Datasets:

ArXiv:
License:
nutPace commited on
Commit
5f0ca78
·
verified ·
1 Parent(s): b3a12a2

updated minictx v1.5

Browse files

Updated imported module and premises metadata.
Updated commit and time

This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. PFR-declarations/PFR.ApproxHomPFR.jsonl +1 -0
  2. PFR-declarations/PFR.Endgame.jsonl +19 -0
  3. PFR-declarations/PFR.EntropyPFR.jsonl +3 -0
  4. PFR-declarations/PFR.Fibring.jsonl +7 -0
  5. PFR-declarations/PFR.FirstEstimate.jsonl +9 -0
  6. PFR-declarations/PFR.ForMathlib.CompactProb.jsonl +9 -0
  7. PFR-declarations/PFR.ForMathlib.Elementary.jsonl +25 -0
  8. PFR-declarations/PFR.ForMathlib.Entropy.Basic.jsonl +111 -0
  9. PFR-declarations/PFR.ForMathlib.Entropy.Group.jsonl +56 -0
  10. PFR-declarations/PFR.ForMathlib.Entropy.Kernel.Basic.jsonl +39 -0
  11. PFR-declarations/PFR.ForMathlib.Entropy.Kernel.Group.jsonl +30 -0
  12. PFR-declarations/PFR.ForMathlib.Entropy.Kernel.MutualInfo.jsonl +27 -0
  13. PFR-declarations/PFR.ForMathlib.Entropy.Kernel.RuzsaDist.jsonl +20 -0
  14. PFR-declarations/PFR.ForMathlib.Entropy.Measure.jsonl +55 -0
  15. PFR-declarations/PFR.ForMathlib.Entropy.RuzsaDist.jsonl +75 -0
  16. PFR-declarations/PFR.ForMathlib.Entropy.RuzsaSetDist.jsonl +18 -0
  17. PFR-declarations/PFR.ForMathlib.FiniteMeasureComponent.jsonl +2 -0
  18. PFR-declarations/PFR.ForMathlib.FiniteMeasureProd.jsonl +25 -0
  19. PFR-declarations/PFR.ForMathlib.FiniteRange.jsonl +24 -0
  20. PFR-declarations/PFR.ForMathlib.Graph.jsonl +11 -0
  21. PFR-declarations/PFR.ForMathlib.MeasureReal.jsonl +74 -0
  22. PFR-declarations/PFR.ForMathlib.Pair.jsonl +3 -0
  23. PFR-declarations/PFR.ForMathlib.ProbabilityMeasureProdCont.jsonl +4 -0
  24. PFR-declarations/PFR.ForMathlib.Summable.jsonl +2 -0
  25. PFR-declarations/PFR.ForMathlib.Uniform.jsonl +23 -0
  26. PFR-declarations/PFR.HomPFR.jsonl +3 -0
  27. PFR-declarations/PFR.HundredPercent.jsonl +7 -0
  28. PFR-declarations/PFR.ImprovedPFR.jsonl +20 -0
  29. PFR-declarations/PFR.Main.jsonl +9 -0
  30. PFR-declarations/PFR.Mathlib.Data.Fin.VecNotation.jsonl +0 -0
  31. PFR-declarations/PFR.Mathlib.Data.Set.Pointwise.SMul.jsonl +6 -0
  32. PFR-declarations/PFR.Mathlib.GroupTheory.Subgroup.Pointwise.jsonl +6 -0
  33. PFR-declarations/PFR.Mathlib.GroupTheory.Torsion.jsonl +1 -0
  34. PFR-declarations/PFR.Mathlib.LinearAlgebra.Basis.VectorSpace.jsonl +1 -0
  35. PFR-declarations/PFR.Mathlib.MeasureTheory.Constructions.Pi.jsonl +5 -0
  36. PFR-declarations/PFR.Mathlib.MeasureTheory.Constructions.Prod.Basic.jsonl +3 -0
  37. PFR-declarations/PFR.Mathlib.MeasureTheory.Integral.Bochner.jsonl +1 -0
  38. PFR-declarations/PFR.Mathlib.MeasureTheory.Integral.Lebesgue.jsonl +5 -0
  39. PFR-declarations/PFR.Mathlib.MeasureTheory.Integral.SetIntegral.jsonl +2 -0
  40. PFR-declarations/PFR.Mathlib.MeasureTheory.MeasurableSpace.Basic.jsonl +2 -0
  41. PFR-declarations/PFR.Mathlib.MeasureTheory.Measure.MeasureSpace.jsonl +1 -0
  42. PFR-declarations/PFR.Mathlib.MeasureTheory.Measure.NullMeasurable.jsonl +4 -0
  43. PFR-declarations/PFR.Mathlib.MeasureTheory.Measure.ProbabilityMeasure.jsonl +6 -0
  44. PFR-declarations/PFR.Mathlib.MeasureTheory.Measure.Typeclasses.jsonl +1 -0
  45. PFR-declarations/PFR.Mathlib.Probability.ConditionalProbability.jsonl +0 -0
  46. PFR-declarations/PFR.Mathlib.Probability.IdentDistrib.jsonl +28 -0
  47. PFR-declarations/PFR.Mathlib.Probability.Independence.Basic.jsonl +28 -0
  48. PFR-declarations/PFR.Mathlib.Probability.Independence.Conditional.jsonl +9 -0
  49. PFR-declarations/PFR.Mathlib.Probability.Independence.FourVariables.jsonl +19 -0
  50. PFR-declarations/PFR.Mathlib.Probability.Independence.Kernel.jsonl +1 -0
PFR-declarations/PFR.ApproxHomPFR.jsonl ADDED
@@ -0,0 +1 @@
 
 
1
+ {"name":"approx_hom_pfr","declaration":"/-- Let $G, G'$ be finite abelian $2$-groups.\nLet $f : G \\to G'$ be a function, and suppose that there are at least\n$|G|^2 / K$ pairs $(x,y) \\in G^2$ such that $$ f(x+y) = f(x) + f(y).$$\nThen there exists a homomorphism $\\phi : G \\to G'$ and a constant $c \\in G'$ such that\n$f(x) = \\phi(x)+c$ for at least $|G| / (2 ^ {172} * K ^ {146})$ values of $x \\in G$. -/\ntheorem approx_hom_pfr {G : Type u_1} {G' : Type u_2} [AddCommGroup G] [Fintype G] [AddCommGroup G'] [Fintype G'] [ElementaryAddCommGroup G 2] [ElementaryAddCommGroup G' 2] (f : G → G') (K : ℝ) (hK : K > 0) (hf : ↑(Nat.card ↑{x | f (x.1 + x.2) = f x.1 + f x.2}) ≥ ↑(Nat.card G) ^ 2 / K) : ∃ φ c, ↑(Nat.card ↑{x | f x = φ x + c}) ≥ ↑(Nat.card G) / (2 ^ 172 * K ^ 146)"}
PFR-declarations/PFR.Endgame.jsonl ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"hV","declaration":"theorem hV {G : Type u_1} [AddCommGroup G] [hG : MeasurableSpace G] [MeasurableAdd₂ G] {Ω : Type u_4} [mΩ : MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ : Ω → G) (X₂ : Ω → G) (X₁' : Ω → G) (X₂' : Ω → G) (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) : H[X₁' + X₂] = H[X₁ + X₂']"}
2
+ {"name":"independenceCondition5","declaration":"theorem independenceCondition5 {G : Type u_1} [AddCommGroup G] [hG : MeasurableSpace G] [MeasurableAdd₂ G] {Ω : Type u_4} [mΩ : MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {X₁ : Ω → G} {X₂ : Ω → G} {X₁' : Ω → G} {X₂' : Ω → G} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![X₁, X₁', X₂ + X₂'] MeasureTheory.volume"}
3
+ {"name":"independenceCondition3","declaration":"theorem independenceCondition3 {G : Type u_1} [AddCommGroup G] [hG : MeasurableSpace G] [MeasurableAdd₂ G] {Ω : Type u_4} [mΩ : MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {X₁ : Ω → G} {X₂ : Ω → G} {X₁' : Ω → G} {X₂' : Ω → G} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![X₁', X₂, X₁ + X₂'] MeasureTheory.volume"}
4
+ {"name":"independenceCondition4","declaration":"theorem independenceCondition4 {G : Type u_1} [AddCommGroup G] [hG : MeasurableSpace G] [MeasurableAdd₂ G] {Ω : Type u_4} [mΩ : MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {X₁ : Ω → G} {X₂ : Ω → G} {X₁' : Ω → G} {X₂' : Ω → G} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![X₂, X₁', X₁ + X₂'] MeasureTheory.volume"}
5
+ {"name":"sum_dist_diff_le","declaration":"/-- $$ \\sum_{i=1}^2 \\sum_{A\\in\\{U,V,W\\}} \\big(d[X^0_i;A|S] - d[X^0_i;X_i]\\big)$$\nis less than or equal to\n$$ \\leq (6 - 3\\eta) k + 3(2 \\eta k - I_1).$$\n-/\ntheorem sum_dist_diff_le {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [elem : ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [mΩ : MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ : Ω → G) (X₂ : Ω → G) (X₁' : Ω → G) (X₂' : Ω → G) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) (h_min : tau_minimizes p X₁ X₂) : d[p.X₀₁ # X₁ + X₂ | X₁ + X₂ + X₁' + X₂'] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # X₁ + X₂ | X₁ + X₂ + X₁' + X₂'] - d[p.X₀₂ # X₂]) +\n (d[p.X₀₁ # X₁' + X₂ | X₁ + X₂ + X₁' + X₂'] - d[p.X₀₁ # X₁] +\n (d[p.X₀₂ # X₁' + X₂ | X₁ + X₂ + X₁' + X₂'] - d[p.X₀₂ # X₂])) +\n (d[p.X₀₁ # X₁' + X₁ | X₁ + X₂ + X₁' + X₂'] - d[p.X₀₁ # X₁] +\n (d[p.X₀₂ # X₁' + X₁ | X₁ + X₂ + X₁' + X₂'] - d[p.X₀₂ # X₂])) ≤\n (6 - 3 * p.η) * d[X₁ # X₂] + 3 * (2 * p.η * d[X₁ # X₂] - I[X₁ + X₂ : X₁' + X₂|X₁ + X₂ + X₁' + X₂'])"}
6
+ {"name":"independenceCondition2","declaration":"theorem independenceCondition2 {G : Type u_1} [AddCommGroup G] [hG : MeasurableSpace G] [MeasurableAdd₂ G] {Ω : Type u_4} [mΩ : MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {X₁ : Ω → G} {X₂ : Ω → G} {X₁' : Ω → G} {X₂' : Ω → G} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![X₂, X₁, X₁' + X₂'] MeasureTheory.volume"}
7
+ {"name":"construct_good'","declaration":"theorem construct_good' {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [elem : ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [mΩ : MeasureTheory.MeasureSpace Ω] (X₁ : Ω → G) (X₂ : Ω → G) (h_min : tau_minimizes p X₁ X₂) {Ω' : Type u_5} [MeasureTheory.MeasureSpace Ω'] {T₁ : Ω' → G} {T₂ : Ω' → G} {T₃ : Ω' → G} (hT : T₁ + T₂ + T₃ = 0) (hT₁ : Measurable T₁) (hT₂ : Measurable T₂) (hT₃ : Measurable T₃) (μ : MeasureTheory.Measure Ω') [MeasureTheory.IsProbabilityMeasure μ] : d[X₁ # X₂] ≤\n I[T₁ : T₂ ; μ] + I[T₂ : T₃ ; μ] + I[T₃ : T₁ ; μ] +\n p.η / 3 *\n (I[T₁ : T₂ ; μ] + I[T₂ : T₃ ; μ] + I[T₃ : T₁ ; μ] +\n (d[p.X₀₁ ; MeasureTheory.volume # T₁ ; μ] - d[p.X₀₁ # X₁] +\n (d[p.X₀₂ ; MeasureTheory.volume # T₁ ; μ] - d[p.X₀₂ # X₂])) +\n (d[p.X₀₁ ; MeasureTheory.volume # T₂ ; μ] - d[p.X₀₁ # X₁] +\n (d[p.X₀₂ ; MeasureTheory.volume # T₂ ; μ] - d[p.X₀₂ # X₂])) +\n (d[p.X₀₁ ; MeasureTheory.volume # T₃ ; μ] - d[p.X₀₁ # X₁] +\n (d[p.X₀₂ ; MeasureTheory.volume # T₃ ; μ] - d[p.X₀₂ # X₂])))"}
8
+ {"name":"I₃_eq","declaration":"/-- The quantity $I_3 = I[V:W|S]$ is equal to $I_2$. -/\ntheorem I₃_eq {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [MeasurableAdd₂ G] {Ω : Type u_4} [mΩ : MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ : Ω → G) (X₂ : Ω → G) (X₁' : Ω → G) (X₂' : Ω → G) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) : I[X₁' + X₂ : X₁' + X₁|X₁ + X₂ + X₁' + X₂'] = I[X₁ + X₂ : X₁' + X₁|X₁ + X₂ + X₁' + X₂']"}
9
+ {"name":"cond_c_eq_integral","declaration":"theorem cond_c_eq_integral {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [mΩ : MeasureTheory.MeasureSpace Ω] (X₁ : Ω → G) (X₂ : Ω → G) {Ω' : Type u_5} [MeasureTheory.MeasureSpace Ω'] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {Y : Ω' → G} {Z : Ω' → G} (hY : Measurable Y) (hZ : Measurable Z) : d[p.X₀₁ # Y | Z] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # Y | Z] - d[p.X₀₂ # X₂]) =\n ∫ (x : G),\n (fun z =>\n d[p.X₀₁ ; MeasureTheory.volume # Y ; ProbabilityTheory.cond MeasureTheory.volume (Z ⁻¹' {z})] - d[p.X₀₁ # X₁] +\n (d[p.X₀₂ ; MeasureTheory.volume # Y ; ProbabilityTheory.cond MeasureTheory.volume (Z ⁻¹' {z})] -\n d[p.X₀₂ # X₂]))\n x ∂MeasureTheory.Measure.map Z MeasureTheory.volume"}
10
+ {"name":"independenceCondition1","declaration":"theorem independenceCondition1 {G : Type u_1} [AddCommGroup G] [hG : MeasurableSpace G] [MeasurableAdd₂ G] {Ω : Type u_4} [mΩ : MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {X₁ : Ω → G} {X₂ : Ω → G} {X₁' : Ω → G} {X₂' : Ω → G} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![X₁, X₂, X₁' + X₂'] MeasureTheory.volume"}
11
+ {"name":"construct_good","declaration":"/-- If $T_1, T_2, T_3$ are $G$-valued random variables with $T_1+T_2+T_3=0$ holds identically and\n-\n$$ \\delta := \\sum_{1 \\leq i < j \\leq 3} I[T_i;T_j]$$\n\nThen there exist random variables $T'_1, T'_2$ such that\n\n$$ d[T'_1;T'_2] + \\eta (d[X_1^0;T'_1] - d[X_1^0;X _1]) + \\eta(d[X_2^0;T'_2] - d[X_2^0;X_2])$$\n\nis at most\n\n$$\\delta + \\frac{\\eta}{3} \\biggl( \\delta + \\sum_{i=1}^2 \\sum_{j = 1}^3\n (d[X^0_i;T_j] - d[X^0_i; X_i]) \\biggr).$$\n-/\ntheorem construct_good {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [elem : ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [mΩ : MeasureTheory.MeasureSpace Ω] (X₁ : Ω → G) (X₂ : Ω → G) (h_min : tau_minimizes p X₁ X₂) {Ω' : Type u_5} [MeasureTheory.MeasureSpace Ω'] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {T₁ : Ω' → G} {T₂ : Ω' → G} {T₃ : Ω' → G} (hT : T₁ + T₂ + T₃ = 0) (hT₁ : Measurable T₁) (hT₂ : Measurable T₂) (hT₃ : Measurable T₃) : d[X₁ # X₂] ≤\n I[T₁ : T₂] + I[T₂ : T₃] + I[T₃ : T₁] +\n p.η / 3 *\n (I[T₁ : T₂] + I[T₂ : T₃] + I[T₃ : T₁] + (d[p.X₀₁ # T₁] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # T₁] - d[p.X₀₂ # X₂])) +\n (d[p.X₀₁ # T₂] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # T₂] - d[p.X₀₂ # X₂])) +\n (d[p.X₀₁ # T₃] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # T₃] - d[p.X₀₂ # X₂])))"}
12
+ {"name":"independenceCondition6","declaration":"theorem independenceCondition6 {G : Type u_1} [AddCommGroup G] [hG : MeasurableSpace G] [MeasurableAdd₂ G] {Ω : Type u_4} [mΩ : MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {X₁ : Ω → G} {X₂ : Ω → G} {X₁' : Ω → G} {X₂' : Ω → G} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![X₂, X₂', X₁' + X₁] MeasureTheory.volume"}
13
+ {"name":"sum_condMutual_le","declaration":"/-- $$ I(U : V | S) + I(V : W | S) + I(W : U | S) $$\nis less than or equal to\n$$ 6 \\eta k - \\frac{1 - 5 \\eta}{1-\\eta} (2 \\eta k - I_1).$$\n-/\ntheorem sum_condMutual_le {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [elem : ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [mΩ : MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ : Ω → G) (X₂ : Ω → G) (X₁' : Ω → G) (X₂' : Ω → G) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) (h_min : tau_minimizes p X₁ X₂) : I[X₁ + X₂ : X₁' + X₂|X₁ + X₂ + X₁' + X₂'] + I[X₁' + X₂ : X₁' + X₁|X₁ + X₂ + X₁' + X₂'] +\n I[X₁' + X₁ : X₁ + X₂|X₁ + X₂ + X₁' + X₂'] ≤\n 6 * p.η * d[X₁ # X₂] - (1 - 5 * p.η) / (1 - p.η) * (2 * p.η * d[X₁ # X₂] - I[X₁ + X₂ : X₁' + X₂|X₁ + X₂ + X₁' + X₂'])"}
14
+ {"name":"cond_construct_good","declaration":"theorem cond_construct_good {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [elem : ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [mΩ : MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ : Ω → G) (X₂ : Ω → G) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (h_min : tau_minimizes p X₁ X₂) {Ω' : Type u_5} [MeasureTheory.MeasureSpace Ω'] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {T₁ : Ω' → G} {T₂ : Ω' → G} {T₃ : Ω' → G} (hT : T₁ + T₂ + T₃ = 0) (hT₁ : Measurable T₁) (hT₂ : Measurable T₂) (hT₃ : Measurable T₃) {R : Ω' → G} (hR : Measurable R) : d[X₁ # X₂] ≤\n I[T₁ : T₂|R] + I[T₂ : T₃|R] + I[T₃ : T₁|R] +\n p.η / 3 *\n (I[T₁ : T₂|R] + I[T₂ : T₃|R] + I[T₃ : T₁|R] +\n (d[p.X₀₁ # T₁ | R] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # T₁ | R] - d[p.X₀₂ # X₂])) +\n (d[p.X₀₁ # T₂ | R] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # T₂ | R] - d[p.X₀₂ # X₂])) +\n (d[p.X₀₁ # T₃ | R] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # T₃ | R] - d[p.X₀₂ # X₂])))"}
15
+ {"name":"tau_strictly_decreases_aux","declaration":"/-- If $d[X_1;X_2] > 0$ then there are $G$-valued random variables $X'_1, X'_2$ such that\nPhrased in the contrapositive form for convenience of proof. -/\ntheorem tau_strictly_decreases_aux {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [elem : ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [mΩ : MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ : Ω → G) (X₂ : Ω → G) (X₁' : Ω → G) (X₂' : Ω → G) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) (h_min : tau_minimizes p X₁ X₂) (hpη : p.η = 1 / 9) : d[X₁ # X₂] = 0"}
16
+ {"name":"sum_uvw_eq_zero","declaration":"/-- $U+V+W=0$. -/\ntheorem sum_uvw_eq_zero {G : Type u_1} [AddCommGroup G] [elem : ElementaryAddCommGroup G 2] {Ω : Type u_4} (X₁ : Ω → G) (X₂ : Ω → G) (X₁' : Ω → G) : X₁ + X₂ + (X₁' + X₂) + (X₁' + X₁) = 0"}
17
+ {"name":"delta'_eq_integral","declaration":"theorem delta'_eq_integral {G : Type u_1} [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω' : Type u_5} [MeasureTheory.MeasureSpace Ω'] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {T₁ : Ω' → G} {T₂ : Ω' → G} {T₃ : Ω' → G} {R : Ω' → G} : I[T₁ : T₂|R] + I[T₂ : T₃|R] + I[T₃ : T₁|R] =\n ∫ (x : G),\n (fun r =>\n I[T₁ : T₂ ; ProbabilityTheory.cond MeasureTheory.volume (R ⁻¹' {r})] +\n I[T₂ : T₃ ; ProbabilityTheory.cond MeasureTheory.volume (R ⁻¹' {r})] +\n I[T₃ : T₁ ; ProbabilityTheory.cond MeasureTheory.volume (R ⁻¹' {r})])\n x ∂MeasureTheory.Measure.map R MeasureTheory.volume"}
18
+ {"name":"construct_good_prelim","declaration":"/-- If $T_1, T_2, T_3$ are $G$-valued random variables with $T_1+T_2+T_3=0$ holds identically and\n$$ \\delta := \\sum_{1 \\leq i < j \\leq 3} I[T_i;T_j]$$\nThen there exist random variables $T'_1, T'_2$ such that\n$$ d[T'_1;T'_2] + \\eta (d[X_1^0;T'_1] - d[X_1^0;X_1]) + \\eta(d[X_2^0;T'_2] - d[X_2^0;X_2]) $$\nis at most\n$$ \\delta + \\eta ( d[X^0_1;T_1]-d[X^0_1;X_1]) + \\eta (d[X^0_2;T_2]-d[X^0_2;X_2]) $$\n$$ + \\tfrac12 \\eta I[T_1: T_3] + \\tfrac12 \\eta I[T_2: T_3].$$\n-/\ntheorem construct_good_prelim {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [elem : ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [mΩ : MeasureTheory.MeasureSpace Ω] (X₁ : Ω → G) (X₂ : Ω → G) (h_min : tau_minimizes p X₁ X₂) {Ω' : Type u_5} [MeasureTheory.MeasureSpace Ω'] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {T₁ : Ω' → G} {T₂ : Ω' → G} {T₃ : Ω' → G} (hT : T₁ + T₂ + T₃ = 0) (hT₁ : Measurable T₁) (hT₂ : Measurable T₂) (hT₃ : Measurable T₃) : d[X₁ # X₂] ≤\n I[T₁ : T₂] + I[T₂ : T₃] + I[T₃ : T₁] + p.η * (d[p.X₀₁ # T₁] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # T₂] - d[p.X₀₂ # X₂])) +\n p.η * (I[T₁ : T₃] + I[T₂ : T₃]) / 2"}
19
+ {"name":"hU","declaration":"theorem hU {G : Type u_1} [AddCommGroup G] [hG : MeasurableSpace G] [MeasurableAdd₂ G] {Ω : Type u_4} [mΩ : MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ : Ω → G) (X₂ : Ω → G) (X₁' : Ω → G) (X₂' : Ω → G) (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₁', X₂'] MeasureTheory.volume) : H[X₁ + X₂] = H[X₁' + X₂']"}
PFR-declarations/PFR.EntropyPFR.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {"name":"entropic_PFR_conjecture","declaration":"/-- `entropic_PFR_conjecture`: For two $G$-valued random variables $X^0_1, X^0_2$, there is some\nsubgroup $H \\leq G$ such that $d[X^0_1;U_H] + d[X^0_2;U_H] \\le 11 d[X^0_1;X^0_2]$. -/\ntheorem entropic_PFR_conjecture {Ω₀₁ : Type u_1} {Ω₀₂ : Type u_2} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {G : Type uG} [AddCommGroup G] [ElementaryAddCommGroup G 2] [Fintype G] [MeasurableSpace G] [MeasurableSingletonClass G] (p : refPackage Ω₀₁ Ω₀₂ G) (hpη : p.η = 1 / 9) : ∃ H Ω mΩ U,\n MeasureTheory.IsProbabilityMeasure MeasureTheory.volume ∧\n Measurable U ∧\n ProbabilityTheory.IsUniform (↑H) U MeasureTheory.volume ∧ d[p.X₀₁ # U] + d[p.X₀₂ # U] ≤ 11 * d[p.X₀₁ # p.X₀₂]"}
2
+ {"name":"tau_strictly_decreases","declaration":"/-- If $d[X_1;X_2] > 0$ then there are $G$-valued random variables $X'_1, X'_2$ such that $\\tau[X'_1;X'_2] < \\tau[X_1;X_2]$.\nPhrased in the contrapositive form for convenience of proof. -/\ntheorem tau_strictly_decreases {Ω₀₁ : Type u_1} {Ω₀₂ : Type u_2} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] {Ω : Type u_3} [mΩ : MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {G : Type uG} [AddCommGroup G] [ElementaryAddCommGroup G 2] [Fintype G] [MeasurableSpace G] [MeasurableSingletonClass G] (p : refPackage Ω₀₁ Ω₀₂ G) {X₁ : Ω → G} {X₂ : Ω → G} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (h_min : tau_minimizes p X₁ X₂) (hpη : p.η = 1 / 9) : d[X₁ # X₂] = 0"}
3
+ {"name":"entropic_PFR_conjecture'","declaration":"theorem entropic_PFR_conjecture' {Ω₀₁ : Type u_1} {Ω₀₂ : Type u_2} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {G : Type uG} [AddCommGroup G] [ElementaryAddCommGroup G 2] [Fintype G] [MeasurableSpace G] [MeasurableSingletonClass G] (p : refPackage Ω₀₁ Ω₀₂ G) (hpη : p.η = 1 / 9) : ∃ H Ω mΩ U,\n ProbabilityTheory.IsUniform (↑H) U MeasureTheory.volume ∧\n d[p.X₀₁ # U] ≤ 6 * d[p.X₀₁ # p.X₀₂] ∧ d[p.X₀₂ # U] ≤ 6 * d[p.X₀₁ # p.X₀₂]"}
PFR-declarations/PFR.Fibring.jsonl ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {"name":"sum_of_rdist_eq","declaration":"/-- Let $Y_1,Y_2,Y_3$ and $Y_4$ be independent $G$-valued random variables.\n Then\n$$d[Y_1-Y_3; Y_2-Y_4] + d[Y_1|Y_1-Y_3; Y_2|Y_2-Y_4] $$\n$$ + I[Y_1-Y_2 : Y_2 - Y_4 | Y_1-Y_2-Y_3+Y_4] = d[Y_1; Y_2] + d[Y_3; Y_4].$$\n-/\ntheorem sum_of_rdist_eq {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω : Type u_2} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] (Y : Fin 4 → Ω → G) (h_indep : ProbabilityTheory.iIndepFun (fun x => hG) Y μ) (h_meas : ∀ (i : Fin 4), Measurable (Y i)) : d[Y 0 ; μ # Y 1 ; μ] + d[Y 2 ; μ # Y 3 ; μ] =\n d[Y 0 - Y 2 ; μ # Y 1 - Y 3 ; μ] + d[Y 0 | Y 0 - Y 2 ; μ # Y 1 | Y 1 - Y 3 ; μ] +\n I[Y 0 - Y 1 : Y 1 - Y 3|Y 0 - Y 1 - Y 2 + Y 3;μ]"}
2
+ {"name":"rdist_of_hom_le","declaration":"/-- \\[d[X;Y]\\geq d[\\pi(X);\\pi(Y)].\\] -/\ntheorem rdist_of_hom_le {H : Type u_1} [AddCommGroup H] [Countable H] [hH : MeasurableSpace H] [MeasurableSingletonClass H] {H' : Type u_2} [AddCommGroup H'] [Countable H'] [hH' : MeasurableSpace H'] [MeasurableSingletonClass H'] (π : H →+ H') {Ω : Type u_3} {Ω' : Type u_4} [mΩ : MeasurableSpace Ω] [mΩ' : MeasurableSpace Ω'] {μ : MeasureTheory.Measure Ω} {μ' : MeasureTheory.Measure Ω'} [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] {Z_1 : Ω → H} {Z_2 : Ω' → H} (h1 : Measurable Z_1) (h2 : Measurable Z_2) [FiniteRange Z_1] [FiniteRange Z_2] : d[⇑π ∘ Z_1 ; μ # ⇑π ∘ Z_2 ; μ'] ≤ d[Z_1 ; μ # Z_2 ; μ']"}
3
+ {"name":"rdist_le_sum_fibre","declaration":"theorem rdist_le_sum_fibre {H : Type u_1} [AddCommGroup H] [Countable H] [hH : MeasurableSpace H] [MeasurableSingletonClass H] {H' : Type u_2} [AddCommGroup H'] [Countable H'] [hH' : MeasurableSpace H'] [MeasurableSingletonClass H'] (π : H →+ H') {Ω : Type u_3} {Ω' : Type u_4} [mΩ : MeasurableSpace Ω] [mΩ' : MeasurableSpace Ω'] {μ : MeasureTheory.Measure Ω} {μ' : MeasureTheory.Measure Ω'} [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] {Z_1 : Ω → H} {Z_2 : Ω' → H} (h1 : Measurable Z_1) (h2 : Measurable Z_2) [FiniteRange Z_1] [FiniteRange Z_2] : d[⇑π ∘ Z_1 ; μ # ⇑π ∘ Z_2 ; μ'] + d[Z_1 | ⇑π ∘ Z_1 ; μ # Z_2 | ⇑π ∘ Z_2 ; μ'] ≤ d[Z_1 ; μ # Z_2 ; μ']"}
4
+ {"name":"sum_of_rdist_eq_step_condMutualInfo","declaration":"/-- The conditional mutual information step of `sum_of_rdist_eq` -/\ntheorem sum_of_rdist_eq_step_condMutualInfo {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω : Type u_2} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {Y : Fin 4 → Ω → G} (h_meas : ∀ (i : Fin 4), Measurable (Y i)) : I[⟨Y 0 - Y 1, Y 2 - Y 3⟩ : ⟨Y 0 - Y 2, Y 1 - Y 3⟩|Y 0 - Y 1 - (Y 2 - Y 3);μ] =\n I[Y 0 - Y 1 : Y 1 - Y 3|Y 0 - Y 1 - Y 2 + Y 3;μ]"}
5
+ {"name":"rdist_of_indep_eq_sum_fibre","declaration":"/-- If $Z_1, Z_2$ are independent, then $d[Z_1; Z_2]$ is equal to\n$$ d[\\pi(Z_1);\\pi(Z_2)] + d[Z_1|\\pi(Z_1); Z_2 |\\pi(Z_2)]$$\nplus\n$$I( Z_1 - Z_2 : (\\pi(Z_1), \\pi(Z_2)) | \\pi(Z_1 - Z_2) ).$$\n-/\ntheorem rdist_of_indep_eq_sum_fibre {H : Type u_1} [AddCommGroup H] [Countable H] [hH : MeasurableSpace H] [MeasurableSingletonClass H] {H' : Type u_2} [AddCommGroup H'] [Countable H'] [hH' : MeasurableSpace H'] [MeasurableSingletonClass H'] (π : H →+ H') {Ω : Type u_3} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {Z_1 : Ω → H} {Z_2 : Ω → H} (h : ProbabilityTheory.IndepFun Z_1 Z_2 μ) (h1 : Measurable Z_1) (h2 : Measurable Z_2) [FiniteRange Z_1] [FiniteRange Z_2] : d[Z_1 ; μ # Z_2 ; μ] =\n d[⇑π ∘ Z_1 ; μ # ⇑π ∘ Z_2 ; μ] + d[Z_1 | ⇑π ∘ Z_1 ; μ # Z_2 | ⇑π ∘ Z_2 ; μ] +\n I[Z_1 - Z_2 : ⟨⇑π ∘ Z_1, ⇑π ∘ Z_2⟩|⇑π ∘ (Z_1 - Z_2);μ]"}
6
+ {"name":"sum_of_rdist_eq_step_condRuzsaDist","declaration":"/-- The conditional Ruzsa Distance step of `sum_of_rdist_eq` -/\ntheorem sum_of_rdist_eq_step_condRuzsaDist {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω : Type u_2} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {Y : Fin 4 → Ω → G} (h_indep : ProbabilityTheory.iIndepFun (fun x => hG) Y μ) (h_meas : ∀ (i : Fin 4), Measurable (Y i)) : d[⟨Y 0, Y 2⟩ | Y 0 - Y 2 ; μ # ⟨Y 1, Y 3⟩ | Y 1 - Y 3 ; μ] = d[Y 0 | Y 0 - Y 2 ; μ # Y 1 | Y 1 - Y 3 ; μ]"}
7
+ {"name":"sum_of_rdist_eq_char_2","declaration":"/-- Let $Y_1,Y_2,Y_3$ and $Y_4$ be independent $G$-valued random variables.\n Then\n$$d[Y_1+Y_3; Y_2+Y_4] + d[Y_1|Y_1+Y_3; Y_2|Y_2+Y_4] $$\n$$ + I[Y_1+Y_2 : Y_2 + Y_4 | Y_1+Y_2+Y_3+Y_4] = d[Y_1; Y_2] + d[Y_3; Y_4].$$\n-/\ntheorem sum_of_rdist_eq_char_2 {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] {Ω : Type u_2} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] [ElementaryAddCommGroup G 2] (Y : Fin 4 → Ω → G) (h_indep : ProbabilityTheory.iIndepFun (fun x => hG) Y μ) (h_meas : ∀ (i : Fin 4), Measurable (Y i)) : d[Y 0 ; μ # Y 1 ; μ] + d[Y 2 ; μ # Y 3 ; μ] =\n d[Y 0 + Y 2 ; μ # Y 1 + Y 3 ; μ] + d[Y 0 | Y 0 + Y 2 ; μ # Y 1 | Y 1 + Y 3 ; μ] +\n I[Y 0 + Y 1 : Y 1 + Y 3|Y 0 + Y 1 + Y 2 + Y 3;μ]"}
PFR-declarations/PFR.FirstEstimate.jsonl ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"first_estimate","declaration":"/-- We have $I_1 \\leq 2 \\eta k$ -/\ntheorem first_estimate {G : Type u_1} [addgroup : AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [elem : ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ : Ω → G) (X₂ : Ω → G) (X₁' : Ω → G) (X₂' : Ω → G) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₂', X₁'] MeasureTheory.volume) (h_min : tau_minimizes p X₁ X₂) : I[X₁ + X₂ : X₁' + X₂|X₁ + X₂ + X₁' + X₂'] ≤ 2 * p.η * d[X₁ # X₂]"}
2
+ {"name":"diff_rdist_le_1","declaration":"/-- $$d[X^0_1; X_1+\\tilde X_2] - d[X^0_1; X_1] \\leq \\tfrac{1}{2} k + \\tfrac{1}{4} \\bbH[X_2] - \\tfrac{1}{4} \\bbH[X_1].$$ -/\ntheorem diff_rdist_le_1 {G : Type u_1} [addgroup : AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [elem : ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ : Ω → G) (X₂ : Ω → G) (X₁' : Ω → G) (X₂' : Ω → G) (hX₁ : Measurable X₁) (hX₂' : Measurable X₂') (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₂', X₁'] MeasureTheory.volume) : d[p.X₀₁ # X₁ + X₂'] - d[p.X₀₁ # X₁] ≤ d[X₁ # X₂] / 2 + H[X₂] / 4 - H[X₁] / 4"}
3
+ {"name":"condRuzsaDist_of_sums_ge","declaration":"/-- The distance $d[X_1|X_1+\\tilde X_2; X_2|X_2+\\tilde X_1]$ is at least\n$$ k - \\eta (d[X^0_1; X_1 | X_1 + \\tilde X_2] - d[X^0_1; X_1]) - \\eta(d[X^0_2; X_2 | X_2 + \\tilde X_1] - d[X^0_2; X_2]).$$\n-/\ntheorem condRuzsaDist_of_sums_ge {G : Type u_1} [addgroup : AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ : Ω → G) (X₂ : Ω → G) (X₁' : Ω → G) (X₂' : Ω → G) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h_min : tau_minimizes p X₁ X₂) : d[X₁ | X₁ + X₂' # X₂ | X₂ + X₁'] ≥\n d[X₁ # X₂] - p.η * (d[p.X₀₁ # X₁ | X₁ + X₂'] - d[p.X₀₁ # X₁]) - p.η * (d[p.X₀₂ # X₂ | X₂ + X₁'] - d[p.X₀₂ # X₂])"}
4
+ {"name":"diff_rdist_le_2","declaration":"/-- $$ d[X^0_2;X_2+\\tilde X_1] - d[X^0_2; X_2] \\leq \\tfrac{1}{2} k + \\tfrac{1}{4} \\mathbb{H}[X_1] - \\tfrac{1}{4} \\mathbb{H}[X_2].$$ -/\ntheorem diff_rdist_le_2 {G : Type u_1} [addgroup : AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [elem : ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ : Ω → G) (X₂ : Ω → G) (X₁' : Ω → G) (X₂' : Ω → G) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₂', X₁'] MeasureTheory.volume) : d[p.X₀₂ # X₂ + X₁'] - d[p.X₀₂ # X₂] ≤ d[X₁ # X₂] / 2 + H[X₁] / 4 - H[X₂] / 4"}
5
+ {"name":"diff_rdist_le_3","declaration":"/-- $$ d[X_1^0;X_1|X_1+\\tilde X_2] - d[X_1^0;X_1] \\leq\n\\tfrac{1}{2} k + \\tfrac{1}{4} \\mathbb{H}[X_1] - \\tfrac{1}{4} \\mathbb{H}[X_2].$$ -/\ntheorem diff_rdist_le_3 {G : Type u_1} [addgroup : AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [elem : ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ : Ω → G) (X₂ : Ω → G) (X₁' : Ω → G) (X₂' : Ω → G) (hX₁ : Measurable X₁) (hX₂' : Measurable X₂') (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₂', X₁'] MeasureTheory.volume) : d[p.X₀₁ # X₁ | X₁ + X₂'] - d[p.X₀₁ # X₁] ≤ d[X₁ # X₂] / 2 + H[X₁] / 4 - H[X₂] / 4"}
6
+ {"name":"rdist_of_sums_ge","declaration":"/-- The distance $d[X_1+\\tilde X_2; X_2+\\tilde X_1]$ is at least\n$$ k - \\eta (d[X^0_1; X_1+\\tilde X_2] - d[X^0_1; X_1]) - \\eta (d[X^0_2; X_2+\\tilde X_1] - d[X^0_2; X_2]).$$ -/\ntheorem rdist_of_sums_ge {G : Type u_1} [addgroup : AddCommGroup G] [hG : MeasurableSpace G] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ : Ω → G) (X₂ : Ω → G) (X₁' : Ω → G) (X₂' : Ω → G) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h_min : tau_minimizes p X₁ X₂) : d[X₁ + X₂' # X₂ + X₁'] ≥\n d[X₁ # X₂] - p.η * (d[p.X₀₁ # X₁ + X₂'] - d[p.X₀₁ # X₁]) - p.η * (d[p.X₀₂ # X₂ + X₁'] - d[p.X₀₂ # X₂])"}
7
+ {"name":"rdist_add_rdist_add_condMutual_eq","declaration":"/-- The sum of\n$$ d[X_1+\\tilde X_2;X_2+\\tilde X_1] + d[X_1|X_1+\\tilde X_2; X_2|X_2+\\tilde X_1] $$\nand\n$$ I[X_1+ X_2 : \\tilde X_1 + X_2 \\,|\\, X_1 + X_2 + \\tilde X_1 + \\tilde X_2] $$\nis equal to $2k$. -/\ntheorem rdist_add_rdist_add_condMutual_eq {G : Type u_1} [addgroup : AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [elem : ElementaryAddCommGroup G 2] {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ : Ω → G) (X₂ : Ω → G) (X₁' : Ω → G) (X₂' : Ω → G) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₂', X₁'] MeasureTheory.volume) : d[X₁ + X₂' # X₂ + X₁'] + d[X₁ | X₁ + X₂' # X₂ | X₂ + X₁'] + I[X₁ + X₂ : X₁' + X₂|X₁ + X₂ + X₁' + X₂'] = 2 * d[X₁ # X₂]"}
8
+ {"name":"ent_ofsum_le","declaration":"/-- $$\\mathbb{H}[X_1+X_2+\\tilde X_1+\\tilde X_2] \\le \\tfrac{1}{2} \\mathbb{H}[X_1]+\\tfrac{1}{2} \\mathbb{H}[X_2] + (2 + \\eta) k - I_1.$$\n-/\ntheorem ent_ofsum_le {G : Type u_1} [addgroup : AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [elem : ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ : Ω → G) (X₂ : Ω → G) (X₁' : Ω → G) (X₂' : Ω → G) (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₂', X₁'] MeasureTheory.volume) (h_min : tau_minimizes p X₁ X₂) : H[X₁ + X₂ + X₁' + X₂'] ≤ H[X₁] / 2 + H[X₂] / 2 + (2 + p.η) * d[X₁ # X₂] - I[X₁ + X₂ : X₁' + X₂|X₁ + X₂ + X₁' + X₂']"}
9
+ {"name":"diff_rdist_le_4","declaration":"/-- $$ d[X_2^0; X_2|X_2+\\tilde X_1] - d[X_2^0; X_2] \\leq\n\\tfrac{1}{2}k + \\tfrac{1}{4} \\mathbb{H}[X_2] - \\tfrac{1}{4} \\mathbb{H}[X_1].$$ -/\ntheorem diff_rdist_le_4 {G : Type u_1} [addgroup : AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [elem : ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (X₁ : Ω → G) (X₂ : Ω → G) (X₁' : Ω → G) (X₂' : Ω → G) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₂', X₁'] MeasureTheory.volume) : d[p.X₀₂ # X₂ | X₂ + X₁'] - d[p.X₀₂ # X₂] ≤ d[X₁ # X₂] / 2 + H[X₂] / 4 - H[X₁] / 4"}
PFR-declarations/PFR.ForMathlib.CompactProb.jsonl ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"continuous_pmf_apply","declaration":"theorem continuous_pmf_apply {X : Type u_1} [MeasurableSpace X] [TopologicalSpace X] [DiscreteTopology X] [BorelSpace X] (i : X) : Continuous fun μ => (fun s => (↑↑↑μ s).toNNReal) {i}"}
2
+ {"name":"probabilityMeasureEquivStdSimplex_symm_coe_apply","declaration":"theorem probabilityMeasureEquivStdSimplex_symm_coe_apply {X : Type u_1} [MeasurableSpace X] [Fintype X] [MeasurableSingletonClass X] (p : ↑(stdSimplex ℝ X)) : ↑(probabilityMeasureEquivStdSimplex.symm p) =\n Finset.sum Finset.univ fun i => ENNReal.ofReal (↑p i) • MeasureTheory.Measure.dirac i"}
3
+ {"name":"tendsto_lintegral_of_forall_of_finite","declaration":"theorem tendsto_lintegral_of_forall_of_finite {X : Type u_1} [MeasurableSpace X] [TopologicalSpace X] [DiscreteTopology X] [BorelSpace X] [Finite X] {ι : Type u_2} {L : Filter ι} (μs : ι → MeasureTheory.Measure X) (μ : MeasureTheory.Measure X) (f : BoundedContinuousFunction X NNReal) (h : ∀ (x : X), Filter.Tendsto (fun i => ↑↑(μs i) {x}) L (nhds (↑↑μ {x}))) : Filter.Tendsto (fun i => ∫⁻ (x : X), ↑(f x) ∂μs i) L (nhds (∫⁻ (x : X), ↑(f x) ∂μ))"}
4
+ {"name":"continuous_pmf_apply'","declaration":"theorem continuous_pmf_apply' {X : Type u_1} [MeasurableSpace X] [TopologicalSpace X] [DiscreteTopology X] [BorelSpace X] (i : X) : Continuous fun μ => (↑μ).real {i}"}
5
+ {"name":"probabilityMeasureEquivStdSimplex_coe_apply","declaration":"theorem probabilityMeasureEquivStdSimplex_coe_apply {X : Type u_1} [MeasurableSpace X] [Fintype X] [MeasurableSingletonClass X] (μ : MeasureTheory.ProbabilityMeasure X) (i : X) : ↑(probabilityMeasureEquivStdSimplex μ) i = ↑((fun s => (↑↑↑μ s).toNNReal) {i})"}
6
+ {"name":"probabilityMeasureEquivStdSimplex","declaration":"/-- The canonical bijection between the set of probability measures on a fintype and the set of\nnonnegative functions on the points adding up to one. -/\ndef probabilityMeasureEquivStdSimplex {X : Type u_1} [MeasurableSpace X] [Fintype X] [MeasurableSingletonClass X] : MeasureTheory.ProbabilityMeasure X ≃ ↑(stdSimplex ℝ X)"}
7
