\input{preamble} % OK, start here. % \begin{document} \title{Functors and Morphisms} \maketitle \phantomsection \label{section-phantom} \tableofcontents \section{Introduction} \label{section-introduction} \noindent Let $X$ and $Y$ be schemes. This chapter circles around the relationship between functors $\QCoh(\mathcal{O}_Y) \to \QCoh(\mathcal{O}_X)$ and morphisms of schemes $X \to Y$. More broadly speaking we study the relationship between $\QCoh(\mathcal{O}_X)$ and $X$ or, if $X$ is Noetherian, the relationship between $\textit{Coh}(\mathcal{O}_X)$ and $X$. This relationship was studied in \cite{Gabriel}. \section{Functors on module categories} \label{section-preliminary} \noindent For a ring $A$ let us denote $\text{Mod}^{fp}_A$ the category of finitely presented $A$-modules. \begin{lemma} \label{lemma-functor-on-fp-modules} Let $A$ be a ring. Let $\mathcal{B}$ be a category having filtered colimits. Let $F : \text{Mod}^{fp}_A \to \mathcal{B}$ be a functor. Then $F$ extends uniquely to a functor $F' : \text{Mod}_A \to \mathcal{B}$ which commutes with filtered colimits. \end{lemma} \begin{proof} This follows from Categories, Lemma \ref{categories-lemma-extend-functor-by-colim}. To see that the lemma applies observe that finitely presented $A$-modules are categorically compact objects of $\text{Mod}_A$ by Algebra, Lemma \ref{algebra-lemma-characterize-finitely-presented-module-hom}. Also, every $A$-module is a filtered colimit of finitely presented $A$-modules by Algebra, Lemma \ref{algebra-lemma-module-colimit-fp}. \end{proof} \noindent If a category $\mathcal{B}$ is additive and has filtered colimits, then $\mathcal{B}$ has arbitrary direct sums: any direct sum can be written as a filtered colimit of finite direct sums. \begin{lemma} \label{lemma-functor-on-fp-modules-additive} Let $A$, $\mathcal{B}$, $F$ be as in Lemma \ref{lemma-functor-on-fp-modules}. Assume $\mathcal{B}$ is additive and $F$ is additive. Then $F'$ is additive and commutes with arbitrary direct sums. \end{lemma} \begin{proof} To show that $F'$ is additive it suffices to show that $F'(M) \oplus F'(M') \to F'(M \oplus M')$ is an isomorphism for any $A$-modules $M$, $M'$, see Homology, Lemma \ref{homology-lemma-additive-functor}. Write $M = \colim_i M_i$ and $M' = \colim_j M'_j$ as filtered colimits of finitely presented $A$-modules $M_i$. Then $F'(M) = \colim_i F(M_i)$, $F'(M') = \colim_j F(M'_j)$, and \begin{align*} F'(M \oplus M') & = F'(\colim_{i, j} M_i \oplus M'_j) \\ & = \colim_{i, j} F(M_i \oplus M'_j) \\ & = \colim_{i, j} F(M_i) \oplus F(M'_j) \\ & = F'(M) \oplus F'(M') \end{align*} as desired. To show that $F'$ commutes with direct sums, assume we have $M = \bigoplus_{i \in I} M_i$. Then $M = \colim_{I' \subset I\text{ finite}} \bigoplus_{i \in I'} M_i$ is a filtered colimit. We obtain \begin{align*} F'(M) & = \colim_{I' \subset I\text{ finite}} F'(\bigoplus\nolimits_{i \in I'} M_i) \\ & = \colim_{I' \subset I\text{ finite}} \bigoplus\nolimits_{i \in I'} F'(M_i) \\ & = \bigoplus\nolimits_{i \in I} F'(M_i) \end{align*} The second equality holds by the additivity of $F'$ already shown. \end{proof} \noindent If a category $\mathcal{B}$ is additive, has filtered colimits, and has cokernels, then $\mathcal{B}$ has arbitrary colimits, see discussion above and Categories, Lemma \ref{categories-lemma-colimits-coproducts-coequalizers}. \begin{lemma} \label{lemma-functor-on-fp-modules-right-exact} Let $A$, $\mathcal{B}$, $F$ be as in Lemma \ref{lemma-functor-on-fp-modules}. Assume $\mathcal{B}$ is additive, has cokernels, and $F$ is right exact. Then $F'$ is additive, right exact, and commutes with arbitrary direct sums. \end{lemma} \begin{proof} Since $F$ is right exact, $F$ commutes with coproducts of pairs, which are represented by direct sums. Hence $F$ is additive by Homology, Lemma \ref{homology-lemma-additive-functor}. Hence $F'$ is additive and commutes with direct sums by Lemma \ref{lemma-functor-on-fp-modules-additive}. We urge the reader to prove that $F'$ is right exact themselves instead of reading the proof below. \medskip\noindent To show that $F'$ is right exact, it suffices to show that $F'$ commutes with coequalizers, see Categories, Lemma \ref{categories-lemma-characterize-right-exact}. Now, if $a, b : K \to L$ are maps of $A$-modules, then the coequalizer of $a$ and $b$ is the cokernel of $a - b : K \to L$. Thus let $K \to L \to M \to 0$ be an exact sequence of $A$-modules. We have to show that in $$ F'(K) \to F'(L) \to F'(M) \to 0 $$ the second arrow is a cokernel for the first arrow in $\mathcal{B}$ (if $\mathcal{B}$ were abelian we would say that the displayed sequence is exact). Write $M = \colim_{i \in I} M_i$ as a filtered colimit of finitely presented $A$-modules, see Algebra, Lemma \ref{algebra-lemma-module-colimit-fp}. Let $L_i = L \times_M M_i$. We obtain a system of exact sequences $K \to L_i \to M_i \to 0$ over $I$. Since colimits commute with colimits by Categories, Lemma \ref{categories-lemma-colimits-commute} and since cokernels are a type of coequalizer, it suffices to show that $F'(L_i) \to F(M_i)$ is a cokernel of $F'(K) \to F'(L_i)$ in $\mathcal{B}$ for all $i \in I$. In other words, we may assume $M$ is finitely presented. Write $L = \colim_{i \in I} L_i$ as a filtered colimit of finitely presented $A$-modules with the property that each $L_i$ surjects onto $M$. Let $K_i = K \times_L L_i$. We obtain a system of short exact sequences $K_i \to L_i \to M \to 0$ over $I$. Repeating the argument already given, we reduce to showing $F(L_i) \to F(M_i)$ is a cokernel of $F'(K) \to F(L_i)$ in $\mathcal{B}$ for all $i \in I$. In other words, we may assume both $L$ and $M$ are finitely presented $A$-modules. In this case the module $\Ker(L \to M)$ is finite (Algebra, Lemma \ref{algebra-lemma-extension}). Thus we can write $K = \colim_{i \in I} K_i$ as a filtered colimit of finitely presented $A$-modules each surjecting onto $\Ker(L \to M)$. We obtain a system of short exact sequences $K_i \to L \to M \to 0$ over $I$. Repeating the argument already given, we reduce to showing $F(L) \to F(M)$ is a cokernel of $F(K_i) \to F(L)$ in $\mathcal{B}$ for all $i \in I$. In other words, we may assume $K$, $L$, and $M$ are finitely presented $A$-modules. This final case follows from the assumption that $F$ is right exact. \end{proof} \noindent If a category $\mathcal{B}$ is additive and has kernels, then $\mathcal{B}$ has finite limits. Namely, finite products are direct sums which exist and the equalizer of $a, b : L \to M$ is the kernel of $a - b : K \to L$ which exists. Thus all finite limits exist by Categories, Lemma \ref{categories-lemma-finite-limits-exist}. \begin{lemma} \label{lemma-functor-on-fp-modules-left-exact} Let $A$, $\mathcal{B}$, $F$ be as in Lemma \ref{lemma-functor-on-fp-modules}. Assume $A$ is a coherent ring (Algebra, Definition \ref{algebra-definition-coherent}), $\mathcal{B}$ is additive, has kernels, filtered colimits commute with taking kernels, and $F$ is left exact. Then $F'$ is additive, left exact, and commutes with arbitrary direct sums. \end{lemma} \begin{proof} Since $A$ is coherent, the category $\text{Mod}^{fp}_A$ is abelian with same kernels and cokernels as in $\text{Mod}_A$, see Algebra, Lemmas \ref{algebra-lemma-coherent-ring} and \ref{algebra-lemma-coherent}. Hence all finite limits exist in $\text{Mod}^{fp}_A$ and Categories, Definition \ref{categories-definition-exact} applies. Since $F$ is left exact, $F$ commutes with products of pairs, which are represented by direct sums. Hence $F$ is additive by Homology, Lemma \ref{homology-lemma-additive-functor}. Hence $F'$ is additive and commutes with direct sums by Lemma \ref{lemma-functor-on-fp-modules-additive}. We urge the reader to prove that $F'$ is left exact themselves instead of reading the proof below. \medskip\noindent To show that $F'$ is left exact, it suffices to show that $F'$ commutes with equalizers, see Categories, Lemma \ref{categories-lemma-characterize-left-exact}. Now, if $a, b : L \to M$ are maps of $A$-modules, then the equalizer of $a$ and $b$ is the kernel of $a - b : L \to M$. Thus let $0 \to K \to L \to M$ be an exact sequence of $A$-modules. We have to show that in $$ 0 \to F'(K) \to F'(L) \to F'(M) $$ the arrow $F'(K) \to F'(L)$ is a kernel for $F'(L) \to F'(M)$ in $\mathcal{B}$ (if $\mathcal{B}$ were abelian we would say that the displayed sequence is exact). Write $M = \colim_{i \in I} M_i$ as a filtered colimit of finitely presented $A$-modules, see Algebra, Lemma \ref{algebra-lemma-module-colimit-fp}. Let $L_i = L \times_M M_i$. We obtain a system of exact sequences $0 \to K \to L_i \to M_i$ over $I$. Since filtered colimits commute with taking kernels in $\mathcal{B}$ by assumption, it suffices to show that $F'(K) \to F'(L_i)$ is a kernel of $F'(L_i) \to F(M_i)$ in $\mathcal{B}$ for all $i \in I$. In other words, we may assume $M$ is finitely presented. Write $L = \colim_{i \in I} L_i$ as a filtered colimit of finitely presented $A$-modules. Let $K_i = K \times_L L_i$. We obtain a system of short exact sequences $0 \to K_i \to L_i \to M$ over $I$. Repeating the argument already given, we reduce to showing $F'(K_i) \to F(L_i)$ is a kernel of $F(L_i) \to F(M)$ in $\mathcal{B}$ for all $i \in I$. In other words, we may assume both $L$ and $M$ are finitely presented $A$-modules. Since $A$ is coherent, the $A$-module $K = \Ker(L \to M)$ is of finite presentation as the category of finitely presented $A$-modules is abelian (see references given above). In other words, all three modules $K$, $L$, and $M$ are finitely presented $A$-modules. This final case follows from the assumption that $F$ is left exact. \end{proof} \noindent If a category $\mathcal{B}$ is additive and has cokernels, then $\mathcal{B}$ has finite colimits. Namely, finite coproducts are direct sums which exist and the coequalizer of $a, b : K \to L$ is the cokernel of $a - b : K \to L$ which exists. Thus all finite colimits exist by Categories, Lemma \ref{categories-lemma-colimits-exist}. \begin{lemma} \label{lemma-functor-on-modules-fp} Let $A$ be a ring. Let $\mathcal{B}$ be an additive category with cokernels. There is an equivalence of categories between \begin{enumerate} \item the category of functors $F : \text{Mod}^{fp}_A \to \mathcal{B}$ which are right exact, and \item the category of pairs $(K, \kappa)$ where $K \in \Ob(\mathcal{B})$ and $\kappa : A \to \text{End}_\mathcal{B}(K)$ is a ring