|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""NINJAL Ainu folklore corpus""" |
|
|
|
import os |
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = "" |
|
_CITATION = "" |
|
_HOMEPAGE_URL = "" |
|
|
|
_BASE_PATH = "data/" |
|
_DATA_URL = _BASE_PATH + "audio/{split}.tar.gz" |
|
_META_URL = _BASE_PATH + "{split}.json" |
|
|
|
|
|
class AinuFolkloreConfig(datasets.BuilderConfig): |
|
def __init__(self, name, **kwargs): |
|
super().__init__(name=name, version=datasets.Version("0.0.0", ""), **kwargs) |
|
|
|
|
|
class AinuFolklore(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [AinuFolkloreConfig("all")] |
|
|
|
def _info(self): |
|
task_templates = None |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"audio": datasets.features.Audio(sampling_rate=16_000), |
|
"transcription": datasets.Value("string"), |
|
"speaker": datasets.Value("string"), |
|
"surface": datasets.Value("string"), |
|
"underlying": datasets.Value("string"), |
|
"gloss": datasets.Value("string"), |
|
"translation": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=("audio", "transcription"), |
|
homepage=_HOMEPAGE_URL, |
|
citation=_CITATION, |
|
task_templates=task_templates, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
splits = ["train", "dev", "test"] |
|
|
|
data_urls = {split: [_DATA_URL.format(split=split)] for split in splits} |
|
meta_urls = {split: [_META_URL.format(split=split)] for split in splits} |
|
|
|
archive_paths = dl_manager.download(data_urls) |
|
local_extracted_archives = ( |
|
dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {} |
|
) |
|
archive_iters = { |
|
split: [dl_manager.iter_archive(path) for path in paths] |
|
for split, paths in archive_paths.items() |
|
} |
|
|
|
meta_paths = dl_manager.download(meta_urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"local_extracted_archives": local_extracted_archives.get( |
|
"train", [None] * len(meta_paths.get("train")) |
|
), |
|
"archive_iters": archive_iters.get("train"), |
|
"text_paths": meta_paths.get("train"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"local_extracted_archives": local_extracted_archives.get( |
|
"dev", [None] * len(meta_paths.get("dev")) |
|
), |
|
"archive_iters": archive_iters.get("dev"), |
|
"text_paths": meta_paths.get("dev"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"local_extracted_archives": local_extracted_archives.get( |
|
"test", [None] * len(meta_paths.get("test")) |
|
), |
|
"archive_iters": archive_iters.get("test"), |
|
"text_paths": meta_paths.get("test"), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, local_extracted_archives, archive_iters, text_paths): |
|
assert len(local_extracted_archives) == len(archive_iters) == len(text_paths) |
|
key = 0 |
|
|
|
for archive, text_path, local_extracted_path in zip( |
|
archive_iters, text_paths, local_extracted_archives |
|
): |
|
with open(text_path, encoding="utf-8") as fin: |
|
data = json.load(fin) |
|
|
|
for audio_path, audio_file in archive: |
|
audio_filename = audio_path.split("/")[-1] |
|
if audio_filename not in data: |
|
continue |
|
|
|
result = data[audio_filename] |
|
extracted_audio_path = ( |
|
os.path.join(local_extracted_path, audio_filename) |
|
if local_extracted_path is not None |
|
else None |
|
) |
|
result["audio"] = {"path": audio_path, "bytes": audio_file.read()} |
|
yield key, result |
|
key += 1 |
|
|