+ {"name":"probabilityMeasureHomeoStdSimplex","declaration":"/-- The canonical homeomorphism between the space of probability measures on a finite space and the\nstandard simplex. -/\ndef probabilityMeasureHomeoStdSimplex {X : Type u_1} [MeasurableSpace X] [Fintype X] [TopologicalSpace X] [DiscreteTopology X] [BorelSpace X] : MeasureTheory.ProbabilityMeasure X ≃ₜ ↑(stdSimplex ℝ X)"}
8
+ {"name":"instCompactSpaceProbabilityMeasureInstTopologicalSpaceProbabilityMeasure","declaration":"/-- This is still true when `X` is a metrizable compact space, but the proof requires Riesz\nrepresentation theorem.\nTODO: remove once the general version is proved. -/\ninstance instCompactSpaceProbabilityMeasureInstTopologicalSpaceProbabilityMeasure {X : Type u_1} [MeasurableSpace X] [TopologicalSpace X] [OpensMeasurableSpace X] [Finite X] [DiscreteTopology X] [BorelSpace X] : CompactSpace (MeasureTheory.ProbabilityMeasure X)"}
9
+ {"name":"instSecondCountableTopologyProbabilityMeasureInstTopologicalSpaceProbabilityMeasure","declaration":"instance instSecondCountableTopologyProbabilityMeasureInstTopologicalSpaceProbabilityMeasure {X : Type u_1} [MeasurableSpace X] [TopologicalSpace X] [OpensMeasurableSpace X] [Finite X] [DiscreteTopology X] [BorelSpace X] : SecondCountableTopology (MeasureTheory.ProbabilityMeasure X)"}
PFR-declarations/PFR.ForMathlib.Elementary.jsonl ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"ElementaryAddCommGroup.mk","declaration":"ctor ElementaryAddCommGroup.mk {G : Type u_1} [AddCommGroup G] {p : outParam ℕ} (orderOf_of_ne : ∀ {x : G}, x ≠ 0 → addOrderOf x = p) : ElementaryAddCommGroup G p"}
2
+ {"name":"ElementaryAddCommGroup.finite_closure","declaration":"theorem ElementaryAddCommGroup.finite_closure {G : Type u_1} [AddCommGroup G] {n : ℕ} [ElementaryAddCommGroup G (n + 1)] {A : Set G} (h : Set.Finite A) : Set.Finite ↑(AddSubgroup.closure A)"}
3
+ {"name":"ElementaryAddCommGroup.char_smul_eq_zero'","declaration":"theorem ElementaryAddCommGroup.char_smul_eq_zero' {p : ℕ} {Γ : Type u_1} [AddCommGroup Γ] [ElementaryAddCommGroup Γ p] (x : Γ) (k : ℤ) : (k * ↑p) • x = 0"}
4
+ {"name":"ElementaryAddCommGroup.two_le_char_of_ne_zero","declaration":"theorem ElementaryAddCommGroup.two_le_char_of_ne_zero {p : ℕ} {Γ : Type u_1} [NeZero p] [AddCommGroup Γ] [ElementaryAddCommGroup Γ p] {x : Γ} (x_ne_zero : x ≠ 0) : 2 ≤ p"}
5
+ {"name":"ElementaryAddCommGroup.quotient_group","declaration":"theorem ElementaryAddCommGroup.quotient_group {G : Type u_1} [AddCommGroup G] {p : ℕ} (hp : Nat.Prime p) {H : AddSubgroup G} (hH : ∀ (x : G), p • x ∈ H) : ElementaryAddCommGroup (G ⧸ H) p"}
6
+ {"name":"ElementaryAddCommGroup.of_torsion","declaration":"theorem ElementaryAddCommGroup.of_torsion {G : Type u_1} [AddCommGroup G] {p : ℕ} (hp : Nat.Prime p) (h : ∀ (x : G), p • x = 0) : ElementaryAddCommGroup G p"}
7
+ {"name":"ElementaryAddCommGroup.char_ne_one_of_ne_zero","declaration":"theorem ElementaryAddCommGroup.char_ne_one_of_ne_zero {p : ℕ} {Γ : Type u_1} [AddCommGroup Γ] [ElementaryAddCommGroup Γ p] {x : Γ} (x_ne_zero : x ≠ 0) : p ≠ 1"}
8
+ {"name":"ElementaryAddCommGroup.sum_add_sum_eq_sum","declaration":"theorem ElementaryAddCommGroup.sum_add_sum_eq_sum {G : Type u_1} [AddCommGroup G] [elem : ElementaryAddCommGroup G 2] (x : G) (y : G) (z : G) : x + y + (y + z) = x + z"}
9
+ {"name":"ElementaryAddCommGroup.torsion","declaration":"theorem ElementaryAddCommGroup.torsion {G : Type u_1} [AddCommGroup G] (p : ℕ) [elem : ElementaryAddCommGroup G p] (x : G) : p • x = 0"}
10
+ {"name":"ElementaryAddCommGroup.sub_eq_add","declaration":"theorem ElementaryAddCommGroup.sub_eq_add {G : Type u_1} [AddCommGroup G] [elem : ElementaryAddCommGroup G 2] (x : G) (y : G) : x - y = x + y"}
11
+ {"name":"ElementaryAddCommGroup.ofModule","declaration":"/-- A vector space over Z/p is an elementary abelian p-group. -/\ntheorem ElementaryAddCommGroup.ofModule {G : Type u_1} {p : ℕ} [AddCommGroup G] [Module (ZMod p) G] [Fact (Nat.Prime p)] : ElementaryAddCommGroup G p"}
12
+ {"name":"ElementaryAddCommGroup.char_smul_eq_zero","declaration":"theorem ElementaryAddCommGroup.char_smul_eq_zero {p : ℕ} {Γ : Type u_1} [AddCommGroup Γ] [ElementaryAddCommGroup Γ p] (x : Γ) : p • x = 0"}
13
+ {"name":"ElementaryAddCommGroup.sum_add_sum_add_sum_eq_zero","declaration":"theorem ElementaryAddCommGroup.sum_add_sum_add_sum_eq_zero {G : Type u_1} [AddCommGroup G] [elem : ElementaryAddCommGroup G 2] (x : G) (y : G) (z : G) : x + y + (y + z) + (z + x) = 0"}
14
+ {"name":"ElementaryAddCommGroup.exists_subgroup_subset_card_le","declaration":"/-- In an elementary abelian $p$-group, every finite subgroup $H$ contains a further subgroup of\ncardinality between $k$ and $pk$, if $k \\leq |H|$.-/\ntheorem ElementaryAddCommGroup.exists_subgroup_subset_card_le {G : Type u_1} {p : ℕ} (hp : Nat.Prime p) [AddCommGroup G] [h : ElementaryAddCommGroup G p] {k : ℕ} (H : AddSubgroup G) (hk : k ≤ Nat.card ↥H) (h'k : k ≠ 0) : ∃ H', Nat.card ↥H' ≤ k ∧ k < p * Nat.card ↥H' ∧ H' ≤ H"}
15
+ {"name":"ElementaryAddCommGroup.neg_eq_self","declaration":"theorem ElementaryAddCommGroup.neg_eq_self {G : Type u_1} [AddCommGroup G] [elem : ElementaryAddCommGroup G 2] (x : G) : -x = x"}
16
+ {"name":"ElementaryAddCommGroup.Int.mod_eq","declaration":"theorem ElementaryAddCommGroup.Int.mod_eq (n : ℤ) (m : ℤ) : n % m = n - n / m * m"}
17
+ {"name":"ElementaryAddCommGroup.orderOf_of_ne","declaration":"def ElementaryAddCommGroup.orderOf_of_ne {G : Type u_1} [AddCommGroup G] {p : outParam ℕ} [self : ElementaryAddCommGroup G p] {x : G} (hx : x ≠ 0) : addOrderOf x = p"}
18
+ {"name":"ElementaryAddCommGroup.module","declaration":"instance ElementaryAddCommGroup.module {G : Type u_1} {n : ℕ} [AddCommGroup G] [ElementaryAddCommGroup G n] : Module (ZMod n) G"}
19
+ {"name":"ElementaryAddCommGroup.instElementaryAddCommGroupForAllAddCommGroup","declaration":"instance ElementaryAddCommGroup.instElementaryAddCommGroupForAllAddCommGroup (Ω : Type u_1) (Γ : Type u_2) (p : ℕ) [NeZero p] [AddCommGroup Γ] [ElementaryAddCommGroup Γ p] : ElementaryAddCommGroup (Ω → Γ) p"}
20
+ {"name":"ElementaryAddCommGroup.subgroup","declaration":"theorem ElementaryAddCommGroup.subgroup {G : Type u_1} [AddCommGroup G] {n : ℕ} [ElementaryAddCommGroup G n] (H : AddSubgroup G) : ElementaryAddCommGroup (↥H) n"}
21
+ {"name":"ElementaryAddCommGroup.mem_periodicPts","declaration":"theorem ElementaryAddCommGroup.mem_periodicPts {p : ℕ} {Γ : Type u_1} [NeZero p] [AddCommGroup Γ] [ElementaryAddCommGroup Γ p] {x : Γ} (y : Γ) : y ∈ Function.periodicPts fun z => x + z"}
22
+ {"name":"ElementaryAddCommGroup.add_self","declaration":"theorem ElementaryAddCommGroup.add_self {G : Type u_1} [AddCommGroup G] [elem : ElementaryAddCommGroup G 2] (x : G) : x + x = 0"}
23
+ {"name":"ElementaryAddCommGroup.exists_finsupp","declaration":"theorem ElementaryAddCommGroup.exists_finsupp {G : Type u_1} [AddCommGroup G] {n : ℕ} [ElementaryAddCommGroup G (n + 1)] {A : Set G} {x : G} (hx : x ∈ Submodule.span ℤ A) : ∃ μ, (Finsupp.sum μ fun a r => ZMod.cast r • ↑a) = x"}
24
+ {"name":"ElementaryAddCommGroup","declaration":"/-- An elementary `p`-group, i.e., a commutative additive group in which every nonzero element has\norder exactly `p`. -/\nclass ElementaryAddCommGroup (G : Type u_1) [AddCommGroup G] (p : outParam ℕ) : Prop"}
25
+ {"name":"ElementaryAddCommGroup.instElementaryAddCommGroupOfNatNatInstOfNatNat","declaration":"instance ElementaryAddCommGroup.instElementaryAddCommGroupOfNatNatInstOfNatNat {G : Type u_1} [AddCommGroup G] [Module (ZMod 2) G] : ElementaryAddCommGroup G 2"}
PFR-declarations/PFR.ForMathlib.Entropy.Basic.jsonl ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"ProbabilityTheory.entropy_const","declaration":"/-- The entropy of any constant is zero. -/\ntheorem ProbabilityTheory.entropy_const {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSingletonClass S] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] (c : S) : H[fun x => c ; μ] = 0"}
2
+ {"name":"ProbabilityTheory.condEntropy_le_entropy","declaration":"/-- $$ H[X|Y] ≤ H[X] $$ -/\ntheorem ProbabilityTheory.condEntropy_le_entropy {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Nonempty S] [Nonempty T] [MeasurableSpace S] [MeasurableSpace T] {X : Ω → S} {Y : Ω → T} (μ : MeasureTheory.Measure Ω) [MeasurableSingletonClass S] [MeasurableSingletonClass T] (hX : Measurable X) (hY : Measurable Y) [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange X] [FiniteRange Y] : H[X | Y ; μ] ≤ H[X ; μ]"}
3
+ {"name":"ProbabilityTheory.condMutualInfo_eq_kernel_mutualInfo","declaration":"/-- The conditional mutual information agrees with the information of the conditional kernel.\n-/\ntheorem ProbabilityTheory.condMutualInfo_eq_kernel_mutualInfo {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Countable U] [Nonempty S] [Nonempty T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass S] [MeasurableSingletonClass T] [MeasurableSingletonClass U] {X : Ω → S} {Y : Ω → T} {Z : Ω → U} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange Z] : I[X : Y|Z;μ] = Ik[ProbabilityTheory.condDistrib (⟨X, Y⟩) Z μ , MeasureTheory.Measure.map Z μ]"}
4
+ {"name":"ProbabilityTheory.condMutualInfo_eq_integral_mutualInfo","declaration":"theorem ProbabilityTheory.condMutualInfo_eq_integral_mutualInfo {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] {X : Ω → S} {Y : Ω → T} {Z : Ω → U} {μ : MeasureTheory.Measure Ω} : I[X : Y|Z;μ] = ∫ (x : U), (fun z => I[X : Y ; ProbabilityTheory.cond μ (Z ⁻¹' {z})]) x ∂MeasureTheory.Measure.map Z μ"}
5
+ {"name":"ProbabilityTheory.«termI[_:_|_]»","declaration":"/-- The conditional mutual information $I[X : Y| Z]$ is the mutual information of $X| Z=z$ and\n$Y| Z=z$, integrated over $z$. -/\ndef ProbabilityTheory.«termI[_:_|_]» : Lean.ParserDescr"}
6
+ {"name":"ProbabilityTheory.mutualInfo","declaration":"/-- The mutual information $I[X : Y]$ of two random variables is defined to be $H[X] + H[Y] - H[X ; Y]$. -/\ndef ProbabilityTheory.mutualInfo {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] (X : Ω → S) (Y : Ω → T) (μ : autoParam (MeasureTheory.Measure Ω) _auto✝) : ℝ"}
7
+ {"name":"ProbabilityTheory.entropy_pair_eq_add","declaration":"/-- $H[X, Y] = H[X] + H[Y]$ if and only if $X, Y$ are independent. -/\ntheorem ProbabilityTheory.entropy_pair_eq_add {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} (hX : Measurable X) (hY : Measurable Y) {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange X] [FiniteRange Y] : H[⟨X, Y⟩ ; μ] = H[X ; μ] + H[Y ; μ] ↔ ProbabilityTheory.IndepFun X Y μ"}
8
+ {"name":"ProbabilityTheory.«termI[_:_|_]».delab","declaration":"/-- Pretty printer defined by `notation3` command. -/\ndef ProbabilityTheory.«termI[_:_|_]».delab : Lean.PrettyPrinter.Delaborator.Delab"}
9
+ {"name":"ProbabilityTheory.condEntropy_le_log_card","declaration":"/-- Conditional entropy is at most the logarithm of the cardinality of the range. -/\ntheorem ProbabilityTheory.condEntropy_le_log_card {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [Fintype S] (X : Ω → S) (Y : Ω → T) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] : H[X | Y ; μ] ≤ Real.log ↑(Fintype.card S)"}
10
+ {"name":"ProbabilityTheory.condMutualInfo_comm","declaration":"/-- $I[X : Y | Z] = I[Y : X | Z]$. -/\ntheorem ProbabilityTheory.condMutualInfo_comm {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} (hX : Measurable X) (hY : Measurable Y) (Z : Ω → U) (μ : MeasureTheory.Measure Ω) : I[X : Y|Z;μ] = I[Y : X|Z;μ]"}
11
+ {"name":"ProbabilityTheory.mutualInfo_eq_entropy_sub_condEntropy'","declaration":"/-- $I[X : Y] = H[Y] - H[Y | X]$. -/\ntheorem ProbabilityTheory.mutualInfo_eq_entropy_sub_condEntropy' {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Nonempty S] [Nonempty T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange X] [FiniteRange Y] : I[X : Y ; μ] = H[Y ; μ] - H[Y | X ; μ]"}
12
+ {"name":"ProbabilityTheory.entropy_add_entropy_sub_mutualInfo","declaration":"theorem ProbabilityTheory.entropy_add_entropy_sub_mutualInfo {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] (X : Ω → S) (Y : Ω → T) (μ : MeasureTheory.Measure Ω) : H[X ; μ] + H[Y ; μ] - I[X : Y ; μ] = H[⟨X, Y⟩ ; μ]"}
13
+ {"name":"ProbabilityTheory.entropy_le_log_card_of_mem","declaration":"/-- Entropy is at most the logarithm of the cardinality of a set in which X almost surely takes values in. -/\ntheorem ProbabilityTheory.entropy_le_log_card_of_mem {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] {A : Finset S} {μ : MeasureTheory.Measure Ω} {X : Ω → S} (hX : Measurable X) (h : ∀ᵐ (ω : Ω) ∂μ, X ω ∈ A) : H[X ; μ] ≤ Real.log ↑(Nat.card { x // x ∈ A })"}
14
+ {"name":"ProbabilityTheory.entropy_of_comp_eq_of_comp","declaration":"/-- A Schroder-Bernstein type theorem for entropy : if two random variables are functions of each\nother, then they have the same entropy. Can be used as a substitute for\n`entropy_comp_of_injective` if one doesn't want to establish the injectivity. -/\ntheorem ProbabilityTheory.entropy_of_comp_eq_of_comp {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Nonempty S] [Nonempty T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] (hX : Measurable X) (hY : Measurable Y) (f : S → T) (g : T → S) (h1 : Y = f ∘ X) (h2 : X = g ∘ Y) [FiniteRange X] [FiniteRange Y] : H[X ; μ] = H[Y ; μ]"}
15
+ {"name":"ProbabilityTheory.«termH[_;_]».delab","declaration":"/-- Pretty printer defined by `notation3` command. -/\ndef ProbabilityTheory.«termH[_;_]».delab : Lean.PrettyPrinter.Delaborator.Delab"}
16
+ {"name":"ProbabilityTheory.entropy_eq_sum_finset'","declaration":"theorem ProbabilityTheory.entropy_eq_sum_finset' {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] {X : Ω → S} (hX : Measurable X) {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {A : Finset S} (hA : ↑↑(MeasureTheory.Measure.map X μ) (↑A)ᶜ = 0) : H[X ; μ] = Finset.sum A fun x => Real.negMulLog ((MeasureTheory.Measure.map X μ).real {x})"}
17
+ {"name":"ProbabilityTheory.condEntropy_eq_sum_prod","declaration":"/-- Same as previous lemma, but with a sum over a product space rather than a double sum. -/\ntheorem ProbabilityTheory.condEntropy_eq_sum_prod {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] {X : Ω → S} [MeasurableSingletonClass T] (hX : Measurable X) {Y : Ω → T} (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange X] [FiniteRange Y] : H[X | Y ; μ] =\n Finset.sum (FiniteRange.toFinset X ×ˢ FiniteRange.toFinset Y) fun p =>\n (↑↑(MeasureTheory.Measure.map Y μ) {p.2}).toReal *\n Real.negMulLog (↑↑(MeasureTheory.Measure.map X (ProbabilityTheory.cond μ (Y ⁻¹' {p.2}))) {p.1}).toReal"}
18
+ {"name":"ProbabilityTheory.entropy_eq_sum","declaration":"/-- $H[X] = \\sum_s P[X=s] \\log \\frac{1}{P[X=s]}$. -/\ntheorem ProbabilityTheory.entropy_eq_sum {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] {X : Ω → S} (hX : Measurable X) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] : H[X ; μ] = ∑' (x : S), Real.negMulLog (↑↑(MeasureTheory.Measure.map X μ) {x}).toReal"}
19
+ {"name":"ProbabilityTheory.mutualInfo_const","declaration":"/-- The mutual information with a constant is always zero. -/\ntheorem ProbabilityTheory.mutualInfo_const {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} (hX : Measurable X) (c : T) {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange X] : I[X : fun x => c ; μ] = 0"}
20
+ {"name":"ProbabilityTheory.condEntropy_eq_sum","declaration":"/-- $H[X|Y] = \\sum_y P[Y=y] H[X|Y=y]$.-/\ntheorem ProbabilityTheory.condEntropy_eq_sum {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass T] (X : Ω → S) (Y : Ω → T) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] (hY : Measurable Y) [FiniteRange Y] : H[X | Y ; μ] =\n Finset.sum (FiniteRange.toFinset Y) fun y => (↑↑(MeasureTheory.Measure.map Y μ) {y}).toReal * H[X | Y ← y ; μ]"}
21
+ {"name":"ProbabilityTheory.const_of_nonpos_entropy","declaration":"/-- If $X$ is an $S$-valued random variable of non-positive entropy, then $X$ is almost surely constant. -/\ntheorem ProbabilityTheory.const_of_nonpos_entropy {S : Type uS} [Nonempty S] [MeasurableSpace S] [MeasurableSingletonClass S] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {X : Ω → S} (hX : Measurable X) [FiniteRange X] (hent : H[X ; μ] ≤ 0) : ∃ s, μ.real (X ⁻¹' {s}) = 1"}
22
+ {"name":"ProbabilityTheory.IdentDistrib.mutualInfo_eq","declaration":"/-- Substituting variables for ones with the same distributions doesn't change the mutual information. -/\ntheorem ProbabilityTheory.IdentDistrib.mutualInfo_eq {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] {X : Ω → S} {Y : Ω → T} {μ : MeasureTheory.Measure Ω} {Ω' : Type u_1} [MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} {X' : Ω' → S} {Y' : Ω' → T} (hXY : ProbabilityTheory.IdentDistrib (⟨X, Y⟩) (⟨X', Y'⟩) μ μ') : I[X : Y ; μ] = I[X' : Y' ; μ']"}
23
+ {"name":"ProbabilityTheory.«termH[_|_;_]»","declaration":"/-- Conditional entropy of a random variable w.r.t. another.\nThis is the expectation under the law of `Y` of the entropy of the law of `X` conditioned on the\nevent `Y = y`. -/\ndef ProbabilityTheory.«termH[_|_;_]» : Lean.ParserDescr"}
24
+ {"name":"ProbabilityTheory.condEntropy_comm","declaration":"/-- $H[X, Y| Z] = H[Y, X| Z]$. -/\ntheorem ProbabilityTheory.condEntropy_comm {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} {Z : Ω → U} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨X, Y⟩ | Z ; μ] = H[⟨Y, X⟩ | Z ; μ]"}
25
+ {"name":"ProbabilityTheory.entropy_nonneg","declaration":"/-- Entropy is always non-negative. -/\ntheorem ProbabilityTheory.entropy_nonneg {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] (X : Ω → S) (μ : MeasureTheory.Measure Ω) : 0 ≤ H[X ; μ]"}
26
+ {"name":"ProbabilityTheory.«termI[_:_|_;_]».delab","declaration":"/-- Pretty printer defined by `notation3` command. -/\ndef ProbabilityTheory.«termI[_:_|_;_]».delab : Lean.PrettyPrinter.Delaborator.Delab"}
27
+ {"name":"ProbabilityTheory.entropy_eq_sum'","declaration":"theorem ProbabilityTheory.entropy_eq_sum' {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] {X : Ω → S} (hX : Measurable X) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] : H[X ; μ] = ∑' (x : S), Real.negMulLog ((MeasureTheory.Measure.map X μ).real {x})"}
28
+ {"name":"ProbabilityTheory.condEntropy_of_injective","declaration":"/-- If $X : \\Omega \\to S$, $Y : \\Omega \\to T$ are random variables, and $f : T \\times S → U$ is\ninjective for each fixed $t \\in T$, then $H[f(Y, X)|Y] = H[X|Y]$.\nThus for instance $H[X-Y|Y] = H[X|Y]$. -/\ntheorem ProbabilityTheory.condEntropy_of_injective {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [Countable S] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} [MeasurableSingletonClass U] (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] (hX : Measurable X) (hY : Measurable Y) (f : T → S → U) (hf : ∀ (t : T), Function.Injective (f t)) [FiniteRange Y] : H[fun ω => f (Y ω) (X ω) | Y ; μ] = H[X | Y ; μ]"}
29
+ {"name":"ProbabilityTheory.condMutualInfo_eq_sum'","declaration":"/-- A variant of `condMutualInfo_eq_sum` when `Z` has finite codomain. -/\ntheorem ProbabilityTheory.condMutualInfo_eq_sum' {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass U] {X : Ω → S} {Y : Ω → T} {Z : Ω → U} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] (hZ : Measurable Z) [Fintype U] : I[X : Y|Z;μ] =\n Finset.sum Finset.univ fun z => (↑↑μ (Z ⁻¹' {z})).toReal * I[X : Y ; ProbabilityTheory.cond μ (Z ⁻¹' {z})]"}
30
+ {"name":"ProbabilityTheory.entropy_sub_mutualInfo_eq_condEntropy'","declaration":"/-- $H[Y] - I[X : Y] = H[Y | X]$. -/\ntheorem ProbabilityTheory.entropy_sub_mutualInfo_eq_condEntropy' {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Nonempty S] [Nonempty T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange X] [FiniteRange Y] : H[Y ; μ] - I[X : Y ; μ] = H[Y | X ; μ]"}
31
+ {"name":"ProbabilityTheory.«termI[_:_;_]»","declaration":"/-- The mutual information $I[X : Y]$ of two random variables is defined to be $H[X] + H[Y] - H[X ; Y]$. -/\ndef ProbabilityTheory.«termI[_:_;_]» : Lean.ParserDescr"}
32
+ {"name":"ProbabilityTheory.IsUniform.entropy_eq'","declaration":"/-- Variant of `IsUniform.entropy_eq` where `H` is a finite `Set` rather than `Finset`. -/\ntheorem ProbabilityTheory.IsUniform.entropy_eq' {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] {H : Set S} [Finite ↑H] {X : Ω → S} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] (hX : ProbabilityTheory.IsUniform H X μ) (hX' : Measurable X) : H[X ; μ] = Real.log ↑(Nat.card ↑H)"}
33
+ {"name":"ProbabilityTheory.«termH[_|_←_]»","declaration":"/-- Entropy of a random variable with values in a finite measurable space. -/\ndef ProbabilityTheory.«termH[_|_←_]» : Lean.ParserDescr"}
34
+ {"name":"ProbabilityTheory.«termH[_;_]»","declaration":"/-- Entropy of a random variable with values in a finite measurable space. -/\ndef ProbabilityTheory.«termH[_;_]» : Lean.ParserDescr"}
35
+ {"name":"ProbabilityTheory.entropy_congr","declaration":"/-- Two variables that agree almost everywhere, have the same entropy. -/\ntheorem ProbabilityTheory.entropy_congr {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] {μ : MeasureTheory.Measure Ω} {X : Ω → S} {X' : Ω → S} (h : X =ᶠ[MeasureTheory.Measure.ae μ] X') : H[X ; μ] = H[X' ; μ]"}
36
+ {"name":"ProbabilityTheory.condEntropy_zero_measure","declaration":"/-- Any random variable on a zero measure space has zero conditional entropy. -/\ntheorem ProbabilityTheory.condEntropy_zero_measure {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] (X : Ω → S) (Y : Ω → T) : H[X | Y ; 0] = 0"}
37
+ {"name":"ProbabilityTheory.IdentDistrib.entropy_eq","declaration":"/-- Two variables that have the same distribution, have the same entropy. -/\ntheorem ProbabilityTheory.IdentDistrib.entropy_eq {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] {X : Ω → S} {μ : MeasureTheory.Measure Ω} {Ω' : Type u_1} [MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} {X' : Ω' → S} (h : ProbabilityTheory.IdentDistrib X X' μ μ') : H[X ; μ] = H[X' ; μ']"}
38
+ {"name":"ProbabilityTheory.condEntropy","declaration":"/-- Conditional entropy of a random variable w.r.t. another.\nThis is the expectation under the law of `Y` of the entropy of the law of `X` conditioned on the\nevent `Y = y`. -/\ndef ProbabilityTheory.condEntropy {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] (X : Ω → S) (Y : Ω → T) (μ : autoParam (MeasureTheory.Measure Ω) _auto✝) : ℝ"}
39
+ {"name":"ProbabilityTheory.entropy_eq_sum_finiteRange","declaration":"theorem ProbabilityTheory.entropy_eq_sum_finiteRange {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSingletonClass S] {X : Ω → S} (hX : Measurable X) {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange X] : H[X ; μ] = Finset.sum (FiniteRange.toFinset X) fun x => Real.negMulLog (↑↑(MeasureTheory.Measure.map X μ) {x}).toReal"}
40
+ {"name":"ProbabilityTheory.chain_rule''","declaration":"/-- Another form of the chain rule : $H[X|Y] = H[X, Y] - H[Y]$. -/\ntheorem ProbabilityTheory.chain_rule'' {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Nonempty S] [Nonempty T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] (hX : Measurable X) (hY : Measurable Y) [FiniteRange X] [FiniteRange Y] : H[X | Y ; μ] = H[⟨X, Y⟩ ; μ] - H[Y ; μ]"}
41
+ {"name":"ProbabilityTheory.IndepFun.condEntropy_eq_entropy","declaration":"theorem ProbabilityTheory.IndepFun.condEntropy_eq_entropy {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Nonempty S] [Nonempty T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} {μ : MeasureTheory.Measure Ω} (h : ProbabilityTheory.IndepFun X Y μ) (hX : Measurable X) (hY : Measurable Y) [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange X] [FiniteRange Y] : H[X | Y ; μ] = H[X ; μ]"}
42
+ {"name":"ProbabilityTheory.«termH[_|_]».delab","declaration":"/-- Pretty printer defined by `notation3` command. -/\ndef ProbabilityTheory.«termH[_|_]».delab : Lean.PrettyPrinter.Delaborator.Delab"}
43
+ {"name":"ProbabilityTheory.«termH[_|_←_;_]»","declaration":"/-- Entropy of a random variable with values in a finite measurable space. -/\ndef ProbabilityTheory.«termH[_|_←_;_]» : Lean.ParserDescr"}
44
+ {"name":"ProbabilityTheory.IsUniform.entropy_eq","declaration":"/-- If $X$ is uniformly distributed on $H$, then $H[X] = \\log |H|$.\n-/\ntheorem ProbabilityTheory.IsUniform.entropy_eq {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] (H : Finset S) (X : Ω → S) {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] (hX : ProbabilityTheory.IsUniform (↑H) X μ) (hX' : Measurable X) : H[X ; μ] = Real.log ↑(Nat.card { x // x ∈ H })"}
45
+ {"name":"ProbabilityTheory.«termI[_:_]».delab","declaration":"/-- Pretty printer defined by `notation3` command. -/\ndef ProbabilityTheory.«termI[_:_]».delab : Lean.PrettyPrinter.Delaborator.Delab"}
46
+ {"name":"ProbabilityTheory.cond_chain_rule","declaration":"/-- $$ H[X, Y | Z] = H[Y | Z] + H[X|Y, Z].$$ -/\ntheorem ProbabilityTheory.cond_chain_rule {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Countable U] [Nonempty S] [Nonempty T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass S] [MeasurableSingletonClass T] [MeasurableSingletonClass U] {X : Ω → S} {Y : Ω → T} {Z : Ω → U} (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) [FiniteRange X] [FiniteRange Y] [FiniteRange Z] : H[⟨X, Y⟩ | Z ; μ] = H[Y | Z ; μ] + H[X | ⟨Y, Z⟩ ; μ]"}
47
+ {"name":"ProbabilityTheory.mutualInfo_def","declaration":"theorem ProbabilityTheory.mutualInfo_def {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] (X : Ω → S) (Y : Ω → T) (μ : MeasureTheory.Measure Ω) : I[X : Y ; μ] = H[X ; μ] + H[Y ; μ] - H[⟨X, Y⟩ ; μ]"}
48
+ {"name":"ProbabilityTheory.IndepFun.mutualInfo_eq_zero","declaration":"/-- **Alias** of the reverse direction of `ProbabilityTheory.mutualInfo_eq_zero`.\n\n---\n\n$I[X : Y] = 0$ iff $X, Y$ are independent. -/\ntheorem ProbabilityTheory.IndepFun.mutualInfo_eq_zero {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} (hX : Measurable X) (hY : Measurable Y) {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange X] [FiniteRange Y] : ProbabilityTheory.IndepFun X Y μ → I[X : Y ; μ] = 0"}
49
+ {"name":"ProbabilityTheory.entropy_eq_sum_finiteRange'","declaration":"theorem ProbabilityTheory.entropy_eq_sum_finiteRange' {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSingletonClass S] {X : Ω → S} (hX : Measurable X) {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange X] : H[X ; μ] = Finset.sum (FiniteRange.toFinset X) fun x => Real.negMulLog ((MeasureTheory.Measure.map X μ).real {x})"}
50
+ {"name":"ProbabilityTheory.entropy_comp_le","declaration":"/-- Data-processing inequality for the entropy :\n$$ H[f(X)] \\leq H[X].$$\nTo upgrade this to equality, see `entropy_of_comp_eq_of_comp` or `entropy_comp_of_injective`. -/\ntheorem ProbabilityTheory.entropy_comp_le {Ω : Type uΩ} {S : Type uS} {U : Type uU} [mΩ : MeasurableSpace Ω] [Countable S] [Countable U] [Nonempty S] [Nonempty U] [MeasurableSpace S] [MeasurableSpace U] [MeasurableSingletonClass S] [MeasurableSingletonClass U] {X : Ω → S} (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] (hX : Measurable X) (f : S → U) [FiniteRange X] : H[f ∘ X ; μ] ≤ H[X ; μ]"}
51
+ {"name":"ProbabilityTheory.«termH[_|_;_]».delab","declaration":"/-- Pretty printer defined by `notation3` command. -/\ndef ProbabilityTheory.«termH[_|_;_]».delab : Lean.PrettyPrinter.Delaborator.Delab"}
52
+ {"name":"ProbabilityTheory.map_prod_comap_swap","declaration":"/-- The law of $(X, Z)$ is the image of the law of $(Z, X)$.-/\ntheorem ProbabilityTheory.map_prod_comap_swap {Ω : Type uΩ} {S : Type uS} {U : Type uU} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace U] {Z : Ω → U} {X : Ω → S} (hX : Measurable X) (hZ : Measurable Z) (μ : MeasureTheory.Measure Ω) : MeasureTheory.Measure.comap Prod.swap (MeasureTheory.Measure.map (fun ω => (X ω, Z ω)) μ) =\n MeasureTheory.Measure.map (fun ω => (Z ω, X ω)) μ"}
53
+ {"name":"ProbabilityTheory.entropy_eq_kernel_entropy","declaration":"/-- Entropy of a random variable is also the kernel entropy of the distribution over a Dirac mass. -/\ntheorem ProbabilityTheory.entropy_eq_kernel_entropy {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] (X : Ω → S) (μ : MeasureTheory.Measure Ω) : H[X ; μ] = Hk[ProbabilityTheory.kernel.const Unit (MeasureTheory.Measure.map X μ) , MeasureTheory.Measure.dirac ()]"}
54
+ {"name":"ProbabilityTheory.IndepFun.entropy_pair_eq_add","declaration":"/-- If $X, Y$ are independent, then $H[X, Y] = H[X] + H[Y]$. -/\ntheorem ProbabilityTheory.IndepFun.entropy_pair_eq_add {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} (hX : Measurable X) (hY : Measurable Y) {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange X] [FiniteRange Y] : ProbabilityTheory.IndepFun X Y μ → H[⟨X, Y⟩ ; μ] = H[X ; μ] + H[Y ; μ]"}
55
+ {"name":"ProbabilityTheory.condMutualInfo_nonneg","declaration":"/-- Conditional information is non-nonegative. -/\ntheorem ProbabilityTheory.condMutualInfo_nonneg {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} (hX : Measurable X) (hY : Measurable Y) (Z : Ω → U) (μ : MeasureTheory.Measure Ω) [FiniteRange X] [FiniteRange Y] : 0 ≤ I[X : Y|Z;μ]"}
56
+ {"name":"ProbabilityTheory.condMutualInfo_eq'","declaration":"/-- $$ I[X : Y| Z] = H[X| Z] - H[X|Y, Z].$$ -/\ntheorem ProbabilityTheory.condMutualInfo_eq' {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Countable U] [Nonempty S] [Nonempty T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass S] [MeasurableSingletonClass T] [MeasurableSingletonClass U] {X : Ω → S} {Y : Ω → T} {Z : Ω → U} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange X] [FiniteRange Y] [FiniteRange Z] : I[X : Y|Z;μ] = H[X | Z ; μ] - H[X | ⟨Y, Z⟩ ; μ]"}
57
+ {"name":"ProbabilityTheory.«termI[_:_|_;_]»","declaration":"/-- The conditional mutual information $I[X : Y| Z]$ is the mutual information of $X| Z=z$ and\n$Y| Z=z$, integrated over $z$. -/\ndef ProbabilityTheory.«termI[_:_|_;_]» : Lean.ParserDescr"}
58
+ {"name":"ProbabilityTheory.«termH[_|_←_;_]».delab","declaration":"/-- Pretty printer defined by `notation3` command. -/\ndef ProbabilityTheory.«termH[_|_←_;_]».delab : Lean.PrettyPrinter.Delaborator.Delab"}
59
+ {"name":"ProbabilityTheory.condEntropy_eq_kernel_entropy","declaration":"/-- Conditional entropy of a random variable is equal to the entropy of its conditional kernel. -/\ntheorem ProbabilityTheory.condEntropy_eq_kernel_entropy {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Nonempty S] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] [FiniteRange Y] : H[X | Y ; μ] = Hk[ProbabilityTheory.condDistrib X Y μ , MeasureTheory.Measure.map Y μ]"}
60
+ {"name":"ProbabilityTheory.chain_rule","declaration":"/-- Another form of the chain rule : $H[X, Y] = H[Y] + H[X|Y]$. -/\ntheorem ProbabilityTheory.chain_rule {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Nonempty S] [Nonempty T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] (hX : Measurable X) (hY : Measurable Y) [FiniteRange X] [FiniteRange Y] : H[⟨X, Y⟩ ; μ] = H[Y ; μ] + H[X | Y ; μ]"}
61
+ {"name":"ProbabilityTheory.condEntropy_eq_sum_sum","declaration":"/-- $H[X|Y] = \\sum_y \\sum_x P[Y=y] P[X=x|Y=y] log \\frac{1}{P[X=x|Y=y]}$.-/\ntheorem ProbabilityTheory.condEntropy_eq_sum_sum {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] {X : Ω → S} [MeasurableSingletonClass T] (hX : Measurable X) {Y : Ω → T} (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange X] [FiniteRange Y] : H[X | Y ; μ] =\n Finset.sum (FiniteRange.toFinset Y) fun y =>\n Finset.sum (FiniteRange.toFinset X) fun x =>\n (↑↑(MeasureTheory.Measure.map Y μ) {y}).toReal *\n Real.negMulLog (↑↑(MeasureTheory.Measure.map X (ProbabilityTheory.cond μ (Y ⁻¹' {y}))) {x}).toReal"}
62
+ {"name":"ProbabilityTheory.condMutualInfo_def","declaration":"theorem ProbabilityTheory.condMutualInfo_def {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] (X : Ω → S) (Y : Ω → T) (Z : Ω → U) (μ : MeasureTheory.Measure Ω) : I[X : Y|Z;μ] =\n ∫ (x : U), (fun z => H[X | Z ← z ; μ] + H[Y | Z ← z ; μ] - H[⟨X, Y⟩ | Z ← z ; μ]) x ∂MeasureTheory.Measure.map Z μ"}