homomorphism \end{enumerate} given by the rule sending $F$ to $F(A)$ with its natural $A$-action. \end{lemma} \begin{proof} Let $(K, \kappa)$ be as in (2). We will construct a functor $F : \text{Mod}^{fp}_A \to \mathcal{B}$ such that $F(A) = K$ endowed with the given $A$-action $\kappa$. Namely, given an integer $n \geq 0$ let us set $$ F(A^{\oplus n}) = K^{\oplus n} $$ Given an $A$-linear map $\varphi : A^{\oplus m} \to A^{\oplus n}$ with matrix $(a_{ij}) \in \text{Mat}(n \times m, A)$ we define $$ F(\varphi) : F(A^{\oplus m}) = K^{\oplus m} \longrightarrow K^{\oplus n} = F(A^{\oplus n}) $$ to be the map with matrix $(\kappa(a_{ij}))$. This defines an additive functor $F$ from the full subcategory of $\text{Mod}^{fp}_A$ with objects $0$, $A$, $A^{\oplus 2}$, $\ldots$ to $\mathcal{B}$; we omit the verification. \medskip\noindent For each object $M$ of $\text{Mod}^{fp}_A$ choose a presentation $$ A^{\oplus m_M} \xrightarrow{\varphi_M} A^{\oplus n_M} \to M \to 0 $$ of $M$ as an $A$-module. Let us use the trivial presentation $0 \to A^{\oplus n} \xrightarrow{1} A^{\oplus n} \to 0$ if $M = A^{\oplus n}$ (this isn't necessary but simplifies the exposition). For each morphism $f : M \to N$ of $\text{Mod}^{fp}_A$ we can choose a commutative diagram \begin{equation} \label{equation-map} \vcenter{ \xymatrix{ A^{\oplus m_M} \ar[r]_{\varphi_M} \ar[d]_{\psi_f} & A^{\oplus n_M} \ar[r] \ar[d]_{\chi_f} & M \ar[r] \ar[d]_f & 0 \\ A^{\oplus m_N} \ar[r]^{\varphi_N} & A^{\oplus n_N} \ar[r] & N \ar[r] & 0 } } \end{equation} Having made these choices we can define: for an object $M$ of $\text{Mod}^{fp}_A$ we set $$ F(M) = \Coker(F(\varphi_M) : F(A^{\oplus m_M}) \to F(A^{\oplus n_M})) $$ and for a morphism $f : M \to N$ of $\text{Mod}^{fp}_A$ we set $$ F(f) = \text{the map }F(M) \to F(N)\text{ induced by } F(\psi_f)\text{ and }F(\chi_f)\text{ on cokernels} $$ Note that this rule extends the given functor $F$ on the full subcategory consisting of the free modules $A^{\oplus n}$. We still have to show that $F$ is a functor, that $F$ is additive, and that $F$ is right exact. \medskip\noindent Let $f : M \to N$ be a morphism $\text{Mod}^{fp}_A$. We claim that the map $F(f)$ defined above is independent of the choices of $\psi_f$ and $\chi_f$ in (\ref{equation-map}). Namely, say $$ \xymatrix{ A^{\oplus m_M} \ar[r]_{\varphi_M} \ar[d]_\psi & A^{\oplus n_M} \ar[r] \ar[d]_\chi & M \ar[r] \ar[d]_f & 0 \\ A^{\oplus m_N} \ar[r]^{\varphi_N} & A^{\oplus n_N} \ar[r] & N \ar[r] & 0 } $$ is also commutative. Denote $F(f)' : F(M) \to F(N)$ the map induced by $F(\psi)$ and $F(\chi)$. Looking at the commutative diagrams, by elementary commutative algebra there exists a map $\omega : A^{\oplus n_M} \to A^{\oplus m_N}$ such that $\chi = \chi_f + \varphi_N \circ \omega$. Applying $F$ we find that $F(\chi) = F(\chi_f) + F(\varphi_N) \circ F(\omega)$. As $F(N)$ is the cokernel of $F(\varphi_N)$ we find that the map $F(A^{\oplus n_M}) \to F(M)$ equalizes $F(f)$ and $F(f)'$. Since a cokernel is an epimorphism, we conclude that $F(f) = F(f)'$. \medskip\noindent Let us prove $F$ is a functor. First, observe that $F(\text{id}_M) = \text{id}_{F(M)}$ because we may pick the identities for $\psi_f$ and $\chi_f$ in the diagram above in case $f = \text{id}_M$. Second, suppose we have $f : M \to N$ and $g : L \to M$. Then we see that $\psi = \psi_f \circ \psi_g$ and $\chi = \chi_f \circ \chi_g$ fit into (\ref{equation-map}) for $f \circ g$. Hence these induce the correct map which exactly says that $F(f) \circ F(g) = F(f \circ g)$. \medskip\noindent Let us prove that $F$ is additive. Namely, suppose we have $f, g : M \to N$. Then we see that $\psi = \psi_f + \psi_g$ and $\chi = \chi_f + \chi_g$ fit into (\ref{equation-map}) for $f + g$. Hence these induce the correct map which exactly says that $F(f) + F(g) = F(f + g)$. \medskip\noindent Finally, let us prove that $F$ is right exact. It suffices to show that $F$ commutes with coequalizers, see Categories, Lemma \ref{categories-lemma-characterize-right-exact}. For this, it suffices to prove that $F$ commutes with cokernels. Let $K \to L \to M \to 0$ be an exact sequence of $A$-modules with $K$, $L$, $M$ finitely presented. Since $F$ is an additive functor, this certainly gives a complex $$ F(K) \to F(L) \to F(M) \to 0 $$ and we have to show that the second arrow is the cokernel of the first in $\mathcal{B}$. In any case, we obtain a map $\Coker(F(K) \to F(L)) \to F(M)$. By elementary commutative algebra there exists a commutative diagram $$ \xymatrix{ A^{\oplus m_M} \ar[r]_{\varphi_M} \ar[d]_\psi & A^{\oplus n_M} \ar[r] \ar[d]_\chi & M \ar[r] \ar[d]_1 & 0 \\ K \ar[r] & L \ar[r] & M \ar[r] & 0 } $$ Applying $F$ to this diagram and using the construction of $F(M)$ as the cokernel of $F(\varphi_M)$ we find there exists a map $F(M) \to \Coker(F(K) \to F(L))$ which is a right inverse to the map $\Coker(F(K) \to F(L)) \to F(M)$. This first implies that $F(L) \to F(M)$ is an epimorphism always. Next, the above shows we have $$ \Coker(F(K) \to F(L)) = F(M) \oplus E $$ where the direct sum decomposition is compatible with both $F(M) \to \Coker(F(K) \to F(L))$ and $\Coker(F(K) \to F(L)) \to F(M)$. However, then the epimorphism $p : F(L) \to E$ becomes zero both after composition with $F(K) \to F(L)$ and after composition with $F(A^{n_M}) \to F(L)$. However, since $K \oplus A^{n_M} \to L$ is surjective (algebra argument omitted), we conclude that $F(K \oplus A^{n_M}) \to F(L)$ is an epimorphism (by the above) whence $E = 0$. This finishes the proof. \end{proof} \begin{lemma} \label{lemma-functor-on-modules} Let $A$ be a ring. Let $\mathcal{B}$ be an additive category with arbitrary direct sums and cokernels. There is an equivalence of categories between \begin{enumerate} \item the category of functors $F : \text{Mod}_A \to \mathcal{B}$ which are right exact and commute with arbitrary direct sums, and \item the category of pairs $(K, \kappa)$ where $K \in \Ob(\mathcal{B})$ and $\kappa : A \to \text{End}_\mathcal{B}(K)$ is a ring homomorphism \end{enumerate} given by the rule sending $F$ to $F(A)$ with its natural $A$-action. \end{lemma} \begin{proof} Combine Lemmas \ref{lemma-functor-on-modules-fp} and \ref{lemma-functor-on-fp-modules-right-exact}. \end{proof} \section{Functors between categories of modules} \label{section-functors} \noindent The following lemma is archetypical of the results in this chapter. \begin{lemma} \label{lemma-functor} Let $A$ and $B$ be rings. Let $F : \text{Mod}_A \to \text{Mod}_B$ be a functor. The following are equivalent \begin{enumerate} \item $F$ is isomorphic to the functor $M \mapsto M \otimes_A K$ for some $A \otimes_\mathbf{Z} B$-module $K$, \item $F$ is right exact and commutes with all direct sums, \item $F$ commutes with all colimits, \item $F$ has a right adjoint $G$. \end{enumerate} \end{lemma} \begin{proof} If (1), then (4) as a right adjoint for $M \mapsto M \otimes_A K$ is $N \mapsto \Hom_B(K, N)$, see Differential Graded Algebra, Lemma \ref{dga-lemma-tensor-hom-adjunction}. If (4), then (3) by Categories, Lemma \ref{categories-lemma-adjoint-exact}. The implication (3) $\Rightarrow$ (2) is immediate from the definitions. \medskip\noindent Assume (2). We will prove (1). By the discussion in Homology, Section \ref{homology-section-functors} the functor $F$ is additive. Hence $F$ induces a ring map $A \to \text{End}_B(F(M))$, $a \mapsto F(a \cdot \text{id}_M)$ for every $A$-module $M$. We conclude that $F(M)$ is an $A \otimes_\mathbf{Z} B$-module functorially in $M$. Set $K = F(A)$. Define $$ M \otimes_A K = M \otimes_A F(A) \longrightarrow F(M), \quad m \otimes k \longmapsto F(\varphi_m)(k) $$ Here $\varphi_m : A \to M$ sends $a \to am$. The rule $(m, k) \mapsto F(\varphi_m)(k)$ is $A$-bilinear (and $B$-linear on the right) as required to obtain the displayed $A \otimes_\mathbf{Z} B$-linear map. This construction is functorial in $M$, hence defines a transformation of functors $- \otimes_A K \to F(-)$ which is an isomorphism when evaluated on $A$. For every $A$-module $M$ we can choose an exact sequence $$ \bigoplus\nolimits_{j \in J} A \to \bigoplus\nolimits_{i \in I} A \to M \to 0 $$ Using the maps constructed above we find a commutative diagram $$ \xymatrix{ (\bigoplus\nolimits_{j \in J} A) \otimes_A K \ar[r] \ar[d] & (\bigoplus\nolimits_{i \in I} A) \otimes_A K \ar[r] \ar[d] & M \otimes_A K \ar[r] \ar[d] & 0 \\ F(\bigoplus\nolimits_{j \in J} A) \ar[r] & F(\bigoplus\nolimits_{i \in I} A) \ar[r] & F(M) \ar[r] & 0 } $$ The lower row is exact as $F$ is right exact. The upper row is exact as tensor product with $K$ is right exact. Since $F$ commutes with direct sums the left two vertical arrows are bijections. Hence we conclude. \end{proof} \begin{example} \label{example-functor-modules} Let $R$ be a ring. Let $A$ and $B$ be $R$-algebras. Let $K$ be a $A \otimes_R B$-module. Then we can consider the functor \begin{equation} \label{equation-FM-modules} F : \text{Mod}_A \longrightarrow \text{Mod}_B,\quad M \longmapsto M \otimes_A K \end{equation} This functor is $R$-linear, right exact, commutes with arbitrary direct sums, commutes with all colimits, has a right adjoint (Lemma \ref{lemma-functor}). \end{example} \begin{lemma} \label{lemma-functor-modules} Let $R$ be a ring. Let $A$ and $B$ be $R$-algebras. There is an equivalence of categories between \begin{enumerate} \item the category of $R$-linear functors $F : \text{Mod}_A \to \text{Mod}_B$ which are right exact and commute with arbitrary direct sums, and \item the category $\text{Mod}_{A \otimes_R B}$. \end{enumerate} given by sending $K$ to the functor $F$ in (\ref{equation-FM-modules}). \end{lemma} \begin{proof} Let $F$ be an object of the first category. By Lemma \ref{lemma-functor} we may assume $F(M) = M \otimes_A K$ functorially in $M$ for some $A \otimes_\mathbf{Z} B$-module $K$. The $R$-linearity of $F$ immediately implies that the $A \otimes_\mathbf{Z} B$-module structure on $K$ comes from a (unique) $A \otimes_R B$-module structure on $K$. Thus we see that sending $K$ to $F$ as in (\ref{equation-FM-modules}) is essentially surjective. \medskip\noindent To prove that our functor is fully faithful, we have to show that given $A \otimes_R B$-modules $K$ and $K'$ any transformation $t : F \to F'$ between the corresponding functors, comes from a unique $\varphi : K \to K'$. Since $K = F(A)$ and $K' = F'(A)$ we can take $\varphi$ to be the value $t_A : F(A) \to F'(A)$ of $t$ at $A$. This