import json import datasets from datasets.tasks import TextClassification _CITATION = """\ @inproceedings{saravia-etal-2018-carer, title = "{CARER}: Contextualized Affect Representations for Emotion Recognition", author = "Saravia, Elvis and Liu, Hsien-Chi Toby and Huang, Yen-Hao and Wu, Junlin and Chen, Yi-Shin", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", month = oct # "-" # nov, year = "2018", address = "Brussels, Belgium", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/D18-1404", doi = "10.18653/v1/D18-1404", pages = "3687--3697", abstract = "Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.", } """ _DESCRIPTION = """ Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper. """ _HOMEPAGE = "https://huggingface.co/datasets/jeffnyman/emotions" _LICENSE = "cc-by-sa-4.0" _URLS = { "split": { "train": "data/train.jsonl.gz", "validation": "data/validation.jsonl.gz", "test": "data/test.jsonl.gz", }, "unsplit": { "train": "data/data.jsonl.gz", }, } class Emotions(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="split", version=VERSION, description="Dataset split in train, validation and test", ), datasets.BuilderConfig( name="unsplit", version=VERSION, description="Unsplit dataset" ), ] DEFAULT_CONFIG_NAME = "split" def _info(self): class_names = ["sadness", "joy", "love", "anger", "fear", "surprise"] return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "text": datasets.Value("string"), "label": datasets.ClassLabel(names=class_names), } ), supervised_keys=("text", "label"), homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE, task_templates=[ TextClassification(text_column="text", label_column="label") ], ) def _split_generators(self, dl_manager): paths = dl_manager.download_and_extract(_URLS[self.config.name]) if self.config.name == "split": return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": paths["train"]} ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": paths["validation"]}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": paths["test"]} ), ] else: return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": paths["train"]} ) ] def _generate_examples(self, filepath): with open(filepath, encoding="utf-8") as f: for idx, line in enumerate(f): example = json.loads(line) yield idx, example