63
+ {"name":"ProbabilityTheory.prob_ge_exp_neg_entropy'","declaration":"/-- If $X$ is an $S$-valued random variable, then there exists $s \\in S$ such that\n$P[X=s] \\geq \\exp(-H[X])$. -/\ntheorem ProbabilityTheory.prob_ge_exp_neg_entropy' {S : Type uS} [Nonempty S] [MeasurableSpace S] [MeasurableSingletonClass S] {Ω : Type u_1} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] (X : Ω → S) (hX : Measurable X) [FiniteRange X] : ∃ s, Real.exp (-H[X ; μ]) ≤ μ.real (X ⁻¹' {s})"}
64
+ {"name":"ProbabilityTheory.condMutualInfo_of_inj_map","declaration":"/-- If $f(Z, X)$ is injective for each fixed $Z$, then $I[f(Z, X) : Y| Z] = I[X : Y| Z]$.-/\ntheorem ProbabilityTheory.condMutualInfo_of_inj_map {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Countable U] [Nonempty S] [Nonempty T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass S] [MeasurableSingletonClass T] [MeasurableSingletonClass U] {X : Ω → S} {Y : Ω → T} {Z : Ω → U} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) {V : Type u_1} [Nonempty V] [MeasurableSpace V] [MeasurableSingletonClass V] [Countable V] (f : U → S → V) (hf : ∀ (t : U), Function.Injective (f t)) [FiniteRange Z] : I[fun ω => f (Z ω) (X ω) : Y|Z;μ] = I[X : Y|Z;μ]"}
65
+ {"name":"ProbabilityTheory.mutualInfo_eq_zero","declaration":"/-- $I[X : Y] = 0$ iff $X, Y$ are independent. -/\ntheorem ProbabilityTheory.mutualInfo_eq_zero {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} (hX : Measurable X) (hY : Measurable Y) {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange X] [FiniteRange Y] : I[X : Y ; μ] = 0 ↔ ProbabilityTheory.IndepFun X Y μ"}
66
+ {"name":"ProbabilityTheory.condMutualInfo","declaration":"/-- The conditional mutual information $I[X : Y| Z]$ is the mutual information of $X| Z=z$ and\n$Y| Z=z$, integrated over $z$. -/\ndef ProbabilityTheory.condMutualInfo {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] (X : Ω → S) (Y : Ω → T) (Z : Ω → U) (μ : autoParam (MeasureTheory.Measure Ω) _auto✝) : ℝ"}
67
+ {"name":"ProbabilityTheory.entropy_submodular","declaration":"/-- $H[X | Y, Z] \\leq H[X | Z]$ -/\ntheorem ProbabilityTheory.entropy_submodular {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Countable U] [Nonempty S] [Nonempty T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass U] {X : Ω → S} {Y : Ω → T} {Z : Ω → U} (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] [MeasurableSingletonClass S] [MeasurableSingletonClass T] (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) [FiniteRange X] [FiniteRange Y] [FiniteRange Z] : H[X | ⟨Y, Z⟩ ; μ] ≤ H[X | Z ; μ]"}
68
+ {"name":"ProbabilityTheory.entropy_comp_of_injective","declaration":"/-- If $X$, $Y$ are $S$-valued and $T$-valued random variables, and $Y = f(X)$ for\nsome injection $f : S \\to T$, then $H[Y] = H[X]$. One can also use `entropy_of_comp_eq_of_comp` as an alternative if verifying injectivity is fiddly. For the upper bound only, see `entropy_comp_le`. -/\ntheorem ProbabilityTheory.entropy_comp_of_injective {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [Countable S] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} (μ : MeasureTheory.Measure Ω) (hX : Measurable X) (f : S → T) (hf : Function.Injective f) : H[f ∘ X ; μ] = H[X ; μ]"}
69
+ {"name":"ProbabilityTheory.entropy_prod_comp","declaration":"/-- $H[X, f(X)] = H[X]$.-/\ntheorem ProbabilityTheory.entropy_prod_comp {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [Countable S] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} (hX : Measurable X) (μ : MeasureTheory.Measure Ω) (f : S → T) : H[⟨X, f ∘ X⟩ ; μ] = H[X ; μ]"}
70
+ {"name":"ProbabilityTheory.entropy_sub_mutualInfo_eq_condEntropy","declaration":"/-- $H[X] - I[X : Y] = H[X | Y]$. -/\ntheorem ProbabilityTheory.entropy_sub_mutualInfo_eq_condEntropy {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Nonempty S] [Nonempty T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange X] [FiniteRange Y] : H[X ; μ] - I[X : Y ; μ] = H[X | Y ; μ]"}
71
+ {"name":"ProbabilityTheory.«termH[_]»","declaration":"/-- Entropy of a random variable with values in a finite measurable space. -/\ndef ProbabilityTheory.«termH[_]» : Lean.ParserDescr"}
72
+ {"name":"ProbabilityTheory.IdentDistrib.condEntropy_eq","declaration":"/-- Two pairs of variables that have the same joint distribution, have the same\nconditional entropy. -/\ntheorem ProbabilityTheory.IdentDistrib.condEntropy_eq {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Nonempty S] [Nonempty T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {μ : MeasureTheory.Measure Ω} {Ω' : Type u_1} [MeasurableSpace Ω'] {X : Ω → S} {Y : Ω → T} {μ' : MeasureTheory.Measure Ω'} {X' : Ω' → S} {Y' : Ω' → T} [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] (hX : Measurable X) (hY : Measurable Y) (hX' : Measurable X') (hY' : Measurable Y') (h : ProbabilityTheory.IdentDistrib (⟨X, Y⟩) (⟨X', Y'⟩) μ μ') [FiniteRange X] [FiniteRange Y] [FiniteRange X'] [FiniteRange Y'] : H[X | Y ; μ] = H[X' | Y' ; μ']"}
73
+ {"name":"ProbabilityTheory.«termH[_|_]»","declaration":"/-- Conditional entropy of a random variable w.r.t. another.\nThis is the expectation under the law of `Y` of the entropy of the law of `X` conditioned on the\nevent `Y = y`. -/\ndef ProbabilityTheory.«termH[_|_]» : Lean.ParserDescr"}
74
+ {"name":"ProbabilityTheory.entropy_eq_log_card","declaration":"/-- If $X$ is $S$-valued random variable, then $H[X] = \\log |S|$ if and only if $X$ is uniformly\ndistributed. -/\ntheorem ProbabilityTheory.entropy_eq_log_card {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSingletonClass S] {X : Ω → S} [Fintype S] (hX : Measurable X) (μ : MeasureTheory.Measure Ω) [hμ : NeZero μ] [MeasureTheory.IsFiniteMeasure μ] : H[X ; μ] = Real.log ↑(Fintype.card S) ↔\n ∀ (s : S), ↑↑(MeasureTheory.Measure.map X μ) {s} = ↑↑μ Set.univ / ↑(Fintype.card S)"}
75
+ {"name":"ProbabilityTheory.cond_chain_rule'","declaration":"/-- If $X : \\Omega \\to S$, $Y : \\Omega \\to T$,$Z : \\Omega \\to U$ are random variables, then\n$$H[X, Y | Z] = H[X | Z] + H[Y|X, Z]$$. -/\ntheorem ProbabilityTheory.cond_chain_rule' {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Countable U] [Nonempty S] [Nonempty T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass S] [MeasurableSingletonClass T] [MeasurableSingletonClass U] {X : Ω → S} {Y : Ω → T} {Z : Ω → U} (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) [FiniteRange X] [FiniteRange Y] [FiniteRange Z] : H[⟨X, Y⟩ | Z ; μ] = H[X | Z ; μ] + H[Y | ⟨X, Z⟩ ; μ]"}
76
+ {"name":"ProbabilityTheory.entropy_def","declaration":"/-- Entropy of a random variable agrees with entropy of its distribution. -/\ntheorem ProbabilityTheory.entropy_def {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] (X : Ω → S) (μ : MeasureTheory.Measure Ω) : H[X ; μ] = Hm[MeasureTheory.Measure.map X μ]"}
77
+ {"name":"ProbabilityTheory.chain_rule'","declaration":"/-- One form of the chain rule : $H[X, Y] = H[X] + H[Y|X]. -/\ntheorem ProbabilityTheory.chain_rule' {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Nonempty S] [Nonempty T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] (hX : Measurable X) (hY : Measurable Y) [FiniteRange X] [FiniteRange Y] : H[⟨X, Y⟩ ; μ] = H[X ; μ] + H[Y | X ; μ]"}
78
+ {"name":"ProbabilityTheory.condEntropy_eq_sum_fintype","declaration":"/-- $H[X|Y] = \\sum_y P[Y=y] H[X|Y=y]$.-/\ntheorem ProbabilityTheory.condEntropy_eq_sum_fintype {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass T] (X : Ω → S) (Y : Ω → T) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] (hY : Measurable Y) [Fintype T] : H[X | Y ; μ] = Finset.sum Finset.univ fun y => (↑↑μ (Y ⁻¹' {y})).toReal * H[X | Y ← y ; μ]"}
79
+ {"name":"ProbabilityTheory.condEntropy_eq_zero","declaration":"theorem ProbabilityTheory.condEntropy_eq_zero {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] (t : T) (ht : (↑↑(MeasureTheory.Measure.map Y μ) {t}).toReal = 0) : H[X | Y ← t ; μ] = 0"}
80
+ {"name":"ProbabilityTheory.entropy_triple_add_entropy_le","declaration":"/-- The submodularity inequality:\n$$ H[X, Y, Z] + H[Z] \\leq H[X, Z] + H[Y, Z].$$ -/\ntheorem ProbabilityTheory.entropy_triple_add_entropy_le {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Countable U] [Nonempty S] [Nonempty T] [Nonempty U] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass U] {X : Ω → S} {Y : Ω → T} {Z : Ω → U} (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] [MeasurableSingletonClass S] [MeasurableSingletonClass T] (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) [FiniteRange X] [FiniteRange Y] [FiniteRange Z] : H[⟨X, ⟨Y, Z⟩⟩ ; μ] + H[Z ; μ] ≤ H[⟨X, Z⟩ ; μ] + H[⟨Y, Z⟩ ; μ]"}
81
+ {"name":"ProbabilityTheory.condEntropy_prod_eq_of_indepFun","declaration":"theorem ProbabilityTheory.condEntropy_prod_eq_of_indepFun {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Nonempty S] [Nonempty T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass S] [MeasurableSingletonClass T] [MeasurableSingletonClass U] {X : Ω → S} {Y : Ω → T} {Z : Ω → U} {μ : MeasureTheory.Measure Ω} [Fintype T] [Fintype U] [MeasureTheory.IsProbabilityMeasure μ] (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) [FiniteRange X] (h : ProbabilityTheory.IndepFun (⟨X, Y⟩) Z μ) : H[X | ⟨Y, Z⟩ ; μ] = H[X | Y ; μ]"}
82
+ {"name":"ProbabilityTheory.«termI[_:_;_]».delab","declaration":"/-- Pretty printer defined by `notation3` command. -/\ndef ProbabilityTheory.«termI[_:_;_]».delab : Lean.PrettyPrinter.Delaborator.Delab"}
83
+ {"name":"ProbabilityTheory.entropy_sub_condEntropy","declaration":"/-- $$ H[X] - H[X|Y] = I[X : Y] $$ -/\ntheorem ProbabilityTheory.entropy_sub_condEntropy {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Nonempty S] [Nonempty T] [MeasurableSpace S] [MeasurableSpace T] {X : Ω → S} {Y : Ω → T} (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] [MeasurableSingletonClass S] [MeasurableSingletonClass T] (hX : Measurable X) (hY : Measurable Y) [FiniteRange X] [FiniteRange Y] : H[X ; μ] - H[X | Y ; μ] = I[X : Y ; μ]"}
84
+ {"name":"ProbabilityTheory.entropy_zero_measure","declaration":"/-- Any variable on a zero measure space has zero entropy. -/\ntheorem ProbabilityTheory.entropy_zero_measure {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] (X : Ω → S) : H[X ; 0] = 0"}
85
+ {"name":"ProbabilityTheory.condMutualInfo_eq_zero","declaration":"/-- $I[X : Y| Z]=0$ iff $X, Y$ are conditionally independent over $Z$. -/\ntheorem ProbabilityTheory.condMutualInfo_eq_zero {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [Countable U] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass U] {X : Ω → S} {Y : Ω → T} {Z : Ω → U} [MeasurableSingletonClass S] [MeasurableSingletonClass T] {μ : MeasureTheory.Measure Ω} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange X] [FiniteRange Y] [FiniteRange Z] : I[X : Y|Z;μ] = 0 ↔ ProbabilityTheory.CondIndepFun X Y Z μ"}
86
+ {"name":"ProbabilityTheory.entropy_le_log_card","declaration":"/-- Entropy is at most the logarithm of the cardinality of the range. -/\ntheorem ProbabilityTheory.entropy_le_log_card {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSingletonClass S] [Fintype S] (X : Ω → S) (μ : MeasureTheory.Measure Ω) : H[X ; μ] ≤ Real.log ↑(Fintype.card S)"}
87
+ {"name":"ProbabilityTheory.condEntropy_comp_ge","declaration":"/-- Data-processing inequality for the conditional entropy:\n$$ H[Y|f(X)] \\geq H[Y|X]$$\nTo upgrade this to equality, see `condEntropy_of_injective'` -/\ntheorem ProbabilityTheory.condEntropy_comp_ge {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Countable U] [Nonempty S] [Nonempty T] [Nonempty U] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass U] {X : Ω → S} {Y : Ω → T} [MeasurableSingletonClass S] [MeasurableSingletonClass T] [FiniteRange X] [FiniteRange Y] (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] (hX : Measurable X) (hY : Measurable Y) (f : S → U) : H[Y | f ∘ X ; μ] ≥ H[Y | X ; μ]"}
88
+ {"name":"ProbabilityTheory.mutualInfo_comm","declaration":"/-- $I[X : Y] = I[Y : X]$. -/\ntheorem ProbabilityTheory.mutualInfo_comm {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : I[X : Y ; μ] = I[Y : X ; μ]"}
89
+ {"name":"ProbabilityTheory.mutualInfo_nonneg","declaration":"/-- Mutual information is non-negative. -/\ntheorem ProbabilityTheory.mutualInfo_nonneg {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) [FiniteRange X] [FiniteRange Y] : 0 ≤ I[X : Y ; μ]"}
90
+ {"name":"ProbabilityTheory.ent_of_cond_indep","declaration":"/-- If $X, Y$ are conditionally independent over $Z$, then $H[X, Y, Z] = H[X, Z] + H[Y, Z] - H[Z]$. -/\ntheorem ProbabilityTheory.ent_of_cond_indep {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Countable U] [Nonempty S] [Nonempty T] [Nonempty U] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass U] {X : Ω → S} {Y : Ω → T} {Z : Ω → U} [MeasurableSingletonClass S] [MeasurableSingletonClass T] {μ : MeasureTheory.Measure Ω} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (h : ProbabilityTheory.CondIndepFun X Y Z μ) [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange X] [FiniteRange Y] [FiniteRange Z] : H[⟨X, ⟨Y, Z⟩⟩ ; μ] = H[⟨X, Z⟩ ; μ] + H[⟨Y, Z⟩ ; μ] - H[Z ; μ]"}
91
+ {"name":"ProbabilityTheory.condEntropy_nonneg","declaration":"/-- Conditional entropy is non-negative. -/\ntheorem ProbabilityTheory.condEntropy_nonneg {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] (X : Ω → S) (Y : Ω → T) (μ : MeasureTheory.Measure Ω) : 0 ≤ H[X | Y ; μ]"}
92
+ {"name":"ProbabilityTheory.condEntropy_comp_self","declaration":"/-- $H[X|f(X)] = H[X] - H[f(X)]$. -/\ntheorem ProbabilityTheory.condEntropy_comp_self {Ω : Type uΩ} {S : Type uS} {U : Type uU} [mΩ : MeasurableSpace Ω] [Countable S] [Countable U] [Nonempty S] [Nonempty U] [MeasurableSpace S] [MeasurableSpace U] [MeasurableSingletonClass S] [MeasurableSingletonClass U] {X : Ω → S} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] (hX : Measurable X) {f : S → U} (hf : Measurable f) [FiniteRange X] : H[X | f ∘ X ; μ] = H[X ; μ] - H[f ∘ X ; μ]"}
93
+ {"name":"ProbabilityTheory.condEntropy_of_injective'","declaration":"/-- If $X : \\Omega \\to S$ and $Y : \\Omega \\to T$ are random variables, and $f : T \\to U$ is an\ninjection then $H[X|f(Y)] = H[X|Y]$.\n -/\ntheorem ProbabilityTheory.condEntropy_of_injective' {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Countable U] [Nonempty S] [Nonempty T] [Nonempty U] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass T] [MeasurableSingletonClass U] {X : Ω → S} {Y : Ω → T} [MeasurableSingletonClass S] (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] (hX : Measurable X) (hY : Measurable Y) (f : T → U) (hf : Function.Injective f) (hfY : Measurable (f ∘ Y)) [FiniteRange X] [FiniteRange Y] : H[X | f ∘ Y ; μ] = H[X | Y ; μ]"}
94
+ {"name":"ProbabilityTheory.prob_ge_exp_neg_entropy","declaration":"/-- If $X$ is an $S$-valued random variable, then there exists $s \\in S$ such that\n$P[X=s] \\geq \\exp(-H[X])$. TODO: remove the probability measure hypothesis, which is unncessary here. -/\ntheorem ProbabilityTheory.prob_ge_exp_neg_entropy {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [Nonempty S] [MeasurableSpace S] [MeasurableSingletonClass S] (X : Ω → S) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] (hX : Measurable X) [hX' : FiniteRange X] : ∃ s, ↑↑(MeasureTheory.Measure.map X μ) {s} ≥ ↑↑μ Set.univ * ↑(Real.toNNReal (Real.exp (-H[X ; μ])))"}
95
+ {"name":"ProbabilityTheory.mutualInfo_eq_entropy_sub_condEntropy","declaration":"/-- $I[X : Y] = H[X] - H[X|Y]$. -/\ntheorem ProbabilityTheory.mutualInfo_eq_entropy_sub_condEntropy {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Nonempty S] [Nonempty T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange X] [FiniteRange Y] : I[X : Y ; μ] = H[X ; μ] - H[X | Y ; μ]"}
96
+ {"name":"ProbabilityTheory.condMutualInfo_eq_sum","declaration":"theorem ProbabilityTheory.condMutualInfo_eq_sum {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass U] {X : Ω → S} {Y : Ω → T} {Z : Ω → U} {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsFiniteMeasure μ] (hZ : Measurable Z) [FiniteRange Z] : I[X : Y|Z;μ] =\n Finset.sum (FiniteRange.toFinset Z) fun z =>\n (↑↑μ (Z ⁻¹' {z})).toReal * I[X : Y ; ProbabilityTheory.cond μ (Z ⁻¹' {z})]"}
97
+ {"name":"ProbabilityTheory.entropy_assoc","declaration":"/-- $H[(X, Y), Z] = H[X, (Y, Z)]$. -/\ntheorem ProbabilityTheory.entropy_assoc {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Countable U] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass S] [MeasurableSingletonClass T] [MeasurableSingletonClass U] {X : Ω → S} {Y : Ω → T} {Z : Ω → U} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (μ : MeasureTheory.Measure Ω) : H[⟨X, ⟨Y, Z⟩⟩ ; μ] = H[⟨⟨X, Y⟩, Z⟩ ; μ]"}
98
+ {"name":"ProbabilityTheory.entropy_eq_sum_finset","declaration":"theorem ProbabilityTheory.entropy_eq_sum_finset {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] {X : Ω → S} (hX : Measurable X) {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {A : Finset S} (hA : ↑↑(MeasureTheory.Measure.map X μ) (↑A)ᶜ = 0) : H[X ; μ] = Finset.sum A fun x => Real.negMulLog (↑↑(MeasureTheory.Measure.map X μ) {x}).toReal"}
99
+ {"name":"ProbabilityTheory.entropy","declaration":"/-- Entropy of a random variable with values in a finite measurable space. -/\ndef ProbabilityTheory.entropy {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] (X : Ω → S) (μ : autoParam (MeasureTheory.Measure Ω) _auto✝) : ℝ"}
100
+ {"name":"ProbabilityTheory.entropy_comm","declaration":"/-- $H[X, Y] = H[Y, X]$. -/\ntheorem ProbabilityTheory.entropy_comm {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨X, Y⟩ ; μ] = H[⟨Y, X⟩ ; μ]"}
101
+ {"name":"ProbabilityTheory.entropy_pair_le_add","declaration":"/-- Subadditivity of entropy. -/\ntheorem ProbabilityTheory.entropy_pair_le_add {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → S} {Y : Ω → T} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) [FiniteRange X] [FiniteRange Y] : H[⟨X, Y⟩ ; μ] ≤ H[X ; μ] + H[Y ; μ]"}
102
+ {"name":"ProbabilityTheory.entropy_cond_eq_sum","declaration":"/-- $H[X|Y=y] = \\sum_s P[X=s|Y=y] \\log \\frac{1}{P[X=s|Y=y]}$. -/\ntheorem ProbabilityTheory.entropy_cond_eq_sum {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] {X : Ω → S} {Y : Ω → T} (hX : Measurable X) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] (y : T) : H[X | Y ← y ; μ] =\n ∑' (x : S), Real.negMulLog (↑↑(MeasureTheory.Measure.map X (ProbabilityTheory.cond μ (Y ⁻¹' {y}))) {x}).toReal"}
103
+ {"name":"ProbabilityTheory.condEntropy_comp_of_injective","declaration":"/-- A weaker version of the above lemma in which f is independent of Y. -/\ntheorem ProbabilityTheory.condEntropy_comp_of_injective {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [Countable S] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] {X : Ω → S} {Y : Ω → T} [MeasurableSingletonClass S] [MeasurableSingletonClass U] (μ : MeasureTheory.Measure Ω) (hX : Measurable X) (f : S → U) (hf : Function.Injective f) : H[f ∘ X | Y ; μ] = H[X | Y ; μ]"}
104
+ {"name":"ProbabilityTheory.condEntropy_def","declaration":"theorem ProbabilityTheory.condEntropy_def {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] (X : Ω → S) (Y : Ω → T) (μ : MeasureTheory.Measure Ω) : H[X | Y ; μ] = ∫ (x : T), (fun y => H[X | Y ← y ; μ]) x ∂MeasureTheory.Measure.map Y μ"}
105
+ {"name":"ProbabilityTheory.«termI[_:_]»","declaration":"/-- The mutual information $I[X : Y]$ of two random variables is defined to be $H[X] + H[Y] - H[X ; Y]$. -/\ndef ProbabilityTheory.«termI[_:_]» : Lean.ParserDescr"}
106
+ {"name":"ProbabilityTheory.condEntropy_prod_eq_sum","declaration":"theorem ProbabilityTheory.condEntropy_prod_eq_sum {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass T] {T' : Type u_1} {X : Ω → S} {Y : Ω → T} {Z : Ω → T'} [MeasurableSpace T'] [MeasurableSingletonClass T'] (μ : MeasureTheory.Measure Ω) (hY : Measurable Y) (hZ : Measurable Z) [MeasureTheory.IsFiniteMeasure μ] [Fintype T] [Fintype T'] : H[X | ⟨Y, Z⟩ ; μ] =\n Finset.sum Finset.univ fun z => (↑↑μ (Z ⁻¹' {z})).toReal * H[X | Y ; ProbabilityTheory.cond μ (Z ⁻¹' {z})]"}
107
+ {"name":"ProbabilityTheory.«termH[_|_←_]».delab","declaration":"/-- Pretty printer defined by `notation3` command. -/\ndef ProbabilityTheory.«termH[_|_←_]».delab : Lean.PrettyPrinter.Delaborator.Delab"}
108
+ {"name":"ProbabilityTheory.«termH[_]».delab","declaration":"/-- Pretty printer defined by `notation3` command. -/\ndef ProbabilityTheory.«termH[_]».delab : Lean.PrettyPrinter.Delaborator.Delab"}
109
+ {"name":"ProbabilityTheory.entropy_cond_eq_sum_finiteRange","declaration":"theorem ProbabilityTheory.entropy_cond_eq_sum_finiteRange {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSingletonClass S] {X : Ω → S} {Y : Ω → T} (hX : Measurable X) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] (y : T) [FiniteRange X] : H[X | Y ← y ; μ] =\n Finset.sum (FiniteRange.toFinset X) fun x =>\n Real.negMulLog (↑↑(MeasureTheory.Measure.map X (ProbabilityTheory.cond μ (Y ⁻¹' {y}))) {x}).toReal"}
110
+ {"name":"ProbabilityTheory.condMutualInfo_eq","declaration":"/-- $$ I[X : Y| Z] = H[X| Z] + H[Y| Z] - H[X, Y| Z].$$ -/\ntheorem ProbabilityTheory.condMutualInfo_eq {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Countable U] [Nonempty S] [Nonempty T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass S] [MeasurableSingletonClass T] [MeasurableSingletonClass U] {X : Ω → S} {Y : Ω → T} {Z : Ω → U} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange Z] : I[X : Y|Z;μ] = H[X | Z ; μ] + H[Y | Z ; μ] - H[⟨X, Y⟩ | Z ; μ]"}
111
+ {"name":"ProbabilityTheory.condEntropy_two_eq_kernel_entropy","declaration":"theorem ProbabilityTheory.condEntropy_two_eq_kernel_entropy {Ω : Type uΩ} {S : Type uS} {T : Type uT} {U : Type uU} [mΩ : MeasurableSpace Ω] [Countable S] [Countable T] [Countable U] [Nonempty S] [Nonempty T] [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass S] [MeasurableSingletonClass T] [MeasurableSingletonClass U] {Z : Ω → U} {X : Ω → S} {Y : Ω → T} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange Y] [FiniteRange Z] : H[X | ⟨Y, Z⟩ ; μ] =\n Hk[ProbabilityTheory.kernel.condKernel (ProbabilityTheory.condDistrib (fun a => (Y a, X a)) Z μ) ,\n MeasureTheory.Measure.compProd (MeasureTheory.Measure.map Z μ)\n (ProbabilityTheory.kernel.fst (ProbabilityTheory.condDistrib (fun a => (Y a, X a)) Z μ))]"}
PFR-declarations/PFR.ForMathlib.Entropy.Group.jsonl ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"ProbabilityTheory.max_condEntropy_sub_condMutualInfo_le_condEntropy_add","declaration":"/-- $$\\max(H[X | Z], H[Y | Z]) - I[X : Y | Z] \\leq H[X + Y | Z]$$-/\ntheorem ProbabilityTheory.max_condEntropy_sub_condMutualInfo_le_condEntropy_add {Ω : Type uΩ} {G : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [Countable G] [Countable T] [Nonempty G] [Nonempty T] [MeasurableSpace G] [MeasurableSpace T] [MeasurableSingletonClass G] [MeasurableSingletonClass T] [AddGroup G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange X] [MeasureTheory.IsProbabilityMeasure μ] {Y : Ω → G} [FiniteRange Y] {Z : Ω → T} [FiniteRange Z] (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) : max H[X | Z ; μ] H[Y | Z ; μ] - I[X : Y|Z;μ] ≤ H[X + Y | Z ; μ]"}
2
+ {"name":"ProbabilityTheory.entropy_div_left","declaration":"/-- $H[Y / X, Y] = H[X, Y]$ -/\ntheorem ProbabilityTheory.entropy_div_left {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨Y / X, Y⟩ ; μ] = H[⟨X, Y⟩ ; μ]"}
3
+ {"name":"ProbabilityTheory.entropy_neg","declaration":"/-- If $X$ is $G$-valued, then $H[-X]=H[X]$.-/\ntheorem ProbabilityTheory.entropy_neg {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} (hX : Measurable X) : H[-X ; μ] = H[X ; μ]"}
4
+ {"name":"ProbabilityTheory.max_condEntropy_sub_condMutualInfo_le_condEntropy_sub","declaration":"/-- $$\\max(H[X | Z], H[Y | Z]) - I[X : Y | Z] \\leq H[X - Y | Z]$$-/\ntheorem ProbabilityTheory.max_condEntropy_sub_condMutualInfo_le_condEntropy_sub {Ω : Type uΩ} {G : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [Countable G] [Countable T] [Nonempty G] [Nonempty T] [MeasurableSpace G] [MeasurableSpace T] [MeasurableSingletonClass G] [MeasurableSingletonClass T] [AddGroup G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange X] {Y : Ω → G} [FiniteRange Y] {Z : Ω → T} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange Z] : max H[X | Z ; μ] H[Y | Z ; μ] - I[X : Y|Z;μ] ≤ H[X - Y | Z ; μ]"}
5
+ {"name":"ProbabilityTheory.entropy_sub_left","declaration":"/-- $H[Y - X, Y] = H[X, Y]$-/\ntheorem ProbabilityTheory.entropy_sub_left {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨Y - X, Y⟩ ; μ] = H[⟨X, Y⟩ ; μ]"}
6
+ {"name":"ProbabilityTheory.entropy_sub_mutualInfo_le_entropy_add'","declaration":"/-- $$H[Y] - I[X : Y] \\leq H[X + Y]$$-/\ntheorem ProbabilityTheory.entropy_sub_mutualInfo_le_entropy_add' {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [Nonempty G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange X] [MeasureTheory.IsProbabilityMeasure μ] {Y : Ω → G} [FiniteRange Y] (hX : Measurable X) (hY : Measurable Y) : H[Y ; μ] - I[X : Y ; μ] ≤ H[X + Y ; μ]"}
7
+ {"name":"ProbabilityTheory.entropy_sub_mutualInfo_le_entropy_mul","declaration":"/-- $$H[X] - I[X : Y] \\leq H[X * Y]$$ -/\ntheorem ProbabilityTheory.entropy_sub_mutualInfo_le_entropy_mul {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [Nonempty G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange X] [MeasureTheory.IsProbabilityMeasure μ] {Y : Ω → G} [FiniteRange Y] (hX : Measurable X) (hY : Measurable Y) : H[X ; μ] - I[X : Y ; μ] ≤ H[X * Y ; μ]"}
8
+ {"name":"ProbabilityTheory.entropy_sub_mutualInfo_le_entropy_add","declaration":"/-- $$H[X] - I[X : Y] \\leq H[X + Y]$$-/\ntheorem ProbabilityTheory.entropy_sub_mutualInfo_le_entropy_add {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [Nonempty G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange X] [MeasureTheory.IsProbabilityMeasure μ] {Y : Ω → G} [FiniteRange Y] (hX : Measurable X) (hY : Measurable Y) : H[X ; μ] - I[X : Y ; μ] ≤ H[X + Y ; μ]"}
9
+ {"name":"ProbabilityTheory.condEntropy_sub_left","declaration":"/-- $$H[Y - X | Y] = H[X | Y]$$-/\ntheorem ProbabilityTheory.condEntropy_sub_left {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {Y : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange Y] [MeasureTheory.IsFiniteMeasure μ] (hX : Measurable X) (hY : Measurable Y) : H[Y - X | Y ; μ] = H[X | Y ; μ]"}
10
+ {"name":"ProbabilityTheory.condEntropy_add_right","declaration":"/-- $$H[X + Y | Y] = H[X | Y]$$-/\ntheorem ProbabilityTheory.condEntropy_add_right {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {Y : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange Y] [MeasureTheory.IsFiniteMeasure μ] (hX : Measurable X) (hY : Measurable Y) : H[X + Y | Y ; μ] = H[X | Y ; μ]"}
11
+ {"name":"ProbabilityTheory.max_entropy_sub_mutualInfo_le_entropy_mul","declaration":"/-- $$\\max(H[X], H[Y]) - I[X : Y] \\leq H[X * Y]$$ -/\ntheorem ProbabilityTheory.max_entropy_sub_mutualInfo_le_entropy_mul {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [Nonempty G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange X] [MeasureTheory.IsProbabilityMeasure μ] {Y : Ω → G} [FiniteRange Y] (hX : Measurable X) (hY : Measurable Y) : max H[X ; μ] H[Y ; μ] - I[X : Y ; μ] ≤ H[X * Y ; μ]"}
12
+ {"name":"ProbabilityTheory.max_entropy_sub_mutualInfo_le_entropy_div","declaration":"/-- $$\\max(H[X], H[Y]) - I[X : Y] \\leq H[X / Y]$$ -/\ntheorem ProbabilityTheory.max_entropy_sub_mutualInfo_le_entropy_div {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [Nonempty G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange X] [MeasureTheory.IsProbabilityMeasure μ] {Y : Ω → G} [FiniteRange Y] (hX : Measurable X) (hY : Measurable Y) : max H[X ; μ] H[Y ; μ] - I[X : Y ; μ] ≤ H[X / Y ; μ]"}
13
+ {"name":"ProbabilityTheory.entropy_mul_left","declaration":"/-- $H[Y * X, Y] = H[X, Y]$ -/\ntheorem ProbabilityTheory.entropy_mul_left {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨Y * X, Y⟩ ; μ] = H[⟨X, Y⟩ ; μ]"}
14
+ {"name":"ProbabilityTheory.entropy_neg_left","declaration":"/-- $H[-X, Y] = H[X, Y]$-/\ntheorem ProbabilityTheory.entropy_neg_left {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨-X, Y⟩ ; μ] = H[⟨X, Y⟩ ; μ]"}
15
+ {"name":"ProbabilityTheory.condEntropy_add_left","declaration":"/-- $$H[Y + X | Y] = H[X | Y]$$-/\ntheorem ProbabilityTheory.condEntropy_add_left {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {Y : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange Y] [MeasureTheory.IsFiniteMeasure μ] (hX : Measurable X) (hY : Measurable Y) : H[Y + X | Y ; μ] = H[X | Y ; μ]"}
16
+ {"name":"ProbabilityTheory.entropy_sub_mutualInfo_le_entropy_sub'","declaration":"/-- $$H[Y] - I[X : Y] \\leq H[X - Y]$$-/\ntheorem ProbabilityTheory.entropy_sub_mutualInfo_le_entropy_sub' {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [Nonempty G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange X] [MeasureTheory.IsProbabilityMeasure μ] {Y : Ω → G} [FiniteRange Y] (hX : Measurable X) (hY : Measurable Y) : H[Y ; μ] - I[X : Y ; μ] ≤ H[X - Y ; μ]"}
17
+ {"name":"ProbabilityTheory.condEntropy_mul_right","declaration":"/-- $$H[X * Y | Y] = H[X | Y]$$ -/\ntheorem ProbabilityTheory.condEntropy_mul_right {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {Y : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange Y] [MeasureTheory.IsFiniteMeasure μ] (hX : Measurable X) (hY : Measurable Y) : H[X * Y | Y ; μ] = H[X | Y ; μ]"}
18
+ {"name":"ProbabilityTheory.entropy_sub_right'","declaration":"/-- $H[X, Y - X] = H[X, Y]$-/\ntheorem ProbabilityTheory.entropy_sub_right' {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨X, Y - X⟩ ; μ] = H[⟨X, Y⟩ ; μ]"}
19
+ {"name":"ProbabilityTheory.entropy_div_left'","declaration":"/-- $H[X / Y, Y] = H[X, Y]$ -/\ntheorem ProbabilityTheory.entropy_div_left' {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨X / Y, Y⟩ ; μ] = H[⟨X, Y⟩ ; μ]"}
20
+ {"name":"ProbabilityTheory.max_entropy_sub_mutualInfo_le_entropy_add","declaration":"/-- $$\\max(H[X], H[Y]) - I[X : Y] \\leq H[X + Y]$$-/\ntheorem ProbabilityTheory.max_entropy_sub_mutualInfo_le_entropy_add {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [Nonempty G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange X] [MeasureTheory.IsProbabilityMeasure μ] {Y : Ω → G} [FiniteRange Y] (hX : Measurable X) (hY : Measurable Y) : max H[X ; μ] H[Y ; μ] - I[X : Y ; μ] ≤ H[X + Y ; μ]"}
21
+ {"name":"ProbabilityTheory.condEntropy_mul_left","declaration":"/-- $$H[Y * X | Y] = H[X | Y]$$ -/\ntheorem ProbabilityTheory.condEntropy_mul_left {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {Y : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange Y] [MeasureTheory.IsFiniteMeasure μ] (hX : Measurable X) (hY : Measurable Y) : H[Y * X | Y ; μ] = H[X | Y ; μ]"}
22
+ {"name":"ProbabilityTheory.max_entropy_le_entropy_mul","declaration":"/-- If $X, Y$ are independent, then $$\\max(H[X], H[Y]) \\leq H[X * Y]$$. -/\ntheorem ProbabilityTheory.max_entropy_le_entropy_mul {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [Nonempty G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange X] [MeasureTheory.IsProbabilityMeasure μ] {Y : Ω → G} [FiniteRange Y] (hX : Measurable X) (hY : Measurable Y) (h : ProbabilityTheory.IndepFun X Y μ) : max H[X ; μ] H[Y ; μ] ≤ H[X * Y ; μ]"}
23