maps is $A \otimes_R B$-linear by the definition of the $A \otimes B$-module structure on $F(A)$ and $F'(A)$ given in the proof of Lemma \ref{lemma-functor}. \end{proof} \begin{remark} \label{remark-composition} Let $R$ be a ring. Let $A$, $B$, $C$ be $R$-algebras. Let $F : \text{Mod}_A \to \text{Mod}_B$ and $F' : \text{Mod}_B \to \text{Mod}_C$ be $R$-linear, right exact functors which commute with arbitrary direct sums. If by the equivalence of Lemma \ref{lemma-functor-modules} the object $K$ in $\text{Mod}_{A \otimes_R B}$ corresponds to $F$ and the object $K'$ in $\text{Mod}_{B \otimes_R C}$ corresponds to $F'$, then $K \otimes_B K'$ viewed as an object of $\text{Mod}_{A \otimes_R C}$ corresponds to $F' \circ F$. \end{remark} \begin{remark} \label{remark-exact-flat} In the situation of Lemma \ref{lemma-functor-modules} suppose that $F$ corresponds to $K$. Then $F$ is exact $\Leftrightarrow$ $K$ is flat over $A$. \end{remark} \begin{remark} \label{remark-finite} In the situation of Lemma \ref{lemma-functor-modules} suppose that $F$ corresponds to $K$. Then $F$ sends finite $A$-modules to finite $B$-modules $\Leftrightarrow$ $K$ is finite as a $B$-module. \end{remark} \begin{remark} \label{remark-finite-presentation} In the situation of Lemma \ref{lemma-functor-modules} suppose that $F$ corresponds to $K$. Then $F$ sends finitely presented $A$-modules to finitely presented $B$-modules $\Leftrightarrow$ $K$ is finitely presented as a $B$-module. \end{remark} \begin{lemma} \label{lemma-functor-equivalence} Let $A$ and $B$ be rings. If $$ F : \text{Mod}_A \longrightarrow \text{Mod}_B $$ is an equivalence of categories, then there exists an isomorphism $A \to B$ of rings and an invertible $B$-module $L$ such that $F$ is isomorphic to the functor $M \mapsto (M \otimes_A B) \otimes_B L$. \end{lemma} \begin{proof} Since an equivalence commutes with all colimits, we see that Lemmas \ref{lemma-functor} applies. Let $K$ be the $A \otimes_\mathbf{Z} B$-module such that $F$ is isomorphic to the functor $M \mapsto M \otimes_A K$. Let $K'$ be the $B \otimes_\mathbf{Z} A$-module such that a quasi-inverse of $F$ is isomorphic to the functor $N \mapsto N \otimes_B K'$. By Remark \ref{remark-composition} and Lemma \ref{lemma-functor-modules} we have an isomorphism $$ \psi : K \otimes_B K' \longrightarrow A $$ of $A \otimes_\mathbf{Z} A$-modules. Similarly, we have an isomorphism $$ \psi' : K' \otimes_A K \longrightarrow B $$ of $B \otimes_\mathbf{Z} B$-modules. Choose an element $\xi = \sum_{i = 1, \ldots, n} x_i \otimes y_i \in K \otimes_B K'$ such that $\psi(\xi) = 1$. Consider the isomorphisms $$ K \xrightarrow{\psi^{-1} \otimes \text{id}_K} K \otimes_B K' \otimes_A K \xrightarrow{\text{id}_K \otimes \psi'} K $$ The composition is an isomorphism and given by $$ k \longmapsto \sum x_i \psi'(y_i \otimes k) $$ We conclude this automorphism factors as $$ K \to B^{\oplus n} \to K $$ as a map of $B$-modules. It follows that $K$ is finite projective as a $B$-module. \medskip\noindent We claim that $K$ is invertible as a $B$-module. This is equivalent to asking the rank of $K$ as a $B$-module to have the constant value $1$, see More on Algebra, Lemma \ref{more-algebra-lemma-invertible} and Algebra, Lemma \ref{algebra-lemma-finite-projective}. If not, then there exists a maximal ideal $\mathfrak m \subset B$ such that either (a) $K \otimes_B B/\mathfrak m = 0$ or (b) there is a surjection $K \to (B/\mathfrak m)^{\oplus 2}$ of $B$-modules. Case (a) is absurd as $K' \otimes_A K \otimes_B N = N$ for all $B$-modules $N$. Case (b) would imply we get a surjection $$ A = K \otimes_B K' \longrightarrow (B/\mathfrak m \otimes_B K')^{\oplus 2} $$ of (right) $A$-modules. This is impossible as the target is an $A$-module which needs at least two generators: $B/\mathfrak m \otimes_B K'$ is nonzero as the image of the nonzero module $B/\mathfrak m$ under the quasi-inverse of $F$. \medskip\noindent Since $K$ is invertible as a $B$-module we see that $\Hom_B(K, K) = B$. Since $K = F(A)$ the action of $A$ on $K$ defines a ring isomorphism $A \to B$. The lemma follows. \end{proof} \begin{lemma} \label{lemma-functor-equivalence-linear} Let $R$ be a ring. Let $A$ and $B$ be $R$-algebras. If $$ F : \text{Mod}_A \longrightarrow \text{Mod}_B $$ is an $R$-linear equivalence of categories, then there exists an isomorphism $A \to B$ of $R$-algebras and an invertible $B$-module $L$ such that $F$ is isomorphic to the functor $M \mapsto (M \otimes_A B) \otimes_B L$. \end{lemma} \begin{proof} We get $A \to B$ and $L$ from Lemma \ref{lemma-functor-equivalence}. To finish the proof, we need to show that the $R$-linearity of $F$ forces $A \to B$ to be an $R$-algebra map. We omit the details. \end{proof} \begin{remark} \label{remark-monoidal} Let $A$ and $B$ be rings. Let us endow $\text{Mod}_A$ and $\text{Mod}_B$ with the usual monoidal structure given by tensor products of modules. Let $F : \text{Mod}_A \to \text{Mod}_B$ be a functor of monoidal categories, see Categories, Definition \ref{categories-definition-functor-monoidal-categories}. Here are some comments: \begin{enumerate} \item Since $F(A)$ is a unit (by our definitions) we have $F(A) = B$. \item We obtain a multiplicative map $\varphi : A \to B$ by sending $a \in A$ to its action on $F(A) = B$. \item Take $A = B$ and $F(M) = M \otimes_A M$. In this case $\varphi(a) = a^2$. \item If $F$ is additive, then $\varphi$ is a ring map. \item Take $A = B = \mathbf{Z}$ and $F(M) = M/\text{torsion}$. Then $\varphi = \text{id}_\mathbf{Z}$ but $F$ is not the identity functor. \item If $F$ is right exact and commutes with direct sums, then $F(M) = M \otimes_{A, \varphi} B$ by Lemma \ref{lemma-functor}. \end{enumerate} In other words, ring maps $A \to B$ are in bijection with isomorphism classes of functors of monoidal categories $\text{Mod}_A \to \text{Mod}_B$ which commute with all colimits. \end{remark} \section{Extending functors on categories of modules} \label{section-functors-extend} \noindent For a ring $A$ let us denote $\text{Mod}^{fp}_A$ the category of finitely presented $A$-modules. \begin{lemma} \label{lemma-functor-fp-modules} Let $A$ and $B$ be rings. Let $F : \text{Mod}^{fp}_A \to \text{Mod}^{fp}_B$ be a functor. Then $F$ extends uniquely to a functor $F' : \text{Mod}_A \to \text{Mod}_B$ which commutes with filtered colimits. \end{lemma} \begin{proof} Special case of Lemma \ref{lemma-functor-on-fp-modules}. \end{proof} \begin{remark} \label{remark-monoidal-extension} With $A$, $B$, $F$, and $F'$ as in Lemma \ref{lemma-functor-fp-modules}. Observe that the tensor product of two finitely presented modules is finitely presented, see Algebra, Lemma \ref{algebra-lemma-tensor-finiteness}. Thus we may endow $\text{Mod}^{fp}_A$, $\text{Mod}^{fp}_B$, $\text{Mod}_A$, and $\text{Mod}_B$ with the usual monoidal structure given by tensor products of modules. In this case, if $F$ is a functor of monoidal categories, so is $F'$. This follows immediately from the fact that tensor products of modules commutes with filtered colimits. \end{remark} \begin{lemma} \label{lemma-functor-fp-modules-exact} With $A$, $B$, $F$, and $F'$ as in Lemma \ref{lemma-functor-fp-modules}. \begin{enumerate} \item If $F$ is additive, then $F'$ is additive and commutes with arbitrary direct sums, and \item if $F$ is right exact, then $F'$ is right exact. \end{enumerate} \end{lemma} \begin{proof} Follows from Lemmas \ref{lemma-functor-on-fp-modules-additive} and \ref{lemma-functor-on-fp-modules-right-exact}. \end{proof} \begin{remark} \label{remark-monoidal-extension-exact} Combining Remarks \ref{remark-monoidal} and \ref{remark-monoidal-extension} and Lemma \ref{lemma-functor-fp-modules-exact} we find the following. Given rings $A$ and $B$ the set of ring maps $A \to B$ is in bijection with the set of isomorphism classes of functors of monoidal categories $\text{Mod}^{fp}_A \to \text{Mod}^{fp}_B$ which are right exact. \end{remark} \begin{lemma} \label{lemma-functor-fp-modules-left-exact} With $A$, $B$, $F$, and $F'$ as in Lemma \ref{lemma-functor-fp-modules}. Assume $A$ is a coherent ring (Algebra, Definition \ref{algebra-definition-coherent}). If $F$ is left exact, then $F'$ is left exact. \end{lemma} \begin{proof} Special case of Lemma \ref{lemma-functor-on-fp-modules-left-exact}. \end{proof} \noindent For a ring $A$ let us denote $\text{Mod}^{fg}_A$ the category of finitely generated $A$-modules (AKA finite $A$-modules). \begin{lemma} \label{lemma-functor-finite-modules} Let $A$ and $B$ be Noetherian rings. Let $F : \text{Mod}^{fg}_A \to \text{Mod}^{fg}_B$ be a functor. Then $F$ extends uniquely to a functor $F' : \text{Mod}_A \to \text{Mod}_B$ which commutes with filtered colimits. If $F$ is additive, then $F'$ is additive and commutes with arbitrary direct sums. If $F$ is exact, left exact, or right exact, so is $F'$. \end{lemma} \begin{proof} See Lemmas \ref{lemma-functor-fp-modules-exact} and \ref{lemma-functor-fp-modules-left-exact}. Also, use the finite $A$-modules are finitely presented $A$-modules, see Algebra, Lemma \ref{algebra-lemma-Noetherian-finite-type-is-finite-presentation}, and use that Noetherian rings are coherent, see Algebra, Lemma \ref{algebra-lemma-Noetherian-coherent}. \end{proof} \section{Functors between categories of quasi-coherent modules} \label{section-functor-quasi-coherent} \noindent In this section we briefly study functors between categories of quasi-coherent modules. \begin{example} \label{example-functor-quasi-coherent} Let $R$ be a ring. Let $X$ and $Y$ be schemes over $R$ with $X$ quasi-compact and quasi-separated. Let $\mathcal{K}$ be a quasi-coherent $\mathcal{O}_{X \times_R Y}$-module. Then we can consider the functor \begin{equation} \label{equation-FM-QCoh} F : \QCoh(\mathcal{O}_X) \longrightarrow \QCoh(\mathcal{O}_Y),\quad \mathcal{F} \longmapsto \text{pr}_{2, *}(\text{pr}_1^*\mathcal{F} \otimes_{\mathcal{O}_{X \times_R Y}} \mathcal{K}) \end{equation} The morphism $\text{pr}_2$ is quasi-compact and quasi-separated (Schemes, Lemmas \ref{schemes-lemma-quasi-compact-preserved-base-change} and \ref{schemes-lemma-separated-permanence}). Hence pushforward along this morphism preserves quasi-coherent modules, see Schemes, Lemma \ref{schemes-lemma-push-forward-quasi-coherent}. Moreover, our functor is $R$-linear and commutes with arbitrary direct sums, see Cohomology of Schemes, Lemma \ref{coherent-lemma-colimit-cohomology}. \end{example} \noindent The