-etale}. If $0 \to \pi_X^{-1}\mathcal{F} \to \mathcal{G} \to \pi_X^{-1}\mathcal{F}' \to 0$ is a short exact sequence in $\textit{Ab}((\Sch/X)_\etale)$ then $0 \to \mathcal{F} \to \pi_{X, *}\mathcal{G} \to \mathcal{F}' \to 0$ is exact by Lemma \ref{lemma-cohomological-descent-etale}. In particular we see that $\pi_{X, *}\mathcal{G}$ is an abelian torsion sheaf on $X_\etale$. Hence $\mathcal{G} = \pi_X^{-1}\pi_{X, *}\mathcal{G}$ is in $\mathcal{A}'_X$ which checks the final condition. \medskip\noindent Cohomology on Sites, Property (\ref{sites-cohomology-item-base-change-P}) holds by the existence of fibre products of schemes and the fact that the base change of a proper morphism of schemes is a proper morphism of schemes, see Morphisms, Lemma \ref{morphisms-lemma-base-change-proper}. \medskip\noindent Cohomology on Sites, Property (\ref{sites-cohomology-item-restriction-A}) follows from the commutative diagram (3) in Topologies, Lemma \ref{topologies-lemma-morphism-big-small-etale}. \medskip\noindent Cohomology on Sites, Property (\ref{sites-cohomology-item-A-sheaf}) is Lemma \ref{lemma-describe-pullback-pi-ph}. \medskip\noindent Cohomology on Sites, Property (\ref{sites-cohomology-item-A-and-P}) holds by Lemma \ref{lemma-compare-higher-direct-image-proper} part (2) and the fact that $R^if_{small}\mathcal{F}$ is torsion if $\mathcal{F}$ is an abelian torsion sheaf on $X_\etale$, see Lemma \ref{lemma-torsion-direct-image}. \medskip\noindent Cohomology on Sites, Property (\ref{sites-cohomology-item-refine-tau-by-P}) follows from More on Morphisms, Lemma \ref{more-morphisms-lemma-dominate-fppf-etale-locally} combined with the fact that a finite morphism is proper and a surjective proper morphism defines a ph covering, see Topologies, Lemma \ref{topologies-lemma-surjective-proper-ph}. \end{proof} \begin{lemma} \label{lemma-V-C-all-n-etale-ph} With notation as above. \begin{enumerate} \item For $X \in \Ob((\Sch/S)_{ph})$ and an abelian torsion sheaf $\mathcal{F}$ on $X_\etale$ we have $\epsilon_{X, *}a_X^{-1}\mathcal{F} = \pi_X^{-1}\mathcal{F}$ and $R^i\epsilon_{X, *}(a_X^{-1}\mathcal{F}) = 0$ for $i > 0$. \item For a proper morphism $f : X \to Y$ in $(\Sch/S)_{ph}$ and abelian torsion sheaf $\mathcal{F}$ on $X$ we have $a_Y^{-1}(R^if_{small, *}\mathcal{F}) = R^if_{big, ph, *}(a_X^{-1}\mathcal{F})$ for all $i$. \item For a scheme $X$ and $K$ in $D^+(X_\etale)$ with torsion cohomology sheaves the map $\pi_X^{-1}K \to R\epsilon_{X, *}(a_X^{-1}K)$ is an isomorphism. \item For a proper morphism $f : X \to Y$ of schemes and $K$ in $D^+(X_\etale)$ with torsion cohomology sheaves we have $a_Y^{-1}(Rf_{small, *}K) = Rf_{big, ph, *}(a_X^{-1}K)$. \end{enumerate} \end{lemma} \begin{proof} By Lemma \ref{lemma-compare-ph-etale} the lemmas in Cohomology on Sites, Section \ref{sites-cohomology-section-compare-general} all apply to our current setting. To translate the results observe that the category $\mathcal{A}_X$ of Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-A} is the full subcategory of $\textit{Ab}((\Sch/X)_{ph})$ consisting of sheaves of the form $a_X^{-1}\mathcal{F}$ where $\mathcal{F}$ is an abelian torsion sheaf on $X_\etale$. \medskip\noindent Part (1) is equivalent to $(V_n)$ for all $n$ which holds by Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-V-C-all-n-general}. \medskip\noindent Part (2) follows by applying $\epsilon_Y^{-1}$ to the conclusion of Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-V-implies-C-general}. \medskip\noindent Part (3) follows from Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-V-C-all-n-general} part (1) because $\pi_X^{-1}K$ is in $D^+_{\mathcal{A}'_X}((\Sch/X)_\etale)$ and $a_X^{-1} = \epsilon_X^{-1} \circ a_X^{-1}$. \medskip\noindent Part (4) follows from Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-V-C-all-n-general} part (2) for the same reason. \end{proof} \begin{lemma} \label{lemma-cohomological-descent-etale-ph} Let $X$ be a scheme. For $K \in D^+(X_\etale)$ with torsion cohomology sheaves the map $$ K \longrightarrow Ra_{X, *}a_X^{-1}K $$ is an isomorphism with $a_X : \Sh((\Sch/X)_{ph}) \to \Sh(X_\etale)$ as above. \end{lemma} \begin{proof} We first reduce the statement to the case where $K$ is given by a single abelian sheaf. Namely, represent $K$ by a bounded below complex $\mathcal{F}^\bullet$ of torsion abelian sheaves. This is possible by Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-torsion}. By the case of a sheaf we see that $\mathcal{F}^n = a_{X, *} a_X^{-1} \mathcal{F}^n$ and that the sheaves $R^qa_{X, *}a_X^{-1}\mathcal{F}^n$ are zero for $q > 0$. By Leray's acyclicity lemma (Derived Categories, Lemma \ref{derived-lemma-leray-acyclicity}) applied to $a_X^{-1}\mathcal{F}^\bullet$ and the functor $a_{X, *}$ we conclude. From now on assume $K = \mathcal{F}$ where $\mathcal{F}$ is a torsion abelian sheaf. \medskip\noindent By Lemma \ref{lemma-describe-pullback-pi-ph} we have $a_{X, *}a_X^{-1}\mathcal{F} = \mathcal{F}$. Thus it suffices to show that $R^qa_{X, *}a_X^{-1}\mathcal{F} = 0$ for $q > 0$. For this we can use $a_X = \epsilon_X \circ \pi_X$ and the Leray spectral sequence (Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-relative-Leray}). By Lemma \ref{lemma-V-C-all-n-etale-ph} we have $R^i\epsilon_{X, *}(a_X^{-1}\mathcal{F}) = 0$ for $i > 0$ and $\epsilon_{X, *}a_X^{-1}\mathcal{F} = \pi_X^{-1}\mathcal{F}$. By Lemma \ref{lemma-cohomological-descent-etale} we have $R^j\pi_{X, *}(\pi_X^{-1}\mathcal{F}) = 0$ for $j > 0$. This concludes the proof. \end{proof} \begin{lemma} \label{lemma-compare-cohomology-etale-ph} For a scheme $X$ and $a_X : \Sh((\Sch/X)_{ph}) \to \Sh(X_\etale)$ as above: \begin{enumerate} \item $H^q(X_\etale, \mathcal{F}) = H^q_{ph}(X, a_X^{-1}\mathcal{F})$ for a torsion abelian sheaf $\mathcal{F}$ on $X_\etale$, \item $H^q(X_\etale, K) = H^q_{ph}(X, a_X^{-1}K)$ for $K \in D^+(X_\etale)$ with torsion cohomology sheaves. \end{enumerate} Example: if $A$ is a torsion abelian group, then $H^q_\etale(X, \underline{A}) = H^q_{ph}(X, \underline{A})$. \end{lemma} \begin{proof} This follows from Lemma \ref{lemma-cohomological-descent-etale-ph} by