+ {"name":"ProbabilityTheory.max_entropy_le_entropy_add","declaration":"/-- If $X, Y$ are independent, then $$\\max(H[X], H[Y]) \\leq H[X + Y]$$-/\ntheorem ProbabilityTheory.max_entropy_le_entropy_add {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [Nonempty G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange X] [MeasureTheory.IsProbabilityMeasure μ] {Y : Ω → G} [FiniteRange Y] (hX : Measurable X) (hY : Measurable Y) (h : ProbabilityTheory.IndepFun X Y μ) : max H[X ; μ] H[Y ; μ] ≤ H[X + Y ; μ]"}
24
+ {"name":"ProbabilityTheory.entropy_add_const","declaration":"theorem ProbabilityTheory.entropy_add_const {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} (hX : Measurable X) (c : G) : H[X + fun x => c ; μ] = H[X ; μ]"}
25
+ {"name":"ProbabilityTheory.entropy_sub_mutualInfo_le_entropy_div'","declaration":"/-- $$H[Y] - I[X : Y] \\leq H[X / Y]$$ -/\ntheorem ProbabilityTheory.entropy_sub_mutualInfo_le_entropy_div' {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [Nonempty G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange X] [MeasureTheory.IsProbabilityMeasure μ] {Y : Ω → G} [FiniteRange Y] (hX : Measurable X) (hY : Measurable Y) : H[Y ; μ] - I[X : Y ; μ] ≤ H[X / Y ; μ]"}
26
+ {"name":"ProbabilityTheory.entropy_sub_mutualInfo_le_entropy_div","declaration":"/-- $$H[X] - I[X : Y] \\leq H[X / Y]$$ -/\ntheorem ProbabilityTheory.entropy_sub_mutualInfo_le_entropy_div {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [Nonempty G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange X] [MeasureTheory.IsProbabilityMeasure μ] {Y : Ω → G} [FiniteRange Y] (hX : Measurable X) (hY : Measurable Y) : H[X ; μ] - I[X : Y ; μ] ≤ H[X / Y ; μ]"}
27
+ {"name":"ProbabilityTheory.mutualInfo_add_right","declaration":"/-- $I[X : X + Y] = H[X + Y] - H[Y]$ iff $X, Y$ are independent.-/\ntheorem ProbabilityTheory.mutualInfo_add_right {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {Y : Ω → G} [FiniteRange X] [FiniteRange Y] (hX : Measurable X) (hY : Measurable Y) {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] (h : ProbabilityTheory.IndepFun X Y μ) : I[X : X + Y ; μ] = H[X + Y ; μ] - H[Y ; μ]"}
28
+ {"name":"ProbabilityTheory.entropy_mul_right","declaration":"/-- $H[X, X * Y] = H[X, Y]$ -/\ntheorem ProbabilityTheory.entropy_mul_right {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨X, X * Y⟩ ; μ] = H[⟨X, Y⟩ ; μ]"}
29
+ {"name":"ProbabilityTheory.entropy_add_left","declaration":"/-- $H[Y + X, Y] = H[X, Y]$-/\ntheorem ProbabilityTheory.entropy_add_left {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨Y + X, Y⟩ ; μ] = H[⟨X, Y⟩ ; μ]"}
30
+ {"name":"ProbabilityTheory.mutualInfo_mul_right","declaration":"/-- $I[X : X * Y] = H[X * Y] - H[Y]$ iff $X, Y$ are independent. -/\ntheorem ProbabilityTheory.mutualInfo_mul_right {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {Y : Ω → G} [FiniteRange X] [FiniteRange Y] (hX : Measurable X) (hY : Measurable Y) {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] (h : ProbabilityTheory.IndepFun X Y μ) : I[X : X * Y ; μ] = H[X * Y ; μ] - H[Y ; μ]"}
31
+ {"name":"ProbabilityTheory.condEntropy_sub_right","declaration":"/-- $$H[X - Y | Y] = H[X | Y]$$-/\ntheorem ProbabilityTheory.condEntropy_sub_right {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {Y : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange Y] [MeasureTheory.IsFiniteMeasure μ] (hX : Measurable X) (hY : Measurable Y) : H[X - Y | Y ; μ] = H[X | Y ; μ]"}
32
+ {"name":"ProbabilityTheory.max_entropy_le_entropy_sub","declaration":"/-- If $X, Y$ are independent, then $$\\max(H[X], H[Y]) \\leq H[X - Y]$$.-/\ntheorem ProbabilityTheory.max_entropy_le_entropy_sub {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [Nonempty G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange X] [MeasureTheory.IsProbabilityMeasure μ] {Y : Ω → G} [FiniteRange Y] (hX : Measurable X) (hY : Measurable Y) (h : ProbabilityTheory.IndepFun X Y μ) : max H[X ; μ] H[Y ; μ] ≤ H[X - Y ; μ]"}
33
+ {"name":"ProbabilityTheory.entropy_sub_comm","declaration":"/-- $$H[X - Y] = H[Y - X]$$-/\ntheorem ProbabilityTheory.entropy_sub_comm {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) : H[X - Y ; μ] = H[Y - X ; μ]"}
34
+ {"name":"ProbabilityTheory.max_condEntropy_sub_condMutualInfo_le_condEntropy_div","declaration":"/-- $$\\max(H[X | Z], H[Y | Z]) - I[X : Y | Z] \\leq H[X / Y | Z]$$ -/\ntheorem ProbabilityTheory.max_condEntropy_sub_condMutualInfo_le_condEntropy_div {Ω : Type uΩ} {G : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [Countable G] [Countable T] [Nonempty G] [Nonempty T] [MeasurableSpace G] [MeasurableSpace T] [MeasurableSingletonClass G] [MeasurableSingletonClass T] [Group G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange X] {Y : Ω → G} [FiniteRange Y] {Z : Ω → T} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange Z] : max H[X | Z ; μ] H[Y | Z ; μ] - I[X : Y|Z;μ] ≤ H[X / Y | Z ; μ]"}
35
+ {"name":"ProbabilityTheory.entropy_add_right","declaration":"/-- $H[X, X + Y] = H[X, Y]$-/\ntheorem ProbabilityTheory.entropy_add_right {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨X, X + Y⟩ ; μ] = H[⟨X, Y⟩ ; μ]"}
36
+ {"name":"ProbabilityTheory.entropy_mul_const","declaration":"theorem ProbabilityTheory.entropy_mul_const {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} (hX : Measurable X) (c : G) : H[X * fun x => c ; μ] = H[X ; μ]"}
37
+ {"name":"ProbabilityTheory.max_condEntropy_sub_condMutualInfo_le_condEntropy_mul","declaration":"/-- $$\\max(H[X | Z], H[Y | Z]) - I[X : Y | Z] \\leq H[X * Y | Z]$$ -/\ntheorem ProbabilityTheory.max_condEntropy_sub_condMutualInfo_le_condEntropy_mul {Ω : Type uΩ} {G : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] [Countable G] [Countable T] [Nonempty G] [Nonempty T] [MeasurableSpace G] [MeasurableSpace T] [MeasurableSingletonClass G] [MeasurableSingletonClass T] [Group G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange X] [MeasureTheory.IsProbabilityMeasure μ] {Y : Ω → G} [FiniteRange Y] {Z : Ω → T} [FiniteRange Z] (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) : max H[X | Z ; μ] H[Y | Z ; μ] - I[X : Y|Z;μ] ≤ H[X * Y | Z ; μ]"}
38
+ {"name":"ProbabilityTheory.max_entropy_sub_mutualInfo_le_entropy_sub","declaration":"/-- $$\\max(H[X], H[Y]) - I[X : Y] \\leq H[X - Y]$$-/\ntheorem ProbabilityTheory.max_entropy_sub_mutualInfo_le_entropy_sub {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [Nonempty G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange X] [MeasureTheory.IsProbabilityMeasure μ] {Y : Ω → G} [FiniteRange Y] (hX : Measurable X) (hY : Measurable Y) : max H[X ; μ] H[Y ; μ] - I[X : Y ; μ] ≤ H[X - Y ; μ]"}
39
+ {"name":"ProbabilityTheory.entropy_div_right","declaration":"/-- $H[X, X / Y] = H[X, Y]$ -/\ntheorem ProbabilityTheory.entropy_div_right {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨X, X / Y⟩ ; μ] = H[⟨X, Y⟩ ; μ]"}
40
+ {"name":"ProbabilityTheory.entropy_inv_left","declaration":"/-- $H[X⁻¹, Y] = H[X, Y]$ -/\ntheorem ProbabilityTheory.entropy_inv_left {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨X⁻¹, Y⟩ ; μ] = H[⟨X, Y⟩ ; μ]"}
41
+ {"name":"ProbabilityTheory.entropy_div_comm","declaration":"/-- $$H[X / Y] = H[Y / X]$$ -/\ntheorem ProbabilityTheory.entropy_div_comm {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) : H[X / Y ; μ] = H[Y / X ; μ]"}
42
+ {"name":"ProbabilityTheory.entropy_neg_right","declaration":"/-- $H[X, -Y] = H[X, Y]$-/\ntheorem ProbabilityTheory.entropy_neg_right {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨X, -Y⟩ ; μ] = H[⟨X, Y⟩ ; μ]"}
43
+ {"name":"ProbabilityTheory.entropy_add_right'","declaration":"/-- $H[X, Y + X] = H[X, Y]$-/\ntheorem ProbabilityTheory.entropy_add_right' {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨X, Y + X⟩ ; μ] = H[⟨X, Y⟩ ; μ]"}
44
+ {"name":"ProbabilityTheory.entropy_mul_left'","declaration":"/-- $H[X * Y, Y] = H[X, Y]$ -/\ntheorem ProbabilityTheory.entropy_mul_left' {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨X * Y, Y⟩ ; μ] = H[⟨X, Y⟩ ; μ]"}
45
+ {"name":"ProbabilityTheory.max_entropy_le_entropy_div","declaration":"/-- If $X, Y$ are independent, then $$\\max(H[X], H[Y]) \\leq H[X / Y]$$. -/\ntheorem ProbabilityTheory.max_entropy_le_entropy_div {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [Nonempty G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange X] [MeasureTheory.IsProbabilityMeasure μ] {Y : Ω → G} [FiniteRange Y] (hX : Measurable X) (hY : Measurable Y) (h : ProbabilityTheory.IndepFun X Y μ) : max H[X ; μ] H[Y ; μ] ≤ H[X / Y ; μ]"}
46
+ {"name":"ProbabilityTheory.condEntropy_div_left","declaration":"/-- $$H[Y / X | Y] = H[X | Y]$$ -/\ntheorem ProbabilityTheory.condEntropy_div_left {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {Y : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange Y] [MeasureTheory.IsFiniteMeasure μ] (hX : Measurable X) (hY : Measurable Y) : H[Y / X | Y ; μ] = H[X | Y ; μ]"}
47
+ {"name":"ProbabilityTheory.entropy_add_left'","declaration":"/-- $H[X + Y, Y] = H[X, Y]$-/\ntheorem ProbabilityTheory.entropy_add_left' {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨X + Y, Y⟩ ; μ] = H[⟨X, Y⟩ ; μ]"}
48
+ {"name":"ProbabilityTheory.entropy_inv_right","declaration":"/-- $H[X, Y⁻¹] = H[X, Y]$ -/\ntheorem ProbabilityTheory.entropy_inv_right {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨X, Y⁻¹⟩ ; μ] = H[⟨X, Y⟩ ; μ]"}
49
+ {"name":"ProbabilityTheory.entropy_sub_right","declaration":"/-- $H[X, X - Y] = H[X, Y]$-/\ntheorem ProbabilityTheory.entropy_sub_right {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨X, X - Y⟩ ; μ] = H[⟨X, Y⟩ ; μ]"}
50
+ {"name":"ProbabilityTheory.entropy_sub_mutualInfo_le_entropy_sub","declaration":"/-- $$H[X] - I[X : Y] \\leq H[X - Y]$$-/\ntheorem ProbabilityTheory.entropy_sub_mutualInfo_le_entropy_sub {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [Nonempty G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange X] [MeasureTheory.IsProbabilityMeasure μ] {Y : Ω → G} [FiniteRange Y] (hX : Measurable X) (hY : Measurable Y) : H[X ; μ] - I[X : Y ; μ] ≤ H[X - Y ; μ]"}
51
+ {"name":"ProbabilityTheory.entropy_div_right'","declaration":"/-- $H[X, Y / X] = H[X, Y]$ -/\ntheorem ProbabilityTheory.entropy_div_right' {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨X, Y / X⟩ ; μ] = H[⟨X, Y⟩ ; μ]"}
52
+ {"name":"ProbabilityTheory.entropy_inv","declaration":"/-- If $X$ is $G$-valued, then $H[X⁻¹]=H[X]$. -/\ntheorem ProbabilityTheory.entropy_inv {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} (hX : Measurable X) : H[X⁻¹ ; μ] = H[X ; μ]"}
53
+ {"name":"ProbabilityTheory.entropy_mul_right'","declaration":"/-- $H[X, Y * X] = H[X, Y]$ -/\ntheorem ProbabilityTheory.entropy_mul_right' {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨X, Y * X⟩ ; μ] = H[⟨X, Y⟩ ; μ]"}
54
+ {"name":"ProbabilityTheory.entropy_sub_left'","declaration":"/-- $H[X - Y, Y] = H[X, Y]$-/\ntheorem ProbabilityTheory.entropy_sub_left' {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] {X : Ω → G} {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) : H[⟨X - Y, Y⟩ ; μ] = H[⟨X, Y⟩ ; μ]"}
55
+ {"name":"ProbabilityTheory.condEntropy_div_right","declaration":"/-- $$H[X / Y | Y] = H[X | Y]$$ -/\ntheorem ProbabilityTheory.condEntropy_div_right {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {Y : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange Y] [MeasureTheory.IsFiniteMeasure μ] (hX : Measurable X) (hY : Measurable Y) : H[X / Y | Y ; μ] = H[X | Y ; μ]"}
56
+ {"name":"ProbabilityTheory.entropy_sub_mutualInfo_le_entropy_mul'","declaration":"/-- $$H[Y] - I[X : Y] \\leq H[X * Y]$$ -/\ntheorem ProbabilityTheory.entropy_sub_mutualInfo_le_entropy_mul' {Ω : Type uΩ} {G : Type uS} [mΩ : MeasurableSpace Ω] [Countable G] [Nonempty G] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] {X : Ω → G} {μ : MeasureTheory.Measure Ω} [FiniteRange X] [MeasureTheory.IsProbabilityMeasure μ] {Y : Ω → G} [FiniteRange Y] (hX : Measurable X) (hY : Measurable Y) : H[Y ; μ] - I[X : Y ; μ] ≤ H[X * Y ; μ]"}
PFR-declarations/PFR.ForMathlib.Entropy.Kernel.Basic.jsonl ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"ProbabilityTheory.kernel.entropy_const","declaration":"theorem ProbabilityTheory.kernel.entropy_const {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] (ν : MeasureTheory.Measure S) (μ : MeasureTheory.Measure T) : Hk[ProbabilityTheory.kernel.const T ν , μ] = (↑↑μ Set.univ).toReal * Hm[ν]"}
2
+ {"name":"ProbabilityTheory.kernel.entropy_compProd","declaration":"theorem ProbabilityTheory.kernel.entropy_compProd {S : Type u_2} {T : Type u_3} {U : Type u_4} [Countable S] [Nonempty S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Nonempty U] [MeasurableSpace U] [MeasurableSingletonClass U] {μ : MeasureTheory.Measure T} [MeasureTheory.IsFiniteMeasure μ] {κ : ↥(ProbabilityTheory.kernel T S)} [ProbabilityTheory.IsMarkovKernel κ] {η : ↥(ProbabilityTheory.kernel (T × S) U)} [ProbabilityTheory.IsMarkovKernel η] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) (hη : ProbabilityTheory.kernel.AEFiniteKernelSupport η (MeasureTheory.Measure.compProd μ κ)) : Hk[ProbabilityTheory.kernel.compProd κ η , μ] = Hk[κ , μ] + Hk[η , MeasureTheory.Measure.compProd μ κ]"}
3
+ {"name":"ProbabilityTheory.kernel.entropy_prodMkRight","declaration":"theorem ProbabilityTheory.kernel.entropy_prodMkRight {S : Type u_2} {T : Type u_3} {U : Type u_4} [Countable S] [Nonempty S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace U] {κ : ↥(ProbabilityTheory.kernel T S)} {η : ↥(ProbabilityTheory.kernel T U)} [ProbabilityTheory.IsMarkovKernel κ] {μ : MeasureTheory.Measure T} [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[ProbabilityTheory.kernel.prodMkRight S η , MeasureTheory.Measure.compProd μ κ] = Hk[η , μ]"}
4
+ {"name":"ProbabilityTheory.kernel.entropy_snd_le","declaration":"theorem ProbabilityTheory.kernel.entropy_snd_le {S : Type u_2} {T : Type u_3} {U : Type u_4} [Countable S] [Nonempty S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Countable U] [Nonempty U] [MeasurableSpace U] [MeasurableSingletonClass U] {κ : ↥(ProbabilityTheory.kernel T (S × U))} [ProbabilityTheory.IsMarkovKernel κ] {μ : MeasureTheory.Measure T} [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[ProbabilityTheory.kernel.snd κ , μ] ≤ Hk[κ , μ]"}
5
+ {"name":"ProbabilityTheory.kernel.aefiniteKernelSupport_condDistrib","declaration":"theorem ProbabilityTheory.kernel.aefiniteKernelSupport_condDistrib {Ω : Type u_1} {S : Type u_2} {T : Type u_3} [mΩ : MeasurableSpace Ω] [Countable S] [Nonempty S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] (X : Ω → S) (Y : Ω → T) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] (hX : Measurable X) (hY : Measurable Y) [FiniteRange X] [FiniteRange Y] : ProbabilityTheory.kernel.AEFiniteKernelSupport (ProbabilityTheory.condDistrib X Y μ) (MeasureTheory.Measure.map Y μ)"}
6
+ {"name":"ProbabilityTheory.kernel.entropy_nonneg","declaration":"theorem ProbabilityTheory.kernel.entropy_nonneg {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] (κ : ↥(ProbabilityTheory.kernel T S)) (μ : MeasureTheory.Measure T) : 0 ≤ Hk[κ , μ]"}
7
+ {"name":"ProbabilityTheory.kernel.entropy_prodMkLeft_unit","declaration":"theorem ProbabilityTheory.kernel.entropy_prodMkLeft_unit {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass T] (κ : ↥(ProbabilityTheory.kernel T S)) {μ : MeasureTheory.Measure T} [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] : Hk[ProbabilityTheory.kernel.prodMkLeft Unit κ , MeasureTheory.Measure.map (Prod.mk ()) μ] = Hk[κ , μ]"}
8
+ {"name":"ProbabilityTheory.kernel.chain_rule'","declaration":"theorem ProbabilityTheory.kernel.chain_rule' {S : Type u_2} {T : Type u_3} {U : Type u_4} [Countable S] [Nonempty S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Countable U] [Nonempty U] [MeasurableSpace U] [MeasurableSingletonClass U] {κ : ↥(ProbabilityTheory.kernel T (S × U))} [ProbabilityTheory.IsMarkovKernel κ] {μ : MeasureTheory.Measure T} [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[κ , μ] =\n Hk[ProbabilityTheory.kernel.snd κ , μ] +\n Hk[ProbabilityTheory.kernel.condKernel (ProbabilityTheory.kernel.swapRight κ) ,\n MeasureTheory.Measure.compProd μ (ProbabilityTheory.kernel.snd κ)]"}
9
+ {"name":"ProbabilityTheory.kernel.finiteSupport_of_compProd'","declaration":"/-- Composing a finitely supported measure with a finitely supported kernel gives a finitely supported kernel. -/\ntheorem ProbabilityTheory.kernel.finiteSupport_of_compProd' {S : Type u_2} {T : Type u_3} [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] {μ : MeasureTheory.Measure T} [MeasureTheory.IsFiniteMeasure μ] {κ : ↥(ProbabilityTheory.kernel T S)} [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.FiniteKernelSupport κ) : ProbabilityTheory.FiniteSupport (MeasureTheory.Measure.compProd μ κ)"}
10
+ {"name":"ProbabilityTheory.kernel.entropy_comap","declaration":"theorem ProbabilityTheory.kernel.entropy_comap {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass T] {T' : Type u_5} [MeasurableSpace T'] [MeasurableSingletonClass T'] (κ : ↥(ProbabilityTheory.kernel T S)) (μ : MeasureTheory.Measure T) (f : T' → T) (hf : MeasurableEmbedding f) (hf_range : Set.range f =ᶠ[MeasureTheory.Measure.ae μ] Set.univ) [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure (MeasureTheory.Measure.comap f μ)] (hfμ : ProbabilityTheory.FiniteSupport (MeasureTheory.Measure.comap f μ)) : Hk[ProbabilityTheory.kernel.comap κ f ⋯ , MeasureTheory.Measure.comap f μ] = Hk[κ , μ]"}
11
+ {"name":"ProbabilityTheory.kernel.«termHk[_,_]».delab","declaration":"/-- Pretty printer defined by `notation3` command. -/\ndef ProbabilityTheory.kernel.«termHk[_,_]».delab : Lean.PrettyPrinter.Delaborator.Delab"}
12
+ {"name":"ProbabilityTheory.kernel.entropy_comap_swap","declaration":"theorem ProbabilityTheory.kernel.entropy_comap_swap {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass T] {T' : Type u_5} [MeasurableSpace T'] [MeasurableSingletonClass T'] [Nonempty T'] (κ : ↥(ProbabilityTheory.kernel (T' × T) S)) {μ : MeasureTheory.Measure (T' × T)} [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.FiniteSupport μ] : Hk[ProbabilityTheory.kernel.comap κ Prod.swap ⋯ , MeasureTheory.Measure.comap Prod.swap μ] = Hk[κ , μ]"}
13
+ {"name":"ProbabilityTheory.kernel.chain_rule","declaration":"theorem ProbabilityTheory.kernel.chain_rule {S : Type u_2} {T : Type u_3} {U : Type u_4} [Countable S] [Nonempty S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Countable U] [MeasurableSpace U] [MeasurableSingletonClass U] {κ : ↥(ProbabilityTheory.kernel T (S × U))} [ProbabilityTheory.IsMarkovKernel κ] [hU : Nonempty U] {μ : MeasureTheory.Measure T} [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[κ , μ] =\n Hk[ProbabilityTheory.kernel.fst κ , μ] +\n Hk[ProbabilityTheory.kernel.condKernel κ , MeasureTheory.Measure.compProd μ (ProbabilityTheory.kernel.fst κ)]"}
14
+ {"name":"ProbabilityTheory.kernel.finiteKernelSupport_of_const","declaration":"/-- Constant kernels with finite support, have finite kernel support. -/\ntheorem ProbabilityTheory.kernel.finiteKernelSupport_of_const {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] (ν : MeasureTheory.Measure S) [ProbabilityTheory.FiniteSupport ν] : ProbabilityTheory.kernel.FiniteKernelSupport (ProbabilityTheory.kernel.const T ν)"}
15
+ {"name":"ProbabilityTheory.kernel.entropy_map_of_injective","declaration":"theorem ProbabilityTheory.kernel.entropy_map_of_injective {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass U] (κ : ↥(ProbabilityTheory.kernel T S)) (μ : MeasureTheory.Measure T) {f : S → U} (hf : Function.Injective f) (hmes : Measurable f) : Hk[ProbabilityTheory.kernel.map κ f hmes , μ] = Hk[κ , μ]"}
16
+ {"name":"ProbabilityTheory.kernel.entropy_prod","declaration":"theorem ProbabilityTheory.kernel.entropy_prod {S : Type u_2} {T : Type u_3} {U : Type u_4} [Countable S] [Nonempty S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Countable U] [Nonempty U] [MeasurableSpace U] [MeasurableSingletonClass U] {κ : ↥(ProbabilityTheory.kernel T S)} {η : ↥(ProbabilityTheory.kernel T U)} [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] {μ : MeasureTheory.Measure T} [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) (hη : ProbabilityTheory.kernel.AEFiniteKernelSupport η μ) : Hk[ProbabilityTheory.kernel.prod κ η , μ] = Hk[κ , μ] + Hk[η , μ]"}
17
+ {"name":"ProbabilityTheory.kernel.entropy_map_le","declaration":"/-- Data-processing inequality for the kernel entropy. -/\ntheorem ProbabilityTheory.kernel.entropy_map_le {S : Type u_2} {T : Type u_3} {U : Type u_4} [Countable S] [Nonempty S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Countable U] [Nonempty U] [MeasurableSpace U] [MeasurableSingletonClass U] {κ : ↥(ProbabilityTheory.kernel T S)} [ProbabilityTheory.IsMarkovKernel κ] {μ : MeasureTheory.Measure T} [MeasureTheory.IsProbabilityMeasure μ] (f : S → U) [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[ProbabilityTheory.kernel.map κ f ⋯ , μ] ≤ Hk[κ , μ]"}
18
+ {"name":"ProbabilityTheory.kernel.entropy_deterministic","declaration":"theorem ProbabilityTheory.kernel.entropy_deterministic {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] (f : T → S) (μ : MeasureTheory.Measure T) : Hk[ProbabilityTheory.kernel.deterministic f ⋯ , μ] = 0"}
19
+ {"name":"ProbabilityTheory.kernel.entropy_fst_le","declaration":"theorem ProbabilityTheory.kernel.entropy_fst_le {S : Type u_2} {T : Type u_3} {U : Type u_4} [Countable S] [Nonempty S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Countable U] [Nonempty U] [MeasurableSpace U] [MeasurableSingletonClass U] (κ : ↥(ProbabilityTheory.kernel T (S × U))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[ProbabilityTheory.kernel.fst κ , μ] ≤ Hk[κ , μ]"}
20
+ {"name":"ProbabilityTheory.kernel.entropy_zero_measure","declaration":"theorem ProbabilityTheory.kernel.entropy_zero_measure {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] (κ : ↥(ProbabilityTheory.kernel T S)) : Hk[κ , 0] = 0"}
21
+ {"name":"ProbabilityTheory.kernel.entropy_swapRight","declaration":"theorem ProbabilityTheory.kernel.entropy_swapRight {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSingletonClass S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass U] (κ : ↥(ProbabilityTheory.kernel T (S × U))) (μ : MeasureTheory.Measure T) : Hk[ProbabilityTheory.kernel.swapRight κ , μ] = Hk[κ , μ]"}
22
+ {"name":"ProbabilityTheory.kernel.prodMKLeft_unit_equiv","declaration":"/-- Measurable equivalence with the product with the one-point space `Unit`.-/\ndef ProbabilityTheory.kernel.prodMKLeft_unit_equiv (T : Type u_5) [MeasurableSpace T] : Unit × T ≃ᵐ T"}
23
+ {"name":"ProbabilityTheory.kernel.entropy_prodMkLeft","declaration":"theorem ProbabilityTheory.kernel.entropy_prodMkLeft {S : Type u_2} {T : Type u_3} {U : Type u_4} [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace U] {η : ↥(ProbabilityTheory.kernel T U)} {ν : MeasureTheory.Measure S} [MeasureTheory.IsProbabilityMeasure ν] {μ : MeasureTheory.Measure T} [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] [ProbabilityTheory.FiniteSupport ν] : Hk[ProbabilityTheory.kernel.prodMkLeft S η , MeasureTheory.Measure.prod ν μ] = Hk[η , μ]"}
24
+ {"name":"ProbabilityTheory.kernel.entropy_of_map_eq_of_map","declaration":"theorem ProbabilityTheory.kernel.entropy_of_map_eq_of_map {S : Type u_2} {T : Type u_3} {U : Type u_4} [Countable S] [Nonempty S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Countable U] [Nonempty U] [MeasurableSpace U] [MeasurableSingletonClass U] {κ : ↥(ProbabilityTheory.kernel T S)} {η : ↥(ProbabilityTheory.kernel T U)} [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] {μ : MeasureTheory.Measure T} [MeasureTheory.IsProbabilityMeasure μ] (f : S → U) (g : U → S) (h1 : η = ProbabilityTheory.kernel.map κ f ⋯) (h2 : κ = ProbabilityTheory.kernel.map η g ⋯) [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) (hη : ProbabilityTheory.kernel.AEFiniteKernelSupport η μ) : Hk[κ , μ] = Hk[η , μ]"}
25
+ {"name":"ProbabilityTheory.kernel.entropy_zero_kernel","declaration":"theorem ProbabilityTheory.kernel.entropy_zero_kernel {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] (μ : MeasureTheory.Measure T) : Hk[0 , μ] = 0"}
26
+ {"name":"ProbabilityTheory.kernel.entropy_le_log_card","declaration":"theorem ProbabilityTheory.kernel.entropy_le_log_card {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSingletonClass S] [MeasurableSpace T] (κ : ↥(ProbabilityTheory.kernel T S)) (μ : MeasureTheory.Measure T) [Fintype S] [MeasureTheory.IsProbabilityMeasure μ] : Hk[κ , μ] ≤ Real.log ↑(Fintype.card S)"}
27
+ {"name":"ProbabilityTheory.kernel.FiniteSupport.comap_equiv","declaration":"theorem ProbabilityTheory.kernel.FiniteSupport.comap_equiv {T : Type u_3} [MeasurableSpace T] [MeasurableSingletonClass T] {T' : Type u_5} [MeasurableSpace T'] [MeasurableSingletonClass T'] {μ : MeasureTheory.Measure T} (f : T' ≃ᵐ T) [ProbabilityTheory.FiniteSupport μ] : ProbabilityTheory.FiniteSupport (MeasureTheory.Measure.comap (⇑f) μ)"}
28
+ {"name":"ProbabilityTheory.kernel.entropy","declaration":"/-- Entropy of a kernel with respect to a measure. -/\ndef ProbabilityTheory.kernel.entropy {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] (κ : ↥(ProbabilityTheory.kernel T S)) (μ : MeasureTheory.Measure T) : ℝ"}
29
+ {"name":"ProbabilityTheory.kernel.«termHk[_,_]»","declaration":"/-- Entropy of a kernel with respect to a measure. -/\ndef ProbabilityTheory.kernel.«termHk[_,_]» : Lean.ParserDescr"}
30
+ {"name":"ProbabilityTheory.kernel.entropy_compProd_aux","declaration":"theorem ProbabilityTheory.kernel.entropy_compProd_aux {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSingletonClass S] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace U] [MeasurableSingletonClass U] {μ : MeasureTheory.Measure T} [MeasureTheory.IsFiniteMeasure μ] {κ : ↥(ProbabilityTheory.kernel T S)} [ProbabilityTheory.IsMarkovKernel κ] {η : ↥(ProbabilityTheory.kernel (T × S) U)} [ProbabilityTheory.IsMarkovKernel η] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.FiniteKernelSupport κ) (hη : ProbabilityTheory.kernel.FiniteKernelSupport η) : Hk[ProbabilityTheory.kernel.compProd κ η , μ] =\n Hk[κ , μ] + ∫ (x : T), (fun t => Hk[ProbabilityTheory.kernel.comap η (Prod.mk t) ⋯ , κ t]) x ∂μ"}
31
+ {"name":"ProbabilityTheory.kernel.entropy_compProd'","declaration":"theorem ProbabilityTheory.kernel.entropy_compProd' {S : Type u_2} {T : Type u_3} {U : Type u_4} [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace U] [MeasurableSingletonClass U] {μ : MeasureTheory.Measure T} [MeasureTheory.IsFiniteMeasure μ] {κ : ↥(ProbabilityTheory.kernel T S)} [ProbabilityTheory.IsMarkovKernel κ] {η : ↥(ProbabilityTheory.kernel (T × S) U)} [ProbabilityTheory.IsMarkovKernel η] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.FiniteKernelSupport κ) (hη : ProbabilityTheory.kernel.FiniteKernelSupport η) : Hk[ProbabilityTheory.kernel.compProd κ η , μ] = Hk[κ , μ] + Hk[η , MeasureTheory.Measure.compProd μ κ]"}
32
+ {"name":"ProbabilityTheory.kernel.finiteSupport_of_compProd","declaration":"theorem ProbabilityTheory.kernel.finiteSupport_of_compProd {S : Type u_2} {T : Type u_3} [Countable S] [Nonempty S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] {μ : MeasureTheory.Measure T} [MeasureTheory.IsFiniteMeasure μ] {κ : ↥(ProbabilityTheory.kernel T S)} [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : ProbabilityTheory.FiniteSupport (MeasureTheory.Measure.compProd μ κ)"}
33
+ {"name":"ProbabilityTheory.kernel.entropy_prodMkRight'","declaration":"theorem ProbabilityTheory.kernel.entropy_prodMkRight' {S : Type u_2} {T : Type u_3} {U : Type u_4} [Countable S] [Nonempty S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace U] {η : ↥(ProbabilityTheory.kernel T U)} {μ : MeasureTheory.Measure T} [MeasureTheory.IsProbabilityMeasure μ] {ν : MeasureTheory.Measure S} [MeasureTheory.IsProbabilityMeasure ν] [ProbabilityTheory.FiniteSupport μ] [ProbabilityTheory.FiniteSupport ν] : Hk[ProbabilityTheory.kernel.prodMkRight S η , MeasureTheory.Measure.prod μ ν] = Hk[η , μ]"}
34
+ {"name":"ProbabilityTheory.kernel.entropy_comap_equiv","declaration":"theorem ProbabilityTheory.kernel.entropy_comap_equiv {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass T] {T' : Type u_5} [MeasurableSpace T'] [MeasurableSingletonClass T'] (κ : ↥(ProbabilityTheory.kernel T S)) {μ : MeasureTheory.Measure T} (f : T' ≃ᵐ T) [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.FiniteSupport μ] : Hk[ProbabilityTheory.kernel.comap κ ⇑f ⋯ , MeasureTheory.Measure.comap (⇑f) μ] = Hk[κ , μ]"}
35
+ {"name":"ProbabilityTheory.kernel.entropy_congr","declaration":"theorem ProbabilityTheory.kernel.entropy_congr {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] {μ : MeasureTheory.Measure T} {κ : ↥(ProbabilityTheory.kernel T S)} {η : ↥(ProbabilityTheory.kernel T S)} (h : ⇑κ =ᶠ[MeasureTheory.Measure.ae μ] ⇑η) : Hk[κ , μ] = Hk[η , μ]"}
36
+ {"name":"ProbabilityTheory.kernel.entropy_map_swap","declaration":"theorem ProbabilityTheory.kernel.entropy_map_swap {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSingletonClass S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass U] (κ : ↥(ProbabilityTheory.kernel T (S × U))) (μ : MeasureTheory.Measure T) : Hk[ProbabilityTheory.kernel.map κ Prod.swap ⋯ , μ] = Hk[κ , μ]"}
37
+ {"name":"ProbabilityTheory.kernel.entropy_compProd_deterministic","declaration":"theorem ProbabilityTheory.kernel.entropy_compProd_deterministic {S : Type u_2} {T : Type u_3} {U : Type u_4} [Countable S] [Nonempty S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Nonempty U] [MeasurableSpace U] [MeasurableSingletonClass U] (κ : ↥(ProbabilityTheory.kernel T S)) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsFiniteMeasure μ] (f : T × S → U) [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[ProbabilityTheory.kernel.compProd κ (ProbabilityTheory.kernel.deterministic f ⋯) , μ] = Hk[κ , μ]"}
38
+ {"name":"ProbabilityTheory.kernel.entropy_snd_compProd_deterministic_of_injective","declaration":"theorem ProbabilityTheory.kernel.entropy_snd_compProd_deterministic_of_injective {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass U] (κ : ↥(ProbabilityTheory.kernel T S)) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) {f : T × S → U} (hf : ∀ (t : T), Function.Injective fun x => f (t, x)) (hmes : Measurable f) : Hk[ProbabilityTheory.kernel.snd (ProbabilityTheory.kernel.compProd κ (ProbabilityTheory.kernel.deterministic f hmes)) ,\n μ] =\n Hk[κ , μ]"}
39
+ {"name":"ProbabilityTheory.kernel.entropy_eq_integral_sum","declaration":"theorem ProbabilityTheory.kernel.entropy_eq_integral_sum {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] (κ : ↥(ProbabilityTheory.kernel T S)) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) : Hk[κ , μ] = ∫ (x : T), (fun y => ∑' (x : S), Real.negMulLog (↑↑(κ y) {x}).toReal) x ∂μ"}
PFR-declarations/PFR.ForMathlib.Entropy.Kernel.Group.jsonl ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"ProbabilityTheory.kernel.entropy_snd_sub_mutualInfo_le_entropy_map_add","declaration":"theorem ProbabilityTheory.kernel.entropy_snd_sub_mutualInfo_le_entropy_map_add {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] [MeasurableAdd₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[ProbabilityTheory.kernel.snd κ , μ] - Ik[κ , μ] ≤ Hk[ProbabilityTheory.kernel.map κ (fun p => p.1 + p.2) ⋯ , μ]"}
2
+ {"name":"ProbabilityTheory.kernel.entropy_fst_sub_mutualInfo_le_entropy_map_div","declaration":"theorem ProbabilityTheory.kernel.entropy_fst_sub_mutualInfo_le_entropy_map_div {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] [MeasurableDiv₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[ProbabilityTheory.kernel.fst κ , μ] - Ik[κ , μ] ≤ Hk[ProbabilityTheory.kernel.map κ (fun p => p.1 / p.2) ⋯ , μ]"}
3