following lemma is a natural generalization of Lemma \ref{lemma-functor-modules}. \begin{lemma} \label{lemma-functor-quasi-coherent-from-affine} Let $R$ be a ring. Let $X$ and $Y$ be schemes over $R$ with $X$ affine. There is an equivalence of categories between \begin{enumerate} \item the category of $R$-linear functors $F : \QCoh(\mathcal{O}_X) \to \QCoh(\mathcal{O}_Y)$ which are right exact and commute with arbitrary direct sums, and \item the category $\QCoh(\mathcal{O}_{X \times_R Y})$ \end{enumerate} given by sending $\mathcal{K}$ to the functor $F$ in (\ref{equation-FM-QCoh}). \end{lemma} \begin{proof} Let $\mathcal{K}$ be an object of $\QCoh(\mathcal{O}_{X \times_R Y})$ and $F_\mathcal{K}$ the functor (\ref{equation-FM-QCoh}). By the discussion in Example \ref{example-functor-quasi-coherent} we already know that $F$ is $R$-linear and commutes with arbitrary direct sums. Since $\text{pr}_2 : X \times_R Y \to Y$ is affine (Morphisms, Lemma \ref{morphisms-lemma-base-change-affine}) the functor $\text{pr}_{2, *}$ is exact, see Cohomology of Schemes, Lemma \ref{coherent-lemma-relative-affine-vanishing}. Hence $F$ is right exact as well, in other words $F$ is as in (1). \medskip\noindent Let $F$ be as in (1). Say $X = \Spec(A)$. Consider the quasi-coherent $\mathcal{O}_Y$-module $\mathcal{G} = F(\mathcal{O}_X)$. The functor $F$ induces an $R$-linear map $A \to \text{End}_{\mathcal{O}_Y}(\mathcal{G})$, $a \mapsto F(a \cdot \text{id})$. Thus $\mathcal{G}$ is a sheaf of modules over $$ A \otimes_R \mathcal{O}_Y = \text{pr}_{2, *}\mathcal{O}_{X \times_R Y} $$ By Morphisms, Lemma \ref{morphisms-lemma-affine-equivalence-modules} we find that there is a unique quasi-coherent module $\mathcal{K}$ on $X \times_R Y$ such that $F(\mathcal{O}_X) = \mathcal{G} = \text{pr}_{2, *}\mathcal{K}$ compatible with action of $A$ and $\mathcal{O}_Y$. Denote $F_\mathcal{K}$ the functor given by (\ref{equation-FM-QCoh}). There is an equivalence $\text{Mod}_A \to \QCoh(\mathcal{O}_X)$ sending $A$ to $\mathcal{O}_X$, see Schemes, Lemma \ref{schemes-lemma-equivalence-quasi-coherent}. Hence we find an isomorphism $F \cong F_\mathcal{K}$ by Lemma \ref{lemma-functor-on-modules} because we have an isomorphism $F(\mathcal{O}_X) \cong F_\mathcal{K}(\mathcal{O}_X)$ compatible with $A$-action by construction. \medskip\noindent This shows that the functor sending $\mathcal{K}$ to $F_\mathcal{K}$ is essentially surjective. We omit the verification of fully faithfulness. \end{proof} \begin{remark} \label{remark-affine-morphism} Below we will use that for an affine morphism $h : T \to S$ we have $h_*\mathcal{G} \otimes_{\mathcal{O}_S} \mathcal{H} = h_*(\mathcal{G} \otimes_{\mathcal{O}_T} h^*\mathcal{H})$ for $\mathcal{G} \in \QCoh(\mathcal{O}_T)$ and $\mathcal{H} \in \QCoh(\mathcal{O}_S)$. This follows immediately on translating into algebra. \end{remark} \begin{lemma} \label{lemma-functor-quasi-coherent-from-affine-compose} In Lemma \ref{lemma-functor-quasi-coherent-from-affine} let $F$ correspond to $\mathcal{K}$ in $\QCoh(\mathcal{O}_{X \times_R Y})$. We have \begin{enumerate} \item If $f : X' \to X$ is an affine morphism, then $F \circ f_*$ corresponds to $(f \times \text{id}_Y)^*\mathcal{K}$. \item If $g : Y' \to Y$ is a flat morphism, then $g^* \circ F$ corresponds to $(\text{id}_X \times g)^*\mathcal{K}$. \item If $j : V \to Y$ is an open immersion, then $j^* \circ F$ corresponds to $\mathcal{K}|_{X \times_R V}$. \end{enumerate} \end{lemma} \begin{proof} Proof of (1). Consider the commutative diagram $$ \xymatrix{ X' \times_R Y \ar[rrd]^{\text{pr}'_2} \ar[rd]_{f \times \text{id}_Y} \ar[dd]_{\text{pr}'_1} \\ & X \times_R Y \ar[r]_{\text{pr}_2} \ar[d]_{\text{pr}_1} & Y \\ X' \ar[r]^f & X } $$ Let $\mathcal{F}'$ be a quasi-coherent module on $X'$. We have \begin{align*} \text{pr}_{2, *}(\text{pr}_1^*f_*\mathcal{F}' \otimes_{\mathcal{O}_{X \times_R Y}} \mathcal{K}) & = \text{pr}_{2, *}((f \times \text{id}_Y)_* (\text{pr}'_1)^*\mathcal{F}' \otimes_{\mathcal{O}_{X \times_R Y}} \mathcal{K}) \\ & = \text{pr}_{2, *}(f \times \text{id}_Y)_* \left((\text{pr}'_1)^*\mathcal{F}' \otimes_{\mathcal{O}_{X' \times_R Y}} (f \times \text{id}_Y)^*\mathcal{K})\right) \\ & = \text{pr}'_{2, *}((\text{pr}'_1)^*\mathcal{F}' \otimes_{\mathcal{O}_{X' \times_R Y}} (f \times \text{id}_Y)^*\mathcal{K}) \end{align*} Here the first equality is affine base change for the left hand square in the diagram, see Cohomology of Schemes, Lemma \ref{coherent-lemma-affine-base-change}. The second equality hold by Remark \ref{remark-affine-morphism}. The third equality is functoriality of pushforwards for modules. This proves (1). \medskip\noindent Proof of (2). Consider the commutative diagram $$ \xymatrix{ X \times_R Y' \ar[rr]_-{\text{pr}'_2} \ar[rd]^{\text{id}_X \times g} \ar[rdd]_{\text{pr}'_1} & & Y' \ar[d]^g \\ & X \times_R Y \ar[r]_-{\text{pr}_2} \ar[d]^{\text{pr}_1} & Y \\ & X } $$ We have \begin{align*} g^*\text{pr}_{2, *}(\text{pr}_1^*\mathcal{F} \otimes_{\mathcal{O}_{X \times_R Y}} \mathcal{K}) & = \text{pr}'_{2, *}( (\text{id}_X \times g)^*( \text{pr}_1^*\mathcal{F} \otimes_{\mathcal{O}_{X \times_R Y}} \mathcal{K})) \\ & = \text{pr}'_{2, *}((\text{pr}'_1)^*\mathcal{F} \otimes_{\mathcal{O}_{X \times_R Y'}} (\text{id}_X \times g)^*\mathcal{K}) \end{align*} The first equality by flat base change for the square in the diagram, see Cohomology of Schemes, Lemma \ref{coherent-lemma-flat-base-change-cohomology}. The second equality by functoriality of pullback and the fact that a pullback of tensor products it the tensor product of the pullbacks. \medskip\noindent Part (3) is a special case of (2). \end{proof} \begin{lemma} \label{lemma-functor-quasi-coherent-from-affine-diagonal-pre} Let $R$ be a ring. Let $X$ and $Y$ be schemes over $R$. Assume $X$ is quasi-compact with affine diagonal. Let $F : \QCoh(\mathcal{O}_X) \to \QCoh(\mathcal{O}_Y)$ be an $R$-linear, right exact functor which commutes with arbitrary direct sums. Then we can construct \begin{enumerate} \item a quasi-coherent module $\mathcal{K}$ on $X \times_R Y$, and \item a natural transformation $t : F \to F_\mathcal{K}$ where $F_\mathcal{K}$ denotes the functor (\ref{equation-FM-QCoh}) \end{enumerate} such that $t : F \circ f_* \to F_\mathcal{K} \circ f_*$ is an isomorphism for every morphism $f : X' \to X$ whose source is an affine scheme. \end{lemma} \begin{proof} Consider a morphism $f' : X' \to X$ with $X'$ affine. Since the diagonal of $X$ is affine, we see that $f'$ is an affine morphism (Morphisms, Lemma \ref{morphisms-lemma-affine-permanence}). Thus $f'_* : \QCoh(\mathcal{O}_{X'}) \to \QCoh(\mathcal{O}_X)$ is an $R$-linear exact functor (Cohomology of Schemes, Lemma \ref{coherent-lemma-relative-affine-vanishing}) which commutes with direct sums (Cohomology of Schemes, Lemma \ref{coherent-lemma-colimit-cohomology}). Thus $F \circ f'_*$ is an $R$-linear, right exact functor which commutes with arbitrary direct sums. Whence $F \circ f'_* = F_{\mathcal{K}'}$ for some $\mathcal{K}'$ on $X' \times_R Y$ by Lemma \ref{lemma-functor-quasi-coherent-from-affine}. Moreover, given a morphism $f'' : X'' \to X'$ with $X''$ affine we obtain a canonical identification $(f'' \times \text{id}_Y)^*\mathcal{K}' = \mathcal{K}''$ by the references already given combined with Lemma \ref{lemma-functor-quasi-coherent-from-affine-compose}. These identifications satisfy a cocycle condition given another morphism $f''' : X''' \to X''$ which we leave it to the reader to spell out. \medskip\noindent Choose an affine open covering $X = \bigcup_{i = 1, \ldots, n} U_i$. Since the diagonal of $X$ is affine, we see that the intersections $U_{i_0 \ldots i_p} = U_{i_0} \cap \ldots \cap U_{i_p}$ are affine. As above the inclusion morphisms $j_{i_0 \ldots i_p} : U_{i_0 \ldots i_p} \to X$ are affine. Denote $\mathcal{K}_{i_0 \ldots i_p}$ the quasi-coherent module on $U_{i_0 \ldots i_p} \times_R Y$ corresponding to $F \circ j_{i_0 \ldots i_p *}$ as above. By the above we obtain identifications $$ \mathcal{K}_{i_0 \ldots i_p} = \mathcal{K}_{i_0 \ldots \hat i_j \ldots i_p}|_{U_{i_0 \ldots i_p} \times_R Y} $$ which satisfy the usual compatibilites for glueing. In other words, we obtain a unique quasi-coherent module $\mathcal{K}$ on $X \times_R Y$ whose restriction to $U_{i_0 \ldots i_p} \times_R Y$ is $\mathcal{K}_{i_0 \ldots i_p}$ compatible with the displayed identifications. \medskip\noindent Next, we construct the transformation $t$. Given a quasi-coherent $\mathcal{O}_X$-module $\mathcal{F}$ denote $\mathcal{F}_{i_0 \ldots i_p}$ the restriction of $\mathcal{F}$ to $U_{i_0 \ldots i_p}$ and denote $(\text{pr}_1^*\mathcal{F} \otimes \mathcal{K})_{i_0 \ldots i_p}$ the restriction of $\text{pr}_1^*\mathcal{F} \otimes \mathcal{K}$ to $U_{i_0 \ldots i_p} \times_R Y$. Observe that \begin{align*} F(j_{i_0 \ldots i_p *}\mathcal{F}_{i_0 \ldots i_p}) & = \text{pr}_{i_0 \ldots i_p, 2, *}( \text{pr}_{i_0 \ldots i_p, 1}^*\mathcal{F}_{i_0 \ldots i_p} \otimes \mathcal{K}_{i_0 \ldots i_p}) \\ & = \text{pr}_{i_0 \ldots i_p, 2, *} (\text{pr}_1^*\mathcal{F} \otimes \mathcal{K})_{i_0 \ldots i_p} \end{align*} where $\text{pr}_{i_0 \ldots i_p, 2} : U_{i_0 \ldots i_p} \times_R Y \to Y$ is the projection and similarly for the other projection. Moreover, these identifications are compatible with the displayed identifications in the previous paragraph. Recall, from Cohomology of Schemes, Lemma \ref{coherent-lemma-separated-case-relative-cech} that the relative {\v C}ech complex $$ \bigoplus \text{pr}_{i_0, 2, *} (\text{pr}_1^*\mathcal{F} \otimes \mathcal{K})_{i_0} \to \bigoplus \text{pr}_{i_0i_1, 2, *} (\text{pr}_1^*\mathcal{F} \otimes \mathcal{K})_{i_0i_1} \to \bigoplus \text{pr}_{i_0i_1i_2, 2, *} (\text{pr}_1^*\mathcal{F} \otimes \mathcal{K})_{i_0i_1i_2} \to \ldots $$ computes $R\text{pr}_{2, *}(\text{pr}_1^*\mathcal{F} \otimes \mathcal{K})$. Hence the cohomology sheaf in degree $0$ is $F_\mathcal{K}(\mathcal{F})$. Thus we obtain the desired map $t : F(\mathcal{F}) \to F_\mathcal{K}(\mathcal{F})$ by contemplating the following commutative diagram $$ \xymatrix{ & F(\mathcal{F}) \ar[r] \ar@{..