Cohomology on Sites, Remark \ref{sites-cohomology-remark-before-Leray}. \end{proof} \section{Comparing h and \'etale topologies} \label{section-h-etale} \noindent A model for this section is the section on the comparison of the usual topology and the qc topology on locally compact topological spaces as discussed in Cohomology on Sites, Section \ref{sites-cohomology-section-cohomology-LC}. Moreover, this section is almost word for word the same as the section comparing the ph and \'etale topologies. We first review some material from Topologies, Sections \ref{topologies-section-change-topologies} and \ref{topologies-section-etale} and More on Flatness, Section \ref{flat-section-h}. \medskip\noindent Let $S$ be a scheme and let $(\Sch/S)_h$ be an h site. On the same underlying category we have a second topology, namely the \'etale topology, and hence a second site $(\Sch/S)_\etale$. The identity functor $(\Sch/S)_\etale \to (\Sch/S)_h$ is continuous (by More on Flatness, Lemma \ref{flat-lemma-zariski-h} and Topologies, Lemma \ref{topologies-lemma-zariski-etale-smooth-syntomic-fppf}) and defines a morphism of sites $$ \epsilon_S : (\Sch/S)_h \longrightarrow (\Sch/S)_\etale $$ See Cohomology on Sites, Section \ref{sites-cohomology-section-compare}. Please note that $\epsilon_{S, *}$ is the identity functor on underlying presheaves and that $\epsilon_S^{-1}$ associates to an \'etale sheaf the h sheafification. Let $S_\etale$ be the small \'etale site. There is a morphism of sites $$ \pi_S : (\Sch/S)_\etale \longrightarrow S_\etale $$ given by the continuous functor $S_\etale \to (\Sch/S)_\etale$, $U \mapsto U$. Namely, $S_\etale$ has fibre products and a final object and the functor above commutes with these and Sites, Proposition \ref{sites-proposition-get-morphism} applies. \begin{lemma} \label{lemma-describe-pullback-pi-h} With notation as above. Let $\mathcal{F}$ be a sheaf on $S_\etale$. The rule $$ (\Sch/S)_h \longrightarrow \textit{Sets},\quad (f : X \to S) \longmapsto \Gamma(X, f_{small}^{-1}\mathcal{F}) $$ is a sheaf and a fortiori a sheaf on $(\Sch/S)_\etale$. In fact this sheaf is equal to $\pi_S^{-1}\mathcal{F}$ on $(\Sch/S)_\etale$ and $\epsilon_S^{-1}\pi_S^{-1}\mathcal{F}$ on $(\Sch/S)_h$. \end{lemma} \begin{proof} The statement about the \'etale topology is the content of Lemma \ref{lemma-describe-pullback}. To finish the proof it suffices to show that $\pi_S^{-1}\mathcal{F}$ is a sheaf for the h topology. However, in Lemma \ref{lemma-describe-pullback-pi-ph} we have shown that $\pi_S^{-1}\mathcal{F}$ is a sheaf even in the stronger ph topology. \end{proof} \noindent In the situation of Lemma \ref{lemma-describe-pullback-pi-h} the composition of $\epsilon_S$ and $\pi_S$ and the equality determine a morphism of sites $$ a_S : (\Sch/S)_h \longrightarrow S_\etale $$ \begin{lemma} \label{lemma-push-pull-h-etale} With notation as above. Let $f : X \to Y$ be a morphism of $(\Sch/S)_h$. Then there are commutative diagrams of topoi $$ \xymatrix{ \Sh((\Sch/X)_h) \ar[rr]_{f_{big, h}} \ar[d]_{\epsilon_X} & & \Sh((\Sch/Y)_h) \ar[d]^{\epsilon_Y} \\ \Sh((\Sch/X)_\etale) \ar[rr]^{f_{big, \etale}} & & \Sh((\Sch/Y)_\etale) } $$ and $$ \xymatrix{ \Sh((\Sch/X)_h) \ar[rr]_{f_{big, h}} \ar[d]_{a_X} & & \Sh((\Sch/Y)_h) \ar[d]^{a_Y} \\ \Sh(X_\etale) \ar[rr]^{f_{small}} & & \Sh(Y_\etale) } $$ with $a_X = \pi_X \circ \epsilon_X$ and $a_Y = \pi_X \circ \epsilon_X$. \end{lemma} \begin{proof} The commutativity of the diagrams follows similarly to what was said in Topologies, Section \ref{topologies-section-change-topologies}. \end{proof} \begin{lemma} \label{lemma-proper-push-pull-h-etale} In Lemma \ref{lemma-push-pull-h-etale} if $f$ is proper, then we have $a_Y^{-1} \circ f_{small, *} = f_{big, h, *} \circ a_X^{-1}$. \end{lemma} \begin{proof} You can prove this by repeating the proof of Lemma \ref{lemma-compare-higher-direct-image-proper} part (1); we will instead deduce the result from this. As $\epsilon_{Y, *}$ is the identity functor on underlying presheaves, it reflects isomorphisms. The description in Lemma \ref{lemma-describe-pullback-pi-h} shows that $\epsilon_{Y, *} \circ a_Y^{-1} = \pi_Y^{-1}$ and similarly for $X$. To show that the canonical map $a_Y^{-1}f_{small, *}\mathcal{F} \to f_{big, h, *}a_X^{-1}\mathcal{F}$ is an isomorphism, it suffices to show that \begin{align*} \pi_Y^{-1}f_{small, *}\mathcal{F} & = \epsilon_{Y, *}a_Y^{-1}f_{small, *}\mathcal{F} \\ & \to \epsilon_{Y, *}f_{big, h, *}a_X^{-1}\mathcal{F} \\ & = f_{big, \etale, *} \epsilon_{X, *}a_X^{-1}\mathcal{F} \\ & = f_{big, \etale, *}\pi_X^{-1}\mathcal{F} \end{align*} is an isomorphism. This is part (1) of Lemma \ref{lemma-compare-higher-direct-image-proper}. \end{proof} \begin{lemma} \label{lemma-compare-h-etale} Consider the comparison morphism $\epsilon : (\Sch/S)_h \to (\Sch/S)_\etale$. Let $\mathcal{P}$ denote the class of proper morphisms. For $X$ in $(\Sch/S)_\etale$ denote $\mathcal{A}'_X \subset \textit{Ab}((\Sch/X)_\etale)$ the full subcategory consisting of sheaves of the form $\pi_X^{-1}\mathcal{F}$ where $\mathcal{F}$ is a torsion abelian sheaf on $X_\etale$ Then Cohomology on Sites, Properties (\ref{sites-cohomology-item-base-change-P}), (\ref{sites-cohomology-item-restriction-A}), (\ref{sites-cohomology-item-A-sheaf}), (\ref{sites-cohomology-item-A-and-P}), and (\ref{sites-cohomology-item-refine-tau-by-P}) of Cohomology on Sites, Situation \ref{sites-cohomology-situation-compare} hold. \end{lemma} \begin{proof} We first show that $\mathcal{A}'_X \subset \textit{Ab}((\Sch/X)_\etale)$ is a weak Serre subcategory by checking conditions (1), (2), (3), and (4) of Homology, Lemma \ref{homology-lemma-characterize-weak-serre-subcategory}. Parts (1), (2), (3) are immediate as $\pi_X^{-1}$ is exact and fully faithful for example by Lemma \ref{lemma-cohomological-descent-etale}. If $0 \to \pi_X^{-1}\mathcal{F} \to \mathcal{G} \to \pi_X^{-1}\mathcal{F}' \to 0$ is a short exact sequence in $\textit{Ab}((\Sch/X)_\etale)$ then $0 \to \mathcal{F} \to \pi_{X, *}\mathcal{G} \to \mathcal{F}' \to 0$ is exact by Lemma \ref{lemma-cohomological-descent-etale}. In