+ {"name":"ProbabilityTheory.kernel.entropy_div_comm","declaration":"theorem ProbabilityTheory.kernel.entropy_div_comm {G : Type u_5} {T : Type u_6} [MeasurableSpace T] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] [MeasurableDiv₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) (μ : MeasureTheory.Measure T) : Hk[ProbabilityTheory.kernel.map κ (fun p => p.1 / p.2) ⋯ , μ] =\n Hk[ProbabilityTheory.kernel.map κ (fun p => p.2 / p.1) ⋯ , μ]"}
4
+ {"name":"ProbabilityTheory.kernel.max_entropy_sub_mutualInfo_le_entropy_div","declaration":"theorem ProbabilityTheory.kernel.max_entropy_sub_mutualInfo_le_entropy_div {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] [MeasurableDiv₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : max (Hk[ProbabilityTheory.kernel.fst κ , μ]) (Hk[ProbabilityTheory.kernel.snd κ , μ]) - Ik[κ , μ] ≤\n Hk[ProbabilityTheory.kernel.map κ (fun p => p.1 / p.2) ⋯ , μ]"}
5
+ {"name":"measureEntropy_inv","declaration":"theorem measureEntropy_inv {G : Type u_5} [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] [Countable G] (μ : MeasureTheory.Measure G) : Hm[MeasureTheory.Measure.map (fun x => x⁻¹) μ] = Hm[μ]"}
6
+ {"name":"ProbabilityTheory.kernel.max_entropy_le_entropy_div_prod","declaration":"theorem ProbabilityTheory.kernel.max_entropy_le_entropy_div_prod {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] [MeasurableDiv₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T G)) [ProbabilityTheory.IsMarkovKernel κ] (η : ↥(ProbabilityTheory.kernel T G)) [ProbabilityTheory.IsMarkovKernel η] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) (hη : ProbabilityTheory.kernel.AEFiniteKernelSupport η μ) : max (Hk[κ , μ]) (Hk[η , μ]) ≤\n Hk[ProbabilityTheory.kernel.map (ProbabilityTheory.kernel.prod κ η) (fun p => p.1 / p.2) ⋯ , μ]"}
7
+ {"name":"ProbabilityTheory.kernel.max_entropy_le_entropy_add_sum","declaration":"theorem ProbabilityTheory.kernel.max_entropy_le_entropy_add_sum {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] [MeasurableAdd₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T G)) [ProbabilityTheory.IsMarkovKernel κ] (η : ↥(ProbabilityTheory.kernel T G)) [ProbabilityTheory.IsMarkovKernel η] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) (hη : ProbabilityTheory.kernel.AEFiniteKernelSupport η μ) : max (Hk[κ , μ]) (Hk[η , μ]) ≤\n Hk[ProbabilityTheory.kernel.map (ProbabilityTheory.kernel.prod κ η) (fun p => p.1 + p.2) ⋯ , μ]"}
8
+ {"name":"ProbabilityTheory.kernel.entropy_snd_sub_mutualInfo_le_entropy_map_sub","declaration":"theorem ProbabilityTheory.kernel.entropy_snd_sub_mutualInfo_le_entropy_map_sub {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] [MeasurableSub₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[ProbabilityTheory.kernel.snd κ , μ] - Ik[κ , μ] ≤ Hk[ProbabilityTheory.kernel.map κ (fun p => p.1 - p.2) ⋯ , μ]"}
9
+ {"name":"ProbabilityTheory.kernel.entropy_fst_sub_mutualInfo_le_entropy_map_mul","declaration":"theorem ProbabilityTheory.kernel.entropy_fst_sub_mutualInfo_le_entropy_map_mul {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] [MeasurableMul₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[ProbabilityTheory.kernel.fst κ , μ] - Ik[κ , μ] ≤ Hk[ProbabilityTheory.kernel.map κ (fun p => p.1 * p.2) ⋯ , μ]"}
10
+ {"name":"measureEntropy_sub_comm","declaration":"theorem measureEntropy_sub_comm {G : Type u_5} [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] [MeasurableSub₂ G] [Countable G] (μ : MeasureTheory.Measure (G × G)) : Hm[MeasureTheory.Measure.map (fun p => p.1 - p.2) μ] = Hm[MeasureTheory.Measure.map (fun p => p.2 - p.1) μ]"}
11
+ {"name":"ProbabilityTheory.kernel.entropy_inv","declaration":"theorem ProbabilityTheory.kernel.entropy_inv {G : Type u_5} {T : Type u_6} [MeasurableSpace T] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T G)) (μ : MeasureTheory.Measure T) : Hk[ProbabilityTheory.kernel.map κ (fun x => x⁻¹) ⋯ , μ] = Hk[κ , μ]"}
12
+ {"name":"ProbabilityTheory.kernel.entropy_fst_sub_mutualInfo_le_entropy_map_sub","declaration":"theorem ProbabilityTheory.kernel.entropy_fst_sub_mutualInfo_le_entropy_map_sub {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] [MeasurableSub₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[ProbabilityTheory.kernel.fst κ , μ] - Ik[κ , μ] ≤ Hk[ProbabilityTheory.kernel.map κ (fun p => p.1 - p.2) ⋯ , μ]"}
13
+ {"name":"ProbabilityTheory.kernel.entropy_snd_sub_mutualInfo_le_entropy_map_mul","declaration":"theorem ProbabilityTheory.kernel.entropy_snd_sub_mutualInfo_le_entropy_map_mul {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] [MeasurableMul₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[ProbabilityTheory.kernel.snd κ , μ] - Ik[κ , μ] ≤ Hk[ProbabilityTheory.kernel.map κ (fun p => p.1 * p.2) ⋯ , μ]"}
14
+ {"name":"measureEntropy_neg","declaration":"theorem measureEntropy_neg {G : Type u_5} [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] [Countable G] (μ : MeasureTheory.Measure G) : Hm[MeasureTheory.Measure.map (fun x => -x) μ] = Hm[μ]"}
15
+ {"name":"ProbabilityTheory.kernel.max_entropy_le_entropy_sub_prod","declaration":"theorem ProbabilityTheory.kernel.max_entropy_le_entropy_sub_prod {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] [MeasurableSub₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T G)) [ProbabilityTheory.IsMarkovKernel κ] (η : ↥(ProbabilityTheory.kernel T G)) [ProbabilityTheory.IsMarkovKernel η] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) (hη : ProbabilityTheory.kernel.AEFiniteKernelSupport η μ) : max (Hk[κ , μ]) (Hk[η , μ]) ≤\n Hk[ProbabilityTheory.kernel.map (ProbabilityTheory.kernel.prod κ η) (fun p => p.1 - p.2) ⋯ , μ]"}
16
+ {"name":"ProbabilityTheory.kernel.max_entropy_sub_mutualInfo_le_entropy_mul","declaration":"theorem ProbabilityTheory.kernel.max_entropy_sub_mutualInfo_le_entropy_mul {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] [MeasurableMul₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : max (Hk[ProbabilityTheory.kernel.fst κ , μ]) (Hk[ProbabilityTheory.kernel.snd κ , μ]) - Ik[κ , μ] ≤\n Hk[ProbabilityTheory.kernel.map κ (fun p => p.1 * p.2) ⋯ , μ]"}
17
+ {"name":"ProbabilityTheory.kernel.max_entropy_sub_mutualInfo_le_entropy_mul'","declaration":"theorem ProbabilityTheory.kernel.max_entropy_sub_mutualInfo_le_entropy_mul' {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] [MeasurableMul₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : max (Hk[ProbabilityTheory.kernel.fst κ , μ]) (Hk[ProbabilityTheory.kernel.snd κ , μ]) - Ik[κ , μ] ≤\n Hk[ProbabilityTheory.kernel.map κ (fun p => p.2 * p.1) ⋯ , μ]"}
18
+ {"name":"ProbabilityTheory.kernel.entropy_neg","declaration":"theorem ProbabilityTheory.kernel.entropy_neg {G : Type u_5} {T : Type u_6} [MeasurableSpace T] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T G)) (μ : MeasureTheory.Measure T) : Hk[ProbabilityTheory.kernel.map κ (fun x => -x) ⋯ , μ] = Hk[κ , μ]"}
19
+ {"name":"ProbabilityTheory.kernel.max_entropy_sub_mutualInfo_le_entropy_sub","declaration":"theorem ProbabilityTheory.kernel.max_entropy_sub_mutualInfo_le_entropy_sub {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] [MeasurableSub₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : max (Hk[ProbabilityTheory.kernel.fst κ , μ]) (Hk[ProbabilityTheory.kernel.snd κ , μ]) - Ik[κ , μ] ≤\n Hk[ProbabilityTheory.kernel.map κ (fun p => p.1 - p.2) ⋯ , μ]"}
20
+ {"name":"ProbabilityTheory.kernel.entropy_fst_sub_mutualInfo_le_entropy_map_add","declaration":"theorem ProbabilityTheory.kernel.entropy_fst_sub_mutualInfo_le_entropy_map_add {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] [MeasurableAdd₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[ProbabilityTheory.kernel.fst κ , μ] - Ik[κ , μ] ≤ Hk[ProbabilityTheory.kernel.map κ (fun p => p.1 + p.2) ⋯ , μ]"}
21
+ {"name":"ProbabilityTheory.kernel.max_entropy_le_entropy_mul_prod","declaration":"theorem ProbabilityTheory.kernel.max_entropy_le_entropy_mul_prod {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] [MeasurableMul₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T G)) [ProbabilityTheory.IsMarkovKernel κ] (η : ↥(ProbabilityTheory.kernel T G)) [ProbabilityTheory.IsMarkovKernel η] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) (hη : ProbabilityTheory.kernel.AEFiniteKernelSupport η μ) : max (Hk[κ , μ]) (Hk[η , μ]) ≤\n Hk[ProbabilityTheory.kernel.map (ProbabilityTheory.kernel.prod κ η) (fun p => p.1 * p.2) ⋯ , μ]"}
22
+ {"name":"ProbabilityTheory.kernel.entropy_fst_sub_mutualInfo_le_entropy_map_add'","declaration":"theorem ProbabilityTheory.kernel.entropy_fst_sub_mutualInfo_le_entropy_map_add' {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] [MeasurableAdd₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[ProbabilityTheory.kernel.fst κ , μ] - Ik[κ , μ] ≤ Hk[ProbabilityTheory.kernel.map κ (fun p => p.2 + p.1) ⋯ , μ]"}
23
+ {"name":"ProbabilityTheory.kernel.entropy_fst_sub_mutualInfo_le_entropy_map_mul'","declaration":"theorem ProbabilityTheory.kernel.entropy_fst_sub_mutualInfo_le_entropy_map_mul' {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] [MeasurableMul₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[ProbabilityTheory.kernel.fst κ , μ] - Ik[κ , μ] ≤ Hk[ProbabilityTheory.kernel.map κ (fun p => p.2 * p.1) ⋯ , μ]"}
24
+ {"name":"ProbabilityTheory.kernel.entropy_snd_sub_mutualInfo_le_entropy_map_add'","declaration":"theorem ProbabilityTheory.kernel.entropy_snd_sub_mutualInfo_le_entropy_map_add' {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[ProbabilityTheory.kernel.snd κ , μ] - Ik[κ , μ] ≤ Hk[ProbabilityTheory.kernel.map κ (fun p => p.2 + p.1) ⋯ , μ]"}
25
+ {"name":"ProbabilityTheory.kernel.entropy_sub_comm","declaration":"theorem ProbabilityTheory.kernel.entropy_sub_comm {G : Type u_5} {T : Type u_6} [MeasurableSpace T] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] [MeasurableSub₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) (μ : MeasureTheory.Measure T) : Hk[ProbabilityTheory.kernel.map κ (fun p => p.1 - p.2) ⋯ , μ] =\n Hk[ProbabilityTheory.kernel.map κ (fun p => p.2 - p.1) ⋯ , μ]"}
26
+ {"name":"ProbabilityTheory.kernel.max_entropy_sub_mutualInfo_le_entropy_add","declaration":"theorem ProbabilityTheory.kernel.max_entropy_sub_mutualInfo_le_entropy_add {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] [MeasurableAdd₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : max (Hk[ProbabilityTheory.kernel.fst κ , μ]) (Hk[ProbabilityTheory.kernel.snd κ , μ]) - Ik[κ , μ] ≤\n Hk[ProbabilityTheory.kernel.map κ (fun p => p.1 + p.2) ⋯ , μ]"}
27
+ {"name":"ProbabilityTheory.kernel.max_entropy_sub_mutualInfo_le_entropy_add'","declaration":"theorem ProbabilityTheory.kernel.max_entropy_sub_mutualInfo_le_entropy_add' {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [AddGroup G] [MeasurableAdd₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : max (Hk[ProbabilityTheory.kernel.fst κ , μ]) (Hk[ProbabilityTheory.kernel.snd κ , μ]) - Ik[κ , μ] ≤\n Hk[ProbabilityTheory.kernel.map κ (fun p => p.2 + p.1) ⋯ , μ]"}
28
+ {"name":"measureEntropy_div_comm","declaration":"theorem measureEntropy_div_comm {G : Type u_5} [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] [MeasurableDiv₂ G] [Countable G] (μ : MeasureTheory.Measure (G × G)) : Hm[MeasureTheory.Measure.map (fun p => p.1 / p.2) μ] = Hm[MeasureTheory.Measure.map (fun p => p.2 / p.1) μ]"}
29
+ {"name":"ProbabilityTheory.kernel.entropy_snd_sub_mutualInfo_le_entropy_map_mul'","declaration":"theorem ProbabilityTheory.kernel.entropy_snd_sub_mutualInfo_le_entropy_map_mul' {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[ProbabilityTheory.kernel.snd κ , μ] - Ik[κ , μ] ≤ Hk[ProbabilityTheory.kernel.map κ (fun p => p.2 * p.1) ⋯ , μ]"}
30
+ {"name":"ProbabilityTheory.kernel.entropy_snd_sub_mutualInfo_le_entropy_map_div","declaration":"theorem ProbabilityTheory.kernel.entropy_snd_sub_mutualInfo_le_entropy_map_div {G : Type u_5} {T : Type u_6} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace G] [MeasurableSingletonClass G] [Group G] [MeasurableDiv₂ G] [Countable G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[ProbabilityTheory.kernel.snd κ , μ] - Ik[κ , μ] ≤ Hk[ProbabilityTheory.kernel.map κ (fun p => p.1 / p.2) ⋯ , μ]"}
PFR-declarations/PFR.ForMathlib.Entropy.Kernel.MutualInfo.jsonl ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"ProbabilityTheory.kernel.compProd_assoc","declaration":"theorem ProbabilityTheory.kernel.compProd_assoc {V : Type u_5} {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSpace V] (ξ : ↥(ProbabilityTheory.kernel T S)) [ProbabilityTheory.IsMarkovKernel ξ] (κ : ↥(ProbabilityTheory.kernel (T × S) U)) [ProbabilityTheory.IsMarkovKernel κ] (η : ↥(ProbabilityTheory.kernel (T × S × U) V)) [ProbabilityTheory.IsMarkovKernel η] : ProbabilityTheory.kernel.map (ProbabilityTheory.kernel.compProd (ProbabilityTheory.kernel.compProd ξ κ) η)\n ⇑MeasurableEquiv.prodAssoc ⋯ =\n ProbabilityTheory.kernel.compProd ξ\n (ProbabilityTheory.kernel.compProd κ (ProbabilityTheory.kernel.comap η ⇑MeasurableEquiv.prodAssoc ⋯))"}
2
+ {"name":"ProbabilityTheory.kernel.entropy_triple_add_entropy_le'","declaration":"/-- The submodularity inequality:\n$$ H[X,Y,Z] + H[X] \\leq H[X,Z] + H[X,Y].$$ -/\ntheorem ProbabilityTheory.kernel.entropy_triple_add_entropy_le' {V : Type u_5} {S : Type u_2} {T : Type u_3} {U : Type u_4} [Nonempty S] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Nonempty U] [Countable U] [MeasurableSpace U] [MeasurableSingletonClass U] [Nonempty V] [Countable V] [MeasurableSpace V] [MeasurableSingletonClass V] {κ : ↥(ProbabilityTheory.kernel T (S × U × V))} [ProbabilityTheory.IsMarkovKernel κ] {μ : MeasureTheory.Measure T} [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[κ , μ] + Hk[ProbabilityTheory.kernel.fst κ , μ] ≤\n Hk[ProbabilityTheory.kernel.deleteMiddle κ , μ] + Hk[ProbabilityTheory.kernel.deleteRight κ , μ]"}
3
+ {"name":"ProbabilityTheory.kernel.Measure.compProd_compProd''","declaration":"theorem ProbabilityTheory.kernel.Measure.compProd_compProd'' {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] (ξ : ↥(ProbabilityTheory.kernel T S)) [ProbabilityTheory.IsMarkovKernel ξ] (κ : ↥(ProbabilityTheory.kernel (T × S) U)) [ProbabilityTheory.IsMarkovKernel κ] : MeasureTheory.Measure.compProd (MeasureTheory.Measure.compProd μ ξ) κ =\n MeasureTheory.Measure.comap (⇑MeasurableEquiv.prodAssoc)\n (MeasureTheory.Measure.compProd μ (ProbabilityTheory.kernel.compProd ξ κ))"}
4
+ {"name":"ProbabilityTheory.kernel.entropy_condKernel_compProd_triple","declaration":"theorem ProbabilityTheory.kernel.entropy_condKernel_compProd_triple {V : Type u_5} {S : Type u_2} {T : Type u_3} {U : Type u_4} [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Countable U] [MeasurableSpace U] [MeasurableSingletonClass U] [Nonempty V] [Countable V] [MeasurableSpace V] [MeasurableSingletonClass V] (ξ : ↥(ProbabilityTheory.kernel T S)) [ProbabilityTheory.IsMarkovKernel ξ] (κ : ↥(ProbabilityTheory.kernel (T × S) U)) [ProbabilityTheory.IsMarkovKernel κ] (η : ↥(ProbabilityTheory.kernel (T × S × U) V)) [ProbabilityTheory.IsMarkovKernel η] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] : Hk[ProbabilityTheory.kernel.condKernel (ProbabilityTheory.kernel.compProd (ProbabilityTheory.kernel.compProd ξ κ) η) ,\n MeasureTheory.Measure.compProd μ (ProbabilityTheory.kernel.compProd ξ κ)] =\n Hk[η , MeasureTheory.Measure.compProd μ (ProbabilityTheory.kernel.compProd ξ κ)]"}
5
+ {"name":"ProbabilityTheory.kernel.«termIk[_,_]»","declaration":"/-- Mutual information of a kernel into a product space with respect to a measure. -/\ndef ProbabilityTheory.kernel.«termIk[_,_]» : Lean.ParserDescr"}
6
+ {"name":"ProbabilityTheory.kernel.mutualInfo_nonneg","declaration":"theorem ProbabilityTheory.kernel.mutualInfo_nonneg {S : Type u_2} {T : Type u_3} {U : Type u_4} [Nonempty S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Nonempty U] [MeasurableSpace U] [MeasurableSingletonClass U] {κ : ↥(ProbabilityTheory.kernel T (S × U))} {μ : MeasureTheory.Measure T} [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : 0 ≤ Ik[κ , μ]"}
7
+ {"name":"ProbabilityTheory.kernel.mutualInfo_eq_fst_sub","declaration":"theorem ProbabilityTheory.kernel.mutualInfo_eq_fst_sub {S : Type u_2} {T : Type u_3} {U : Type u_4} [Nonempty S] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Nonempty U] [Countable U] [MeasurableSpace U] [MeasurableSingletonClass U] {κ : ↥(ProbabilityTheory.kernel T (S × U))} [ProbabilityTheory.IsMarkovKernel κ] {μ : MeasureTheory.Measure T} [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Ik[κ , μ] =\n Hk[ProbabilityTheory.kernel.fst κ , μ] -\n Hk[ProbabilityTheory.kernel.condKernel (ProbabilityTheory.kernel.swapRight κ) ,\n MeasureTheory.Measure.compProd μ (ProbabilityTheory.kernel.snd κ)]"}
8
+ {"name":"ProbabilityTheory.kernel.entropy_reverse","declaration":"theorem ProbabilityTheory.kernel.entropy_reverse {V : Type u_5} {S : Type u_2} {T : Type u_3} {U : Type u_4} [Nonempty S] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Nonempty U] [Countable U] [MeasurableSpace U] [MeasurableSingletonClass U] [Nonempty V] [Countable V] [MeasurableSpace V] [MeasurableSingletonClass V] {κ : ↥(ProbabilityTheory.kernel T (S × U × V))} [ProbabilityTheory.IsMarkovKernel κ] {μ : MeasureTheory.Measure T} [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[ProbabilityTheory.kernel.reverse κ , μ] = Hk[κ , μ]"}
9
+ {"name":"ProbabilityTheory.kernel.mutualInfo_nonneg'","declaration":"theorem ProbabilityTheory.kernel.mutualInfo_nonneg' {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSingletonClass S] [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace U] [MeasurableSingletonClass U] {κ : ↥(ProbabilityTheory.kernel T (S × U))} {μ : MeasureTheory.Measure T} [MeasureTheory.IsFiniteMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.FiniteKernelSupport κ) : 0 ≤ Ik[κ , μ]"}
10
+ {"name":"ProbabilityTheory.kernel.entropy_compProd_triple_add_entropy_le","declaration":"theorem ProbabilityTheory.kernel.entropy_compProd_triple_add_entropy_le {V : Type u_5} {S : Type u_2} {T : Type u_3} {U : Type u_4} [Nonempty S] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Nonempty U] [Countable U] [MeasurableSpace U] [MeasurableSingletonClass U] [Nonempty V] [Countable V] [MeasurableSpace V] [MeasurableSingletonClass V] {ξ : ↥(ProbabilityTheory.kernel T S)} [ProbabilityTheory.IsMarkovKernel ξ] {κ : ↥(ProbabilityTheory.kernel (T × S) U)} [ProbabilityTheory.IsMarkovKernel κ] {η : ↥(ProbabilityTheory.kernel (T × S × U) V)} [ProbabilityTheory.IsMarkovKernel η] {μ : MeasureTheory.Measure T} [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ (MeasureTheory.Measure.compProd μ ξ)) (hη : ProbabilityTheory.kernel.AEFiniteKernelSupport η\n (MeasureTheory.Measure.compProd μ (ProbabilityTheory.kernel.compProd ξ κ))) (hξ : ProbabilityTheory.kernel.AEFiniteKernelSupport ξ μ) : Hk[ProbabilityTheory.kernel.compProd (ProbabilityTheory.kernel.compProd ξ κ) η , μ] + Hk[ξ , μ] ≤\n Hk[ProbabilityTheory.kernel.compProd ξ\n (ProbabilityTheory.kernel.snd\n (ProbabilityTheory.kernel.compProd κ (ProbabilityTheory.kernel.comap η ⇑MeasurableEquiv.prodAssoc ⋯))) ,\n μ] +\n Hk[ProbabilityTheory.kernel.compProd ξ κ , μ]"}
11
+ {"name":"ProbabilityTheory.kernel.mutualInfo_prod","declaration":"theorem ProbabilityTheory.kernel.mutualInfo_prod {S : Type u_2} {T : Type u_3} {U : Type u_4} [Nonempty S] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Nonempty U] [Countable U] [MeasurableSpace U] [MeasurableSingletonClass U] {κ : ↥(ProbabilityTheory.kernel T S)} {η : ↥(ProbabilityTheory.kernel T U)} [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) (hη : ProbabilityTheory.kernel.AEFiniteKernelSupport η μ) : Ik[ProbabilityTheory.kernel.prod κ η , μ] = 0"}
12
+ {"name":"ProbabilityTheory.kernel.mutualInfo_swapRight","declaration":"theorem ProbabilityTheory.kernel.mutualInfo_swapRight {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSingletonClass S] [MeasurableSpace T] [MeasurableSpace U] [MeasurableSingletonClass U] (κ : ↥(ProbabilityTheory.kernel T (S × U))) (μ : MeasureTheory.Measure T) : Ik[ProbabilityTheory.kernel.swapRight κ , μ] = Ik[κ , μ]"}
13
+ {"name":"ProbabilityTheory.kernel.entropy_condKernel_le_entropy_snd","declaration":"theorem ProbabilityTheory.kernel.entropy_condKernel_le_entropy_snd {S : Type u_2} {T : Type u_3} {U : Type u_4} [Nonempty S] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Nonempty U] [Countable U] [MeasurableSpace U] [MeasurableSingletonClass U] {κ : ↥(ProbabilityTheory.kernel T (S × U))} [ProbabilityTheory.IsMarkovKernel κ] {μ : MeasureTheory.Measure T} [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[ProbabilityTheory.kernel.condKernel κ , MeasureTheory.Measure.compProd μ (ProbabilityTheory.kernel.fst κ)] ≤\n Hk[ProbabilityTheory.kernel.snd κ , μ]"}
14
+ {"name":"ProbabilityTheory.kernel.mutualInfo_zero_measure","declaration":"theorem ProbabilityTheory.kernel.mutualInfo_zero_measure {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] (κ : ↥(ProbabilityTheory.kernel T (S × U))) : Ik[κ , 0] = 0"}
15
+ {"name":"ProbabilityTheory.kernel.mutualInfo_def","declaration":"theorem ProbabilityTheory.kernel.mutualInfo_def {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] (κ : ↥(ProbabilityTheory.kernel T (S × U))) (μ : MeasureTheory.Measure T) : Ik[κ , μ] = Hk[ProbabilityTheory.kernel.fst κ , μ] + Hk[ProbabilityTheory.kernel.snd κ , μ] - Hk[κ , μ]"}
16
+ {"name":"ProbabilityTheory.kernel.entropy_snd_sub_mutualInfo_le_entropy_map_of_injective","declaration":"theorem ProbabilityTheory.kernel.entropy_snd_sub_mutualInfo_le_entropy_map_of_injective {S : Type u_2} {T : Type u_3} {U : Type u_4} [Nonempty S] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] [Nonempty T] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Nonempty U] [Countable U] [MeasurableSpace U] [MeasurableSingletonClass U] {V : Type u_5} [Nonempty V] [Countable V] [MeasurableSpace V] [MeasurableSingletonClass V] (κ : ↥(ProbabilityTheory.kernel T (S × U))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] (f : S × U → V) (hfi : ∀ (x : S), Function.Injective fun y => f (x, y)) [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[ProbabilityTheory.kernel.snd κ , μ] - Ik[κ , μ] ≤ Hk[ProbabilityTheory.kernel.map κ f ⋯ , μ]"}
17
+ {"name":"ProbabilityTheory.kernel.Measure.compProd_compProd'","declaration":"theorem ProbabilityTheory.kernel.Measure.compProd_compProd' {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] (ξ : ↥(ProbabilityTheory.kernel T S)) [ProbabilityTheory.IsMarkovKernel ξ] (κ : ↥(ProbabilityTheory.kernel (T × S) U)) [ProbabilityTheory.IsMarkovKernel κ] : MeasureTheory.Measure.compProd μ (ProbabilityTheory.kernel.compProd ξ κ) =\n MeasureTheory.Measure.comap (⇑MeasurableEquiv.prodAssoc.symm)\n (MeasureTheory.Measure.compProd (MeasureTheory.Measure.compProd μ ξ) κ)"}
18
+ {"name":"ProbabilityTheory.kernel.mutualInfo_congr","declaration":"theorem ProbabilityTheory.kernel.mutualInfo_congr {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] {κ : ↥(ProbabilityTheory.kernel T (S × U))} {η : ↥(ProbabilityTheory.kernel T (S × U))} {μ : MeasureTheory.Measure T} (h : ⇑κ =ᶠ[MeasureTheory.Measure.ae μ] ⇑η) : Ik[κ , μ] = Ik[η , μ]"}
19
+ {"name":"ProbabilityTheory.kernel.entropy_triple_add_entropy_le","declaration":"/-- The submodularity inequality:\n$$ H[X,Y,Z] + H[Z] \\leq H[X,Z] + H[Y,Z].$$ -/\ntheorem ProbabilityTheory.kernel.entropy_triple_add_entropy_le {V : Type u_5} {S : Type u_2} {T : Type u_3} {U : Type u_4} [Nonempty S] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Nonempty U] [Countable U] [MeasurableSpace U] [MeasurableSingletonClass U] [Nonempty V] [Countable V] [MeasurableSpace V] [MeasurableSingletonClass V] (κ : ↥(ProbabilityTheory.kernel T (S × U × V))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[κ , μ] + Hk[ProbabilityTheory.kernel.snd (ProbabilityTheory.kernel.snd κ) , μ] ≤\n Hk[ProbabilityTheory.kernel.deleteMiddle κ , μ] + Hk[ProbabilityTheory.kernel.snd κ , μ]"}
20
+ {"name":"ProbabilityTheory.kernel.«termIk[_,_]».delab","declaration":"/-- Pretty printer defined by `notation3` command. -/\ndef ProbabilityTheory.kernel.«termIk[_,_]».delab : Lean.PrettyPrinter.Delaborator.Delab"}
21
+ {"name":"ProbabilityTheory.kernel.mutualInfo_compProd","declaration":"theorem ProbabilityTheory.kernel.mutualInfo_compProd {S : Type u_2} {T : Type u_3} {U : Type u_4} [Nonempty S] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Nonempty U] [MeasurableSpace U] [MeasurableSingletonClass U] {κ : ↥(ProbabilityTheory.kernel T S)} [ProbabilityTheory.IsMarkovKernel κ] {η : ↥(ProbabilityTheory.kernel (T × S) U)} [ProbabilityTheory.IsMarkovKernel η] {μ : MeasureTheory.Measure T} [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) (hη : ProbabilityTheory.kernel.AEFiniteKernelSupport η (MeasureTheory.Measure.compProd μ κ)) : Ik[ProbabilityTheory.kernel.compProd κ η , μ] =\n Hk[κ , μ] + Hk[ProbabilityTheory.kernel.snd (ProbabilityTheory.kernel.compProd κ η) , μ] -\n Hk[ProbabilityTheory.kernel.compProd κ η , μ]"}
22
+ {"name":"ProbabilityTheory.kernel.mutualInfo_eq_snd_sub","declaration":"theorem ProbabilityTheory.kernel.mutualInfo_eq_snd_sub {S : Type u_2} {T : Type u_3} {U : Type u_4} [Nonempty S] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Nonempty U] [Countable U] [MeasurableSpace U] [MeasurableSingletonClass U] {κ : ↥(ProbabilityTheory.kernel T (S × U))} [ProbabilityTheory.IsMarkovKernel κ] {μ : MeasureTheory.Measure T} [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Ik[κ , μ] =\n Hk[ProbabilityTheory.kernel.snd κ , μ] -\n Hk[ProbabilityTheory.kernel.condKernel κ , MeasureTheory.Measure.compProd μ (ProbabilityTheory.kernel.fst κ)]"}
23
+ {"name":"ProbabilityTheory.kernel.Measure.compProd_compProd","declaration":"theorem ProbabilityTheory.kernel.Measure.compProd_compProd {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] (ξ : ↥(ProbabilityTheory.kernel T S)) [ProbabilityTheory.IsMarkovKernel ξ] (κ : ↥(ProbabilityTheory.kernel (T × S) U)) [ProbabilityTheory.IsMarkovKernel κ] : MeasureTheory.Measure.compProd μ (ProbabilityTheory.kernel.compProd ξ κ) =\n MeasureTheory.Measure.map (⇑MeasurableEquiv.prodAssoc)\n (MeasureTheory.Measure.compProd (MeasureTheory.Measure.compProd μ ξ) κ)"}
24
+ {"name":"ProbabilityTheory.kernel.entropy_condKernel_le_entropy_fst","declaration":"theorem ProbabilityTheory.kernel.entropy_condKernel_le_entropy_fst {S : Type u_2} {T : Type u_3} {U : Type u_4} [Nonempty S] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Nonempty U] [Countable U] [MeasurableSpace U] [MeasurableSingletonClass U] (κ : ↥(ProbabilityTheory.kernel T (S × U))) [ProbabilityTheory.IsMarkovKernel κ] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) : Hk[ProbabilityTheory.kernel.condKernel (ProbabilityTheory.kernel.swapRight κ) ,\n MeasureTheory.Measure.compProd μ (ProbabilityTheory.kernel.snd κ)] ≤\n Hk[ProbabilityTheory.kernel.fst κ , μ]"}
25
+ {"name":"ProbabilityTheory.kernel.mutualInfo_zero_kernel","declaration":"theorem ProbabilityTheory.kernel.mutualInfo_zero_kernel {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] (μ : MeasureTheory.Measure T) : Ik[0 , μ] = 0"}
26
+ {"name":"ProbabilityTheory.kernel.mutualInfo","declaration":"/-- Mutual information of a kernel into a product space with respect to a measure. -/\ndef ProbabilityTheory.kernel.mutualInfo {S : Type u_2} {T : Type u_3} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSpace U] (κ : ↥(ProbabilityTheory.kernel T (S × U))) (μ : MeasureTheory.Measure T) : ℝ"}
27
+ {"name":"ProbabilityTheory.kernel.entropy_submodular_compProd","declaration":"theorem ProbabilityTheory.kernel.entropy_submodular_compProd {V : Type u_5} {S : Type u_2} {T : Type u_3} {U : Type u_4} [Nonempty S] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Nonempty U] [Countable U] [MeasurableSpace U] [MeasurableSingletonClass U] [Nonempty V] [Countable V] [MeasurableSpace V] [MeasurableSingletonClass V] {ξ : ↥(ProbabilityTheory.kernel T S)} [ProbabilityTheory.IsMarkovKernel ξ] {κ : ↥(ProbabilityTheory.kernel (T × S) U)} [ProbabilityTheory.IsMarkovKernel κ] {η : ↥(ProbabilityTheory.kernel (T × S × U) V)} [ProbabilityTheory.IsMarkovKernel η] {μ : MeasureTheory.Measure T} [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ (MeasureTheory.Measure.compProd μ ξ)) (hη : ProbabilityTheory.kernel.AEFiniteKernelSupport η\n (MeasureTheory.Measure.compProd μ (ProbabilityTheory.kernel.compProd ξ κ))) (hξ : ProbabilityTheory.kernel.AEFiniteKernelSupport ξ μ) : Hk[η , MeasureTheory.Measure.compProd μ (ProbabilityTheory.kernel.compProd ξ κ)] ≤\n Hk[ProbabilityTheory.kernel.snd\n (ProbabilityTheory.kernel.compProd κ (ProbabilityTheory.kernel.comap η ⇑MeasurableEquiv.prodAssoc ⋯)) ,\n MeasureTheory.Measure.compProd μ ξ]"}
PFR-declarations/PFR.ForMathlib.Entropy.Kernel.RuzsaDist.jsonl ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"ProbabilityTheory.kernel.rdist_zero_kernel_left","declaration":"theorem ProbabilityTheory.kernel.rdist_zero_kernel_left {T : Type u_1} {T' : Type u_2} {G : Type u_4} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [Countable T'] [MeasurableSpace T'] [MeasurableSingletonClass T'] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] {η : ↥(ProbabilityTheory.kernel T' G)} [ProbabilityTheory.IsFiniteKernel η] {μ : MeasureTheory.Measure T} {ν : MeasureTheory.Measure T'} [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure ν] [ProbabilityTheory.FiniteSupport μ] [ProbabilityTheory.FiniteSupport ν] : dk[0 ; μ # η ; ν] = -Hk[η , ν] / 2"}
2
+ {"name":"ProbabilityTheory.kernel.rdist","declaration":"/-- The Rusza distance between two kernels taking values in the same space, defined as the average\nRusza distance between the image measures. -/\ndef ProbabilityTheory.kernel.rdist {T : Type u_1} {T' : Type u_2} {G : Type u_4} [MeasurableSpace T] [MeasurableSpace T'] [MeasurableSpace G] [AddCommGroup G] (κ : ↥(ProbabilityTheory.kernel T G)) (η : ↥(ProbabilityTheory.kernel T' G)) (μ : MeasureTheory.Measure T) (ν : MeasureTheory.Measure T') : ℝ"}
3
+ {"name":"ProbabilityTheory.kernel.rdist_zero_left","declaration":"theorem ProbabilityTheory.kernel.rdist_zero_left {T : Type u_1} {T' : Type u_2} {G : Type u_4} [MeasurableSpace T] [MeasurableSpace T'] [MeasurableSpace G] [AddCommGroup G] (κ : ↥(ProbabilityTheory.kernel T G)) (η : ↥(ProbabilityTheory.kernel T' G)) (ν' : MeasureTheory.Measure T') : dk[κ ; 0 # η ; ν'] = 0"}
4
+ {"name":"ProbabilityTheory.kernel.rdist_symm","declaration":"theorem ProbabilityTheory.kernel.rdist_symm {T : Type u_1} {T' : Type u_2} {G : Type u_4} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [Countable T'] [MeasurableSpace T'] [MeasurableSingletonClass T'] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] {κ : ↥(ProbabilityTheory.kernel T G)} {η : ↥(ProbabilityTheory.kernel T' G)} [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {μ : MeasureTheory.Measure T} {ν : MeasureTheory.Measure T'} [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure ν] [ProbabilityTheory.FiniteSupport μ] [ProbabilityTheory.FiniteSupport ν] : dk[κ ; μ # η ; ν] = dk[η ; ν # κ ; μ]"}
5
+ {"name":"ProbabilityTheory.kernel.rdist_dirac_zero_left","declaration":"theorem ProbabilityTheory.kernel.rdist_dirac_zero_left {T : Type u_1} {T' : Type u_2} {G : Type u_4} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [Countable T'] [MeasurableSpace T'] [MeasurableSingletonClass T'] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] {η : ↥(ProbabilityTheory.kernel T' G)} [ProbabilityTheory.IsFiniteKernel η] {μ : MeasureTheory.Measure T} {ν : MeasureTheory.Measure T'} [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure ν] [ProbabilityTheory.FiniteSupport μ] [ProbabilityTheory.FiniteSupport ν] : dk[ProbabilityTheory.kernel.const T (MeasureTheory.Measure.dirac 0) ; μ # η ; ν] = Hk[η , ν] / 2"}
6