>}[d] & \bigoplus F(j_{i_0*}\mathcal{F}_{i_0}) \ar[r] \ar[d] & \bigoplus F(j_{i_0i_1*}\mathcal{F}_{i_0i_1}) \ar[d] \\ 0 \ar[r] & F_\mathcal{K}(\mathcal{F}) \ar[r] & \bigoplus \text{pr}_{i_0, 2, *} (\text{pr}_1^*\mathcal{F} \otimes \mathcal{K})_{i_0} \ar[r] & \bigoplus \text{pr}_{i_0i_1, 2, *} (\text{pr}_1^*\mathcal{F} \otimes \mathcal{K})_{i_0i_1} } $$ We obtain the top row by applying $F$ to the (exact) complex $0 \to \mathcal{F} \to \bigoplus j_{i_0*}\mathcal{F}_{i_0} \to \bigoplus j_{i_0i_1*}\mathcal{F}_{i_0i_1}$ (but since $F$ is not exact, the top row is just a complex and not necessarily exact). The solid vertical arrows are the identifications above. This does indeed define the dotted arrow as desired. The arrow is functorial in $\mathcal{F}$; we omit the details. \medskip\noindent We still have to prove the final assertion. Let $f : X' \to X$ be as in the statement of the lemma and let $\mathcal{K}'$ be the quasi-coherent module on $X' \times_R Y$ constructed in the first paragraph of the proof. If the morphism $f : X' \to X$ maps into one of the opens $U_i$, then the result follows from Lemma \ref{lemma-functor-quasi-coherent-from-affine-compose} because in this case we know that $\mathcal{K}_i = \mathcal{K}|_{U_i \times_R Y}$ pulls back to $\mathcal{K}$. In general, we obtain an affine open covering $X' = \bigcup U'_i$ with $U'_i = f^{-1}(U_i)$ and we obtain isomorphisms $\mathcal{K}'|_{U'_i} = f_i^*\mathcal{K}_i$ where $f_i : U'_i \to U_i$ is the induced morphism. These morphisms satisfy the compatibility conditions needed to glue to an isomorphism $\mathcal{K}' = f^*\mathcal{K}$ and we conclude. Some details omitted. \end{proof} \begin{lemma} \label{lemma-coh-noetherian-from-affine-flat} In Lemma \ref{lemma-functor-quasi-coherent-from-affine} or in Lemma \ref{lemma-functor-quasi-coherent-from-affine-diagonal-pre} if $F$ is an exact functor, then the corresponding object $\mathcal{K}$ of $\QCoh(\mathcal{O}_{X \times_R Y})$ is flat over $X$. \end{lemma} \begin{proof} We may assume $X$ is affine, so we are in the case of Lemma \ref{lemma-functor-quasi-coherent-from-affine}. By Lemma \ref{lemma-functor-quasi-coherent-from-affine-compose} we may assume $Y$ is affine. In the affine case the statement translates into Remark \ref{remark-exact-flat}. \end{proof} \begin{lemma} \label{lemma-functor-quasi-coherent-from-affine-diagonal} Let $R$ be a ring. Let $X$ and $Y$ be schemes over $R$. Assume $X$ is quasi-compact with affine diagonal. There is an equivalence of categories between \begin{enumerate} \item the category of $R$-linear exact functors $F : \QCoh(\mathcal{O}_X) \to \QCoh(\mathcal{O}_Y)$ which commute with arbitrary direct sums, and \item the full subcategory of $\QCoh(\mathcal{O}_{X \times_R Y})$ consisting of $\mathcal{K}$ such that \begin{enumerate} \item $\mathcal{K}$ is flat over $X$, \item for $\mathcal{F} \in \QCoh(\mathcal{O}_X)$ we have $R^q\text{pr}_{2, *}(\text{pr}_1^*\mathcal{F} \otimes_{\mathcal{O}_{X \times_R Y}} \mathcal{K}) = 0$ for $q > 0$. \end{enumerate} \end{enumerate} given by sending $\mathcal{K}$ to the functor $F$ in (\ref{equation-FM-QCoh}). \end{lemma} \begin{proof} Let $\mathcal{K}$ be as in (2). The functor $F$ in (\ref{equation-FM-QCoh}) commutes with direct sums. Since by (1) (a) the modules $\mathcal{K}$ is $X$-flat, we see that given a short exact sequence $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ we obtain a short exact sequence $$ 0 \to \text{pr}_1^*\mathcal{F}_1 \otimes_{\mathcal{O}_{X \times_R Y}} \mathcal{K} \to \text{pr}_1^*\mathcal{F}_2 \otimes_{\mathcal{O}_{X \times_R Y}} \mathcal{K} \to \text{pr}_1^*\mathcal{F}_3 \otimes_{\mathcal{O}_{X \times_R Y}} \mathcal{K} \to 0 $$ Since by (2)(b) the higher direct image $R^1\text{pr}_{2, *}$ on the first term is zero, we conclude that $0 \to F(\mathcal{F}_1) \to F(\mathcal{F}_2) \to F(\mathcal{F}_3) \to 0$ is exact and we see that $F$ is as in (1). \medskip\noindent Let $F$ be as in (1). Let $\mathcal{K}$ and $t : F \to F_\mathcal{K}$ be as in Lemma \ref{lemma-functor-quasi-coherent-from-affine-diagonal-pre}. By Lemma \ref{lemma-coh-noetherian-from-affine-flat} we see that $\mathcal{K}$ is flat over $X$. To finish the proof we have to show that $t$ is an isomorphism and the statement on higher direct images. Both of these follow from the fact that the relative {\v C}ech complex $$ \bigoplus \text{pr}_{i_0, 2, *} (\text{pr}_1^*\mathcal{F} \otimes \mathcal{K})_{i_0} \to \bigoplus \text{pr}_{i_0i_1, 2, *} (\text{pr}_1^*\mathcal{F} \otimes \mathcal{K})_{i_0i_1} \to \bigoplus \text{pr}_{i_0i_1i_2, 2, *} (\text{pr}_1^*\mathcal{F} \otimes \mathcal{K})_{i_0i_1i_2} \to \ldots $$ computes $R\text{pr}_{2, *}(\text{pr}_1^*\mathcal{F} \otimes \mathcal{K})$. Please see proof of Lemma \ref{lemma-functor-quasi-coherent-from-affine-diagonal-pre} for notation and for the reason why this is so. In the proof of Lemma \ref{lemma-functor-quasi-coherent-from-affine-diagonal-pre} we also found that this complex is equal to $F$ applied to the complex $$ \bigoplus j_{i_0*}\mathcal{F}_{i_0} \to \bigoplus j_{i_0i_1*}\mathcal{F}_{i_0i_1} \to \bigoplus j_{i_0i_1i_2*}\mathcal{F}_{i_0i_1i_2} \to \ldots $$ This complex is exact except in degree zero with cohomology sheaf equal to $\mathcal{F}$. Hence since $F$ is an exact functor we conclude $F = F_\mathcal{K}$ and that (2)(b) holds. \medskip\noindent We omit the proof that the construction that sends $F$ to $\mathcal{K}$ is functorial and a quasi-inverse to the functor sending $\mathcal{K}$ to the functor $F_\mathcal{K}$ determined by (\ref{equation-FM-QCoh}). \end{proof} \begin{remark} \label{remark-characterize-FM-QCoh} Let $R$ be a ring. Let $X$ and $Y$ be schemes over $R$. Assume $X$ is quasi-compact with affine diagonal. Lemma \ref{lemma-functor-quasi-coherent-from-affine-diagonal} may be generalized as follows: the functors (\ref{equation-FM-QCoh}) associated to quasi-coherent modules on $X \times_R Y$ are exactly those $F : \QCoh(\mathcal{O}_X) \to \QCoh(\mathcal{O}_Y)$ which have the following properties \begin{enumerate} \item $F$ is $R$-linear and commutes with arbitrary direct sums, \item $F \circ j_*$ is right exact when $j : U \to X$ is the inclusion of an affine open, and \item $0 \to F(\mathcal{F}) \to F(\mathcal{G}) \to F(\mathcal{H})$ is exact whenever $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$ is an exact sequence such that for all $x \in X$ the sequence on stalks $0 \to \mathcal{F}_x \to \mathcal{G}_x \to \mathcal{H}_x \to 0$ is a split short exact sequence. \end{enumerate} Namely, these assumptions are enough to get construct a transformation $t : F \to F_\mathcal{K}$ as in Lemma \ref{lemma-functor-quasi-coherent-from-affine-diagonal-pre} and to show that it is an isomorphism. Moreover, properties (1), (2), and (3) do hold for functors (\ref{equation-FM-QCoh}). If we ever need this we will carefully state and prove this here. \end{remark} \begin{lemma} \label{lemma-compose-FM-QCoh} Let $R$ be a ring. Let $X$, $Y$, $Z$ be schemes over $R$. Assume $X$ and $Y$ are quasi-compact and have affine diagonal. Let $$ F : \QCoh(\mathcal{O}_X) \to \QCoh(\mathcal{O}_Y) \quad\text{and}\quad G : \QCoh(\mathcal{O}_Y) \to \QCoh(\mathcal{O}_Z) $$ be $R$-linear exact functors which commute with arbitrary direct sums. Let $\mathcal{K}$ in $\QCoh(\mathcal{O}_{X \times_R Y})$ and $\mathcal{L}$ in $\QCoh(\mathcal{O}_{Y \times_R Z})$ be the corresponding ``kernels'', see Lemma \ref{lemma-functor-quasi-coherent-from-affine-diagonal}. Then $G \circ F$ corresponds to $\text{pr}_{13, *}(\text{pr}_{12}^*\mathcal{K} \otimes_{\mathcal{O}_{X \times_R Y \times_R Z}} \text{pr}_{23}^*\mathcal{L})$ in $\QCoh(\mathcal{O}_{X \times_R Z})$. \end{lemma} \begin{proof} Since $G \circ F : \QCoh(\mathcal{O}_X) \to \QCoh(\mathcal{O}_Z)$ is $R$-linear, exact, and commutes with arbitrary direct sums, we find by Lemma \ref{lemma-functor-quasi-coherent-from-affine-diagonal} that there exists an $\mathcal{M}$ in $\QCoh(\mathcal{O}_{X \times_R Z})$ corresponding to $G \circ F$. On the other hand, denote $\mathcal{E} = \text{pr}_{13, *}(\text{pr}_{12}^*\mathcal{K} \otimes \text{pr}_{23}^*\mathcal{L})$. Here and in the rest of the proof we omit the subscript from the tensor products. Let $U \subset X$ and $W \subset Z$ be affine open subschemes. To prove the lemma, we will construct an isomorphism $$ \Gamma(U \times_R W, \mathcal{E}) \cong \Gamma(U \times_R W, \mathcal{M}) $$ compatible with restriction mappings for varying $U$ and $W$. \medskip\noindent First, we observe that $$ \Gamma(U \times_R W, \mathcal{E}) = \Gamma(U \times_R Y \times_R W, \text{pr}_{12}^*\mathcal{K} \otimes \text{pr}_{23}^*\mathcal{L}) $$ by construction. Thus we have to show that the same thing is true for $\mathcal{M}$. \medskip\noindent Write $U = \Spec(A)$ and denote $j : U \to X$ the inclusion morphism. Recall from the construction of $\mathcal{M}$ in the proof of Lemma \ref{lemma-functor-quasi-coherent-from-affine} that $$ \Gamma(U \times_R W, \mathcal{M}) = \Gamma(W, G(F(j_*\mathcal{O}_U))) $$ where the $A$-module action on the right hand side is given by the action of $A$ on $\mathcal{O}_U$. The correspondence between $F$ and $\mathcal{K}$ tells us that $F(j_*\mathcal{O}_U) = b_*(a^*j_*\mathcal{O}_U \otimes \mathcal{K})$ where $a : X \times_R Y \to X$ and $b : X \times_R Y \to Y$ are the projection morphisms. Since $j$ is an affine morphism, we have $a^*j_*\mathcal{O}_U = (j \times \text{id}_Y)_*\mathcal{O}_{U \times_R Y}$ by Cohomology of Schemes, Lemma \ref{coherent-lemma-affine-base-change}. Next, we have $(j \times \text{id}_Y)_*\mathcal{O}_{U \times_R Y} \otimes \mathcal{K} = (j \times \text{id}_Y)_*\mathcal{K}|_{U \times_R Y}$ by Remark \ref{remark-affine-morphism} for example. Putting what we have found together we find $$ F(j_*\mathcal{O}_U) = (U \times_R Y \to Y)_*\mathcal{K}|_{U \times_R Y} $$ with obvious $A$-action. (This formula is implicit in the proof of Lemma \ref{lemma-functor-quasi-coherent-from-affine}.) Applying the functor $G$ we obtain $$ G(F(j_*\mathcal{O}_U)) = t_*(s^*((U \times_R Y \to Y)_*\mathcal{K}|_{U \times_R Y}) \otimes \mathcal{L}) $$ where $s : Y \times_R Z \to Y$ and $t : Y \times_R Z \to Z$ are the projection morphisms. Again using affine base change (Cohomology of Schemes, Lemma \ref{coherent-lemma-affine-base-change}) but this time for the square $$ \xymatrix{ U \times_R Y \times_R Z \ar[r] \ar[d] & U \times_R Y \ar[d] \\ Y \times_R Z \ar[r] & Y } $$ we obtain $$ s^*((U \times_R Y \to Y)_*\mathcal{K}|_{U \times_R Y}) = (U \times_R Y \times_R Z \to Y \times_R Z)_* \text{pr}_{12}^*\mathcal{K}|_{U \times_R Y \times_R Z} $$ Using Remark \ref{remark-affine-morphism} again we find \begin{align*} (U \times_R Y \times_R Z \to Y \times_R Z)_* \text{pr}_{12}^*\mathcal{K}|_{U \times_R Y \times_R