particular we see that $\pi_{X, *}\mathcal{G}$ is an abelian torsion sheaf on $X_\etale$. Hence $\mathcal{G} = \pi_X^{-1}\pi_{X, *}\mathcal{G}$ is in $\mathcal{A}'_X$ which checks the final condition. \medskip\noindent Cohomology on Sites, Property (\ref{sites-cohomology-item-base-change-P}) holds by the existence of fibre products of schemes, the fact that the base change of a proper morphism of schemes is a proper morphism of schemes, see Morphisms, Lemma \ref{morphisms-lemma-base-change-proper}, and the fact that the base change of a morphism of finite presentation is a morphism of finite presentation, see Morphisms, Lemma \ref{morphisms-lemma-base-change-finite-presentation}. \medskip\noindent Cohomology on Sites, Property (\ref{sites-cohomology-item-restriction-A}) follows from the commutative diagram (3) in Topologies, Lemma \ref{topologies-lemma-morphism-big-small-etale}. \medskip\noindent Cohomology on Sites, Property (\ref{sites-cohomology-item-A-sheaf}) is Lemma \ref{lemma-describe-pullback-pi-h}. \medskip\noindent Cohomology on Sites, Property (\ref{sites-cohomology-item-A-and-P}) holds by Lemma \ref{lemma-compare-higher-direct-image-proper} part (2) and the fact that $R^if_{small}\mathcal{F}$ is torsion if $\mathcal{F}$ is an abelian torsion sheaf on $X_\etale$, see Lemma \ref{lemma-torsion-direct-image}. \medskip\noindent Cohomology on Sites, Property (\ref{sites-cohomology-item-refine-tau-by-P}) is implied by More on Morphisms, Lemma \ref{more-morphisms-lemma-dominate-fppf-etale-locally} combined with the fact that a surjective finite locally free morphism is surjective, proper, and of finite presentation and hence defines a h-covering by More on Flatness, Lemma \ref{flat-lemma-surjective-proper-finite-presentation-h}. \end{proof} \begin{lemma} \label{lemma-V-C-all-n-etale-h} With notation as above. \begin{enumerate} \item For $X \in \Ob((\Sch/S)_{h})$ and an abelian torsion sheaf $\mathcal{F}$ on $X_\etale$ we have $\epsilon_{X, *}a_X^{-1}\mathcal{F} = \pi_X^{-1}\mathcal{F}$ and $R^i\epsilon_{X, *}(a_X^{-1}\mathcal{F}) = 0$ for $i > 0$. \item For a proper morphism $f : X \to Y$ in $(\Sch/S)_h$ and abelian torsion sheaf $\mathcal{F}$ on $X$ we have $a_Y^{-1}(R^if_{small, *}\mathcal{F}) = R^if_{big, h, *}(a_X^{-1}\mathcal{F})$ for all $i$. \item For a scheme $X$ and $K$ in $D^+(X_\etale)$ with torsion cohomology sheaves the map $\pi_X^{-1}K \to R\epsilon_{X, *}(a_X^{-1}K)$ is an isomorphism. \item For a proper morphism $f : X \to Y$ of schemes and $K$ in $D^+(X_\etale)$ with torsion cohomology sheaves we have $a_Y^{-1}(Rf_{small, *}K) = Rf_{big, h, *}(a_X^{-1}K)$. \end{enumerate} \end{lemma} \begin{proof} By Lemma \ref{lemma-compare-h-etale} the lemmas in Cohomology on Sites, Section \ref{sites-cohomology-section-compare-general} all apply to our current setting. To translate the results observe that the category $\mathcal{A}_X$ of Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-A} is the full subcategory of $\textit{Ab}((\Sch/X)_h)$ consisting of sheaves of the form $a_X^{-1}\mathcal{F}$ where $\mathcal{F}$ is an abelian torsion sheaf on $X_\etale$. \medskip\noindent Part (1) is equivalent to $(V_n)$ for all $n$ which holds by Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-V-C-all-n-general}. \medskip\noindent Part (2) follows by applying $\epsilon_Y^{-1}$ to the conclusion of Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-V-implies-C-general}. \medskip\noindent Part (3) follows from Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-V-C-all-n-general} part (1) because $\pi_X^{-1}K$ is in $D^+_{\mathcal{A}'_X}((\Sch/X)_\etale)$ and $a_X^{-1} = \epsilon_X^{-1} \circ a_X^{-1}$. \medskip\noindent Part (4) follows from Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-V-C-all-n-general} part (2) for the same reason. \end{proof} \begin{lemma} \label{lemma-cohomological-descent-etale-h} Let $X$ be a scheme. For $K \in D^+(X_\etale)$ with torsion cohomology sheaves the map $$ K \longrightarrow Ra_{X, *}a_X^{-1}K $$ is an isomorphism with $a_X : \Sh((\Sch/X)_h) \to \Sh(X_\etale)$ as above. \end{lemma} \begin{proof} We first reduce the statement to the case where $K$ is given by a single abelian sheaf. Namely, represent $K$ by a bounded below complex $\mathcal{F}^\bullet$ of torsion abelian sheaves. This is possible by Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-torsion}. By the case of a sheaf we see that $\mathcal{F}^n = a_{X, *} a_X^{-1} \mathcal{F}^n$ and that the sheaves $R^qa_{X, *}a_X^{-1}\mathcal{F}^n$ are zero for $q > 0$. By Leray's acyclicity lemma (Derived Categories, Lemma \ref{derived-lemma-leray-acyclicity}) applied to $a_X^{-1}\mathcal{F}^\bullet$ and the functor $a_{X, *}$ we conclude. From now on assume $K = \mathcal{F}$ where $\mathcal{F}$ is a torsion abelian sheaf. \medskip\noindent By Lemma \ref{lemma-describe-pullback-pi-h} we have $a_{X, *}a_X^{-1}\mathcal{F} = \mathcal{F}$. Thus it suffices to show that $R^qa_{X, *}a_X^{-1}\mathcal{F} = 0$ for $q > 0$. For this we can use $a_X = \epsilon_X \circ \pi_X$ and the Leray spectral sequence (Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-relative-Leray}). By Lemma \ref{lemma-V-C-all-n-etale-h} we have $R^i\epsilon_{X, *}(a_X^{-1}\mathcal{F}) = 0$ for $i > 0$ and $\epsilon_{X, *}a_X^{-1}\mathcal{F} = \pi_X^{-1}\mathcal{F}$. By Lemma \ref{lemma-cohomological-descent-etale} we have $R^j\pi_{X, *}(\pi_X^{-1}\mathcal{F}) = 0$ for $j > 0$. This concludes the proof. \end{proof} \begin{lemma} \label{lemma-compare-cohomology-etale-h} For a scheme $X$ and $a_X : \Sh((\Sch/X)_h) \to \Sh(X_\etale)$ as above: \begin{enumerate} \item $H^q(X_\etale, \mathcal{F}) = H^q_h(X, a_X^{-1}\mathcal{F})$ for a torsion abelian sheaf $\mathcal{F}$ on $X_\etale$, \item $H^q(X_\etale, K) = H^q_h(X, a_X^{-1}K)$ for $K \in D^+(X_\etale)$ with torsion cohomology sheaves. \end{enumerate} Example: if $A$ is a torsion abelian group, then $H^q_\etale(X, \underline{A}) = H^q_h(X, \underline{A})$. \end{lemma} \begin{proof} This follows from Lemma \ref{lemma-cohomological-descent-etale-h} by Cohomology on Sites, Remark \ref{sites-cohomology-remark-before-Leray}. \end{proof} \section{Descending \'etale sheaves} \label{section-glueing-etale} \noindent We prove that \'etale sheaves ``glue'' in the fppf and h topology and related results. We have already shown the following related results \begin{enumerate} \item Lemma \ref{lemma-describe-pullback} tells us that a sheaf on the small \'etale site of a scheme $S$ determines a sheaf on the big \'etale site of $S$ satisfying the sheaf condition for fpqc coverings (and a fortiori for Zariski, \'etale, smooth, syntomic, and fppf coverings), \item Lemma \ref{lemma-describe-pullback-pi-fppf} is a restatement of the previous point for the fppf topology, \item Lemma \ref{lemma-describe-pullback-pi-ph} proves the same for the ph topology, \item Lemma \ref{lemma-describe-pullback-pi-h} proves the same for the h topology, \item Lemma \ref{lemma-descent-sheaf-fppf-etale} is a version of fppf descent for \'etale sheaves, and \item Remark \ref{remark-cohomological-descent-finite} tells us that we have descent of \'etale sheaves for finite surjective morphisms (we will clarify and strengthen this below). \end{enumerate} In the chapter on simplicial spaces we will prove some additional results on this, see for example Simplicial Spaces, Sections \ref{spaces-simplicial-section-fppf-hypercovering} and \ref{spaces-simplicial-section-proper-hypercovering-spaces}. \medskip\noindent In order to conveniently express our results we need some notation. Let $\mathcal{U} = \{f_i : X_i \to X\}$ be a family of morphisms of schemes with fixed target. A {\it descent datum} for \'etale sheaves with respect to $\mathcal{U}$ is a family $((\mathcal{F}_i)_{i \in I}, (\varphi_{ij})_{i, j \in I})$ where \begin{enumerate} \item $\mathcal{F}_i$ is in $\Sh(X_{i, \etale})$, and \item $\varphi_{ij} : \text{pr}_{0, small}^{-1} \mathcal{F}_i \longrightarrow \text{pr}_{1, small}^{-1} \mathcal{F}_j$ is an isomorphism in $\Sh((X_i \times_X X_j)_\etale)$ \end{enumerate} such that the {\it cocycle condition} holds: the diagrams $$ \xymatrix{ \text{pr}_{0, small}^{-1}\mathcal{F}_i \ar[dr]_{\text{pr}_{02, small}^{-1}\varphi_{ik}} \ar[rr]^{\text{pr}_{01, small}^{-1}\varphi_{ij}} & & \text{pr}_{1, small}^{-1}\mathcal{F}_j \ar[dl]^{\text{pr}_{12, small}^{-1}\varphi_{jk}} \\ & \text{pr}_{2, small}^{-1}\mathcal{F}_k } $$ commute in $\Sh((X_i \times_X X_j \times_X X_k)_\etale)$. There is an obvious notion of {\it morphisms of descent data} and we obtain a category of descent data. A descent datum $((\mathcal{F}_i)_{i \in I}, (\varphi_{ij})_{i, j \in I})$ is called {\it effective} if there exist a $\mathcal{F}$ in $\Sh(X_\etale)$ and isomorphisms $\varphi_i : f_{i, small}^{-1} \mathcal{F} \to \mathcal{F}_i$ in $\Sh(X_{i, \etale})$ compatible with the $\varphi_{ij}$, i.e., such that $$ \varphi_{ij} = \text{pr}_{1, small}^{-1} (\varphi_j) \circ \text{pr}_{0, small}^{-1} (\varphi_i^{-1}) $$ Another way to say this is the following. Given an object $\mathcal{F}$ of $\Sh(X_\etale)$ we obtain the {\it canonical descent datum} $(f_{i, small}^{-1}\mathcal{F}_i, c_{ij})$ where $c_{ij}$ is the canonical isomorphism $$ c_{ij} : \text{pr}_{0, small}^{-1} f_{i, small}^{-1}\mathcal{F} \longrightarrow \text{pr}_{1, small}^{-1} f_{j, small}^{-1}\mathcal{F} $$ The descent datum $((\mathcal{F}_i)_{i \in I}, (\varphi_{ij})_{i, j \in I})$ is effective if and only if it is isomorphic to the canonical descent datum associated to some $\mathcal{F}$ in $\Sh(X_\etale)$. \medskip\noindent If the family consists of a single morphism $\{X \to Y\}$, then we think of a descent datum as a pair $(\mathcal{F}, \varphi)$ where $\mathcal{F}$ is an object of $\Sh(X_\etale)$ and $\varphi$ is an isomorphism $$ \text{pr}_{0, small}^{-1} \mathcal{F} \longrightarrow \text{pr}_{1, small}^{-1} \mathcal{F} $$ in $\Sh((X \times_Y X)_\etale)$ such that the cocycle condition holds: $$ \xymatrix{ \text{pr}_{0, small}^{-1}\mathcal{F} \ar[dr]_{\text{pr}_{02, small}^{-1}\varphi} \ar[rr]^{\text{pr}_{01, small}^{-1}\varphi} & & \text{pr}_{1, small}^{-1}\mathcal{F} \ar[dl]^{\text{pr}_{12, small}^{-1}\varphi} \\ & \text{pr}_{2, small}^{-1}\mathcal{F} } $$ commutes in $\Sh((X \times_Y X \times_Y X)_\etale)$. There is a notion of morphisms of descent data and effectivity exactly as before. \medskip\noindent We first prove effective descent for surjective integral morphisms. \begin{lemma} \label{lemma-glue-etale-sheaf-section} Let $f : X \to Y$ be a morphism of schemes which has a section. Then the functor $$ \Sh(Y_\etale) \longrightarrow \text{descent data for \'etale sheaves wrt }\{X \to Y\} $$ sending $\mathcal{G}$ in $\Sh(Y_\etale)$ to the canonical descent datum is an equivalence of categories. \end{lemma} \begin{proof} This is formal and depends only on functoriality of the pullback functors. We omit the details. Hint: If $s : Y \to X$ is a section, then a quasi-inverse is the functor sending $(\mathcal{F}, \varphi)$ to $s_{small}^{-1}\mathcal{F}$. \end{proof} \begin{lemma} \label{lemma-glue-etale-sheaf-integral-surjective} Let $f : X \to Y$ be a surjective integral morphism of schemes. The functor $$ \Sh(Y_\etale) \longrightarrow \text{descent data for \'etale sheaves wrt }\{X \to Y\} $$ is an equivalence of categories. \end{lemma} \begin{proof} In this proof we drop the subscript ${}_{small}$ from our pullback and pushforward functors. Denote $X_1 = X \times_Y X$ and denote $f_1 : X_1 \to Y$ the morphism $f \circ \text{pr}_0 = f \circ \text{pr}_1$. Let $(\mathcal{F}, \varphi)$ be a descent datum for $\{X \to Y\}$. Let us set $\mathcal{F}_1 = \text{pr}_0^{-1}\mathcal{F}$. We may think of $\varphi$ as defining an isomorphism $\mathcal{F}_1 \to \text{pr}_1^{-1}\mathcal{F}$. We claim that the rule which sends a descent datum $(\mathcal{F}, \varphi)$ to the sheaf $$ \mathcal{G} = \text{Equalizer}\left( \xymatrix{ f_*\mathcal{F} \ar@<1ex>[r] \ar@<-1ex>[r] & f_{1, *}\mathcal{F}_1 } \right) $$ is a quasi-inverse to the functor in the statement of the lemma. The first of the two arrows comes from the map $$ f_*\mathcal{F} \to f_*\text{pr}_{0, *}\text{pr}_0^{-1}\mathcal{F} = f_{1, *}\mathcal{F}_1 $$ and the second arrow comes