+ {"name":"ProbabilityTheory.kernel.abs_sub_entropy_le_rdist","declaration":"theorem ProbabilityTheory.kernel.abs_sub_entropy_le_rdist {T : Type u_1} {T' : Type u_2} {G : Type u_4} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [Countable T'] [Nonempty T'] [MeasurableSpace T'] [MeasurableSingletonClass T'] [Countable G] [Nonempty G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] {κ : ↥(ProbabilityTheory.kernel T G)} {η : ↥(ProbabilityTheory.kernel T' G)} [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] {μ : MeasureTheory.Measure T} {ν : MeasureTheory.Measure T'} [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure ν] [ProbabilityTheory.FiniteSupport μ] [ProbabilityTheory.FiniteSupport ν] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) (hη : ProbabilityTheory.kernel.AEFiniteKernelSupport η ν) : |Hk[κ , μ] - Hk[η , ν]| ≤ 2 * dk[κ ; μ # η ; ν]"}
7
+ {"name":"ProbabilityTheory.kernel.rdist_zero_kernel_right","declaration":"theorem ProbabilityTheory.kernel.rdist_zero_kernel_right {T : Type u_1} {T' : Type u_2} {G : Type u_4} [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Countable T'] [MeasurableSpace T'] [MeasurableSingletonClass T'] [MeasurableSpace G] [AddCommGroup G] [MeasurableSub₂ G] {κ : ↥(ProbabilityTheory.kernel T G)} [ProbabilityTheory.IsFiniteKernel κ] {μ : MeasureTheory.Measure T} {ν : MeasureTheory.Measure T'} [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure ν] [ProbabilityTheory.FiniteSupport μ] [ProbabilityTheory.FiniteSupport ν] : dk[κ ; μ # 0 ; ν] = -Hk[κ , μ] / 2"}
8
+ {"name":"ProbabilityTheory.kernel.rdist_zero_right","declaration":"theorem ProbabilityTheory.kernel.rdist_zero_right {T : Type u_1} {T' : Type u_2} {G : Type u_4} [MeasurableSpace T] [MeasurableSpace T'] [MeasurableSpace G] [AddCommGroup G] (κ : ↥(ProbabilityTheory.kernel T G)) (η : ↥(ProbabilityTheory.kernel T' G)) (μ : MeasureTheory.Measure T) : dk[κ ; μ # η ; 0] = 0"}
9
+ {"name":"ProbabilityTheory.kernel.rdist_nonneg","declaration":"theorem ProbabilityTheory.kernel.rdist_nonneg {T : Type u_1} {T' : Type u_2} {G : Type u_4} [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] [Countable T'] [Nonempty T'] [MeasurableSpace T'] [MeasurableSingletonClass T'] [Countable G] [Nonempty G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] {κ : ↥(ProbabilityTheory.kernel T G)} {η : ↥(ProbabilityTheory.kernel T' G)} [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] {μ : MeasureTheory.Measure T} {ν : MeasureTheory.Measure T'} [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure ν] [ProbabilityTheory.FiniteSupport μ] [ProbabilityTheory.FiniteSupport ν] (hκ : ProbabilityTheory.kernel.AEFiniteKernelSupport κ μ) (hη : ProbabilityTheory.kernel.AEFiniteKernelSupport η ν) : 0 ≤ dk[κ ; μ # η ; ν]"}
10
+ {"name":"ProbabilityTheory.kernel.ent_of_diff_le","declaration":"/-- The **improved entropic Ruzsa triangle inequality**. -/\ntheorem ProbabilityTheory.kernel.ent_of_diff_le {T : Type u_1} {G : Type u_4} [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Countable G] [Nonempty G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) (η : ↥(ProbabilityTheory.kernel T G)) [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] (μ : MeasureTheory.Measure T) [MeasureTheory.IsProbabilityMeasure μ] [ProbabilityTheory.FiniteSupport μ] (hκ : ProbabilityTheory.kernel.FiniteKernelSupport κ) (hη : ProbabilityTheory.kernel.FiniteKernelSupport η) : Hk[ProbabilityTheory.kernel.map κ (fun p => p.1 - p.2) ⋯ , μ] ≤\n Hk[ProbabilityTheory.kernel.map (ProbabilityTheory.kernel.prod (ProbabilityTheory.kernel.fst κ) η)\n (fun p => p.1 - p.2) ⋯ ,\n μ] +\n Hk[ProbabilityTheory.kernel.map (ProbabilityTheory.kernel.prod η (ProbabilityTheory.kernel.snd κ))\n (fun p => p.1 - p.2) ⋯ ,\n μ] -\n Hk[η , μ]"}
11
+ {"name":"ProbabilityTheory.kernel.«termDk[_;_#_;_]»","declaration":"/-- The Rusza distance between two kernels taking values in the same space, defined as the average\nRusza distance between the image measures. -/\ndef ProbabilityTheory.kernel.«termDk[_;_#_;_]» : Lean.ParserDescr"}
12
+ {"name":"ProbabilityTheory.kernel.«termDk[_;_#_;_]».delab","declaration":"/-- Pretty printer defined by `notation3` command. -/\ndef ProbabilityTheory.kernel.«termDk[_;_#_;_]».delab : Lean.PrettyPrinter.Delaborator.Delab"}
13
+ {"name":"ProbabilityTheory.kernel.ruzsa_triangle_aux","declaration":"theorem ProbabilityTheory.kernel.ruzsa_triangle_aux {T : Type u_1} {G : Type u_4} [MeasurableSpace T] [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] (κ : ↥(ProbabilityTheory.kernel T (G × G))) (η : ↥(ProbabilityTheory.kernel T G)) [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] : ProbabilityTheory.kernel.map (ProbabilityTheory.kernel.prod κ η) (fun p => p.2 - p.1.2) ⋯ =\n ProbabilityTheory.kernel.map (ProbabilityTheory.kernel.prod η (ProbabilityTheory.kernel.snd κ)) (fun p => p.1 - p.2) ⋯"}
14
+ {"name":"ProbabilityTheory.kernel.rdist_eq","declaration":"theorem ProbabilityTheory.kernel.rdist_eq {T : Type u_1} {T' : Type u_2} {G : Type u_4} [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Countable T'] [MeasurableSpace T'] [MeasurableSingletonClass T'] [MeasurableSpace G] [AddCommGroup G] {κ : ↥(ProbabilityTheory.kernel T G)} {η : ↥(ProbabilityTheory.kernel T' G)} {μ : MeasureTheory.Measure T} {ν : MeasureTheory.Measure T'} [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure ν] [ProbabilityTheory.FiniteSupport μ] [ProbabilityTheory.FiniteSupport ν] : dk[κ ; μ # η ; ν] =\n ∫ (x : T × T'),\n (fun p => Hm[MeasureTheory.Measure.map (fun x => x.1 - x.2) (MeasureTheory.Measure.prod (κ p.1) (η p.2))])\n x ∂MeasureTheory.Measure.prod μ ν -\n Hk[κ , μ] / 2 -\n Hk[η , ν] / 2"}
15
+ {"name":"ProbabilityTheory.kernel.rdist_eq'","declaration":"theorem ProbabilityTheory.kernel.rdist_eq' {T : Type u_1} {T' : Type u_2} {G : Type u_4} [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Countable T'] [MeasurableSpace T'] [MeasurableSingletonClass T'] [MeasurableSpace G] [AddCommGroup G] [MeasurableSub₂ G] {κ : ↥(ProbabilityTheory.kernel T G)} {η : ↥(ProbabilityTheory.kernel T' G)} [ProbabilityTheory.IsFiniteKernel κ] [ProbabilityTheory.IsFiniteKernel η] {μ : MeasureTheory.Measure T} {ν : MeasureTheory.Measure T'} [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure ν] [ProbabilityTheory.FiniteSupport μ] [ProbabilityTheory.FiniteSupport ν] : dk[κ ; μ # η ; ν] =\n Hk[ProbabilityTheory.kernel.map\n (ProbabilityTheory.kernel.prod (ProbabilityTheory.kernel.prodMkRight T' κ)\n (ProbabilityTheory.kernel.prodMkLeft T η))\n (fun x => x.1 - x.2) ⋯ ,\n MeasureTheory.Measure.prod μ ν] -\n Hk[κ , μ] / 2 -\n Hk[η , ν] / 2"}
16
+ {"name":"ProbabilityTheory.kernel.rdist_dirac_zero_right","declaration":"theorem ProbabilityTheory.kernel.rdist_dirac_zero_right {T : Type u_1} {T' : Type u_2} {G : Type u_4} [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Countable T'] [Nonempty T'] [MeasurableSpace T'] [MeasurableSingletonClass T'] [MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] {κ : ↥(ProbabilityTheory.kernel T G)} [ProbabilityTheory.IsFiniteKernel κ] {μ : MeasureTheory.Measure T} {ν : MeasureTheory.Measure T'} [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure ν] [ProbabilityTheory.FiniteSupport μ] [ProbabilityTheory.FiniteSupport ν] : dk[κ ; μ # ProbabilityTheory.kernel.const T' (MeasureTheory.Measure.dirac 0) ; ν] = Hk[κ , μ] / 2"}
17
+ {"name":"ProbabilityTheory.kernel.rdistm","declaration":"/-- The Rusza distance between two measures, defined as `H[X - Y] - H[X]/2 - H[Y]/2` where `X`\nand `Y` are independent variables distributed according to the two measures. -/\ndef ProbabilityTheory.kernel.rdistm {G : Type u_4} [MeasurableSpace G] [AddCommGroup G] (μ : MeasureTheory.Measure G) (ν : MeasureTheory.Measure G) : ℝ"}
18
+ {"name":"ProbabilityTheory.kernel.rdist_triangle_aux1","declaration":"theorem ProbabilityTheory.kernel.rdist_triangle_aux1 {T : Type u_1} {T' : Type u_2} {T'' : Type u_3} {G : Type u_4} [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace T'] [MeasurableSingletonClass T'] [MeasurableSpace T''] [MeasurableSingletonClass T''] [MeasurableSpace G] [AddCommGroup G] [MeasurableSub₂ G] (κ : ↥(ProbabilityTheory.kernel T G)) (η : ↥(ProbabilityTheory.kernel T' G)) [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] (μ : MeasureTheory.Measure T) (μ' : MeasureTheory.Measure T') (μ'' : MeasureTheory.Measure T'') [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] [MeasureTheory.IsProbabilityMeasure μ''] [ProbabilityTheory.FiniteSupport μ] [ProbabilityTheory.FiniteSupport μ'] [ProbabilityTheory.FiniteSupport μ''] : Hk[ProbabilityTheory.kernel.map\n (ProbabilityTheory.kernel.prod\n (ProbabilityTheory.kernel.prodMkRight T' (ProbabilityTheory.kernel.prodMkRight T'' κ))\n (ProbabilityTheory.kernel.prodMkLeft (T × T'') η))\n (fun p => p.1 - p.2) ⋯ ,\n MeasureTheory.Measure.prod (MeasureTheory.Measure.prod μ μ'') μ'] =\n Hk[ProbabilityTheory.kernel.map\n (ProbabilityTheory.kernel.prod (ProbabilityTheory.kernel.prodMkRight T' κ)\n (ProbabilityTheory.kernel.prodMkLeft T η))\n (fun x => x.1 - x.2) ⋯ ,\n MeasureTheory.Measure.prod μ μ']"}
19
+ {"name":"ProbabilityTheory.kernel.rdist_triangle_aux2","declaration":"theorem ProbabilityTheory.kernel.rdist_triangle_aux2 {T : Type u_1} {T' : Type u_2} {T'' : Type u_3} {G : Type u_4} [MeasurableSpace T] [MeasurableSingletonClass T] [MeasurableSpace T'] [MeasurableSingletonClass T'] [MeasurableSpace T''] [MeasurableSingletonClass T''] [MeasurableSpace G] [AddCommGroup G] [MeasurableSub₂ G] (η : ↥(ProbabilityTheory.kernel T' G)) (ξ : ↥(ProbabilityTheory.kernel T'' G)) [ProbabilityTheory.IsMarkovKernel η] [ProbabilityTheory.IsMarkovKernel ξ] (μ : MeasureTheory.Measure T) (μ' : MeasureTheory.Measure T') (μ'' : MeasureTheory.Measure T'') [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] [MeasureTheory.IsProbabilityMeasure μ''] [ProbabilityTheory.FiniteSupport μ] [ProbabilityTheory.FiniteSupport μ'] [ProbabilityTheory.FiniteSupport μ''] : Hk[ProbabilityTheory.kernel.map\n (ProbabilityTheory.kernel.prod (ProbabilityTheory.kernel.prodMkLeft (T × T'') η)\n (ProbabilityTheory.kernel.prodMkRight T' (ProbabilityTheory.kernel.prodMkLeft T ξ)))\n (fun p => p.1 - p.2) ⋯ ,\n MeasureTheory.Measure.prod (MeasureTheory.Measure.prod μ μ'') μ'] =\n Hk[ProbabilityTheory.kernel.map\n (ProbabilityTheory.kernel.prod (ProbabilityTheory.kernel.prodMkRight T'' η)\n (ProbabilityTheory.kernel.prodMkLeft T' ξ))\n (fun x => x.1 - x.2) ⋯ ,\n MeasureTheory.Measure.prod μ' μ'']"}
20
+ {"name":"ProbabilityTheory.kernel.rdist_triangle","declaration":"theorem ProbabilityTheory.kernel.rdist_triangle {T : Type u_1} {T' : Type u_2} {T'' : Type u_3} {G : Type u_4} [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] [Countable T'] [Nonempty T'] [MeasurableSpace T'] [MeasurableSingletonClass T'] [Countable T''] [MeasurableSpace T''] [MeasurableSingletonClass T''] [Countable G] [Nonempty G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] (κ : ↥(ProbabilityTheory.kernel T G)) (η : ↥(ProbabilityTheory.kernel T' G)) (ξ : ↥(ProbabilityTheory.kernel T'' G)) [ProbabilityTheory.IsMarkovKernel κ] [ProbabilityTheory.IsMarkovKernel η] [ProbabilityTheory.IsMarkovKernel ξ] (μ : MeasureTheory.Measure T) (μ' : MeasureTheory.Measure T') (μ'' : MeasureTheory.Measure T'') [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] [MeasureTheory.IsProbabilityMeasure μ''] [ProbabilityTheory.FiniteSupport μ] [ProbabilityTheory.FiniteSupport μ'] [ProbabilityTheory.FiniteSupport μ''] (hκ : ProbabilityTheory.kernel.FiniteKernelSupport κ) (hη : ProbabilityTheory.kernel.FiniteKernelSupport η) (hξ : ProbabilityTheory.kernel.FiniteKernelSupport ξ) : dk[κ ; μ # ξ ; μ''] ≤ dk[κ ; μ # η ; μ'] + dk[η ; μ' # ξ ; μ'']"}
PFR-declarations/PFR.ForMathlib.Entropy.Measure.jsonl ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"ProbabilityTheory.measureEntropy_nonneg","declaration":"theorem ProbabilityTheory.measureEntropy_nonneg {S : Type u_2} [MeasurableSpace S] (μ : MeasureTheory.Measure S) : 0 ≤ Hm[μ]"}
2
+ {"name":"ProbabilityTheory.measureEntropy_of_isProbabilityMeasure_finite","declaration":"theorem ProbabilityTheory.measureEntropy_of_isProbabilityMeasure_finite {S : Type u_2} [MeasurableSpace S] {μ : MeasureTheory.Measure S} {A : Finset S} (hA : ↑↑μ (↑A)ᶜ = 0) [MeasureTheory.IsProbabilityMeasure μ] : Hm[μ] = Finset.sum A fun s => Real.negMulLog (↑↑μ {s}).toReal"}
3
+ {"name":"ProbabilityTheory.finiteSupport_zero","declaration":"instance ProbabilityTheory.finiteSupport_zero {S : Type u_2} [MeasurableSpace S] : ProbabilityTheory.FiniteSupport 0"}
4
+ {"name":"ProbabilityTheory.«termHm[_]»","declaration":"/-- Entropy of a measure on a finite measurable space.\n\nWe normalize the measure by `(μ Set.univ)⁻¹` to extend the entropy definition to finite measures.\nWhat we really want to do is deal with `μ=0` or `IsProbabilityMeasure μ`, but we don't have\na typeclass for that (we could create one though).\nThe added complexity in the expression is not an issue because if `μ` is a probability measure,\na call to `simp` will simplify `(μ Set.univ)⁻¹ • μ` to `μ`. -/\ndef ProbabilityTheory.«termHm[_]» : Lean.ParserDescr"}
5
+ {"name":"ProbabilityTheory.finiteSupport_of_prod","declaration":"instance ProbabilityTheory.finiteSupport_of_prod {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] {μ : MeasureTheory.Measure S} [ProbabilityTheory.FiniteSupport μ] {ν : MeasureTheory.Measure T} [MeasureTheory.SigmaFinite ν] [ProbabilityTheory.FiniteSupport ν] : ProbabilityTheory.FiniteSupport (MeasureTheory.Measure.prod μ ν)"}
6
+ {"name":"ProbabilityTheory.measureEntropy","declaration":"/-- Entropy of a measure on a finite measurable space.\n\nWe normalize the measure by `(μ Set.univ)⁻¹` to extend the entropy definition to finite measures.\nWhat we really want to do is deal with `μ=0` or `IsProbabilityMeasure μ`, but we don't have\na typeclass for that (we could create one though).\nThe added complexity in the expression is not an issue because if `μ` is a probability measure,\na call to `simp` will simplify `(μ Set.univ)⁻¹ • μ` to `μ`. -/\ndef ProbabilityTheory.measureEntropy {S : Type u_2} [MeasurableSpace S] (μ : autoParam (MeasureTheory.Measure S) _auto✝) : ℝ"}
7
+ {"name":"ProbabilityTheory.integrable_of_finiteSupport","declaration":"/-- The countability hypothesis can probably be dropped here. Proof is unwieldy and can probably\nbe golfed. -/\ntheorem ProbabilityTheory.integrable_of_finiteSupport {S : Type u_2} [MeasurableSpace S] [MeasurableSingletonClass S] (μ : MeasureTheory.Measure S) [ProbabilityTheory.FiniteSupport μ] {β : Type u_5} [NormedAddCommGroup β] [MeasureTheory.IsFiniteMeasure μ] [Countable S] {f : S → β} : MeasureTheory.Integrable f μ"}
8
+ {"name":"ProbabilityTheory.measureEntropy_zero","declaration":"theorem ProbabilityTheory.measureEntropy_zero {S : Type u_2} [MeasurableSpace S] : Hm[0] = 0"}
9
+ {"name":"ProbabilityTheory.measureEntropy_prod","declaration":"/-- An ambitious goal would be to replace FiniteSupport with finite entropy. -/\ntheorem ProbabilityTheory.measureEntropy_prod {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSingletonClass S] [MeasurableSpace T] [MeasurableSingletonClass T] {μ : MeasureTheory.Measure S} {ν : MeasureTheory.Measure T} [ProbabilityTheory.FiniteSupport μ] [ProbabilityTheory.FiniteSupport ν] [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure ν] : Hm[MeasureTheory.Measure.prod μ ν] = Hm[μ] + Hm[ν]"}
10
+ {"name":"ProbabilityTheory.FiniteSupport","declaration":"/-- A measure has finite support if there exsists a finite set whose complement has zero measure. -/\nclass ProbabilityTheory.FiniteSupport {S : Type u_2} [MeasurableSpace S] (μ : autoParam (MeasureTheory.Measure S) _auto✝) : Prop"}
11
+ {"name":"ProbabilityTheory.«termIm[_]»","declaration":"/-- The mutual information between the marginals of a measure on a product space. -/\ndef ProbabilityTheory.«termIm[_]» : Lean.ParserDescr"}
12
+ {"name":"ProbabilityTheory.finiteSupport_of_mul","declaration":"instance ProbabilityTheory.finiteSupport_of_mul {S : Type u_2} [MeasurableSpace S] {μ : MeasureTheory.Measure S} [ProbabilityTheory.FiniteSupport μ] (c : ENNReal) : ProbabilityTheory.FiniteSupport (c • μ)"}
13
+ {"name":"ProbabilityTheory.measureMutualInfo_swap","declaration":"theorem ProbabilityTheory.measureMutualInfo_swap {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSingletonClass S] [MeasurableSpace T] [MeasurableSingletonClass T] (μ : MeasureTheory.Measure (S × T)) : Im[MeasureTheory.Measure.map Prod.swap μ] = Im[μ]"}
14
+ {"name":"ProbabilityTheory.full_measure_of_finiteRange","declaration":"/-- duplicate of `FiniteRange.null_of_compl` -/\ntheorem ProbabilityTheory.full_measure_of_finiteRange {Ω : Type u_1} {S : Type u_2} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSingletonClass S] {μ : MeasureTheory.Measure Ω} {X : Ω → S} (hX : Measurable X) [hX' : FiniteRange X] : ↑↑(MeasureTheory.Measure.map X μ) (↑(FiniteRange.toFinset X))ᶜ = 0"}
15
+ {"name":"ProbabilityTheory.finiteSupport_of_finiteRange","declaration":"instance ProbabilityTheory.finiteSupport_of_finiteRange {Ω : Type u_1} {S : Type u_2} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSingletonClass S] {μ : MeasureTheory.Measure Ω} {X : Ω → S} [hX' : FiniteRange X] : ProbabilityTheory.FiniteSupport (MeasureTheory.Measure.map X μ)"}
16
+ {"name":"ProbabilityTheory.FiniteSupport.finite","declaration":"def ProbabilityTheory.FiniteSupport.finite {S : Type u_2} [MeasurableSpace S] {μ : autoParam (MeasureTheory.Measure S) _auto✝} [self : ProbabilityTheory.FiniteSupport μ] : ∃ A, ↑↑μ (↑A)ᶜ = 0"}
17
+ {"name":"ProbabilityTheory.measureEntropy_univ_smul","declaration":"theorem ProbabilityTheory.measureEntropy_univ_smul {S : Type u_2} [MeasurableSpace S] {μ : MeasureTheory.Measure S} : Hm[(↑↑μ Set.univ)⁻¹ • μ] = Hm[μ]"}
18
+ {"name":"ProbabilityTheory.measureMutualInfo_univ_smul","declaration":"theorem ProbabilityTheory.measureMutualInfo_univ_smul {S : Type u_2} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace U] (μ : MeasureTheory.Measure (S × U)) : Im[(↑↑μ Set.univ)⁻¹ • μ] = Im[μ]"}
19
+ {"name":"ProbabilityTheory.FiniteEntropy","declaration":"/-- TODO: replace FiniteSupport hypotheses in these files with FiniteEntropy hypotheses. -/\ndef ProbabilityTheory.FiniteEntropy {S : Type u_2} [MeasurableSpace S] (μ : autoParam (MeasureTheory.Measure S) _auto✝) : Prop"}
20
+ {"name":"ProbabilityTheory.measureEntropy_of_isProbabilityMeasure","declaration":"theorem ProbabilityTheory.measureEntropy_of_isProbabilityMeasure {S : Type u_2} [MeasurableSpace S] (μ : MeasureTheory.Measure S) [MeasureTheory.IsProbabilityMeasure μ] : Hm[μ] = ∑' (s : S), Real.negMulLog (↑↑μ {s}).toReal"}
21
+ {"name":"ProbabilityTheory.measureMutualInfo_eq_zero_iff","declaration":"theorem ProbabilityTheory.measureMutualInfo_eq_zero_iff {S : Type u_2} {U : Type u_4} [MeasurableSpace S] [MeasurableSingletonClass S] [MeasurableSpace U] [MeasurableSingletonClass U] {μ : MeasureTheory.Measure (S × U)} [ProbabilityTheory.FiniteSupport μ] [MeasureTheory.IsProbabilityMeasure μ] : Im[μ] = 0 ↔\n ∀ (p : S × U),\n μ.real {p} = (MeasureTheory.Measure.map Prod.fst μ).real {p.1} * (MeasureTheory.Measure.map Prod.snd μ).real {p.2}"}
22
+ {"name":"ProbabilityTheory.measureEntropy_le_log_card_of_mem","declaration":"theorem ProbabilityTheory.measureEntropy_le_log_card_of_mem {S : Type u_2} [MeasurableSpace S] [MeasurableSingletonClass S] {A : Finset S} (μ : MeasureTheory.Measure S) (hμA : ↑↑μ (↑A)ᶜ = 0) : Hm[μ] ≤ Real.log ↑(Nat.card { x // x ∈ A })"}
23
+ {"name":"ProbabilityTheory.measureMutualInfo_prod","declaration":"theorem ProbabilityTheory.measureMutualInfo_prod {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSingletonClass S] [MeasurableSpace T] [MeasurableSingletonClass T] {μ : MeasureTheory.Measure S} {ν : MeasureTheory.Measure T} [ProbabilityTheory.FiniteSupport μ] [ProbabilityTheory.FiniteSupport ν] [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure ν] : Im[MeasureTheory.Measure.prod μ ν] = 0"}
24
+ {"name":"MeasureTheory.Measure.support","declaration":"def MeasureTheory.Measure.support {S : Type u_2} [MeasurableSpace S] (μ : MeasureTheory.Measure S) [hμ : ProbabilityTheory.FiniteSupport μ] : Finset S"}
25
+ {"name":"ProbabilityTheory.finiteSupport_of_dirac","declaration":"instance ProbabilityTheory.finiteSupport_of_dirac {S : Type u_2} [MeasurableSpace S] [MeasurableSingletonClass S] (x : S) : ProbabilityTheory.FiniteSupport (MeasureTheory.Measure.dirac x)"}
26
+ {"name":"ProbabilityTheory.measureEntropy_of_isProbabilityMeasure_finite'","declaration":"theorem ProbabilityTheory.measureEntropy_of_isProbabilityMeasure_finite' {S : Type u_2} [MeasurableSpace S] {μ : MeasureTheory.Measure S} {A : Finset S} (hA : ↑↑μ (↑A)ᶜ = 0) [MeasureTheory.IsProbabilityMeasure μ] : Hm[μ] = Finset.sum A fun s => Real.negMulLog (μ.real {s})"}
27
+ {"name":"ProbabilityTheory.measureEntropy_eq_card_iff_measure_eq_aux","declaration":"theorem ProbabilityTheory.measureEntropy_eq_card_iff_measure_eq_aux {S : Type u_2} [MeasurableSpace S] [MeasurableSingletonClass S] (μ : MeasureTheory.Measure S) [Fintype S] [MeasureTheory.IsProbabilityMeasure μ] : Hm[μ] = Real.log ↑(Fintype.card S) ↔ ∀ (s : S), ↑↑μ {s} = ↑(↑(Fintype.card S))⁻¹"}
28
+ {"name":"ProbabilityTheory.FiniteSupport.mk","declaration":"ctor ProbabilityTheory.FiniteSupport.mk {S : Type u_2} [MeasurableSpace S] {μ : autoParam (MeasureTheory.Measure S) _auto✝} (finite : ∃ A, ↑↑μ (↑A)ᶜ = 0) : ProbabilityTheory.FiniteSupport μ"}
29
+ {"name":"ProbabilityTheory.measureEntropy_le_card_aux","declaration":"theorem ProbabilityTheory.measureEntropy_le_card_aux {S : Type u_2} [MeasurableSpace S] [MeasurableSingletonClass S] {μ : MeasureTheory.Measure S} [MeasureTheory.IsProbabilityMeasure μ] (A : Finset S) (hμ : ↑��μ (↑A)ᶜ = 0) : Hm[μ] ≤ Real.log ↑A.card"}
30
+ {"name":"ProbabilityTheory.measureEntropy_of_not_isFiniteMeasure","declaration":"theorem ProbabilityTheory.measureEntropy_of_not_isFiniteMeasure {S : Type u_2} [MeasurableSpace S] {μ : MeasureTheory.Measure S} (h : ¬MeasureTheory.IsFiniteMeasure μ) : Hm[μ] = 0"}
31
+ {"name":"ProbabilityTheory.Measure.ext_iff_measureReal_singleton_finiteSupport","declaration":"theorem ProbabilityTheory.Measure.ext_iff_measureReal_singleton_finiteSupport {S : Type u_2} [MeasurableSpace S] [MeasurableSingletonClass S] {μ1 : MeasureTheory.Measure S} {μ2 : MeasureTheory.Measure S} [ProbabilityTheory.FiniteSupport μ1] [ProbabilityTheory.FiniteSupport μ2] [MeasureTheory.IsFiniteMeasure μ1] [MeasureTheory.IsFiniteMeasure μ2] : μ1 = μ2 ↔ ∀ (x : S), μ1.real {x} = μ2.real {x}"}
32
+ {"name":"ProbabilityTheory.finiteSupport_of_fintype","declaration":"instance ProbabilityTheory.finiteSupport_of_fintype {S : Type u_2} [MeasurableSpace S] {μ : MeasureTheory.Measure S} [Fintype S] : ProbabilityTheory.FiniteSupport μ"}
33
+ {"name":"ProbabilityTheory.measureMutualInfo_def","declaration":"theorem ProbabilityTheory.measureMutualInfo_def {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] (μ : MeasureTheory.Measure (S × T)) : Im[μ] = Hm[MeasureTheory.Measure.map Prod.fst μ] + Hm[MeasureTheory.Measure.map Prod.snd μ] - Hm[μ]"}
34
+ {"name":"ProbabilityTheory.measureMutualInfo","declaration":"/-- The mutual information between the marginals of a measure on a product space. -/\ndef ProbabilityTheory.measureMutualInfo {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] (μ : autoParam (MeasureTheory.Measure (S × T)) _auto✝) : ℝ"}
35
+ {"name":"ProbabilityTheory.measureEntropy_def","declaration":"theorem ProbabilityTheory.measureEntropy_def {S : Type u_2} [MeasurableSpace S] (μ : MeasureTheory.Measure S) : Hm[μ] = ∑' (s : S), Real.negMulLog (↑↑((↑↑μ Set.univ)⁻¹ • μ) {s}).toReal"}
36
+ {"name":"ProbabilityTheory.measure_compl_support","declaration":"theorem ProbabilityTheory.measure_compl_support {S : Type u_2} [MeasurableSpace S] (μ : MeasureTheory.Measure S) [hμ : ProbabilityTheory.FiniteSupport μ] : ↑↑μ (↑(MeasureTheory.Measure.support μ))ᶜ = 0"}
37
+ {"name":"ProbabilityTheory.measureEntropy_le_log_card","declaration":"theorem ProbabilityTheory.measureEntropy_le_log_card {S : Type u_2} [MeasurableSpace S] [MeasurableSingletonClass S] [Fintype S] (μ : MeasureTheory.Measure S) : Hm[μ] ≤ Real.log ↑(Fintype.card S)"}
38
+ {"name":"ProbabilityTheory.Measure.ext_iff_singleton_finiteSupport","declaration":"/-- This generalizes Measure.ext_iff_singleton in MeasureReal -/\ntheorem ProbabilityTheory.Measure.ext_iff_singleton_finiteSupport {S : Type u_2} [MeasurableSpace S] [MeasurableSingletonClass S] {μ1 : MeasureTheory.Measure S} {μ2 : MeasureTheory.Measure S} [ProbabilityTheory.FiniteSupport μ1] [ProbabilityTheory.FiniteSupport μ2] : μ1 = μ2 ↔ ∀ (x : S), ↑↑μ1 {x} = ↑↑μ2 {x}"}
39
+ {"name":"ProbabilityTheory.measureEntropy_eq_card_iff_measureReal_eq_aux","declaration":"theorem ProbabilityTheory.measureEntropy_eq_card_iff_measureReal_eq_aux {S : Type u_2} [MeasurableSpace S] [MeasurableSingletonClass S] [Fintype S] (μ : MeasureTheory.Measure S) [MeasureTheory.IsProbabilityMeasure μ] : Hm[μ] = Real.log ↑(Fintype.card S) ↔ ∀ (s : S), μ.real {s} = (↑(Fintype.card S))⁻¹"}
40
+ {"name":"ProbabilityTheory.measureMutualInfo_of_not_isFiniteMeasure","declaration":"theorem ProbabilityTheory.measureMutualInfo_of_not_isFiniteMeasure {S : Type u_2} {U : Type u_4} [MeasurableSpace S] [MeasurableSpace U] {μ : MeasureTheory.Measure (S × U)} (h : ¬MeasureTheory.IsFiniteMeasure μ) : Im[μ] = 0"}
41
+ {"name":"ProbabilityTheory.measureEntropy_def_finite'","declaration":"theorem ProbabilityTheory.measureEntropy_def_finite' {S : Type u_2} [MeasurableSpace S] {μ : MeasureTheory.Measure S} {A : Finset S} (hA : ↑↑μ (↑A)ᶜ = 0) : Hm[μ] = Finset.sum A fun s => Real.negMulLog (((μ.real Set.univ)⁻¹ • μ.real) {s})"}
42
+ {"name":"ProbabilityTheory.measureEntropy_map_of_injective","declaration":"theorem ProbabilityTheory.measureEntropy_map_of_injective {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass T] (μ : MeasureTheory.Measure S) (f : S → T) (hf_m : Measurable f) (hf : Function.Injective f) : Hm[MeasureTheory.Measure.map f μ] = Hm[μ]"}
43
+ {"name":"ProbabilityTheory.measureEntropy_comap_equiv","declaration":"theorem ProbabilityTheory.measureEntropy_comap_equiv {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass T] (μ : MeasureTheory.Measure S) (f : T ≃ᵐ S) : Hm[MeasureTheory.Measure.comap (⇑f) μ] = Hm[μ]"}
44
+ {"name":"ProbabilityTheory.measureEntropy_comap","declaration":"theorem ProbabilityTheory.measureEntropy_comap {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] [MeasurableSingletonClass T] (μ : MeasureTheory.Measure S) (f : T → S) (hf : MeasurableEmbedding f) (hf_range : Set.range f =ᶠ[MeasureTheory.Measure.ae μ] Set.univ) : Hm[MeasureTheory.Measure.comap f μ] = Hm[μ]"}
45
+ {"name":"ProbabilityTheory.measureEntropy_dirac","declaration":"theorem ProbabilityTheory.measureEntropy_dirac {S : Type u_2} [MeasurableSpace S] [MeasurableSingletonClass S] (x : S) : Hm[MeasureTheory.Measure.dirac x] = 0"}
46
+ {"name":"ProbabilityTheory.measureMutualInfo_zero_measure","declaration":"theorem ProbabilityTheory.measureMutualInfo_zero_measure {S : Type u_2} {T : Type u_3} [MeasurableSpace S] [MeasurableSpace T] : Im[0] = 0"}
47
+ {"name":"ProbabilityTheory.measureMutualInfo_nonneg_aux","declaration":"/-- An ambitious goal would be to replace FiniteSupport with finite entropy. Proof is long and slow; needs to be optimized -/\ntheorem ProbabilityTheory.measureMutualInfo_nonneg_aux {S : Type u_2} {U : Type u_4} [MeasurableSpace S] [MeasurableSingletonClass S] [MeasurableSpace U] [MeasurableSingletonClass U] {μ : MeasureTheory.Measure (S × U)} [ProbabilityTheory.FiniteSupport μ] [MeasureTheory.IsProbabilityMeasure μ] : 0 ≤ Im[μ] ∧\n (Im[μ] = 0 ↔\n ∀ (p : S × U),\n μ.real {p} =\n (MeasureTheory.Measure.map Prod.fst μ).real {p.1} * (MeasureTheory.Measure.map Prod.snd μ).real {p.2})"}
48
+ {"name":"ProbabilityTheory.measureEntropy_def'","declaration":"theorem ProbabilityTheory.measureEntropy_def' {S : Type u_2} [MeasurableSpace S] (μ : MeasureTheory.Measure S) : Hm[μ] = ∑' (s : S), Real.negMulLog (((μ.real Set.univ)⁻¹ • μ.real) {s})"}
49
+ {"name":"ProbabilityTheory.measureEntropy_def_finite","declaration":"theorem ProbabilityTheory.measureEntropy_def_finite {S : Type u_2} [MeasurableSpace S] {μ : MeasureTheory.Measure S} {A : Finset S} (hA : ↑↑μ (↑A)ᶜ = 0) : Hm[μ] = Finset.sum A fun s => Real.negMulLog (↑↑((↑↑μ Set.univ)⁻¹ • μ) {s}).toReal"}
50
+ {"name":"ProbabilityTheory.measureEntropy_of_isProbabilityMeasure'","declaration":"theorem ProbabilityTheory.measureEntropy_of_isProbabilityMeasure' {S : Type u_2} [MeasurableSpace S] (μ : MeasureTheory.Measure S) [MeasureTheory.IsProbabilityMeasure μ] : Hm[μ] = ∑' (s : S), Real.negMulLog (μ.real {s})"}
51
+ {"name":"ProbabilityTheory.measureEntropy_eq_card_iff_measureReal_eq","declaration":"theorem ProbabilityTheory.measureEntropy_eq_card_iff_measureReal_eq {S : Type u_2} [MeasurableSpace S] {μ : MeasureTheory.Measure S} [MeasurableSingletonClass S] [Fintype S] [MeasureTheory.IsFiniteMeasure μ] [NeZero μ] : Hm[μ] = Real.log ↑(Fintype.card S) ↔ ∀ (s : S), μ.real {s} = μ.real Set.univ / ↑(Fintype.card S)"}
52
+ {"name":"ProbabilityTheory.integral_congr_finiteSupport","declaration":"theorem ProbabilityTheory.integral_congr_finiteSupport {Ω : Type u_1} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} {G : Type u_5} [MeasurableSingletonClass Ω] [NormedAddCommGroup G] [NormedSpace ℝ G] [CompleteSpace G] {f : Ω → G} {g : Ω → G} [ProbabilityTheory.FiniteSupport μ] [MeasureTheory.IsFiniteMeasure μ] (hfg : ∀ (x : Ω), ↑↑μ {x} ≠ 0 → f x = g x) : ∫ (x : Ω), f x ∂μ = ∫ (x : Ω), g x ∂μ"}
53
+ {"name":"ProbabilityTheory.measureMutualInfo_nonneg","declaration":"theorem ProbabilityTheory.measureMutualInfo_nonneg {S : Type u_2} {U : Type u_4} [MeasurableSpace S] [MeasurableSingletonClass S] [MeasurableSpace U] [MeasurableSingletonClass U] {μ : MeasureTheory.Measure (S × U)} [ProbabilityTheory.FiniteSupport μ] : 0 ≤ Im[μ]"}
54
+ {"name":"ProbabilityTheory.finiteSupport_of_comp","declaration":"theorem ProbabilityTheory.finiteSupport_of_comp {Ω : Type u_1} {S : Type u_2} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSingletonClass S] {μ : MeasureTheory.Measure Ω} [ProbabilityTheory.FiniteSupport μ] {X : Ω → S} (hX : Measurable X) : ProbabilityTheory.FiniteSupport (MeasureTheory.Measure.map X μ)"}
55
+ {"name":"ProbabilityTheory.measureEntropy_eq_card_iff_measure_eq","declaration":"theorem ProbabilityTheory.measureEntropy_eq_card_iff_measure_eq {S : Type u_2} [MeasurableSpace S] {μ : MeasureTheory.Measure S} [MeasurableSingletonClass S] [Fintype S] [MeasureTheory.IsFiniteMeasure μ] [NeZero μ] : Hm[μ] = Real.log ↑(Fintype.card S) ↔ ∀ (s : S), ↑↑μ {s} = ↑↑μ Set.univ / ↑(Fintype.card S)"}
PFR-declarations/PFR.ForMathlib.Entropy.RuzsaDist.jsonl ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"ent_of_diff_le","declaration":"/-- The **improved entropic Ruzsa triangle inequality**. -/\ntheorem ent_of_diff_le {Ω : Type u_1} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [Countable G] (X : Ω → G) (Y : Ω → G) (Z : Ω → G) (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (h : ProbabilityTheory.IndepFun (⟨X, Y⟩) Z μ) [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange X] [FiniteRange Y] [FiniteRange Z] : H[X - Y ; μ] ≤ H[X - Z ; μ] + H[Z - Y ; μ] - H[Z ; μ]"}
2
+ {"name":"condRuzsaDist'_eq_sum","declaration":"/-- Explicit formula for conditional Ruzsa distance $d[X ; Y|W]$. -/\ntheorem condRuzsaDist'_eq_sum {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] [mΩ' : MeasurableSpace Ω'] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Countable G] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] {X : Ω → G} {Y : Ω' → G} {W : Ω' → T} (hY : Measurable Y) (hW : Measurable W) (μ : MeasureTheory.Measure Ω) (μ' : MeasureTheory.Measure Ω') [MeasureTheory.IsFiniteMeasure μ'] [FiniteRange W] : d[X ; μ # Y | W ; μ'] =\n Finset.sum (FiniteRange.toFinset W) fun w =>\n (↑↑μ' (W ⁻¹' {w})).toReal * d[X ; μ # Y ; ProbabilityTheory.cond μ' (W ⁻¹' {w})]"}