Z} \otimes \mathcal{L} \\ = (U \times_R Y \times_R Z \to Y \times_R Z)_* \left(\text{pr}_{12}^*\mathcal{K} \otimes \text{pr}_{23}^*\mathcal{L}\right)|_{U \times_R Y \times_R Z} \end{align*} Applying the functor $\Gamma(W, t_*(-)) = \Gamma(Y \times_R W, -)$ to this we obtain \begin{align*} \Gamma(U \times_R W, \mathcal{M}) & = \Gamma(W, G(F(j_*\mathcal{O}_U))) \\ & = \Gamma(Y \times_R W, (U \times_R Y \times_R Z \to Y \times_R Z)_* (\text{pr}_{12}^*\mathcal{K} \otimes \text{pr}_{23}^*\mathcal{L})|_{U \times_R Y \times_R Z}) \\ & = \Gamma(U \times_R Y \times_R W, \text{pr}_{12}^*\mathcal{K} \otimes \text{pr}_{23}^*\mathcal{L}) \end{align*} as desired. We omit the verication that these isomorphisms are compatible with restriction mappings. \end{proof} \begin{lemma} \label{lemma-persistence-exactness} Let $R$, $X$, $Y$, and $\mathcal{K}$ be as in Lemma \ref{lemma-functor-quasi-coherent-from-affine-diagonal} part (2). Then for any scheme $T$ over $R$ we have $$ R^q\text{pr}_{13, *}(\text{pr}_{12}^*\mathcal{F} \otimes_{\mathcal{O}_{T \times_R X \times_R Y}} \text{pr}_{23}^*\mathcal{K}) = 0 $$ for $\mathcal{F}$ quasi-coherent on $T \times_R X$ and $q > 0$. \end{lemma} \begin{proof} The question is local on $T$ hence we may assume $T$ is affine. In this case we can consider the diagram $$ \xymatrix{ T \times_R X \ar[d] & T \times_R X \times_R Y \ar[d] \ar[l] \ar[r] & T \times_R Y \ar[d] \\ X & X \times_R Y \ar[l] \ar[r] & Y } $$ whose vertical arrows are affine. In particular the pushforward along $T \times_R Y \to Y$ is faithful and exact (Cohomology of Schemes, Lemma \ref{coherent-lemma-relative-affine-vanishing} and Morphisms, Lemma \ref{morphisms-lemma-affine-equivalence-modules}). Chasing around in the diagram using that higher direct images along affine morphisms vanish (see reference above) we see that it suffices to prove $$ R^q\text{pr}_{2, *}( \text{pr}_{23, *}(\text{pr}_{12}^*\mathcal{F} \otimes_{\mathcal{O}_{T \times_R X \times_R Y}} \text{pr}_{23}^*\mathcal{K})) = R^q\text{pr}_{2, *}( \text{pr}_{23, *}(\text{pr}_{12}^*\mathcal{F}) \otimes_{\mathcal{O}_{X \times_R Y}} \mathcal{K})) $$ is zero which is true by assumption on $\mathcal{K}$. The equality holds by Remark \ref{remark-affine-morphism}. \end{proof} \begin{lemma} \label{lemma-functor-quasi-coherent-from-separated} In Lemma \ref{lemma-functor-quasi-coherent-from-affine-diagonal} let $F$ and $\mathcal{K}$ correspond. If $X$ is separated and flat over $R$, then there is a surjection $\mathcal{O}_X \boxtimes F(\mathcal{O}_X) \to \mathcal{K}$. \end{lemma} \begin{proof} Let $\Delta : X \to X \times_R X$ be the diagonal morphism and set $\mathcal{O}_\Delta = \Delta_*\mathcal{O}_X$. Since $\Delta$ is a closed immersion have a short exact sequence $$ 0 \to \mathcal{I} \to \mathcal{O}_{X \times_R X} \to \mathcal{O}_\Delta \to 0 $$ Since $\mathcal{K}$ is flat over $X$, the pullback $\text{pr}_{23}^*\mathcal{K}$ to $X \times_R X \times_R Y$ is flat over $X \times_R X$. We obtain a short exact sequence $$ 0 \to \text{pr}_{12}^*\mathcal{I} \otimes \text{pr}_{23}^*\mathcal{K} \to \text{pr}_{23}^*\mathcal{K} \to \text{pr}_{12}^*\mathcal{O}_\Delta \otimes \text{pr}_{23}^*\mathcal{K} \to 0 $$ on $X \times_R X \times_R Y$, see Modules, Lemma \ref{modules-lemma-pullback-tensor-flat-module}. Thus, by Lemma \ref{lemma-persistence-exactness} we obtain a surjection $$ \text{pr}_{13, *}(\text{pr}_{23}^*\mathcal{K}) \to \text{pr}_{13, *}( \text{pr}_{12}^*\mathcal{O}_\Delta \otimes \text{pr}_{23}^*\mathcal{K}) $$ By flat base change (Cohomology of Schemes, Lemma \ref{coherent-lemma-flat-base-change-cohomology}) the source of this arrow is equal to $\text{pr}_2^*\text{pr}_{2, *}\mathcal{K} = \mathcal{O}_X \boxtimes F(\mathcal{O}_X)$. On the other hand the target is equal to $$ \text{pr}_{13, *}( \text{pr}_{12}^*\mathcal{O}_\Delta \otimes \text{pr}_{23}^*\mathcal{K}) = \text{pr}_{13, *} (\Delta \times \text{id}_Y)_* \mathcal{K} = \mathcal{K} $$ which finishes the proof. The first equality holds for example by Cohomology, Lemma \ref{cohomology-lemma-projection-formula-closed-immersion} and the fact that $\text{pr}_{12}^*\mathcal{O}_\Delta = (\Delta \times \text{id}_Y)_*\mathcal{O}_{X \times_R Y}$. \end{proof} \section{Gabriel-Rosenberg reconstruction} \label{section-gabriel} \noindent The title of this section refers to results like Proposition \ref{proposition-gabriel-rosenberg}. Besides Gabriel's original paper \cite{Gabriel}, please consult \cite{Brandenburg} which has a proof of the result for quasi-separated schemes and discusses the literature. In this section we will only prove Gabriel-Rosenberg reconstruction for quasi-compact and quasi-separated schemes. \begin{lemma} \label{lemma-categorically-compact-QCoh} Let $X$ be a quasi-compact and quasi-separated scheme. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Then $\mathcal{F}$ is a categorically compact object of $\QCoh(\mathcal{O}_X)$ if and only if $\mathcal{F}$ is of finite presentation. \end{lemma} \begin{proof} See Categories, Definition \ref{categories-definition-compact-object} for our notion of categorically compact objects in a category. If $\mathcal{F}$ is of finite presentation then it is categorically compact by Modules, Lemma \ref{modules-lemma-finite-presentation-quasi-compact-colimit}. Conversely, any quasi-coherent module $\mathcal{F}$ can be written as a filtered colimit $\mathcal{F} = \colim \mathcal{F}_i$ of finitely presented (hence quasi-coherent) $\mathcal{O}_X$-modules, see Properties, Lemma \ref{properties-lemma-directed-colimit-finite-presentation}. If $\mathcal{F}$ is categorically compact, then we find some $i$ and a morphism $\mathcal{F} \to \mathcal{F}_i$ which is a right inverse to the given map $\mathcal{F}_i \to \mathcal{F}$. We conclude that $\mathcal{F}$ is a direct summand of a finitely presented module, and hence finitely presented itself. \end{proof} \begin{lemma} \label{lemma-supported-on-support-pre} Let $X$ be an affine scheme. Let $\mathcal{F}$ be a finitely presented $\mathcal{O}_X$-module. Let $\mathcal{E}$ be a nonzero quasi-coherent $\mathcal{O}_X$-module. If $\text{Supp}(\mathcal{E}) \subset \text{Supp}(\mathcal{F})$, then there exists a nonzero map $\mathcal{F} \to \mathcal{E}$. \end{lemma} \begin{proof} Let us translate the statement into algebra. Let $A$ be a ring. Let $M$ be a finitely presented $A$-module. Let $N$ be a nonzero $A$-module. Assume $\text{Supp}(N) \subset \text{Supp}(M)$. To show: $\Hom_A(M, N)$ is nonzero. We may assume $N = A/I$ is cyclic (replace $N$ by any nonzero cyclic submodule). Choose a presentation $$ A^{\oplus m} \xrightarrow{T} A^{\oplus n} \to M \to 0 $$ Recall that $\text{Supp}(M)$ is cut out by $\text{Fit}_0(M)$ which is the ideal generated by the $n \times n$ minors of the matrix $T$. See More on Algebra, Lemma \ref{more-algebra-lemma-fitting-ideal-basics}. The assumption $\text{Supp}(N) \subset \text{Supp}(M)$ now means that the elements of $\text{Fit}_0(M)$ are nilpotent in $A/I$. Consider the exact sequence $$ 0 \to \Hom_A(M, A/I) \to (A/I)^{\oplus n} \xrightarrow{T^t} (A/I)^{\oplus m} $$ We have to show that $T^t$ cannot be injective; we urge the reader to find their own proof of this using the nilpotency of elements of $\text{Fit}_0(M)$ in $A/I$. Here is our proof. Since $\text{Fit}_0(M)$ is finitely generated, the nilpotency means that the annihilator $J \subset A/I$ of $\text{Fit}_0(M)$ in $A/I$ is nonzero. To show the non-injectivity of $T^t$ we may localize at a prime. Choosing a suitable prime we may assume $A$ is local and $J$ is still nonzero. Then $T^t$ has a nonzero kernel by More on Algebra, Lemma \ref{more-algebra-lemma-exact-length-1}. \end{proof} \begin{lemma} \label{lemma-supported-on-support} Let $X$ be a quasi-compact and quasi-separated scheme. Let $\mathcal{F}$ be a finitely presented $\mathcal{O}_X$-module. The following two subcategories of $\QCoh(\mathcal{O}_X)$ are equal \begin{enumerate} \item the full subcategory $\mathcal{A} \subset \QCoh(\mathcal{O}_X)$ whose objects are the quasi-coherent modules whose support is (set theoretically) contained in $\text{Supp}(\mathcal{F})$, \item the smallest Serre subcategory $\mathcal{B} \subset \QCoh(\mathcal{O}_X)$ containing $\mathcal{F}$ closed under extensions and arbitrary direct sums. \end{enumerate} \end{lemma} \begin{proof} Observe that the statement makes sense as finitely presented $\mathcal{O}_X$-modules are quasi-coherent. Since $\mathcal{A}$ is a Serre subcategory closed under extensions and direct sums and since $\mathcal{F}$ is an object of $\mathcal{A}$ we see that $\mathcal{B} \subset \mathcal{A}$. Thus it remains to show that $\mathcal{A}$ is contained in $\mathcal{B}$. \medskip\noindent Let $\mathcal{E}$ be an object of $\mathcal{A}$. There exists a maximal submodule $\mathcal{E}' \subset \mathcal{E}$ which is in $\mathcal{B}$. Namely, suppose $\mathcal{E}_i \subset \mathcal{E}$, $i \in I$ is the set of subobjects which are objects of $\mathcal{B}$. Then $\bigoplus \mathcal{E}_i$ is in $\mathcal{B}$ and so is $$ \mathcal{E}' = \Im(\bigoplus \mathcal{E}_i \longrightarrow \mathcal{E}) $$ This is clearly the maximal submodule we were looking for. \medskip\noindent Now suppose that we have a nonzero map $\mathcal{G} \to \mathcal{E}/\mathcal{E}'$ with $\mathcal{G}$ in $\mathcal{B}$. Then $\mathcal{G}' = \mathcal{E} \times_{\mathcal{E}/\mathcal{E}'} \mathcal{G}$ is in $\mathcal{B}$ as an extension of $\mathcal{E}'$ and $\mathcal{G}$. Then the image $\mathcal{G}' \to \mathcal{E}$ would be strictly bigger than $\mathcal{E}'$, contradicting the maximality of $\mathcal{E}'$. Thus it suffices to show the claim in the following paragraph. \medskip\noindent Let $\mathcal{E}$ be an nonzero object of $\mathcal{A}$. We claim that there is a nonzero map $\mathcal{G} \to \mathcal{E}$ with $\mathcal{G}$ in $\mathcal{B}$. We will prove this by induction on the minimal number $n$ of affine opens $U_i$ of $X$ such that $\text{Supp}(\mathcal{E}) \subset U_1 \cup \ldots \cup U_n$. Set $U = U_n$ and denote $j : U \to X$ the inclusion morphism. Denote $\mathcal{E}' = \Im(\mathcal{E} \to j_*\mathcal{E}|_U)$. Then the kernel $\mathcal{E}''$ of the surjection $\mathcal{E} \to \mathcal{E}'$ has support contained in $U_1 \cup \ldots \cup U_{n - 1}$. Thus if $\mathcal{E}''$ is nonzero, then we win. In other words, we may assume that $\mathcal{E} \subset j_*\mathcal{E}|_U$. In particular, we see that $\mathcal{E}|_U$ is nonzero. By Lemma \ref{lemma-supported-on-support-pre} there exists a nonzero map $\mathcal{F}|_U \to \mathcal{E}|_U$. This corresponds to a map $$ \varphi : \mathcal{F} \longrightarrow j_*(\mathcal{E}|_U) $$ whose restriction to $U$ is nonzero. Setting $\mathcal{G} = \varphi^{-1}(\mathcal{E})$ we conclude. \end{proof} \begin{lemma} \label{lemma-quotient-supported-on-closed} Let $X$ be a quasi-compact and quasi-separated scheme. Let $Z \subset X$ be a closed subset such that $U = X \setminus Z$ is quasi-compact. Let $\mathcal{A} \subset \QCoh(\mathcal{O}_X)$ be the full subcategory whose objects are the quasi-coherent modules supported on $Z$. Then the restriction functor $\QCoh(\mathcal{O}_X) \to \QCoh(\mathcal{O}_U)$ induces an equivalence $\QCoh(\mathcal{O}_X)/\mathcal{A} \cong \QCoh(\mathcal{O}_U)$. \end{lemma} \begin{proof} By the universal property of the quotient construction (Homology, Lemma \ref{homology-lemma-serre-subcategory-is-kernel}) we certainly obtain an induced functor $\QCoh(\mathcal{O}_X)/\mathcal{A} \cong \QCoh(\mathcal{O}_U)$. Denote $j : U \to X$ the inclusion morphism. Since $j$ is quasi-compact and quasi-separated we obtain a functor $j_* : \QCoh(\mathcal{O}_U) \to \QCoh(\mathcal{O}_X)$. The reader shows that this defines a quasi-inverse; details omitted. \end{proof} \begin{lemma} \label{lemma-characterize-affine} Let $X$ be a quasi-compact and quasi-separated scheme. If $\QCoh(\mathcal{O}_X)$ is equivalent to the category of modules over a ring, then $X$ is affine. \end{lemma} \begin{proof} Say $F : \text{Mod}_R \to \QCoh(\mathcal{O}_X)$ is an equivalence. Then $\mathcal{F} = F(R)$ has the following properties: \begin{enumerate} \item it is a finitely presented $\mathcal{O}_X$-module (Lemma \ref{lemma-categorically-compact-QCoh}), \item $\Hom_X(\mathcal{F}, -)$ is exact, \item $\Hom_X(\mathcal{F}, \mathcal{F})$ is a commutative ring, \item every object of $\QCoh(\mathcal{O}_X)$ is a quotient of a direct sum of copies of $\mathcal{F}$. \end{enumerate} Let $x \in X$ be a closed point. Consider the surjection $$ \mathcal{O}_X \to i_*\kappa(x) $$ where the target is the pushforward of $\kappa(x)$ by the inclusion morphism $i : x \to X$. We have $$ \Hom_X(\mathcal{F}, i_*\kappa(x)) = \Hom_{\mathcal{O}_{X, x}}(\mathcal{F}_x, \kappa(x)) $$ This first by (4) implies that $\mathcal{F}_x$ is nonzero. From (2) we deduce that every map $\mathcal{F}_x \to \kappa(x)$ lifts to a map $\mathcal{F}_x \to \mathcal{O}_{X, x}$ (as it even lifts to a global map $\mathcal{F} \to \mathcal{O}_X$). Since $\mathcal{F}_x$ is a finite $\mathcal{O}_{X, x}$-module, this implies that $\mathcal{F}_x$ is a (nonzero) finite free $\mathcal{O}_{X, x}$-module. Then since $\mathcal{F}$ is of finite presentation, this implies that $\mathcal{F}$ is finite free of positive rank in an open neighbourhood of $x$ (Modules, Lemma \ref{modules-lemma-finite-presentation-stalk-free}). Since every closed subset of $X$ contains a closed point (Topology, Lemma \ref{topology-lemma-quasi-compact-closed-point}) this implies that $\mathcal{F}$ is finite locally free of positive rank. Similarly, the map $$ \Hom_X(\mathcal{F}, \mathcal{F}) \to \Hom_X(\mathcal{F}, i_*i^*\mathcal{F}) = \Hom_{\kappa(x)}(\mathcal{F}_x/\mathfrak m_x \mathcal{F}_x, \mathcal{F}_x/\mathfrak m_x \mathcal{F}_x) $$ is surjective. By property (3) we conclude that the rank $\mathcal{F}_x$ must be $1$. Hence $\mathcal{F}$ is an invertible $\mathcal{O}_X$-module. But then we conclude that the functor $$ \mathcal{H} \longmapsto \Gamma(X, \mathcal{H}) = \Hom_X(\mathcal{O}_X, \mathcal{H}) = \Hom_X(\mathcal{F}, \mathcal{H} \otimes_{\mathcal{O}_X} \mathcal{F}) $$ on $\QCoh(\mathcal{O}_X)$ is exact too. This implies that the first $\Ext$ group $$ \Ext^1_{\QCoh(\mathcal{O}_X)}(\mathcal{O}_X, \mathcal{H}) = 0 $$ computed in the abelian category $\QCoh(\mathcal{O}_X)$ vanishes for all $\mathcal{H}$ in $\QCoh(\mathcal{O}_X)$. However, since $\QCoh(\mathcal{O}_X) \subset \textit{Mod}(\mathcal{O}_X)$ is closed under extensions (Schemes, Section \ref{schemes-section-quasi-coherent}) we see that $\Ext^1$ between quasi-coherent modules computed in $\QCoh(\mathcal{O}_X)$ is the same as computed in $\textit{Mod}(\mathcal{O}_X)$. Hence we conclude that $$ H^1(X, \mathcal{H}) = \Ext^1_{\textit{Mod}(\mathcal{O}_X)}(\mathcal{O}_X, \mathcal{H}) = 0 $$ for all $\mathcal{H}$ in $\QCoh(\mathcal{O}_X)$. This implies that $X$ is affine for example by Cohomology of Schemes, Lemma \ref{coherent-lemma-quasi-compact-h1-zero-covering}. \end{proof} \begin{proposition} \label{proposition-gabriel-rosenberg} \begin{reference} Special case of \cite[Theorem 1.2]{Brandenburg} \end{reference} Let $X$ and $Y$ be quasi-compact and quasi-separated schemes. If $F : \QCoh(\mathcal{O}_X) \to \QCoh(\mathcal{O}_Y)$ is an equivalence, then there exists an isomorphism $f : Y \to X$ of schemes and an invertible $\mathcal{O}_Y$-module $\mathcal{L}$ such that $F(\mathcal{F}) = f^*\mathcal{F} \otimes \mathcal{L}$. \end{proposition} \begin{proof} Of course $F$ is additive, exact, commutes with all limits, commutes with all colimits, commutes with direct sums, etc. Let $U \subset X$ be an affine open subscheme. Let $\mathcal{I} \subset \mathcal{O}_X$ be a finite type quasi-coherent sheaf of ideals such that $Z = V(\mathcal{I})$ is the complement of $U$ in $X$, see Properties, Lemma \ref{properties-lemma-quasi-coherent-finite-type-ideals}. Then $\mathcal{O}_X/\mathcal{I}$ is a finitely presented $\mathcal{O}_X$-module. Hence $\mathcal{G} = F(\mathcal{O}_X/\mathcal{I})$ is a finitely presented $\mathcal{O}_Y$-module by Lemma \ref{lemma-categorically-compact-QCoh}. Denote $T \subset Y$ the support of $\mathcal{G}$ and set $V = Y \setminus T$. Since $\mathcal{G}$ is of finite presentation, the scheme $V$ is a quasi-compact open of $Y$. By Lemma \ref{lemma-supported-on-support} we see that $F$ induces an equivalence between \begin{enumerate} \item the full subcategory of $\QCoh(\mathcal{O}_X)$ consisting of modules supported on $Z$, and \item the full subcategory of $\QCoh(\mathcal{O}_Y)$ consisting of modules supported on $T$. \end{enumerate} By Lemma \ref{lemma-quotient-supported-on-closed} we obtain a commutative diagram $$ \xymatrix{ \QCoh(\mathcal{O}_X) \ar[r]_F \ar[d] & \QCoh(\mathcal{O}_Y) \ar[d] \\ \QCoh(\mathcal{O}_U) \ar[r]^{F_U} & \QCoh(\mathcal{O}_V) } $$ where the vertical arrows are the restruction functors and the horizontal arrows are equivalences. By Lemma \ref{lemma-characterize-affine} we conclude that $V$ is affine. For the affine case we have Lemma \ref{lemma-functor-equivalence}. Thus we find that there is an isomorphism $f_U : V \to U$ and an invertible $\mathcal{O}_V$-module $\mathcal{L}_U$ such that $F_U$ is the functor $\mathcal{F} \mapsto f_U^*\mathcal{F} \otimes \mathcal{L}_U$. \medskip\noindent The proof can be finished by noticing that the diagrams above satisfy an obvious compatibility with regards to inclusions of affine open subschemes of $X$. Thus the morphisms $f_U$ and the invertible modules $\mathcal{L}_U$ glue. We omit the details. \end{proof} \section{Functors between categories of coherent modules} \label{section-functor-coherent} \noindent The following lemma guarantees that we can use the material on functors between categories of quasi-coherent modules when we are given a functor between categories of coherent modules. \begin{lemma} \label{lemma-functor-coherent} Let $X$ and $Y$ be Noetherian schemes. Let $F : \textit{Coh}(\mathcal{O}_X) \to \textit{Coh}(\mathcal{O}_Y)$ be a functor. Then $F$ extends uniquely to a functor $\QCoh(\mathcal{O}_X) \to \QCoh(\mathcal{O}_Y)$ which commutes with filtered colimits. If $F$ is additive, then its extension commutes with arbitrary direct sums. If $F$ is exact, left exact, or right exact, so is its extension. \end{lemma} \begin{proof} The existence and uniqueness of the extension is a general fact, see Categories, Lemma \ref{categories-lemma-extend-functor-by-colim}. To see that the lemma applies observe that coherent modules are of finite presentation (Modules, Lemma \ref{modules-lemma-coherent-finite-presentation}) and hence categorically compact objects of $\textit{Mod}(\mathcal{O}_X)$ by Modules, Lemma \ref{modules-lemma-finite-presentation-quasi-compact-colimit}. Finally, every quasi-coherent module is a filtered colimit of coherent ones for example by Properties, Lemma \ref{properties-lemma-quasi-coherent-colimit-finite-type}. \medskip\noindent Assume $F$ is additive. If $\mathcal{F} = \bigoplus_{j \in J} \mathcal{H}_j$ with $\mathcal{H}_j$ quasi-coherent, then $\mathcal{F} = \colim_{J' \subset J\text{ finite}} \bigoplus_{j \in J'} \mathcal{H}_j$. Denoting the extension of $F$ also by $F$ we obtain \begin{align*} F(\mathcal{F}) & = \colim_{J' \subset J\text{ finite}} F(\bigoplus\nolimits_{j \in J'} \mathcal{H}_j) \\ & = \colim_{J' \subset J\text{ finite}} \bigoplus\nolimits_{j \in J'} F(\mathcal{H}_j) \\ & = \bigoplus\nolimits_{j \in J} F(\mathcal{H}_j) \end{align*} Thus $F$ commutes with arbitrary direct sums. \medskip\noindent Suppose $0 \to \mathcal{F} \to \mathcal{F}' \to \mathcal{F}'' \to 0$ is a short exact sequence of quasi-coherent $\mathcal{O}_X$-modules. Then we write $\mathcal{F}' = \bigcup \mathcal{F}'_i$ as the union of its coherent submodules, see Properties, Lemma \ref{properties-lemma-quasi-coherent-colimit-finite-type}. Denote $\mathcal{F}''_i \subset \mathcal{F}''$ the image of $\mathcal{F}'_i$ and denote $\mathcal{F}_i = \mathcal{F} \cap \mathcal{F}'_i = \Ker(\mathcal{F}'_i \to \mathcal{F}''_i)$. Then it is clear that $\mathcal{F} = \bigcup \mathcal{F}_i$ and $\mathcal{F}'' = \bigcup \mathcal{F}''_i$ and that we have short exact sequences $$ 0 \to \mathcal{F}_i \to \mathcal{F}_i' \to \mathcal{F}_i'' \to 0 $$ Since the extension commutes with filtered colimits we have $F(\mathcal{F}) = \colim_{i \in I} F(\mathcal{F}_i)$, $F(\mathcal{F}') = \colim_{i \in I} F(\mathcal{F}'_i)$, and $F(\mathcal{F}'') = \colim_{i \in I} F(\mathcal{F}''_i)$. Since filtered colimits are exact (Modules, Lemma \ref{modules-lemma-limits-colimits}) we conclude that exactness properties of $F$ are inherited by its extension. \end{proof} \begin{lemma} \label{lemma-equivalence-coherent} Let $X$ and $Y$ be Noetherian schemes. Let $F : \textit{Coh}(\mathcal{O}_X) \to \textit{Coh}(\mathcal{O}_Y)$ be an equivalence of categories. Then there is an isomorphism $f : Y \to X$ and an invertible $\mathcal{O}_Y$-module $\mathcal{L}$ such that $F(\mathcal{F}) = f^*\mathcal{F} \otimes \mathcal{L}$. \end{lemma} \begin{proof} By Lemma \ref{lemma-functor-coherent} we obtain a unique functor $F' : \QCoh(\mathcal{O}_X) \to \QCoh(\mathcal{O}_Y)$ extending $F$. The same is true for the quasi-inverse of $F$ and by the uniqueness we conclude that $F'$ is an equivalence. By Proposition \ref{proposition-gabriel-rosenberg} we find an isomorphism $f : Y \to X$ and an invertible $\mathcal{O}_Y$-module $\mathcal{L}$ such that $F'(\mathcal{F}) = f^*\mathcal{F} \otimes \mathcal{L}$. Then $f$ and $\mathcal{L}$ work for $F$ as well. \end{proof} \begin{remark} \label{remark-equivalence-coherent-linear} In Lemma \ref{lemma-equivalence-coherent} if $X$ and $Y$ are defined over a common base ring $R$ and $F$ is $R$-linear, then the isomorphism $f$ will be a morphism of schemes over $R$. \end{remark} \begin{lemma} \label{lemma-characterize-finite} Let $f : V \to X$ be a quasi-finite separated morphism of Noetherian schemes. If there exists a coherent $\mathcal{O}_V$-module $\mathcal{K}$ whose support is $V$ such that $f_*\mathcal{K}$ is coherent and $R^qf_*\mathcal{K} = 0$, then $f$ is finite. \end{lemma} \begin{proof} By Zariski's main theorem we can find an open immersion $j : V \to Y$ over $X$ with $\pi : Y \to X$ finite, see More on Morphisms, Lemma \ref{more-morphisms-lemma-quasi-finite-separated-pass-through-finite}. Since $\pi$ is affine the functor $\pi_*$ is exact and faithful on the category of coherent $\mathcal{O}_X$-modules. Hence we see that $j_*\mathcal{K}$ is coherent and that $R^qj_*\mathcal{K}$ is zero for $q > 0$. In other words, we reduce to the case discussed in the next paragraph. \medskip\noindent Assume $f$ is an open immersion. We may replace $X$ by the scheme theoretic closure of $V$. Assume $X \setminus V$ is nonempty to get a contradiction. Choose a generic point $\xi \in X \setminus V$ of an irreducible component of $X \setminus V$. Looking at the situation after base change by $\Spec(\mathcal{O}_{X, \xi}) \to X$ using flat base change and using Local Cohomology, Lemma \ref{local-cohomology-lemma-finiteness-pushforwards-and-H1-local} we reduce to the algebra problem discussed in the next paragraph. \medskip\noindent Let $(A, \mathfrak m)$ be a Noetherian local ring. Let $M$ be a finite $A$-module whose support is $\Spec(A)$. Then $H^i_\mathfrak m(M) \not = 0$ for some $i$. This is true by Dualizing Complexes, Lemma \ref{dualizing-lemma-depth} and the fact that $M$ is not zero hence has finite depth. \end{proof} \noindent The next lemma can be generalized to the case where $k$ is a Noetherian ring and $X$ flat over $k$ (all other assumptions stay the same). \begin{lemma} \label{lemma-functor-coherent-over-field} Let $k$ be a field. Let $X$, $Y$ be finite type schemes over $k$ with $X$ separated. There is an equivalence of categories between \begin{enumerate} \item the category of $k$-linear exact functors $F : \textit{Coh}(\mathcal{O}_X) \to \textit{Coh}(\mathcal{O}_Y)$, and \item the category of coherent $\mathcal{O}_{X \times Y}$-modules $\mathcal{K}$ which are flat over $X$ and have support finite over $Y$ \end{enumerate} given by sending $\mathcal{K}$ to the restriction of the functor (\ref{equation-FM-QCoh}) to $\textit{Coh}(\mathcal{O}_X)$. \end{lemma} \begin{proof} Let $\mathcal{K}$ be as in (2). By Lemma \ref{lemma-functor-quasi-coherent-from-affine-diagonal} the functor $F$ given by (\ref{equation-FM-QCoh}) is exact and $k$-linear. Moreover, $F$ sends $\textit{Coh}(\mathcal{O}_X)$ into $\textit{Coh}(\mathcal{O}_Y)$ for example by Cohomology of Schemes, Lemma \ref{coherent-lemma-support-proper-over-base-pushforward}. \medskip\noindent Let us construct the quasi-inverse to the construction. Let $F$ be as in (1). By Lemma \ref{lemma-functor-coherent} we can extend $F$ to a $k$-linear exact functor on the categories of quasi-coherent modules which commutes with arbitrary direct sums. By Lemma \ref{lemma-functor-quasi-coherent-from-affine-diagonal} the extension corresponds to a unique quasi-coherent module $\mathcal{K}$, flat over $X$, such that $R^q\text{pr}_{2, *}(\text{pr}_1^*\mathcal{F} \otimes_{\mathcal{O}_{X \times Y}} \mathcal{K}) = 0$ for $q > 0$ for all quasi-coherent $\mathcal{O}_X$-modules $\mathcal{F}$. Since $F(\mathcal{O}_X)$ is a coherent $\mathcal{O}_Y$-module, we conclude from Lemma \ref{lemma-functor-quasi-coherent-from-separated} that $\mathcal{K}$ is coherent. \medskip\noindent For a closed point $x \in X$ denote $\mathcal{O}_x$ the skyscraper sheaf at $x$ with value the residue field of $x$. We have $$ F(\mathcal{O}_x) = \text{pr}_{2, *}(\text{pr}_1^*\mathcal{O}_x \otimes \mathcal{K}) = (x \times Y \to Y)_*(\mathcal{K}|_{x \times Y}) $$ Since $x \times Y \to Y$ is finite, we see that the pushforward along this morphism is faithful. Hence if $y \in Y$ is in the image of the support of $\mathcal{K}|_{x \times Y}$, then $y$ is in the support of $F(\mathcal{O}_x)$. \medskip\noindent Let $Z \subset X \times Y$ be the scheme theoretic support $Z$ of $\mathcal{K}$, see Morphisms, Definition \ref{morphisms-definition-scheme-theoretic-support}. We first prove that $Z \to Y$ is quasi-finite, by proving that its fibres over closed points are finite. Namely, if the fibre of $Z \to Y$ over a closed point $y \in Y$ has dimension $> 0$, then we can find infinitely many pairwise distinct closed points $x_1, x_2, \ldots$ in the image of $Z_y \to X$. Since we have a surjection $\mathcal{O}_X \to \bigoplus_{i = 1, \ldots, n} \mathcal{O}_{x_i}$ we obtain a surjection $$ F(\mathcal{O}_X) \to \bigoplus\nolimits_{i = 1, \ldots, n} F(\mathcal{O}_{x_i}) $$ By what we said above, the point $y$ is in the support of each of the coherent modules $F(\mathcal{O}_{x_i})$. Since $F(\mathcal{O}_X)$ is a coherent module, this will lead to a contradiction because the stalk of $F(\mathcal{O}_X)$ at $y$ will be generated by $< n$ elements if $n$ is large enough. Hence $Z \to Y$ is quasi-finite. Since $\text{pr}_{2, *}\mathcal{K}$ is coherent and $R^q\text{pr}_{2, *}\mathcal{K} = 0$ for $q > 0$ we conclude that $Z \to Y$ is finite by Lemma \ref{lemma-characterize-finite}. \end{proof} \begin{lemma} \label{lemma-pushforward-invertible-pre} Let $f : X \to Y$ be a finite type separated morphism of schemes. Let $\mathcal{F}$ be a finite type quasi-coherent module on $X$ with support finite over $Y$ and with $\mathcal{L} = f_*\mathcal{F}$ an invertible $\mathcal{O}_X$-module. Then there exists a section $s : Y \to X$ such that $\mathcal{F} \cong s_*\mathcal{L}$. \end{lemma} \begin{proof} Looking affine locally this translates into the following algebra problem. Let $A \to B$ be a ring map and let $N$ be a $B$-module which is invertible as an $A$-module. Then the annihilator $J$ of $N$ in $B$ has the property that $A \to B/J$ is an isomorphism. We omit the details. \end{proof} \begin{lemma} \label{lemma-pushforward-invertible} Let $f : X \to Y$ be a finite type separated morphism of schemes with a section $s : Y \to X$. Let $\mathcal{F}$ be a finite type quasi-coherent module on $X$, set theoretically supported on $s(Y)$ with $\mathcal{L} = f_*\mathcal{F}$ an invertible $\mathcal{O}_X$-module. If $Y$ is reduced, then $\mathcal{F} \cong s_*\mathcal{L}$. \end{lemma} \begin{proof} By Lemma \ref{lemma-pushforward-invertible-pre} there exists a section $s' : Y \to X$ such that $\mathcal{F} = s'_*\mathcal{L}$. Since $s'(Y)$ and $s(Y)$ have the same underlying closed subset and since both are reduced closed subschemes of $X$, they have to be equal. Hence $s = s'$ and the lemma holds. \end{proof} \begin{lemma} \label{lemma-equivalence-coherent-over-field} \begin{reference} Weak version of the result in \cite{Gabriel} stating that the category of quasi-coherent modules determines the isomorphism class of a scheme. \end{reference} Let $k$ be a field. Let $X$, $Y$ be finite type schemes over $k$ with $X$ separated and $Y$ reduced. If there is a $k$-linear equivalence $F : \textit{Coh}(\mathcal{O}_X) \to \textit{Coh}(\mathcal{O}_Y)$ of categories, then there is an isomorphism $f : Y \to X$ over $k$ and an invertible $\mathcal{O}_Y$-module $\mathcal{L}$ such that $F(\mathcal{F}) = f^*\mathcal{F} \otimes \mathcal{L}$. \end{lemma} \begin{proof}[Proof using Gabriel-Rosenberg reconstruction] This lemma is a weak form of the results discussed in Lemma \ref{lemma-equivalence-coherent} and Remark \ref{remark-equivalence-coherent-linear}. \end{proof} \begin{proof}[Proof not relying on Gabriel-Rosenberg reconstruction] By Lemma \ref{lemma-functor-coherent-over-field} we obtain a coherent $\mathcal{O}_{X \times Y}$-module $\mathcal{K}$ which is flat over $X$ with support finite over $Y$ such that $F$ is given by the restriction of the functor (\ref{equation-FM-QCoh}) to $\textit{Coh}(\mathcal{O}_X)$. If we can show that $F(\mathcal{O}_X)$ is an invertible $\mathcal{O}_Y$-module, then by Lemma \ref{lemma-pushforward-invertible-pre} we see that $\mathcal{K} = s_*\mathcal{L}$ for some section $s : Y \to X \times Y$ of $\text{pr}_2$ and some invertible $\mathcal{O}_Y$-module $\mathcal{L}$. This will show that $F$ has the form indicated with $f = \text{pr}_1 \circ s$. Some details omitted. \medskip\noindent It remains to show that $F(\mathcal{O}_X)$ is invertible. We only sketch the proof and we omit some of the details. For a closed point $x \in X$ we denote $\mathcal{O}_x$ in $\textit{Coh}(\mathcal{O}_X)$ the skyscraper sheaf at $x$ with value $\kappa(x)$. First we observe that the only simple objects of the category $\textit{Coh}(\mathcal{O}_X)$ are these skyscraper sheaves $\mathcal{O}_x$. The same is true for $Y$. Hence for every closed point $y \in Y$ there exists a closed point $x \in X$ such that $\mathcal{O}_y \cong F(\mathcal{O}_x)$. Moreover, looking at endomorphisms we find that $\kappa(x) \cong \kappa(y)$ as finite extensions of $k$. Then $$ \Hom_Y(F(\mathcal{O}_X), \mathcal{O}_y) \cong \Hom_Y(F(\mathcal{O}_X), F(\mathcal{O}_x)) \cong \Hom_X(\mathcal{O}_X, \mathcal{O}_x) \cong \kappa(x) \cong \kappa(y) $$ This implies that the stalk of the coherent $\mathcal{O}_Y$-module $F(\mathcal{O}_X)$ at $y \in Y$ can be generated by $1$ generator (and no less) for each closed point $y \in Y$. It follows immediately that $F(\mathcal{O}_X)$ is locally generated by $1$ element (and no less) and since $Y$ is reduced this indeed tells us it is an invertible module. \end{proof} \input{chapters} \bibliography{my} \bibliographystyle{amsalpha} \end{document}