from the map $$ f_*\mathcal{F} \to f_* \text{pr}_{1, *}\text{pr}_1^{-1}\mathcal{F} \xleftarrow{\varphi} f_* \text{pr}_{0, *} \text{pr}_0^{-1}\mathcal{F} = f_{1, *}\mathcal{F}_1 $$ where the arrow pointing left is invertible. To prove this works we have to show that the canonical map $f^{-1}\mathcal{G} \to \mathcal{F}$ is an isomorphism; details omitted. In order to prove this it suffices to check after pulling back by any collection of morphisms $\Spec(k) \to Y$ where $k$ is an algebraically closed field. Namely, the corresponing base changes $X_k \to X$ are jointly surjective and we can check whether a map of sheaves on $X_\etale$ is an isomorphism by looking at stalks on geometric points, see Theorem \ref{theorem-exactness-stalks}. By Lemma \ref{lemma-integral-pushforward-commutes-with-base-change} the construction of $\mathcal{G}$ from the descent datum $(\mathcal{F}, \varphi)$ commutes with any base change. Thus we may assume $Y$ is the spectrum of an algebraically closed point (note that base change preserves the properties of the morphism $f$, see Morphisms, Lemma \ref{morphisms-lemma-base-change-surjective} and \ref{morphisms-lemma-base-change-finite}). In this case the morphism $X \to Y$ has a section, so we know that the functor is an equivalence by Lemma \ref{lemma-glue-etale-sheaf-section}. However, the reader may show that the functor is an equivalence if and only if the construction above is a quasi-inverse; details omitted. This finishes the proof. \end{proof} \begin{lemma} \label{lemma-glue-etale-sheaf-proper-surjective} Let $f : X \to Y$ be a surjective proper morphism of schemes. The functor $$ \Sh(Y_\etale) \longrightarrow \text{descent data for \'etale sheaves wrt }\{X \to Y\} $$ is an equivalence of categories. \end{lemma} \begin{proof} The exact same proof as given in Lemma \ref{lemma-glue-etale-sheaf-integral-surjective} works, except the appeal to Lemma \ref{lemma-integral-pushforward-commutes-with-base-change} should be replaced by an appeal to Lemma \ref{lemma-proper-base-change-f-star}. \end{proof} \begin{lemma} \label{lemma-glue-etale-sheaf-check-after-base-change} Let $f : X \to Y$ be a morphism of schemes. Let $Z \to Y$ be a surjective integral morphism of schemes or a surjective proper morphism of schemes. If the functors $$ \Sh(Z_\etale) \longrightarrow \text{descent data for \'etale sheaves wrt }\{X \times_Y Z \to Z\} $$ and $$ \Sh((Z \times_Y Z)_\etale) \longrightarrow \text{descent data for \'etale sheaves wrt } \{X \times_Y (Z \times_Y Z) \to Z \times_Y Z\} $$ are equivalences of categories, then $$ \Sh(Y_\etale) \longrightarrow \text{descent data for \'etale sheaves wrt }\{X \to Y\} $$ is an equivalence. \end{lemma} \begin{proof} Formal consequence of the definitions and Lemmas \ref{lemma-glue-etale-sheaf-integral-surjective} and \ref{lemma-glue-etale-sheaf-proper-surjective}. Details omitted. \end{proof} \begin{lemma} \label{lemma-glue-etale-sheaf-fppf-cover} Let $f : X \to Y$ be a morphism of schemes which is surjective, flat, locally of finite presentation. The functor $$ \Sh(Y_\etale) \longrightarrow \text{descent data for \'etale sheaves wrt }\{X \to Y\} $$ is an equivalence of categories. \end{lemma} \begin{proof} Exactly as in the proof of Lemma \ref{lemma-glue-etale-sheaf-integral-surjective} we claim a quasi-inverse is given by the functor sending $(\mathcal{F}, \varphi)$ to $$ \mathcal{G} = \text{Equalizer}\left( \xymatrix{ f_*\mathcal{F} \ar@<1ex>[r] \ar@<-1ex>[r] & f_{1, *}\mathcal{F}_1 } \right) $$ and in order to prove this it suffices to show that $f^{-1}\mathcal{G} \to \mathcal{F}$ is an isomorphism. This we may check locally, hence we may and do assume $Y$ is affine. Then we can find a finite surjective morphism $Z \to Y$ such that there exists an open covering $Z = \bigcup W_i$ such that $W_i \to Y$ factors through $X$. See More on Morphisms, Lemma \ref{more-morphisms-lemma-dominate-fppf-finite}. Applying Lemma \ref{lemma-glue-etale-sheaf-check-after-base-change} we see that it suffices to prove the lemma after replacing $Y$ by $Z$ and $Z \times_Y Z$ and $f$ by its base change. Thus we may assume $f$ has sections Zariski locally. Of course, using that the problem is local on $Y$ we reduce to the case where we have a section which is Lemma \ref{lemma-glue-etale-sheaf-section}. \end{proof} \begin{lemma} \label{lemma-glue-etale-sheaf-fppf} Let $\{f_i : X_i \to X\}$ be an fppf covering of schemes. The functor $$ \Sh(X_\etale) \longrightarrow \text{descent data for \'etale sheaves wrt }\{f_i : X_i \to X\} $$ is an equivalence of categories. \end{lemma} \begin{proof} We have Lemma \ref{lemma-glue-etale-sheaf-fppf-cover} for the morphism $f : \coprod X_i \to X$. Then a formal argument shows that descent data for $f$ are the same thing as descent data for the covering, compare with Descent, Lemma \ref{descent-lemma-family-is-one}. Details omitted. \end{proof} \begin{lemma} \label{lemma-glue-etale-sheaf-modification} Let $f : X' \to X$ be a proper morphism of schemes. Let $i : Z \to X$ be a closed immersion. Set $E = Z \times_X X'$. Picture $$ \xymatrix{ E \ar[d]_g \ar[r]_j & X' \ar[d]^f \\ Z \ar[r]^i & X } $$ If $f$ is an isomorphism over $X \setminus Z$, then the functor $$ \Sh(X_\etale) \longrightarrow \Sh(X'_\etale) \times_{\Sh(E_\etale)} \Sh(Z_\etale) $$ is an equivalence of categories. \end{lemma} \begin{proof} We will work with the $2$-fibre product category as constructed in Categories, Example \ref{categories-example-2-fibre-product-categories}. The functor sends $\mathcal{F}$ to the triple $(f^{-1}\mathcal{F}, i^{-1}\mathcal{F}, c)$ where $c : j^{-1}f^{-1}\mathcal{F} \to g^{-1}i^{-1}\mathcal{F}$ is the canonical isomorphism. We will construct a quasi-inverse functor. Let $(\mathcal{F}', \mathcal{G}, \alpha)$ be an object of the right hand side of the arrow. We obtain an isomorphism $$ i^{-1}f_*\mathcal{F}' = g_*j^{-1}\mathcal{F}' \xrightarrow{g_*\alpha} g_*g^{-1}\mathcal{G} $$ The first equality is Lemma \ref{lemma-proper-base-change-f-star}. Using this we obtain maps $i_*\mathcal{G} \to i_*g_*g^{-1}\mathcal{G}$ and $f'_*\mathcal{F}' \to i_*g_*g^{-1}\mathcal{G}$. We