3
+ {"name":"«termD[_|_#_|_]».delab","declaration":"/-- Pretty printer defined by `notation3` command. -/\ndef «termD[_|_#_|_]».delab : Lean.PrettyPrinter.Delaborator.Delab"}
4
+ {"name":"condRuzsaDist'_of_copy","declaration":"theorem condRuzsaDist'_of_copy {Ω : Type u_1} {Ω' : Type u_2} {Ω'' : Type u_3} {Ω''' : Type u_4} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [mΩ'' : MeasurableSpace Ω''] {μ'' : MeasureTheory.Measure Ω''} [mΩ''' : MeasurableSpace Ω'''] {μ''' : MeasureTheory.Measure Ω'''} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Countable G] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] (X : Ω → G) {Y : Ω' → G} (hY : Measurable Y) {W : Ω' → T} (hW : Measurable W) (X' : Ω'' → G) {Y' : Ω''' → G} (hY' : Measurable Y') {W' : Ω''' → T} (hW' : Measurable W') [MeasureTheory.IsFiniteMeasure μ'] [MeasureTheory.IsFiniteMeasure μ'''] (h1 : ProbabilityTheory.IdentDistrib X X' μ μ'') (h2 : ProbabilityTheory.IdentDistrib (⟨Y, W⟩) (⟨Y', W'⟩) μ' μ''') [FiniteRange W] [FiniteRange W'] : d[X ; μ # Y | W ; μ'] = d[X' ; μ'' # Y' | W' ; μ''']"}
5
+ {"name":"condRuzsaDist_def","declaration":"theorem condRuzsaDist_def {S : Type u_7} {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] [mΩ' : MeasurableSpace Ω'] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Countable G] [MeasurableSpace S] [MeasurableSpace T] (X : Ω → G) (Z : Ω → S) (Y : Ω' → G) (W : Ω' → T) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] (μ' : MeasureTheory.Measure Ω') [MeasureTheory.IsFiniteMeasure μ'] : d[X | Z ; μ # Y | W ; μ'] =\n dk[ProbabilityTheory.condDistrib X Z μ ; MeasureTheory.Measure.map Z μ # ProbabilityTheory.condDistrib Y W μ' ;\n MeasureTheory.Measure.map W μ']"}
6
+ {"name":"continuous_rdist_restrict_probabilityMeasure","declaration":"/-- Ruzsa distance depends continuously on the measure. -/\ntheorem continuous_rdist_restrict_probabilityMeasure {G : Type u_5} [hG : MeasurableSpace G] [AddCommGroup G] [Countable G] [Fintype G] [TopologicalSpace G] [DiscreteTopology G] [BorelSpace G] : Continuous fun μ => d[id ; ↑μ.1 # id ; ↑μ.2]"}
7
+ {"name":"«termD[_;_#_|_;_]».delab","declaration":"/-- Pretty printer defined by `notation3` command. -/\ndef «termD[_;_#_|_;_]».delab : Lean.PrettyPrinter.Delaborator.Delab"}
8
+ {"name":"condRuzsaDist_le'_prod","declaration":"theorem condRuzsaDist_le'_prod {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) [mΩ' : MeasurableSpace Ω'] (μ' : MeasureTheory.Measure Ω') [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [Countable G] [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] {X : Ω → G} {Y : Ω' → G} {W : Ω' → T} {Z : Ω' → T} [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] (hX : Measurable X) (hY : Measurable Y) (hW : Measurable W) (hZ : Measurable Z) [FiniteRange X] [FiniteRange Y] [FiniteRange W] [FiniteRange Z] : d[X ; μ # Y | ⟨W, Z⟩ ; μ'] ≤ d[X ; μ # Y | Z ; μ'] + I[Y : W|Z;μ'] / 2"}
9
+ {"name":"rdist_add_const'","declaration":"/-- A variant of `rdist_add_const` where one adds constants to both variables. -/\ntheorem rdist_add_const' {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [MeasurableAdd₂ G] [Countable G] {X : Ω → G} {Y : Ω' → G} [FiniteRange X] [FiniteRange Y] [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] (c : G) (c' : G) (hX : Measurable X) (hY : Measurable Y) : d[X + fun x => c ; μ # Y + fun x => c' ; μ'] = d[X ; μ # Y ; μ']"}
10
+ {"name":"condRuzsaDist_symm","declaration":"/-- $$ d[X|Z; Y|W] = d[Y|W; X|Z]$$-/\ntheorem condRuzsaDist_symm {S : Type u_7} {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [Countable G] [Countable S] [Nonempty S] [MeasurableSpace S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → G} {Z : Ω → S} {Y : Ω' → G} {W : Ω' → T} (hZ : Measurable Z) (hW : Measurable W) [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] [FiniteRange Z] [FiniteRange W] : d[X | Z ; μ # Y | W ; μ'] = d[Y | W ; μ' # X | Z ; μ]"}
11
+ {"name":"entropy_sub_entropy_eq_condRuzsaDist_add","declaration":"theorem entropy_sub_entropy_eq_condRuzsaDist_add {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} [mΩ : MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [MeasurableAdd₂ G] [Countable G] [ElementaryAddCommGroup G 2] [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] {X : Ω → G} {Y : Ω' → G} {Z : Ω' → G} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (h : ProbabilityTheory.IndepFun Y Z μ') [FiniteRange X] [FiniteRange Z] [FiniteRange Y] : H[Y + Z ; μ'] - H[Y ; μ'] = d[Y ; μ' # Z ; μ'] + H[Z ; μ'] / 2 - H[Y ; μ'] / 2"}
12
+ {"name":"condRuzsaDist_diff_le''","declaration":"theorem condRuzsaDist_diff_le'' {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} [mΩ : MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [MeasurableAdd₂ G] [Countable G] [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] {X : Ω → G} {Y : Ω' → G} {Z : Ω' → G} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (h : ProbabilityTheory.IndepFun Y Z μ') [FiniteRange X] [FiniteRange Z] [FiniteRange Y] : d[X ; μ # Y | Y + Z ; μ'] - d[X ; μ # Y ; μ'] ≤ (H[Y + Z ; μ'] - H[Z ; μ']) / 2"}
13
+ {"name":"condRuszaDist_zero_left","declaration":"theorem condRuszaDist_zero_left {S : Type u_7} {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] [mΩ' : MeasurableSpace Ω'] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Countable G] [MeasurableSpace S] [MeasurableSpace T] (X : Ω → G) (Z : Ω → S) (Y : Ω' → G) (W : Ω' → T) (μ' : MeasureTheory.Measure Ω') [MeasureTheory.IsFiniteMeasure μ'] : d[X | Z ; 0 # Y | W ; μ'] = 0"}
14
+ {"name":"ent_of_proj_le","declaration":"/-- If $G$ is an additive group and $X$ is a $G$-valued random variable and\n$H\\leq G$ is a finite subgroup then, with $\\pi:G\\to G/H$ the natural homomorphism we have\n(where $U_H$ is uniform on $H$) $\\mathbb{H}(\\pi(X))\\leq 2d[X;U_H].$ -/\ntheorem ent_of_proj_le {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [Countable G] {X : Ω → G} {UH : Ω' → G} [FiniteRange X] [FiniteRange UH] [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] (hX : Measurable X) (hU : Measurable UH) {H : AddSubgroup G} [Finite ↥H] (hunif : ProbabilityTheory.IsUniform (↑H) UH μ') : H[⇑(QuotientAddGroup.mk' H) ∘ X ; μ] ≤ 2 * d[X ; μ # UH ; μ']"}
15
+ {"name":"ProbabilityTheory.IndepFun.rdist_eq","declaration":"/-- If $X, Y$ are independent $G$-random variables then\n$$ d[X ; Y] := H[X - Y] - H[X]/2 - H[Y]/2$$-/\ntheorem ProbabilityTheory.IndepFun.rdist_eq {Ω : Type u_1} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [hG : MeasurableSpace G] [AddCommGroup G] [MeasurableSub₂ G] {X : Ω → G} [MeasureTheory.IsFiniteMeasure μ] {Y : Ω → G} (h : ProbabilityTheory.IndepFun X Y μ) (hX : Measurable X) (hY : Measurable Y) : d[X ; μ # Y ; μ] = H[X - Y ; μ] - H[X ; μ] / 2 - H[Y ; μ] / 2"}
16
+ {"name":"kaimanovich_vershik'","declaration":"/-- A version of the **Kaimanovich-Vershik inequality** with some variables negated. -/\ntheorem kaimanovich_vershik' {Ω : Type u_1} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableAdd₂ G] [Countable G] {X : Ω → G} {Y : Ω → G} {Z : Ω → G} (h : ProbabilityTheory.iIndepFun (fun x => hG) ![X, Y, Z] μ) (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange X] [FiniteRange Z] [FiniteRange Y] : H[X - (Y + Z) ; μ] - H[X - Y ; μ] ≤ H[Y + Z ; μ] - H[Y ; μ]"}
17
+ {"name":"comparison_of_ruzsa_distances","declaration":"theorem comparison_of_ruzsa_distances {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} [mΩ : MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [MeasurableAdd₂ G] [Countable G] [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] {X : Ω → G} {Y : Ω' → G} {Z : Ω' → G} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (h : ProbabilityTheory.IndepFun Y Z μ') [FiniteRange X] [FiniteRange Z] [FiniteRange Y] : d[X ; μ # Y + Z ; μ'] - d[X ; μ # Y ; μ'] ≤ (H[Y + Z ; μ'] - H[Y ; μ']) / 2 ∧\n (ElementaryAddCommGroup G 2 → H[Y + Z ; μ'] - H[Y ; μ'] = d[Y ; μ' # Z ; μ'] + H[Z ; μ'] / 2 - H[Y ; μ'] / 2)"}
18
+ {"name":"«termD[_|_;_#_|_;_]».delab","declaration":"/-- Pretty printer defined by `notation3` command. -/\ndef «termD[_|_;_#_|_;_]».delab : Lean.PrettyPrinter.Delaborator.Delab"}
19
+ {"name":"ent_bsg","declaration":"/-- The **entropic Balog-Szemerédi-Gowers inequality**. Let $A, B$ be $G$-valued random variables on\n$\\Omega$, and set $Z := A+B$. Then\n$$\\sum_{z} P[Z=z] d[(A | Z = z) ; (B | Z = z)] \\leq 3 I[A :B] + 2 H[Z] - H[A] - H[B]. $$\nTODO: remove the hypothesis of `Fintype G` from here and from `condIndep_copies'` -/\ntheorem ent_bsg {Ω : Type u_1} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [MeasurableAdd₂ G] [Countable G] [MeasureTheory.IsProbabilityMeasure μ] {A : Ω → G} {B : Ω → G} (hA : Measurable A) (hB : Measurable B) [Fintype G] : ∫ (x : G),\n (fun z => d[A ; ProbabilityTheory.cond μ ((A + B) ⁻¹' {z}) # B ; ProbabilityTheory.cond μ ((A + B) ⁻¹' {z})])\n x ∂MeasureTheory.Measure.map (A + B) μ ≤\n 3 * I[A : B ; μ] + 2 * H[A + B ; μ] - H[A ; μ] - H[B ; μ]"}
20
+ {"name":"rdist_zero_eq_half_ent","declaration":"/-- $$ d[X ; 0] = H[X] / 2 $$ -/\ntheorem rdist_zero_eq_half_ent {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Countable G] {X : Ω → G} [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] : d[X ; μ # fun x => 0 ; μ'] = H[X ; μ] / 2"}
21
+ {"name":"condRuzsaDist_of_const","declaration":"/-- Conditioning by a constant does not affect Ruzsa distance. -/\ntheorem condRuzsaDist_of_const {S : Type u_7} {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Countable G] [Countable S] [MeasurableSpace S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → G} (hX : Measurable X) (Y : Ω' → G) (W : Ω' → T) (c : S) [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] [FiniteRange W] : d[X | fun x => c ; μ # Y | W ; μ'] = d[X ; μ # Y | W ; μ']"}
22
+ {"name":"«termD[_;_#_;_]»","declaration":"/-- The Ruzsa distance `rdist X Y` or $d[X ;Y]$ between two random variables is defined as\n$H[X'- Y'] - H[X']/2 - H[Y']/2$, where $X', Y'$ are independent copies of $X, Y$. -/\ndef «termD[_;_#_;_]» : Lean.ParserDescr"}
23
+ {"name":"condRuzsaDist'_of_inj_map'","declaration":"theorem condRuzsaDist'_of_inj_map' {Ω : Type u_1} {Ω'' : Type u_3} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [mΩ'' : MeasurableSpace Ω''] {μ'' : MeasureTheory.Measure Ω''} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [MeasurableAdd₂ G] [Countable G] [elem : ElementaryAddCommGroup G 2] [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ''] {A : Ω'' → G} {B : Ω → G} {C : Ω → G} (hA : Measurable A) (hB : Measurable B) (hC : Measurable C) [FiniteRange A] [FiniteRange B] [FiniteRange C] : d[A ; μ'' # B | B + C ; μ] = d[A ; μ'' # C | B + C ; μ]"}
24
+ {"name":"rdist_add_const","declaration":"/-- Adding a constant to a random variable does not change the Rusza distance. -/\ntheorem rdist_add_const {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [Countable G] {X : Ω → G} {Y : Ω' → G} [FiniteRange X] [FiniteRange Y] {c : G} [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] (hX : Measurable X) (hY : Measurable Y) : d[X ; μ # Y + fun x => c ; μ'] = d[X ; μ # Y ; μ']"}
25
+ {"name":"diff_ent_le_rdist","declaration":"/-- $$|H[X] - H[Y]| \\leq 2 d[X ; Y]$$ -/\ntheorem diff_ent_le_rdist {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [Countable G] {X : Ω → G} {Y : Ω' → G} [FiniteRange X] [FiniteRange Y] [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] (hX : Measurable X) (hY : Measurable Y) : |H[X ; μ] - H[Y ; μ']| ≤ 2 * d[X ; μ # Y ; μ']"}
26
+ {"name":"«termD[_#_|_]»","declaration":"/-- The conditional Ruzsa distance `d[X ; Y|W]`. -/\ndef «termD[_#_|_]» : Lean.ParserDescr"}
27
+ {"name":"condRuzsaDist_eq_sum","declaration":"/-- Explicit formula for conditional Ruzsa distance $d[X|Z; Y|W]$. -/\ntheorem condRuzsaDist_eq_sum {S : Type u_7} {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] [mΩ' : MeasurableSpace Ω'] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Countable G] [Countable S] [MeasurableSpace S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → G} {Z : Ω → S} {Y : Ω' → G} {W : Ω' → T} (hX : Measurable X) (hZ : Measurable Z) (hY : Measurable Y) (hW : Measurable W) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] (μ' : MeasureTheory.Measure Ω') [MeasureTheory.IsFiniteMeasure μ'] [FiniteRange Z] [FiniteRange W] : d[X | Z ; μ # Y | W ; μ'] =\n Finset.sum (FiniteRange.toFinset Z) fun z =>\n Finset.sum (FiniteRange.toFinset W) fun w =>\n (↑↑μ (Z ⁻¹' {z})).toReal * (↑↑μ' (W ⁻¹' {w})).toReal *\n d[X ; ProbabilityTheory.cond μ (Z ⁻¹' {z}) # Y ; ProbabilityTheory.cond μ' (W ⁻¹' {w})]"}
28
+ {"name":"condRuzsaDist'_of_indep","declaration":"/-- Formula for conditional Ruzsa distance for independent sets of variables. -/\ntheorem condRuzsaDist'_of_indep {Ω : Type u_1} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [Countable G] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] {X : Ω → G} {Y : Ω → G} {W : Ω → T} (hX : Measurable X) (hY : Measurable Y) (hW : Measurable W) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] (h : ProbabilityTheory.IndepFun X (⟨Y, W⟩) μ) [FiniteRange W] : d[X ; μ # Y | W ; μ] = H[X - Y | W ; μ] - H[X ; μ] / 2 - H[Y | W ; μ] / 2"}
29
+ {"name":"condRuzsaDist'_eq_integral","declaration":"/-- Explicit formula for conditional Ruzsa distance $d[X ; Y|W]$, in integral form. -/\ntheorem condRuzsaDist'_eq_integral {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] [mΩ' : MeasurableSpace Ω'] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Countable G] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] (X : Ω → G) {Y : Ω' → G} {W : Ω' → T} (hY : Measurable Y) (hW : Measurable W) (μ : MeasureTheory.Measure Ω) (μ' : MeasureTheory.Measure Ω') [MeasureTheory.IsFiniteMeasure μ'] [FiniteRange W] : d[X ; μ # Y | W ; μ'] =\n ∫ (x : T), (fun w => d[X ; μ # Y ; ProbabilityTheory.cond μ' (W ⁻¹' {w})]) x ∂MeasureTheory.Measure.map W μ'"}
30
+ {"name":"rdist_nonneg","declaration":"/-- $$ d[X ; Y] \\geq 0$$ -/\ntheorem rdist_nonneg {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [Countable G] {X : Ω → G} {Y : Ω' → G} [FiniteRange X] [FiniteRange Y] [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] (hX : Measurable X) (hY : Measurable Y) : 0 ≤ d[X ; μ # Y ; μ']"}
31
+ {"name":"ProbabilityTheory.IdentDistrib.rdist_eq","declaration":"/-- If $X', Y'$ are copies of $X, Y$ respectively then $d[X' ; Y']=d[X ; Y]$. -/\ntheorem ProbabilityTheory.IdentDistrib.rdist_eq {Ω : Type u_1} {Ω' : Type u_2} {Ω'' : Type u_3} {Ω''' : Type u_4} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [mΩ'' : MeasurableSpace Ω''] {μ'' : MeasureTheory.Measure Ω''} [mΩ''' : MeasurableSpace Ω'''] {μ''' : MeasureTheory.Measure Ω'''} [hG : MeasurableSpace G] [AddCommGroup G] {X : Ω → G} {Y : Ω' → G} {X' : Ω'' → G} {Y' : Ω''' → G} (hX : ProbabilityTheory.IdentDistrib X X' μ μ'') (hY : ProbabilityTheory.IdentDistrib Y Y' μ' μ''') : d[X ; μ # Y ; μ'] = d[X' ; μ'' # Y' ; μ''']"}
32
+ {"name":"condRuzsaDist_comp_right","declaration":"theorem condRuzsaDist_comp_right {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) [mΩ' : MeasurableSpace Ω'] (μ' : MeasureTheory.Measure Ω') [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Countable G] [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] {T' : Type u_7} [Fintype T] [Fintype T'] [MeasurableSpace T'] [MeasurableSingletonClass T'] [MeasureTheory.IsFiniteMeasure μ'] (X : Ω → G) (Y : Ω' → G) (W : Ω' → T) (e : T → T') (hY : Measurable Y) (hW : Measurable W) (he : Measurable e) (h'e : Function.Injective e) : d[X ; μ # Y | e ∘ W ; μ'] = d[X ; μ # Y | W ; μ']"}
33
+ {"name":"diff_ent_le_rdist'","declaration":"/-- $$H[X - Y] - H[X] \\leq 2d[X ; Y]$$ -/\ntheorem diff_ent_le_rdist' {Ω : Type u_1} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [Countable G] {X : Ω → G} [FiniteRange X] [MeasureTheory.IsProbabilityMeasure μ] {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (h : ProbabilityTheory.IndepFun X Y μ) [FiniteRange Y] : H[X - Y ; μ] - H[X ; μ] ≤ 2 * d[X ; μ # Y ; μ]"}
34
+ {"name":"«termD[_|_#_|_]»","declaration":"/-- The conditional Ruzsa distance `d[X|Z ; Y|W]`. -/\ndef «termD[_|_#_|_]» : Lean.ParserDescr"}
35
+ {"name":"condRuzsaDist_le'","declaration":"theorem condRuzsaDist_le' {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) [mΩ' : MeasurableSpace Ω'] (μ' : MeasureTheory.Measure Ω') [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [Countable G] [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass T] {X : Ω → G} {Y : Ω' → G} {W : Ω' → T} [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] (hX : Measurable X) (hY : Measurable Y) (hW : Measurable W) [FiniteRange X] [FiniteRange Y] [FiniteRange W] : d[X ; μ # Y | W ; μ'] ≤ d[X ; μ # Y ; μ'] + I[Y : W ; μ'] / 2"}
36
+ {"name":"condRuszaDist_zero_right","declaration":"theorem condRuszaDist_zero_right {S : Type u_7} {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] [mΩ' : MeasurableSpace Ω'] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Countable G] [MeasurableSpace S] [MeasurableSpace T] (X : Ω → G) (Z : Ω → S) (Y : Ω' → G) (W : Ω' → T) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] : d[X | Z ; μ # Y | W ; 0] = 0"}
37
+ {"name":"condRuzsaDist_eq_sum'","declaration":"/-- Explicit formula for conditional Ruzsa distance $d[X|Z; Y|W]$ in a fintype. -/\ntheorem condRuzsaDist_eq_sum' {S : Type u_7} {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] [mΩ' : MeasurableSpace Ω'] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Countable G] [Countable S] [MeasurableSpace S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → G} {Z : Ω → S} {Y : Ω' → G} {W : Ω' → T} (hX : Measurable X) (hZ : Measurable Z) (hY : Measurable Y) (hW : Measurable W) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsFiniteMeasure μ] (μ' : MeasureTheory.Measure Ω') [MeasureTheory.IsFiniteMeasure μ'] [Fintype S] [Fintype T] : d[X | Z ; μ # Y | W ; μ'] =\n Finset.sum Finset.univ fun z =>\n Finset.sum Finset.univ fun w =>\n (↑↑μ (Z ⁻¹' {z})).toReal * (↑↑μ' (W ⁻¹' {w})).toReal *\n d[X ; ProbabilityTheory.cond μ (Z ⁻¹' {z}) # Y ; ProbabilityTheory.cond μ' (W ⁻¹' {w})]"}
38
+ {"name":"continuous_entropy_restrict_probabilityMeasure","declaration":"theorem continuous_entropy_restrict_probabilityMeasure {G : Type u_5} [hG : MeasurableSpace G] [Fintype G] [TopologicalSpace G] [DiscreteTopology G] [BorelSpace G] : Continuous fun μ => H[id ; ↑μ]"}
39
+ {"name":"condRuzsaDist'_of_inj_map","declaration":"theorem condRuzsaDist'_of_inj_map {Ω : Type u_1} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [MeasurableAdd₂ G] [Countable G] [MeasureTheory.IsProbabilityMeasure μ] [elem : ElementaryAddCommGroup G 2] {X : Ω → G} {B : Ω → G} {C : Ω → G} (hX : Measurable X) (hB : Measurable B) (hC : Measurable C) (h_indep : ProbabilityTheory.IndepFun X (⟨B, C⟩) μ) [FiniteRange X] [FiniteRange B] [FiniteRange C] : d[X ; μ # B | B + C ; μ] = d[X ; μ # C | B + C ; μ]"}
40
+ {"name":"rdist_def","declaration":"/-- Explicit formula for the Ruzsa distance. -/\ntheorem rdist_def {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} [mΩ : MeasurableSpace Ω] [mΩ' : MeasurableSpace Ω'] [hG : MeasurableSpace G] [AddCommGroup G] (X : Ω → G) (Y : Ω' → G) (μ : MeasureTheory.Measure Ω) (μ' : MeasureTheory.Measure Ω') : d[X ; μ # Y ; μ'] =\n H[fun x => x.1 - x.2 ; MeasureTheory.Measure.prod (MeasureTheory.Measure.map X μ) (MeasureTheory.Measure.map Y μ')] -\n H[X ; μ] / 2 -\n H[Y ; μ'] / 2"}
41
+ {"name":"condRuzsaDist'","declaration":"/-- The conditional Ruzsa distance `d[X ; Y|W]`. -/\ndef condRuzsaDist' {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] [mΩ' : MeasurableSpace Ω'] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Countable G] [MeasurableSpace T] (X : Ω → G) (Y : Ω' → G) (W : Ω' → T) (μ : autoParam (MeasureTheory.Measure Ω) _auto✝) (μ' : autoParam (MeasureTheory.Measure Ω') _auto✝) [MeasureTheory.IsFiniteMeasure μ'] : ℝ"}
42
+ {"name":"condRuzsaDist_diff_ofsum_le","declaration":"theorem condRuzsaDist_diff_ofsum_le {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} [mΩ : MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [MeasurableAdd₂ G] [Countable G] [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] {X : Ω → G} {Y : Ω' → G} {Z : Ω' → G} {Z' : Ω' → G} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (hZ' : Measurable Z') (h : ProbabilityTheory.iIndepFun (fun x => hG) ![Y, Z, Z'] μ') [FiniteRange X] [FiniteRange Z] [FiniteRange Y] [FiniteRange Z'] : d[X ; μ # Y + Z | Y + Z + Z' ; μ'] - d[X ; μ # Y ; μ'] ≤\n (H[Y + Z + Z' ; μ'] + H[Y + Z ; μ'] - H[Y ; μ'] - H[Z' ; μ']) / 2"}
43
+ {"name":"rdist_symm","declaration":"/-- $$ d[X ; Y] = d[Y ; X]$$ -/\ntheorem rdist_symm {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [Countable G] {X : Ω → G} {Y : Ω' → G} [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure μ'] : d[X ; μ # Y ; μ'] = d[Y ; μ' # X ; μ]"}
44
+ {"name":"rdist_of_inj","declaration":"/-- Applying an injective homomorphism does not affect Ruzsa distance. -/\ntheorem rdist_of_inj {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Countable G] {X : Ω → G} {Y : Ω' → G} {H : Type u_7} [hH : MeasurableSpace H] [MeasurableSingletonClass H] [AddCommGroup H] [MeasurableSub₂ H] [MeasurableAdd₂ H] [Countable H] (hX : Measurable X) (hY : Measurable Y) (φ : G →+ H) (hφ : Function.Injective ⇑φ) [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] : d[⇑φ ∘ X ; μ # ⇑φ ∘ Y ; μ'] = d[X ; μ # Y ; μ']"}
45
+ {"name":"condRuzsaDist'_eq_sum'","declaration":"/-- Alternate formula for conditional Ruzsa distance $d[X ; Y|W]$ when T is a Fintype. -/\ntheorem condRuzsaDist'_eq_sum' {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] [mΩ' : MeasurableSpace Ω'] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Countable G] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] {X : Ω → G} {Y : Ω' → G} {W : Ω' → T} (hY : Measurable Y) (hW : Measurable W) (μ : MeasureTheory.Measure Ω) (μ' : MeasureTheory.Measure Ω') [MeasureTheory.IsFiniteMeasure μ'] [Fintype T] : d[X ; μ # Y | W ; μ'] =\n Finset.sum Finset.univ fun w => (↑↑μ' (W ⁻¹' {w})).toReal * d[X ; μ # Y ; ProbabilityTheory.cond μ' (W ⁻¹' {w})]"}
46
+ {"name":"condRuzsaDist_diff_le'","declaration":"theorem condRuzsaDist_diff_le' {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} [mΩ : MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [MeasurableAdd₂ G] [Countable G] [ElementaryAddCommGroup G 2] [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] {X : Ω → G} {Y : Ω' → G} {Z : Ω' → G} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (h : ProbabilityTheory.IndepFun Y Z μ') [FiniteRange X] [FiniteRange Z] [FiniteRange Y] : d[X ; μ # Y + Z ; μ'] - d[X ; μ # Y ; μ'] ≤ d[Y ; μ' # Z ; μ'] / 2 + H[Z ; μ'] / 4 - H[Y ; μ'] / 4"}
47
+ {"name":"condRuzsaDist_of_indep","declaration":"/-- If $(X,Z)$ and $(Y,W)$ are independent, then\n$$ d[X | Z ; Y | W] = H[X'- Y'|Z', W'] - H[X'|Z']/2 - H[Y'|W']/2$$\n-/\ntheorem condRuzsaDist_of_indep {S : Type u_7} {Ω : Type u_1} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [Countable G] [Countable S] [MeasurableSpace S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → G} {Z : Ω → S} {Y : Ω → G} {W : Ω → T} (hX : Measurable X) (hZ : Measurable Z) (hY : Measurable Y) (hW : Measurable W) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] (h : ProbabilityTheory.IndepFun (⟨X, Z⟩) (⟨Y, W⟩) μ) [FiniteRange Z] [FiniteRange W] : d[X | Z ; μ # Y | W ; μ] = H[X - Y | ⟨Z, W⟩ ; μ] - H[X | Z ; μ] / 2 - H[Y | W ; μ] / 2"}
48
+ {"name":"kaimanovich_vershik","declaration":"/-- The **Kaimanovich-Vershik inequality**. $$H[X + Y + Z] - H[X + Y] \\leq H[Y+ Z] - H[Y]$$ -/\ntheorem kaimanovich_vershik {Ω : Type u_1} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableAdd₂ G] [Countable G] {X : Ω → G} {Y : Ω → G} {Z : Ω → G} (h : ProbabilityTheory.iIndepFun (fun x => hG) ![X, Y, Z] μ) (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) [MeasureTheory.IsProbabilityMeasure μ] [FiniteRange X] [FiniteRange Z] [FiniteRange Y] : H[X + Y + Z ; μ] - H[X + Y ; μ] ≤ H[Y + Z ; μ] - H[Y ; μ]"}
49
+ {"name":"condRuzsaDist_diff_le","declaration":"/-- Let $X, Y, Z$ be random variables taking values in some abelian group, and with $Y, Z$\nindependent. Then we have\n$$d[X ; Y + Z] -d[X ; Y] \\leq \\tfrac{1}{2} (H[Y+ Z] - H[Y])$$\n$$= \\tfrac{1}{2} d[Y ; Z] + \\tfrac{1}{4} H[Z] - \\tfrac{1}{4} H[Y]$$\nand\n$$d[X ; Y|Y+ Z] - d[X ; Y] \\leq \\tfrac{1}{2} \\bigl(H[Y+ Z] - H[Z]\\bigr)$$\n$$= \\tfrac{1}{2} d[Y ; Z] + \\tfrac{1}{4} H[Y] - \\tfrac{1}{4} H[Z]$$\n-/\ntheorem condRuzsaDist_diff_le {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} [mΩ : MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [MeasurableAdd₂ G] [Countable G] [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] {X : Ω → G} {Y : Ω' → G} {Z : Ω' → G} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (h : ProbabilityTheory.IndepFun Y Z μ') [FiniteRange X] [FiniteRange Z] [FiniteRange Y] : d[X ; μ # Y + Z ; μ'] - d[X ; μ # Y ; μ'] ≤ (H[Y + Z ; μ'] - H[Y ; μ']) / 2"}
50
+ {"name":"«termD[_#_|_]».delab","declaration":"/-- Pretty printer defined by `notation3` command. -/\ndef «termD[_#_|_]».delab : Lean.PrettyPrinter.Delaborator.Delab"}
51
+ {"name":"condRuzsaDist'_zero_right","declaration":"theorem condRuzsaDist'_zero_right {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] [mΩ' : MeasurableSpace Ω'] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Countable G] [MeasurableSpace T] (X : Ω → G) (Y : Ω' → G) (W : Ω' → T) (μ : MeasureTheory.Measure Ω) : d[X ; μ # Y | W ; 0] = 0"}
52
+ {"name":"continuous_measureEntropy_probabilityMeasure","declaration":"/-- Entropy depends continuously on the measure. -/\ntheorem continuous_measureEntropy_probabilityMeasure {Ω : Type u_7} [Fintype Ω] [TopologicalSpace Ω] [DiscreteTopology Ω] [MeasurableSpace Ω] [OpensMeasurableSpace Ω] : Continuous fun μ => Hm[↑μ]"}
53
+ {"name":"«termD[_|_;_#_|_;_]»","declaration":"/-- The conditional Ruzsa distance `d[X|Z ; Y|W]`. -/\ndef «termD[_|_;_#_|_;_]» : Lean.ParserDescr"}
54
+ {"name":"condRuzsaDist","declaration":"/-- The conditional Ruzsa distance `d[X|Z ; Y|W]`. -/\ndef condRuzsaDist {S : Type u_7} {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] [mΩ' : MeasurableSpace Ω'] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Countable G] [MeasurableSpace S] [MeasurableSpace T] (X : Ω → G) (Z : Ω → S) (Y : Ω' → G) (W : Ω' → T) (μ : autoParam (MeasureTheory.Measure Ω) _auto✝) [MeasureTheory.IsFiniteMeasure μ] (μ' : autoParam (MeasureTheory.Measure Ω') _auto✝) [MeasureTheory.IsFiniteMeasure μ'] : ℝ"}
55
+ {"name":"condRuzsaDist'_prod_eq_sum'","declaration":"/-- Version of `condRuzsaDist'_prod_eq_sum` when `W` has finite codomain. -/\ntheorem condRuzsaDist'_prod_eq_sum' {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] [mΩ' : MeasurableSpace Ω'] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Countable G] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] {X : Ω → G} {Y : Ω' → G} {W : Ω' → T} {W' : Ω' → T} (μ : MeasureTheory.Measure Ω) (μ' : MeasureTheory.Measure Ω') (hY : Measurable Y) (hW' : Measurable W') (hW : Measurable W) [MeasureTheory.IsFiniteMeasure μ'] [Fintype T] : d[X ; μ # Y | ⟨W', W⟩ ; μ'] =\n Finset.sum Finset.univ fun w => (↑↑μ' (W ⁻¹' {w})).toReal * d[X ; μ # Y | W' ; ProbabilityTheory.cond μ' (W ⁻¹' {w})]"}
56
+ {"name":"rdist_eq_rdistm","declaration":"/-- Ruzsa distance of random variables equals Ruzsa distance of the kernels. -/\ntheorem rdist_eq_rdistm {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [hG : MeasurableSpace G] [AddCommGroup G] {X : Ω → G} {Y : Ω' → G} : d[X ; μ # Y ; μ'] = ProbabilityTheory.kernel.rdistm (MeasureTheory.Measure.map X μ) (MeasureTheory.Measure.map Y μ')"}
57
+ {"name":"rdist_triangle","declaration":"/-- The **entropic Ruzsa triangle inequality** -/\ntheorem rdist_triangle {Ω : Type u_1} {Ω' : Type u_2} {Ω'' : Type u_3} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [mΩ'' : MeasurableSpace Ω''] {μ'' : MeasureTheory.Measure Ω''} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [Countable G] {X : Ω → G} {Y : Ω' → G} {Z : Ω'' → G} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) [hμ : MeasureTheory.IsProbabilityMeasure μ] [hμ' : MeasureTheory.IsProbabilityMeasure μ'] [hμ'' : MeasureTheory.IsProbabilityMeasure μ''] [FiniteRange X] [FiniteRange Y] [FiniteRange Z] : d[X ; μ # Z ; μ''] ≤ d[X ; μ # Y ; μ'] + d[Y ; μ' # Z ; μ'']"}
58
+ {"name":"«termD[_;_#_;_]».delab","declaration":"/-- Pretty printer defined by `notation3` command. -/\ndef «termD[_;_#_;_]».delab : Lean.PrettyPrinter.Delaborator.Delab"}
59
+ {"name":"condRuzsaDist_nonneg","declaration":"theorem condRuzsaDist_nonneg {S : Type u_7} {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [Countable G] [Countable S] [Nonempty S] [MeasurableSpace S] [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → G} (hX : Measurable X) [FiniteRange X] {Z : Ω → S} (hZ : Measurable Z) [FiniteRange Z] {Y : Ω' → G} (hY : Measurable Y) [FiniteRange Y] {W : Ω' → T} (hW : Measurable W) [FiniteRange W] [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] : 0 ≤ d[X | Z ; μ # Y | W ; μ']"}
60
+ {"name":"condRuszaDist_prod_eq_of_indepFun","declaration":"theorem condRuszaDist_prod_eq_of_indepFun {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] [mΩ' : MeasurableSpace Ω'] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Countable G] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] {μ : MeasureTheory.Measure Ω} {μ' : MeasureTheory.Measure Ω'} {X : Ω → G} {Y : Ω' → G} {W : Ω' → T} {W' : Ω' → T} (hX : Measurable X) (hY : Measurable Y) (hW : Measurable W) (hW' : Measurable W') (h : ProbabilityTheory.IndepFun (⟨Y, W⟩) W' μ') [MeasureTheory.IsProbabilityMeasure μ'] [Fintype T] : d[X ; μ # Y | ⟨W, W'⟩ ; μ'] = d[X ; μ # Y | W ; μ']"}
61
+ {"name":"«termD[_#_]»","declaration":"/-- The Ruzsa distance `rdist X Y` or $d[X ;Y]$ between two random variables is defined as\n$H[X'- Y'] - H[X']/2 - H[Y']/2$, where $X', Y'$ are independent copies of $X, Y$. -/\ndef «termD[_#_]» : Lean.ParserDescr"}
62
+ {"name":"condRuzsaDist'_prod_eq_sum","declaration":"theorem condRuzsaDist'_prod_eq_sum {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] [mΩ' : MeasurableSpace Ω'] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Countable G] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass T] {X : Ω → G} {Y : Ω' → G} {W : Ω' → T} {W' : Ω' → T} (μ : MeasureTheory.Measure Ω) (μ' : MeasureTheory.Measure Ω') (hY : Measurable Y) (hW' : Measurable W') (hW : Measurable W) [MeasureTheory.IsFiniteMeasure μ'] [FiniteRange W] [FiniteRange W'] : d[X ; μ # Y | ⟨W', W⟩ ; μ'] =\n Finset.sum (FiniteRange.toFinset W) fun w =>\n (↑↑μ' (W ⁻¹' {w})).toReal * d[X ; μ # Y | W' ; ProbabilityTheory.cond μ' (W ⁻¹' {w})]"}
63
+ {"name":"condRuzsaDist'_def","declaration":"/-- Conditional Ruzsa distance equals Ruzsa distance of associated kernels. -/\ntheorem condRuzsaDist'_def {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] [mΩ' : MeasurableSpace Ω'] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Countable G] [MeasurableSpace T] (X : Ω → G) (Y : Ω' → G) (W : Ω' → T) (μ : MeasureTheory.Measure Ω) (μ' : MeasureTheory.Measure Ω') [MeasureTheory.IsFiniteMeasure μ'] : d[X ; μ # Y | W ; μ'] =\n dk[ProbabilityTheory.kernel.const Unit (MeasureTheory.Measure.map X μ) ; MeasureTheory.Measure.dirac () #\n ProbabilityTheory.condDistrib Y W μ' ; MeasureTheory.Measure.map W μ']"}
64