set $$ \mathcal{F} = f_*\mathcal{F}' \times_{i_*g_*g^{-1}\mathcal{G}} i_*\mathcal{G} $$ and we claim that $\mathcal{F}$ is an object of the left hand side of the arrow whose image in the right hand side is isomorphic to the triple we started out with. Let us compute the stalk of $\mathcal{F}$ at a geometric point $\overline{x}$ of $X$. \medskip\noindent If $\overline{x}$ is not in $Z$, then on the one hand $\overline{x}$ comes from a unique geometric point $\overline{x}'$ of $X'$ and $\mathcal{F}'_{\overline{x}'} = (f_*\mathcal{F}')_{\overline{x}}$ and on the other hand we have $(i_*\mathcal{G})_{\overline{x}}$ and $(i_*g_*g^{-1}\mathcal{G})_{\overline{x}}$ are singletons. Hence we see that $\mathcal{F}_{\overline{x}}$ equals $\mathcal{F}'_{\overline{x}'}$. \medskip\noindent If $\overline{x}$ is in $Z$, i.e., $\overline{x}$ is the image of a geometric point $\overline{z}$ of $Z$, then we obtain $(i_*\mathcal{G})_{\overline{x}} = \mathcal{G}_{\overline{z}}$ and $$ (i_*g_*g^{-1}\mathcal{G})_{\overline{x}} = (g_*g^{-1}\mathcal{G})_{\overline{z}} = \Gamma(E_{\overline{z}}, g^{-1}\mathcal{G}|_{E_{\overline{z}}}) $$ (by the proper base change for pushforward used above) and similarly $$ (f_*\mathcal{F}')_{\overline{x}} = \Gamma(X'_{\overline{x}}, \mathcal{F}'|_{X'_{\overline{x}}}) $$ Since we have the identification $E_{\overline{z}} = X'_{\overline{x}}$ and since $\alpha$ defines an isomorphism between the sheaves $\mathcal{F}'|_{X'_{\overline{x}}}$ and $g^{-1}\mathcal{G}|_{E_{\overline{z}}}$ we conclude that we get $$ \mathcal{F}_{\overline{x}} = \mathcal{G}_{\overline{z}} $$ in this case. \medskip\noindent To finish the proof, we observe that there are canonical maps $i^{-1}\mathcal{F} \to \mathcal{G}$ and $f^{-1}\mathcal{F} \to \mathcal{F}'$ compatible with $\alpha$ which on stalks produce the isomorphisms we saw above. We omit the careful construction of these maps. \end{proof} \begin{lemma} \label{lemma-h-descent-etale-sheaves} Let $S$ be a scheme. Then the category fibred in groupoids $$ p : \mathcal{S} \longrightarrow (\Sch/S)_h $$ whose fibre category over $U$ is the category $\Sh(U_\etale)$ of sheaves on the small \'etale site of $U$ is a stack in groupoids. \end{lemma} \begin{proof} To prove the lemma we will check conditions (1), (2), and (3) of More on Flatness, Lemma \ref{flat-lemma-refine-check-h-stack}. \medskip\noindent Condition (1) holds because we have glueing for sheaves (and Zariski coverings are \'etale coverings). See Sites, Lemma \ref{sites-lemma-glue-sheaves}. \medskip\noindent To see condition (2), suppose that $f : X \to Y$ is a surjective, flat, proper morphism of finite presentation over $S$ with $Y$ affine. Then we have descent for $\{X \to Y\}$ by either Lemma \ref{lemma-glue-etale-sheaf-fppf-cover} or Lemma \ref{lemma-glue-etale-sheaf-proper-surjective}. \medskip\noindent Condition (3) follows immediately from the more general Lemma \ref{lemma-glue-etale-sheaf-modification}. \end{proof} \section{Blow up squares and \'etale cohomology} \label{section-blow-up-square} \noindent Blow up squares are introduced in More on Flatness, Section \ref{flat-section-blow-up-ph}. Using the proper base change theorem we can see that we have a Mayer-Vietoris type result for blow up squares. \begin{lemma} \label{lemma-blow-up-square-cohomological-descent} Let $X$ be a scheme and let $Z \subset X$ be a closed subscheme cut out by a quasi-coherent ideal of finite type. Consider the corresponding blow up square $$ \xymatrix{ E \ar[d]_\pi \ar[r]_j & X' \ar[d]^b \\ Z \ar[r]^i & X } $$ For $K \in D^+(X_\etale)$ with torsion cohomology sheaves we have a distinguished triangle $$ K \to Ri_*(K|_Z) \oplus Rb_*(K|_{X'}) \to Rc_*(K|_E) \to K[1] $$ in $D(X_\etale)$ where $c = i \circ \pi = b \circ j$. \end{lemma} \begin{proof} The notation $K|_{X'}$ stands for $b_{small}^{-1}K$. Choose a bounded below complex $\mathcal{F}^\bullet$ of abelian sheaves representing $K$. Observe that $i_*(\mathcal{F}^\bullet|_Z)$ represents $Ri_*(K|_Z)$ because $i_*$ is exact (Proposition \ref{proposition-finite-higher-direct-image-zero}). Choose a quasi-isomorphism $b_{small}^{-1}\mathcal{F}^\bullet \to \mathcal{I}^\bullet$ where $\mathcal{I}^\bullet$ is a bounded below complex of injective abelian sheaves on $X'_\etale$. This map is adjoint to a map $\mathcal{F}^\bullet \to b_*(\mathcal{I}^\bullet)$ and $b_*(\mathcal{I}^\bullet)$ represents $Rb_*(K|_{X'})$. We have $\pi_*(\mathcal{I}^\bullet|_E) = (b_*\mathcal{I}^\bullet)|_Z$ by Lemma \ref{lemma-proper-base-change-f-star} and by Lemma \ref{lemma-proper-base-change} this complex represents $R\pi_*(K|_E)$. Hence the map $$ Ri_*(K|_Z) \oplus Rb_*(K|_{X'}) \to Rc_*(K|_E) $$ is represented by the surjective map of bounded below complexes $$ i_*(\mathcal{F}^\bullet|_Z) \oplus b_*(\mathcal{I}^\bullet) \to i_*\left(b_*(\mathcal{I}^\bullet)|_Z\right) $$ To get our distinguished triangle it suffices to show that the canonical map $\mathcal{F}^\bullet \to i_*(\mathcal{F}^\bullet|_Z) \oplus b_*(\mathcal{I}^\bullet)$ maps quasi-isomorphically onto the kernel of the map of complexes displayed above (namely a short exact sequence of complexes determines a distinguished triangle in the derived category, see Derived Categories, Section \ref{derived-section-canonical-delta-functor}). We may check this on stalks at a geometric point $\overline{x}$ of $X$. If $\overline{x}$ is not in $Z$, then $X' \to X$ is an isomorphism over an open neighbourhood of $\overline{x}$. Thus, if $\overline{x}'$ denotes the corresponding geometric point of $X'$ in this case, then we have to show that $$ \mathcal{F}^\bullet_{\overline{x}} \to \mathcal{I}^\bullet_{\overline{x}'} $$ is a quasi-isomorphism. This is true by our choice of $\mathcal{I}^\bullet$. If $\overline{x}$ is in $Z$, then $b_(\mathcal{I}^\bullet)_{\overline{x}} \to i_*\left(b_*(\mathcal{I}^\bullet)|_Z\right)_{\overline{x}}$ is an isomorphism of complexes of abelian groups. Hence the kernel is equal to $i_*(\mathcal{F}^\bullet|_Z)_{\overline{x}} = \mathcal{F}^\bullet_{\overline{x}}$ as desired. \end{proof} \begin{lemma} \label{lemma-blow-up-square-etale-cohomology} Let $X$ be a scheme and let $K \in D^+(X_\etale)$ have torsion cohomology sheaves. Let $Z \subset X$ be a closed subscheme cut out by a quasi-coherent ideal of finite type. Consider the corresponding blow up square $$ \xymatrix{ E \ar[d] \ar[r] & X' \ar[d]^b \\ Z \ar[r] & X } $$ Then there is a canonical long exact sequence $$ H^p_\etale(X, K) \to H^p_\etale(X', K|_{X'}) \oplus H^p_\etale(Z, K|_Z) \to H^p_\etale(E, K|_E) \to H^{p + 1}_\etale(X, K) $$ \end{lemma} \begin{proof}[First proof] This follows immediately from Lemma \ref{lemma-blow-up-square-cohomological-descent} and the fact that $$ R\Gamma(X, Rb_*(K|_{X'})) = R\Gamma(X', K|_{X'}) $$ (see Cohomology on Sites, Section \ref{sites-cohomology-section-leray}) and similarly for the others. \end{proof} \begin{proof}[Second proof] By Lemma \ref{lemma-compare-cohomology-etale-ph} these cohomology groups are the cohomology of $X, X', E, Z$ with values in some complex of abelian sheaves on the site $(\Sch/X)_{ph}$. (Namely, the object $a_X^{-1}K$ of the derived category, see Lemma \ref{lemma-describe-pullback-pi-ph} above and recall that $K|_{X'} = b_{small}^{-1}K$.) By More on Flatness, Lemma \ref{flat-lemma-blow-up-square-ph} the ph sheafification of the diagram of representable presheaves is cocartesian. Thus the lemma follows from the very general Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-square-triangle} applied to the site $(\Sch/X)_{ph}$ and the commutative diagram of the lemma. \end{proof} \begin{lemma} \label{lemma-blow-up-square-equivalence} Let $X$ be a scheme and let $Z \subset X$ be a closed subscheme cut out by a quasi-coherent ideal of finite type. Consider the corresponding blow up square $$ \xymatrix{ E \ar[d]_\pi \ar[r]_j & X' \ar[d]^b \\ Z \ar[r]^i & X } $$ Suppose given \begin{enumerate} \item an object $K'$ of $D^+(X'_\etale)$ with torsion cohomology sheaves, \item an object $L$ of $D^+(Z_\etale)$ with torsion cohomology sheaves, and \item an isomorphism $\gamma : K'|_E \to L|_E$. \end{enumerate} Then there exists an object $K$ of $D^+(X_\etale)$ and isomorphisms $f : K|_{X'} \to K'$, $g : K|_Z \to L$ such that $\gamma = g|_E \circ f^{-1}|_E$. Moreover, given \begin{enumerate} \item an object $M$ of $D^+(X_\etale)$ with torsion cohomology sheaves, \item a morphism $\alpha : K' \to M|_{X'}$ of $D(X'_\etale)$, \item a morphism $\beta : L \to M|_Z$ of $D(Z_\etale)$, \end{enumerate} such that $$ \alpha|_E = \beta|_E \circ \gamma. $$ Then there exists a morphism $M \to K$ in $D(X_\etale)$ whose restriction to $X'$ is $a \circ f$ and whose restriction to $Z$ is $b \circ g$. \end{lemma} \begin{proof} If $K$ exists, then Lemma \ref{lemma-blow-up-square-cohomological-descent} tells us a distinguished triangle that it fits in. Thus we simply choose a distinguished triangle $$ K \to Ri_*(L) \oplus Rb_*(K') \to Rc_*(L|_E) \to K[1] $$ where $c = i \circ \pi = b \circ j$. Here the map $Ri_*(L) \to Rc_*(L|_E)$ is $Ri_*$ applied to the adjunction mapping $E \to R\pi_*(L|_E)$. The map $Rb_*(K') \to Rc_*(L|_E)$ is the composition of the canonical map $Rb_*(K') \to Rc_*(K'|_E)) = R$ and $Rc_*(\gamma)$. The maps $g$ and $f$ of the statement of the lemma are the adjoints of these maps. If we restrict this distinguished triangle to $Z$ then the map $Rb_*(K) \to Rc_*(L|_E)$ becomes an isomorphism by the base change theorem (Lemma \ref{lemma-proper-base-change}) and hence the map $g : K|_Z \to L$ is an isomorphism. Looking at the distinguished triangle we see that $f : K|_{X'} \to K'$ is an isomorphism over $X' \setminus E = X \setminus Z$. Moreover, we have $\gamma \circ f|_E = g|_E$ by construction. Then since $\gamma$ and $g$ are isomorphisms we conclude that $f$ induces isomorphisms on stalks at geometric points of $E$ as well. Thus $f$ is an isomorphism. \medskip\noindent For the final statement, we may replace $K'$ by $K|_{X'}$, $L$ by $K|_Z$, and $\gamma$ by the canonical identification. Observe that $\alpha$ and $\beta$ induce a commutative square $$ \xymatrix{ K \ar[r] \ar@{..>}[d] & Ri_*(K|_Z) \oplus Rb_*(K|_{X'}) \ar[r] \ar[d]_{\beta \oplus \alpha} & Rc_*(K|_E) \ar[r] \ar[d]_{\alpha|_E} & K[1] \ar@{..>}[d] \\ M \ar[r] & Ri_*(M|_Z) \oplus Rb_*(M|_{X'}) \ar[r] & Rc_*(M|_E) \ar[r] & M[1] } $$ Thus by the axioms of a derived category we get a dotted arrow producing a morphism of distinguished triangles. \end{proof} \section{Almost blow up squares and the h topology} \label{section-blow-up-h} \noindent In this section we continue the discussion in More on Flatness, Section \ref{flat-section-blow-up-h}. For the convenience of the reader we recall that an almost blow up square is a commutative diagram \begin{equation} \label{equation-almost-blow-up-square} \vcenter{ \xymatrix{ E \ar[d] \ar[r] & X' \ar[d]^b \\ Z \ar[r] & X } } \end{equation} of schemes satisfying the following conditions: \begin{enumerate} \item $Z \to X$ is a closed immersion of finite presentation, \item $E = b^{-1}(Z)$ is a locally principal closed subscheme of $X'$, \item $b$ is proper and of finite presentation, \item the closed subscheme $X'' \subset X'$ cut out by the quasi-coherent ideal of sections of $\mathcal{O}_{X'}$ supported on $E$ (Properties, Lemma \ref{properties-lemma-sections-supported-on-closed-subset}) is the blow up of $X$ in $Z$. \end{enumerate} It follows that the morphism $b$ induces an isomorphism $X' \setminus E \to X \setminus Z$. \medskip\noindent We are going to give a criterion for ``h sheafiness'' for objects in the derived category of the big fppf site $(\Sch/S)_{fppf}$ of a scheme $S$. On the same underlying category we have a second topology, namely the h topology (More on Flatness, Section \ref{flat-section-h}). Recall that fppf coverings are h coverings (More on Flatness, Lemma \ref{flat-lemma-zariski-h}). Hence we may consider the morphism $$ \epsilon : (\Sch/S)_h \longrightarrow (\Sch/S)_{fppf} $$ See Cohomology on Sites, Section \ref{sites-cohomology-section-compare}. In particular, we have a fully faithful functor $$ R\epsilon_* : D((\Sch/S)_h) \longrightarrow D((\Sch/S)_{fppf}) $$ and we can ask: what is the essential image of this functor? \begin{lemma} \label{lemma-blow-up-square-h} With notation as above, if $K$ is in the essential image of $R\epsilon_*$, then the maps $c^K_{X, Z, X', E}$ of Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-c-square} are quasi-isomorphisms. \end{lemma} \begin{proof} Denote ${}^\#$ sheafification in the h topology. We have seen in More on Flatness, Lemma \ref{flat-lemma-blow-up-square-h} that $h_X^\# = h_Z^\# \amalg_{h_E^\#} h_{X'}^\#$. On the other hand, the map $h_E^\# \to h_{X'}^\#$ is injective as $E \to X'$ is a monomorphism. Thus this lemma is a special case of Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-descent-squares-helper} (which itself is a formal consequence of Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-square-triangle}). \end{proof} \begin{proposition} \label{proposition-check-h} Let $K$ be an object of $D^+((\Sch/S)_{fppf})$. Then $K$ is in the essential image of $R\epsilon_* : D((\Sch/S)_h) \to D((\Sch/S)_{fppf})$ if and only if $c^K_{X, X', Z, E}$ is a quasi-isomorphism for every almost blow up square (\ref{equation-almost-blow-up-square}) in $(\Sch/S)_h$ with $X$ affine. \end{proposition} \begin{proof} We prove this by applying Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-descent-squares} whose hypotheses hold by Lemma \ref{lemma-blow-up-square-h} and More on Flatness, Proposition \ref{flat-proposition-check-h}. \end{proof} \begin{lemma} \label{lemma-refine-check-h} Let $K$ be an object of $D^+((\Sch/S)_{fppf})$. Then $K$ is in the essential image of $R\epsilon_* : D((\Sch/S)_h) \to D((\Sch/S)_{fppf})$ if and only if $c^K_{X, X', Z, E}$ is a quasi-isomorphism for every almost blow up square as in More on Flatness, Examples \ref{flat-example-one-generator} and \ref{flat-example-two-generators}. \end{lemma} \begin{proof} We prove this by applying Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-descent-squares} whose hypotheses hold by Lemma \ref{lemma-blow-up-square-h} and More on Flatness, Lemma \ref{flat-lemma-refine-check-h} \end{proof} \section{Cohomology of the structure sheaf in the h topology} \label{section-cohomology-O-h} \noindent Let $p$ be a prime number. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site with $p\mathcal{O} = 0$. Then we set $\colim_F \mathcal{O}$ equal to the colimit in the category of sheaves of rings of the system $$ \mathcal{O} \xrightarrow{F} \mathcal{O} \xrightarrow{F} \mathcal{O} \xrightarrow{F} \ldots $$ where $F : \mathcal{O} \to \mathcal{O}$, $f \mapsto f^p$ is the Frobenius endomorphism. \begin{lemma} \label{lemma-h-sheaf-colim-F} Let $p$ be a prime number. Let $S$ be a scheme over $\mathbf{F}_p$. Consider the sheaf $\mathcal{O}^{perf} = \colim_F \mathcal{O}$ on $(\Sch/S)_{fppf}$. Then $\mathcal{O}^{perf}$ is in the essential image of $R\epsilon_* : D((\Sch/S)_h) \to D((\Sch/S)_{fppf})$. \end{lemma} \begin{proof} We prove this using the criterion of Lemma \ref{lemma-refine-check-h}. Before check the conditions, we note that for a quasi-compact and quasi-separated object $X$ of $(\Sch/S)_{fppf}$ we have $$ H^i_{fppf}(X, \mathcal{O}^{perf}) = \colim_F H^i_{fppf}(X, \mathcal{O}) $$ See Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-colim-works-over-collection}. We will also use that $H^i_{fppf}(X, \mathcal{O}) = H^i(X, \mathcal{O})$, see Descent, Proposition \ref{descent-proposition-same-cohomology-quasi-coherent}. \medskip\noindent Let $A, f, J$ be as in More on Flatness, Example \ref{flat-example-one-generator} and consider the associated almost blow up square. Since $X$, $X'$, $Z$, $E$ are affine, we have no higher cohomology of $\mathcal{O}$. Hence we only have to check that $$ 0 \to \mathcal{O}^{perf}(X) \to \mathcal{O}^{perf}(X') \oplus \mathcal{O}^{perf}(Z) \to \mathcal{O}^{perf}(E) \to 0 $$ is a short exact sequence. This was shown in (the proof of) More on Flatness, Lemma \ref{flat-lemma-h-sheaf-colim-F}. \medskip\noindent Let $X, X', Z, E$ be as in More on Flatness, Example \ref{flat-example-two-generators}. Since $X$ and $Z$ are affine we have $H^p(X, \mathcal{O}_X) = H^p(Z, \mathcal{O}_X) = 0$ for $p > 0$. By More on Flatness, Lemma \ref{flat-lemma-funny-blow-up} we have $H^p(X', \mathcal{O}_{X'}) = 0$ for $p > 0$. Since $E = \mathbf{P}^1_Z$ and $Z$ is affine we also have $H^p(E, \mathcal{O}_E) = 0$ for $p > 0$. As in the previous paragraph we reduce to checking that $$ 0 \to \mathcal{O}^{perf}(X) \to \mathcal{O}^{perf}(X') \oplus \mathcal{O}^{perf}(Z) \to \mathcal{O}^{perf}(E) \to 0 $$ is a short exact sequence. This was shown in (the proof of) More on Flatness, Lemma \ref{flat-lemma-h-sheaf-colim-F}. \end{proof} \begin{proposition} \label{proposition-h-cohomology-structure-sheaf} Let $p$ be a prime number. Let $S$ be a quasi-compact and quasi-separated scheme over $\mathbf{F}_p$. Then $$ H^i((\Sch/S)_h, \mathcal{O}^h) = \colim_F H^i(S, \mathcal{O}) $$ Here on the left hand side by $\mathcal{O}^h$ we mean the h sheafification of the structure sheaf. \end{proposition} \begin{proof} This is just a reformulation of Lemma \ref{lemma-h-sheaf-colim-F}. Recall that $\mathcal{O}^h = \mathcal{O}^{perf} = \colim_F \mathcal{O}$, see More on Flatness, Lemma \ref{flat-lemma-char-p}. By Lemma \ref{lemma-h-sheaf-colim-F} we see that $\mathcal{O}^{perf}$ viewed as an object of $D((\Sch/S)_{fppf})$ is of the form $R\epsilon_*K$ for some $K \in D((\Sch/S)_h)$. Then $K = \epsilon^{-1}\mathcal{O}^{perf}$ which is actually equal to $\mathcal{O}^{perf}$ because $\mathcal{O}^{perf}$ is an h sheaf. See Cohomology on Sites, Section \ref{sites-cohomology-section-compare}. Hence $R\epsilon_*\mathcal{O}^{perf} = \mathcal{O}^{perf}$ (with apologies for the confusing notation). Thus the lemma now follows from Leray $$ R\Gamma_h(S, \mathcal{O}^{perf}) = R\Gamma_{fppf}(S, R\epsilon_*\mathcal{O}^{perf}) = R\Gamma_{fppf}(S, \mathcal{O}^{perf}) $$ and the fact that $$ H^i_{fppf}(S, \mathcal{O}^{perf}) = H^i_{fppf}(S, \colim_F \mathcal{O}) = \colim_F H^i_{fppf}(S, \mathcal{O}) $$ as $S$ is quasi-compact and quasi-separated (see proof of Lemma \ref{lemma-h-sheaf-colim-F}). \end{proof} \input{chapters} \bibliography{my} \bibliographystyle{amsalpha} \end{document}