+ {"name":"rdist_le_avg_ent","declaration":"/-- $d[X;Y] ≤ H[X]/2 + H[Y]/2$. -/\ntheorem rdist_le_avg_ent {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} [mΩ : MeasurableSpace Ω] [mΩ' : MeasurableSpace Ω'] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [Countable G] {X : Ω → G} {Y : Ω' → G} [FiniteRange X] [FiniteRange Y] (hX : Measurable X) (hY : Measurable Y) (μ : autoParam (MeasureTheory.Measure Ω) _auto✝) (μ' : autoParam (MeasureTheory.Measure Ω') _auto✝) [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] : d[X ; μ # Y ; μ'] ≤ (H[X ; μ] + H[Y ; μ']) / 2"}
65
+ {"name":"condRuzsaDist_diff_le'''","declaration":"theorem condRuzsaDist_diff_le''' {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} [mΩ : MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [MeasurableAdd₂ G] [Countable G] [ElementaryAddCommGroup G 2] [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] {X : Ω → G} {Y : Ω' → G} {Z : Ω' → G} (hX : Measurable X) (hY : Measurable Y) (hZ : Measurable Z) (h : ProbabilityTheory.IndepFun Y Z μ') [FiniteRange X] [FiniteRange Z] [FiniteRange Y] : d[X ; μ # Y | Y + Z ; μ'] - d[X ; μ # Y ; μ'] ≤ d[Y ; μ' # Z ; μ'] / 2 + H[Y ; μ'] / 4 - H[Z ; μ'] / 4"}
66
+ {"name":"condRuzsaDist_le","declaration":"/-- Suppose that $(X, Z)$ and $(Y, W)$ are random variables, where $X, Y$ take values in an abelian\ngroup. Then $$d[X | Z ; Y | W] \\leq d[X ; Y] + \\tfrac{1}{2} I[X : Z] + \\tfrac{1}{2} I[Y : W]$$ -/\ntheorem condRuzsaDist_le {S : Type u_7} {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) [mΩ' : MeasurableSpace Ω'] (μ' : MeasureTheory.Measure Ω') [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [Countable G] [Countable S] [MeasurableSpace S] [Countable T] [Nonempty T] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → G} {Z : Ω → S} {Y : Ω' → G} {W : Ω' → T} [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] [Nonempty S] (hX : Measurable X) (hZ : Measurable Z) (hY : Measurable Y) (hW : Measurable W) [FiniteRange X] [FiniteRange Z] [FiniteRange Y] [FiniteRange W] : d[X | Z ; μ # Y | W ; μ'] ≤ d[X ; μ # Y ; μ'] + I[X : Z ; μ] / 2 + I[Y : W ; μ'] / 2"}
67
+ {"name":"continuous_rdist_restrict_probabilityMeasure₁'","declaration":"/-- Ruzsa distance depends continuously on the second measure. -/\ntheorem continuous_rdist_restrict_probabilityMeasure₁' {Ω : Type u_1} {G : Type u_5} [mΩ : MeasurableSpace Ω] [hG : MeasurableSpace G] [AddCommGroup G] [Countable G] [Fintype G] [TopologicalSpace G] [DiscreteTopology G] [BorelSpace G] (X : Ω → G) (P : autoParam (MeasureTheory.Measure Ω) _auto✝) [MeasureTheory.IsProbabilityMeasure P] (X_mble : Measurable X) : Continuous fun μ => d[X ; P # id ; ↑μ]"}
68
+ {"name":"«termD[_;_#_|_;_]»","declaration":"/-- The conditional Ruzsa distance `d[X ; Y|W]`. -/\ndef «termD[_;_#_|_;_]» : Lean.ParserDescr"}
69
+ {"name":"condRuzsaDist_of_inj_map","declaration":"theorem condRuzsaDist_of_inj_map {Ω : Type u_1} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [Countable G] {G' : Type u_7} [Countable G'] [AddCommGroup G'] [MeasurableSpace G'] [MeasurableSingletonClass G'] [MeasureTheory.IsProbabilityMeasure μ] (Y : Fin 4 → Ω → G) (h_indep : ProbabilityTheory.IndepFun (⟨Y 0, Y 2⟩) (⟨Y 1, Y 3⟩) μ) (h_meas : ∀ (i : Fin 4), Measurable (Y i)) (π : G × G →+ G') (hπ : ∀ (h : G), Function.Injective fun g => π (g, h)) [FiniteRange (Y 2)] [FiniteRange (Y 3)] : d[⇑π ∘ ⟨Y 0, Y 2⟩ | Y 2 ; μ # ⇑π ∘ ⟨Y 1, Y 3⟩ | Y 3 ; μ] = d[Y 0 | Y 2 ; μ # Y 1 | Y 3 ; μ]"}
70
+ {"name":"condRuzsaDist_of_copy","declaration":"/-- The conditional Ruzsa distance is unchanged if the sets of random variables are replaced with\ncopies. -/\ntheorem condRuzsaDist_of_copy {S : Type u_7} {Ω : Type u_1} {Ω' : Type u_2} {Ω'' : Type u_3} {Ω''' : Type u_4} {G : Type u_5} {T : Type u_6} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [mΩ'' : MeasurableSpace Ω''] {μ'' : MeasureTheory.Measure Ω''} [mΩ''' : MeasurableSpace Ω'''] {μ''' : MeasureTheory.Measure Ω'''} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [Countable G] [Countable S] [MeasurableSpace S] [Countable T] [MeasurableSpace T] [MeasurableSingletonClass S] [MeasurableSingletonClass T] {X : Ω → G} (hX : Measurable X) {Z : Ω → S} (hZ : Measurable Z) {Y : Ω' → G} (hY : Measurable Y) {W : Ω' → T} (hW : Measurable W) {X' : Ω'' → G} (hX' : Measurable X') {Z' : Ω'' → S} (hZ' : Measurable Z') {Y' : Ω''' → G} (hY' : Measurable Y') {W' : Ω''' → T} (hW' : Measurable W') [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure μ'] [MeasureTheory.IsFiniteMeasure μ''] [MeasureTheory.IsFiniteMeasure μ'''] (h1 : ProbabilityTheory.IdentDistrib (⟨X, Z⟩) (⟨X', Z'⟩) μ μ'') (h2 : ProbabilityTheory.IdentDistrib (⟨Y, W⟩) (⟨Y', W'⟩) μ' μ''') [FiniteRange Z] [FiniteRange W] [FiniteRange Z'] [FiniteRange W'] : d[X | Z ; μ # Y | W ; μ'] = d[X' | Z' ; μ'' # Y' | W' ; μ''']"}
71
+ {"name":"rdist_eq_rdist_id_map","declaration":"/-- Ruzsa distance between random variables equals Ruzsa distance between their distributions.-/\ntheorem rdist_eq_rdist_id_map {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [mΩ' : MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [hG : MeasurableSpace G] [AddCommGroup G] {X : Ω → G} {Y : Ω' → G} : d[X ; μ # Y ; μ'] = d[id ; MeasureTheory.Measure.map X μ # id ; MeasureTheory.Measure.map Y μ']"}
72
+ {"name":"continuous_rdist_restrict_probabilityMeasure₁","declaration":"theorem continuous_rdist_restrict_probabilityMeasure₁ {Ω : Type u_1} {G : Type u_5} [mΩ : MeasurableSpace Ω] [hG : MeasurableSpace G] [AddCommGroup G] [Countable G] [Fintype G] [TopologicalSpace G] [DiscreteTopology G] [BorelSpace G] (X : Ω → G) (P : autoParam (MeasureTheory.Measure Ω) _auto✝) [MeasureTheory.IsProbabilityMeasure P] (X_mble : Measurable X) : Continuous fun μ => d[id ; MeasureTheory.Measure.map X P # id ; ↑μ]"}
73
+ {"name":"«termD[_#_]».delab","declaration":"/-- Pretty printer defined by `notation3` command. -/\ndef «termD[_#_]».delab : Lean.PrettyPrinter.Delaborator.Delab"}
74
+ {"name":"rdist","declaration":"/-- The Ruzsa distance `rdist X Y` or $d[X ;Y]$ between two random variables is defined as\n$H[X'- Y'] - H[X']/2 - H[Y']/2$, where $X', Y'$ are independent copies of $X, Y$. -/\ndef rdist {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_5} [mΩ : MeasurableSpace Ω] [mΩ' : MeasurableSpace Ω'] [hG : MeasurableSpace G] [AddCommGroup G] (X : Ω → G) (Y : Ω' → G) (μ : autoParam (MeasureTheory.Measure Ω) _auto✝) (μ' : autoParam (MeasureTheory.Measure Ω') _auto✝) : ℝ"}
75
+ {"name":"diff_ent_le_rdist''","declaration":"/-- $$H[X - Y] - H[Y] \\leq 2d[X ; Y]$$ -/\ntheorem diff_ent_le_rdist'' {Ω : Type u_1} {G : Type u_5} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [hG : MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] [MeasurableSub₂ G] [Countable G] {X : Ω → G} [FiniteRange X] [MeasureTheory.IsProbabilityMeasure μ] {Y : Ω → G} (hX : Measurable X) (hY : Measurable Y) (h : ProbabilityTheory.IndepFun X Y μ) [FiniteRange Y] : H[X - Y ; μ] - H[Y ; μ] ≤ 2 * d[X ; μ # Y ; μ]"}
PFR-declarations/PFR.ForMathlib.Entropy.RuzsaSetDist.jsonl ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"MeasureTheory.Measure.discreteUniform_apply","declaration":"/-- The usual formula for the discrete uniform measure applied to an arbitrary set. -/\ntheorem MeasureTheory.Measure.discreteUniform_apply {S : Type u_1} [MeasurableSpace S] (H : Set S) [MeasurableSingletonClass S] [Finite ↑H] (A : Set S) : ↑↑(MeasureTheory.Measure.discreteUniform H) A = ↑(Nat.card ↑(A ∩ H)) / ↑(Nat.card ↑H)"}
2
+ {"name":"ProbabilityTheory.rdist_set_eq_rdist","declaration":"/-- Relating Ruzsa distance between sets to Ruzsa distance between random variables -/\ntheorem ProbabilityTheory.rdist_set_eq_rdist {G : Type u_1} [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] {A : Set G} {B : Set G} [Finite ↑A] [Finite ↑B] [Nonempty ↑A] [Nonempty ↑B] {Ω : Type u_2} {Ω' : Type u_3} [mΩ : MeasureTheory.MeasureSpace Ω] [mΩ' : MeasureTheory.MeasureSpace Ω'] {μ : MeasureTheory.Measure Ω} {μ' : MeasureTheory.Measure Ω'} (hμ : MeasureTheory.IsProbabilityMeasure μ) (hμ' : MeasureTheory.IsProbabilityMeasure μ') {UA : Ω → G} {UB : Ω' → G} (hUA : ProbabilityTheory.IsUniform A UA μ) (hUB : ProbabilityTheory.IsUniform B UB μ') (hUA_mes : Measurable UA) (hUB_mes : Measurable UB) : dᵤ[A # B] = d[UA ; μ # UB ; μ']"}
3
+ {"name":"ProbabilityTheory.rdist_set_nonneg","declaration":"/-- Ruzsa distance between sets is nonnegative. -/\ntheorem ProbabilityTheory.rdist_set_nonneg {G : Type u_1} [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] (A : Set G) (B : Set G) [Finite ↑A] [Finite ↑B] [Nonempty ↑A] [Nonempty ↑B] : 0 ≤ dᵤ[A # B]"}
4
+ {"name":"MeasureTheory.Measure.map_discreteUniform_of_inj","declaration":"/-- injective map of discrete uniform is discrete uniform -/\ntheorem MeasureTheory.Measure.map_discreteUniform_of_inj {S : Type u_1} [MeasurableSpace S] (H : Set S) [MeasurableSingletonClass S] [Finite ↑H] {T : Type u_2} [MeasurableSpace T] [MeasurableSingletonClass T] {f : S → T} (hmes : Measurable f) (hf : Function.Injective f) : MeasureTheory.Measure.map f (MeasureTheory.Measure.discreteUniform H) = MeasureTheory.Measure.discreteUniform (f '' H)"}
5
+ {"name":"ProbabilityTheory.rdist_set_le","declaration":"/-- Ruzsa distance between sets is controlled by the doubling constant. -/\ntheorem ProbabilityTheory.rdist_set_le {G : Type u_1} [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] (A : Set G) (B : Set G) [Finite ↑A] [Finite ↑B] (hA : Set.Nonempty A) (hB : Set.Nonempty B) : dᵤ[A # B] ≤ Real.log ↑(Nat.card ↑(A - B)) - Real.log ↑(Nat.card ↑A) / 2 - Real.log ↑(Nat.card ↑B) / 2"}
6
+ {"name":"MeasureTheory.Measure.isUniform_iff_uniform_dist","declaration":"/-- A random variable is uniform iff its distribution is. -/\ntheorem MeasureTheory.Measure.isUniform_iff_uniform_dist {S : Type u_1} [MeasurableSpace S] (H : Set S) [MeasurableSingletonClass S] [Finite ↑H] [Nonempty ↑H] {Ω : Type u_2} [mΩ : MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [Countable S] (hμ : MeasureTheory.IsProbabilityMeasure μ) {U : Ω → S} (hU : Measurable U) : ProbabilityTheory.IsUniform H U μ ↔ MeasureTheory.Measure.map U μ = MeasureTheory.Measure.discreteUniform H"}
7
+ {"name":"ProbabilityTheory.«termDᵤ[_#_]»","declaration":"def ProbabilityTheory.«termDᵤ[_#_]» : Lean.ParserDescr"}
8
+ {"name":"ProbabilityTheory.«termDᵤ[_#_]».delab","declaration":"/-- Pretty printer defined by `notation3` command. -/\ndef ProbabilityTheory.«termDᵤ[_#_]».delab : Lean.PrettyPrinter.Delaborator.Delab"}
9
+ {"name":"ProbabilityTheory.rdist_set_add_const","declaration":"/-- Ruzsa distance between sets is translation invariant. -/\ntheorem ProbabilityTheory.rdist_set_add_const {G : Type u_1} [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] (A : Set G) (B : Set G) [Finite ↑A] [Finite ↑B] [Nonempty ↑A] [Nonempty ↑B] (c : G) (c' : G) : dᵤ[A + {c} # B + {c'}] = dᵤ[A # B]"}
10
+ {"name":"ProbabilityTheory.rdist_set_triangle","declaration":"/-- Ruzsa distance between sets obeys the triangle inequality. -/\ntheorem ProbabilityTheory.rdist_set_triangle {G : Type u_1} [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] (A : Set G) (B : Set G) (C : Set G) [Finite ↑A] [Finite ↑B] [Finite ↑C] [Nonempty ↑A] [Nonempty ↑B] [Nonempty ↑C] : dᵤ[A # C] ≤ dᵤ[A # B] + dᵤ[B # C]"}
11
+ {"name":"MeasureTheory.Measure.discreteUniform_apply'","declaration":"/-- Variant of `discreteUniform_apply' using real-valued measures. -/\ntheorem MeasureTheory.Measure.discreteUniform_apply' {S : Type u_1} [MeasurableSpace S] (H : Set S) [MeasurableSingletonClass S] [Finite ↑H] (A : Set S) : (MeasureTheory.Measure.discreteUniform H).real A = ↑(Nat.card ↑(A ∩ H)) / ↑(Nat.card ↑H)"}
12
+ {"name":"MeasureTheory.Measure.discreteUniform.isProbabilityMeasure","declaration":"instance MeasureTheory.Measure.discreteUniform.isProbabilityMeasure {S : Type u_1} [MeasurableSpace S] (H : Set S) [MeasurableSingletonClass S] [Finite ↑H] [Nonempty ↑H] : MeasureTheory.IsProbabilityMeasure (MeasureTheory.Measure.discreteUniform H)"}
13
+ {"name":"MeasureTheory.Measure.discreteUniform","declaration":"/-- In practice one would also impose the conditions `MeasurableSingletonClass S`, `Finite H` and `Nonempty H` before attempting to use this definition. -/\ndef MeasureTheory.Measure.discreteUniform {S : Type u_1} [MeasurableSpace S] (H : Set S) : MeasureTheory.Measure S"}
14
+ {"name":"ProbabilityTheory.rdist_set_of_inj","declaration":"/-- Ruzsa distance between sets is preserved by injective homomorphisms. -/\ntheorem ProbabilityTheory.rdist_set_of_inj {G : Type u_1} [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] (A : Set G) (B : Set G) [Finite ↑A] [Finite ↑B] [Nonempty ↑A] [Nonempty ↑B] {H : Type u_2} [hH : MeasurableSpace H] [MeasurableSingletonClass H] [AddCommGroup H] [Countable H] {φ : G →+ H} (hφ : Function.Injective ⇑φ) : dᵤ[⇑φ '' A # ⇑φ '' B] = dᵤ[A # B]"}
15
+ {"name":"ProbabilityTheory.rdist_set_symm","declaration":"/-- Ruzsa distance between sets is symmetric. -/\ntheorem ProbabilityTheory.rdist_set_symm {G : Type u_1} [Countable G] [MeasurableSpace G] [MeasurableSingletonClass G] [AddCommGroup G] (A : Set G) (B : Set G) [Finite ↑A] [Finite ↑B] [Nonempty ↑A] [Nonempty ↑B] : dᵤ[A # B] = dᵤ[B # A]"}
16
+ {"name":"MeasureTheory.Measure.discreteUniform_of_infinite","declaration":"/-- The uniform distribution on an infinite set vanishes by definition. -/\ntheorem MeasureTheory.Measure.discreteUniform_of_infinite {S : Type u_1} [MeasurableSpace S] (H : Set S) (h : Set.Infinite H) : MeasureTheory.Measure.discreteUniform H = 0"}
17
+ {"name":"ProbabilityTheory.entropy_of_discreteUniform","declaration":"/-- The entropy of a uniform measure is the log of the cardinality of its support. -/\ntheorem ProbabilityTheory.entropy_of_discreteUniform {S : Type u_1} [MeasurableSpace S] (H : Set S) [MeasurableSingletonClass S] [Finite ↑H] [Nonempty ↑H] : Hm[MeasureTheory.Measure.discreteUniform H] = Real.log ↑(Nat.card ↑H)"}
18
+ {"name":"ProbabilityTheory.rdist_set","declaration":"/-- The Ruzsa distance between two subsets `A`, `B` of a group `G` is defined to be the Ruzsa distance between their uniform probability distributions. Is only intended for use when `A`, `B` are finite and non-empty. -/\ndef ProbabilityTheory.rdist_set {G : Type u_1} [MeasurableSpace G] [AddCommGroup G] (A : Set G) (B : Set G) : ℝ"}
PFR-declarations/PFR.ForMathlib.FiniteMeasureComponent.jsonl ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ {"name":"continuous_finiteMeasure_apply_of_isClopen","declaration":"/-- The measure of any connected component depends continuously on the `FiniteMeasure`. -/\ntheorem continuous_finiteMeasure_apply_of_isClopen {α : Type u_1} [TopologicalSpace α] [MeasurableSpace α] [OpensMeasurableSpace α] {s : Set α} (s_clopen : IsClopen s) : Continuous fun μ => (↑μ).real s"}
2
+ {"name":"continuous_probabilityMeasure_apply_of_isClopen","declaration":"/-- The probability of any connected component depends continuously on the `ProbabilityMeasure`. -/\ntheorem continuous_probabilityMeasure_apply_of_isClopen {α : Type u_1} [TopologicalSpace α] [MeasurableSpace α] [OpensMeasurableSpace α] {s : Set α} (s_clopen : IsClopen s) : Continuous fun μ => (↑μ).real s"}
PFR-declarations/PFR.ForMathlib.FiniteMeasureProd.jsonl ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"MeasureTheory.ProbabilityMeasure.map_prod_map","declaration":"theorem MeasureTheory.ProbabilityMeasure.map_prod_map {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.ProbabilityMeasure α) (ν : MeasureTheory.ProbabilityMeasure β) {α' : Type u_3} [MeasurableSpace α'] {β' : Type u_4} [MeasurableSpace β'] {f : α → α'} {g : β → β'} (f_mble : Measurable f) (g_mble : Measurable g) : MeasureTheory.ProbabilityMeasure.prod (MeasureTheory.ProbabilityMeasure.map μ ⋯)\n (MeasureTheory.ProbabilityMeasure.map ν ⋯) =\n MeasureTheory.ProbabilityMeasure.map (MeasureTheory.ProbabilityMeasure.prod μ ν) ⋯"}
2
+ {"name":"MeasureTheory.FiniteMeasure.prod","declaration":"/-- The binary product of finite measures. -/\ndef MeasureTheory.FiniteMeasure.prod {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) : MeasureTheory.FiniteMeasure (α × β)"}
3
+ {"name":"MeasureTheory.ProbabilityMeasure.prod_prod","declaration":"theorem MeasureTheory.ProbabilityMeasure.prod_prod {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.ProbabilityMeasure α) (ν : MeasureTheory.ProbabilityMeasure β) (s : Set α) (t : Set β) : (fun s => (↑↑↑(MeasureTheory.ProbabilityMeasure.prod μ ν) s).toNNReal) (s ×ˢ t) =\n (fun s => (↑↑↑μ s).toNNReal) s * (fun s => (↑↑↑ν s).toNNReal) t"}
4
+ {"name":"MeasureTheory.ProbabilityMeasure.prod_swap","declaration":"theorem MeasureTheory.ProbabilityMeasure.prod_swap {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.ProbabilityMeasure α) (ν : MeasureTheory.ProbabilityMeasure β) : MeasureTheory.ProbabilityMeasure.map (MeasureTheory.ProbabilityMeasure.prod μ ν) ⋯ =\n MeasureTheory.ProbabilityMeasure.prod ν μ"}
5
+ {"name":"MeasureTheory.FiniteMeasure.measure_ae_null_of_prod_null","declaration":"theorem MeasureTheory.FiniteMeasure.measure_ae_null_of_prod_null {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) {s : Set (α × β)} (h : (fun s => (↑↑↑(MeasureTheory.FiniteMeasure.prod μ ν) s).toNNReal) s = 0) : (fun x => (fun s => (↑↑↑ν s).toNNReal) (Prod.mk x ⁻¹' s)) =ᶠ[MeasureTheory.Measure.ae ↑μ] 0"}
6
+ {"name":"MeasureTheory.ProbabilityMeasure.toMeasure_prod","declaration":"theorem MeasureTheory.ProbabilityMeasure.toMeasure_prod {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.ProbabilityMeasure α) (ν : MeasureTheory.ProbabilityMeasure β) : ↑(MeasureTheory.ProbabilityMeasure.prod μ ν) = MeasureTheory.Measure.prod ↑μ ↑ν"}
7
+ {"name":"MeasureTheory.FiniteMeasure.mass_prod","declaration":"theorem MeasureTheory.FiniteMeasure.mass_prod {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) : MeasureTheory.FiniteMeasure.mass (MeasureTheory.FiniteMeasure.prod μ ν) =\n MeasureTheory.FiniteMeasure.mass μ * MeasureTheory.FiniteMeasure.mass ν"}
8
+ {"name":"MeasureTheory.FiniteMeasure.prod_swap","declaration":"theorem MeasureTheory.FiniteMeasure.prod_swap {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) : MeasureTheory.FiniteMeasure.map (MeasureTheory.FiniteMeasure.prod μ ν) Prod.swap = MeasureTheory.FiniteMeasure.prod ν μ"}
9
+ {"name":"MeasureTheory.FiniteMeasure.map_fst_prod","declaration":"theorem MeasureTheory.FiniteMeasure.map_fst_prod {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) : MeasureTheory.FiniteMeasure.map (MeasureTheory.FiniteMeasure.prod μ ν) Prod.fst =\n (fun s => (↑↑↑ν s).toNNReal) Set.univ • μ"}
10
+ {"name":"MeasureTheory.ProbabilityMeasure.map_fst_prod","declaration":"theorem MeasureTheory.ProbabilityMeasure.map_fst_prod {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.ProbabilityMeasure α) (ν : MeasureTheory.ProbabilityMeasure β) : MeasureTheory.ProbabilityMeasure.map (MeasureTheory.ProbabilityMeasure.prod μ ν) ⋯ = μ"}
11
+ {"name":"MeasureTheory.ProbabilityMeasure.prod_apply_null","declaration":"theorem MeasureTheory.ProbabilityMeasure.prod_apply_null {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.ProbabilityMeasure α) (ν : MeasureTheory.ProbabilityMeasure β) {s : Set (α × β)} (hs : MeasurableSet s) : (fun s => (↑↑↑(MeasureTheory.ProbabilityMeasure.prod μ ν) s).toNNReal) s = 0 ↔\n (fun x => (fun s => (↑↑↑ν s).toNNReal) (Prod.mk x ⁻¹' s)) =ᶠ[MeasureTheory.Measure.ae ↑μ] 0"}
12
+ {"name":"MeasureTheory.FiniteMeasure.prod_apply","declaration":"theorem MeasureTheory.FiniteMeasure.prod_apply {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) (s : Set (α × β)) (s_mble : MeasurableSet s) : (fun s => (↑↑↑(MeasureTheory.FiniteMeasure.prod μ ν) s).toNNReal) s = (∫⁻ (x : α), ↑↑↑ν (Prod.mk x ⁻¹' s) ∂↑μ).toNNReal"}
13
+ {"name":"MeasureTheory.FiniteMeasure.prod_apply_symm","declaration":"theorem MeasureTheory.FiniteMeasure.prod_apply_symm {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) (s : Set (α × β)) (s_mble : MeasurableSet s) : (fun s => (↑↑↑(MeasureTheory.FiniteMeasure.prod μ ν) s).toNNReal) s =\n (∫⁻ (y : β), ↑↑↑μ ((fun x => (x, y)) ⁻¹' s) ∂↑ν).toNNReal"}
14
+ {"name":"MeasureTheory.FiniteMeasure.prod_prod","declaration":"theorem MeasureTheory.FiniteMeasure.prod_prod {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) (s : Set α) (t : Set β) : (fun s => (↑↑↑(MeasureTheory.FiniteMeasure.prod μ ν) s).toNNReal) (s ×ˢ t) =\n (fun s => (↑↑↑μ s).toNNReal) s * (fun s => (↑↑↑ν s).toNNReal) t"}
15
+ {"name":"MeasureTheory.FiniteMeasure.prod_apply_null","declaration":"theorem MeasureTheory.FiniteMeasure.prod_apply_null {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) {s : Set (α × β)} (hs : MeasurableSet s) : (fun s => (↑↑↑(MeasureTheory.FiniteMeasure.prod μ ν) s).toNNReal) s = 0 ↔\n (fun x => (fun s => (↑↑↑ν s).toNNReal) (Prod.mk x ⁻¹' s)) =ᶠ[MeasureTheory.Measure.ae ↑μ] 0"}
16
+ {"name":"MeasureTheory.ProbabilityMeasure.map_snd_prod","declaration":"theorem MeasureTheory.ProbabilityMeasure.map_snd_prod {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.ProbabilityMeasure α) (ν : MeasureTheory.ProbabilityMeasure β) : MeasureTheory.ProbabilityMeasure.map (MeasureTheory.ProbabilityMeasure.prod μ ν) ⋯ = ν"}
17
+ {"name":"MeasureTheory.ProbabilityMeasure.prod","declaration":"/-- The binary product of probability measures. -/\ndef MeasureTheory.ProbabilityMeasure.prod {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.ProbabilityMeasure α) (ν : MeasureTheory.ProbabilityMeasure β) : MeasureTheory.ProbabilityMeasure (α × β)"}
18
+ {"name":"MeasureTheory.ProbabilityMeasure.prod_apply_symm","declaration":"theorem MeasureTheory.ProbabilityMeasure.prod_apply_symm {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.ProbabilityMeasure α) (ν : MeasureTheory.ProbabilityMeasure β) (s : Set (α × β)) (s_mble : MeasurableSet s) : (fun s => (↑↑↑(MeasureTheory.ProbabilityMeasure.prod μ ν) s).toNNReal) s =\n (∫⁻ (y : β), ↑↑↑μ ((fun x => (x, y)) ⁻¹' s) ∂↑ν).toNNReal"}
19
+ {"name":"MeasureTheory.FiniteMeasure.map_snd_prod","declaration":"theorem MeasureTheory.FiniteMeasure.map_snd_prod {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) : MeasureTheory.FiniteMeasure.map (MeasureTheory.FiniteMeasure.prod μ ν) Prod.snd =\n (fun s => (↑↑↑μ s).toNNReal) Set.univ • ν"}
20
+ {"name":"MeasureTheory.ProbabilityMeasure.measure_ae_null_of_prod_null","declaration":"theorem MeasureTheory.ProbabilityMeasure.measure_ae_null_of_prod_null {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.ProbabilityMeasure α) (ν : MeasureTheory.ProbabilityMeasure β) {s : Set (α × β)} (h : (fun s => (↑↑↑(MeasureTheory.ProbabilityMeasure.prod μ ν) s).toNNReal) s = 0) : (fun x => (fun s => (↑↑↑ν s).toNNReal) (Prod.mk x ⁻¹' s)) =ᶠ[MeasureTheory.Measure.ae ↑μ] 0"}
21
+ {"name":"MeasureTheory.ProbabilityMeasure.prod_apply","declaration":"theorem MeasureTheory.ProbabilityMeasure.prod_apply {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.ProbabilityMeasure α) (ν : MeasureTheory.ProbabilityMeasure β) (s : Set (α × β)) (s_mble : MeasurableSet s) : (fun s => (↑↑↑(MeasureTheory.ProbabilityMeasure.prod μ ν) s).toNNReal) s =\n (∫⁻ (x : α), ↑↑↑ν (Prod.mk x ⁻¹' s) ∂↑μ).toNNReal"}
22
+ {"name":"MeasureTheory.FiniteMeasure.map_prod_map","declaration":"theorem MeasureTheory.FiniteMeasure.map_prod_map {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) {α' : Type u_3} [MeasurableSpace α'] {β' : Type u_4} [MeasurableSpace β'] {f : α → α'} {g : β → β'} (f_mble : Measurable f) (g_mble : Measurable g) : MeasureTheory.FiniteMeasure.prod (MeasureTheory.FiniteMeasure.map μ f) (MeasureTheory.FiniteMeasure.map ν g) =\n MeasureTheory.FiniteMeasure.map (MeasureTheory.FiniteMeasure.prod μ ν) (Prod.map f g)"}
23
+ {"name":"MeasureTheory.FiniteMeasure.zero_prod","declaration":"theorem MeasureTheory.FiniteMeasure.zero_prod {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (ν : MeasureTheory.FiniteMeasure β) : MeasureTheory.FiniteMeasure.prod 0 ν = 0"}
24
+ {"name":"MeasureTheory.FiniteMeasure.toMeasure_prod","declaration":"theorem MeasureTheory.FiniteMeasure.toMeasure_prod {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) (ν : MeasureTheory.FiniteMeasure β) : ↑(MeasureTheory.FiniteMeasure.prod μ ν) = MeasureTheory.Measure.prod ↑μ ↑ν"}
25
+ {"name":"MeasureTheory.FiniteMeasure.prod_zero","declaration":"theorem MeasureTheory.FiniteMeasure.prod_zero {α : Type u_1} [MeasurableSpace α] {β : Type u_2} [MeasurableSpace β] (μ : MeasureTheory.FiniteMeasure α) : MeasureTheory.FiniteMeasure.prod μ 0 = 0"}
PFR-declarations/PFR.ForMathlib.FiniteRange.jsonl ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"FiniteRange.pow","declaration":"/-- A function of finite range raised to a constant power, has finite range. -/\ninstance FiniteRange.pow {Ω : Type u_1} {G : Type u_2} (X : Ω → G) [Group G] [hX : FiniteRange X] (c : ℤ) : FiniteRange (X ^ c)"}
2
+ {"name":"FiniteRange.finite","declaration":"def FiniteRange.finite {Ω : Type u_1} {G : Type u_2} {X : Ω → G} [self : FiniteRange X] : Set.Finite (Set.range X)"}
3
+ {"name":"FiniteRange.mk","declaration":"ctor FiniteRange.mk {Ω : Type u_1} {G : Type u_2} {X : Ω → G} (finite : Set.Finite (Set.range X)) : FiniteRange X"}
4
+ {"name":"instFiniteRangeComp_1","declaration":"/-- If X has finite range, then X of any function has finite range. -/\ninstance instFiniteRangeComp_1 {Ω : Type u_1} {Ω' : Type u_2} {G : Type u_3} (X : Ω → G) (f : Ω' → Ω) [hX : FiniteRange X] : FiniteRange (X ∘ f)"}
5
+ {"name":"FiniteRange.toFinset","declaration":"/-- The range of a finite range map, as a finset. -/\ndef FiniteRange.toFinset {Ω : Type u_1} {G : Type u_2} (X : Ω → G) [hX : FiniteRange X] : Finset G"}
6
+ {"name":"FiniteRange.mem","declaration":"theorem FiniteRange.mem {Ω : Type u_1} {G : Type u_2} (X : Ω → G) [FiniteRange X] (ω : Ω) : X ω ∈ FiniteRange.toFinset X"}
7
+ {"name":"FiniteRange.sub","declaration":"/-- The difference of functions of finite range, has finite range.-/\ninstance FiniteRange.sub {Ω : Type u_1} {G : Type u_2} (X : Ω → G) (Y : Ω → G) [AddGroup G] [hX : FiniteRange X] [hY : FiniteRange Y] : FiniteRange (X - Y)"}
8
+ {"name":"instFiniteRange_1","declaration":"/-- Constants have finite range -/\ninstance instFiniteRange_1 {Ω : Type u_1} {G : Type u_2} (c : G) : FiniteRange fun x => c"}
9
+ {"name":"instFiniteRangeProdProd","declaration":"/-- If X, Y have finite range, then so does the pair ⟨X, Y⟩. -/\ninstance instFiniteRangeProdProd {Ω : Type u_1} {G : Type u_2} {H : Type u_3} (X : Ω → G) (Y : Ω → H) [hX : FiniteRange X] [hY : FiniteRange Y] : FiniteRange (⟨X, Y⟩)"}
10
+ {"name":"FiniteRange.null_of_compl","declaration":"theorem FiniteRange.null_of_compl {Ω : Type u_1} {G : Type u_2} [MeasurableSpace Ω] [MeasurableSpace G] [MeasurableSingletonClass G] (μ : MeasureTheory.Measure Ω) (X : Ω → G) [FiniteRange X] : ↑↑(MeasureTheory.Measure.map X μ) (↑(FiniteRange.toFinset X))ᶜ = 0"}
11
+ {"name":"FiniteRange.range","declaration":"theorem FiniteRange.range {Ω : Type u_1} {G : Type u_2} (X : Ω → G) [hX : FiniteRange X] : Set.range X = ↑(FiniteRange.toFinset X)"}
12
+ {"name":"FiniteRange.nsmul","declaration":"/-- The multiple of a function of finite range by a constant, has finite range.-/\ninstance FiniteRange.nsmul {Ω : Type u_1} {G : Type u_2} (X : Ω → G) [AddGroup G] [hX : FiniteRange X] (c : ℤ) : FiniteRange (c • X)"}
13
+ {"name":"FiniteRange.sum","declaration":"/-- The sum of functions of finite range, has finite range.-/\ninstance FiniteRange.sum {Ω : Type u_1} {G : Type u_2} (X : Ω → G) (Y : Ω → G) [AddGroup G] [hX : FiniteRange X] [hY : FiniteRange Y] : FiniteRange (X + Y)"}
14
+ {"name":"FiniteRange.neg","declaration":"/-- The negation of a function of finite range, has finite range.-/\ninstance FiniteRange.neg {Ω : Type u_1} {G : Type u_2} (X : Ω → G) [AddGroup G] [hX : FiniteRange X] : FiniteRange (-X)"}
15
+ {"name":"FiniteRange","declaration":"/-- The property of having a finite range. -/\nclass FiniteRange {Ω : Type u_1} {G : Type u_2} (X : Ω → G) : Prop"}
16
+ {"name":"FiniteRange.fintype","declaration":"/-- fintype structure on the range of a finite range map. -/\ndef FiniteRange.fintype {Ω : Type u_1} {G : Type u_2} (X : Ω → G) [hX : FiniteRange X] : Fintype ↑(Set.range X)"}
17
+ {"name":"instFiniteRangeComp","declaration":"/-- If X has finite range, then any function of X has finite range. -/\ninstance instFiniteRangeComp {Ω : Type u_1} {G : Type u_2} {H : Type u_3} (X : Ω → G) (f : G → H) [hX : FiniteRange X] : FiniteRange (f ∘ X)"}
18
+ {"name":"FiniteRange.mem_iff","declaration":"theorem FiniteRange.mem_iff {Ω : Type u_1} {G : Type u_2} (X : Ω → G) [FiniteRange X] (x : G) : x ∈ FiniteRange.toFinset X ↔ ∃ ω, X ω = x"}
19
+ {"name":"instFiniteRange","declaration":"/-- If the codomain of X is finite, then X has finite range. -/\ninstance instFiniteRange {Ω : Type u_1} {G : Type u_2} (X : Ω → G) [Fintype G] : FiniteRange X"}
20
+ {"name":"finiteRange_of_finset","declaration":"/-- Functions ranging in a Finset have finite range -/\ntheorem finiteRange_of_finset {Ω : Type u_1} {G : Type u_2} (f : Ω → G) (A : Finset G) (h : ∀ (ω : Ω), f ω ∈ A) : FiniteRange f"}
21
+ {"name":"FiniteRange.full","declaration":"theorem FiniteRange.full {Ω : Type u_1} {G : Type u_2} [MeasurableSpace Ω] [MeasurableSpace G] [MeasurableSingletonClass G] {X : Ω → G} (hX : Measurable X) [FiniteRange X] (μ : MeasureTheory.Measure Ω) : ↑↑(MeasureTheory.Measure.map X μ) ↑(FiniteRange.toFinset X) = ↑↑μ Set.univ"}
22
+ {"name":"FiniteRange.div","declaration":"/-- The quotient of two functions with finite range, has finite range. -/\ninstance FiniteRange.div {Ω : Type u_1} {G : Type u_2} (X : Ω → G) (Y : Ω → G) [Group G] [hX : FiniteRange X] [hY : FiniteRange Y] : FiniteRange (X / Y)"}
23
+ {"name":"FiniteRange.prod","declaration":"/-- The product of functions of finite range, has finite range. -/\ninstance FiniteRange.prod {Ω : Type u_1} {G : Type u_2} (X : Ω → G) (Y : Ω → G) [Group G] [hX : FiniteRange X] [hY : FiniteRange Y] : FiniteRange (X * Y)"}
24
+ {"name":"FiniteRange.inv","declaration":"/-- The inverse of a function of finite range, has finite range.-/\ninstance FiniteRange.inv {Ω : Type u_1} {G : Type u_2} (X : Ω → G) [Group G] [hX : FiniteRange X] : FiniteRange X⁻¹"}
PFR-declarations/PFR.ForMathlib.Graph.jsonl ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"Set.graph_comp","declaration":"theorem Set.graph_comp {A : Type u_3} {B : Type u_4} {C : Type u_5} {f : A → B} (g : B → C) : Set.graph (g ∘ f) = (fun p => (p.1, g p.2)) '' Set.graph f"}
2
+ {"name":"Set.image_snd_graph","declaration":"theorem Set.image_snd_graph {G : Type u_1} {G' : Type u_2} {f : G → G'} : Prod.snd '' Set.graph f = f '' Set.univ"}
3
+ {"name":"Set.graph_nonempty","declaration":"theorem Set.graph_nonempty {G : Type u_1} {G' : Type u_2} [Nonempty G] (f : G → G') : Set.Nonempty (Set.graph f)"}
4
+ {"name":"Set.graph","declaration":"def Set.graph {G : Type u_1} {G' : Type u_2} (f : G → G') : Set (G × G')"}
5
+ {"name":"Set.fst_injOn_graph","declaration":"theorem Set.fst_injOn_graph {G : Type u_1} {G' : Type u_2} (f : G → G') : Set.InjOn Prod.fst (Set.graph f)"}
6
+ {"name":"Set.mem_graph","declaration":"theorem Set.mem_graph {G : Type u_1} {G' : Type u_2} {f : G → G'} (x : G × G') : x ∈ Set.graph f ↔ f x.1 = x.2"}
7
+ {"name":"Set.image_fst_graph","declaration":"theorem Set.image_fst_graph {G : Type u_1} {G' : Type u_2} {f : G → G'} : Prod.fst '' Set.graph f = Set.univ"}
8
+ {"name":"Set.graph_def","declaration":"theorem Set.graph_def {G : Type u_1} {G' : Type u_2} (f : G → G') : Set.graph f = {x | ∃ x_1, (x_1, f x_1) = x}"}
9
+ {"name":"Set.card_graph","declaration":"theorem Set.card_graph {G : Type u_1} {G' : Type u_2} (f : G → G') : Nat.card ↑(Set.graph f) = Nat.card G"}
10
+ {"name":"Set.graph_add","declaration":"theorem Set.graph_add {G : Type u_1} {G' : Type u_2} [AddGroup G] [AddCommGroup G'] {f : G →+ G'} {c : G × G'} : (fun x => c + x) '' Set.graph ⇑f = {x | ∃ g, (g, f g + (c.2 - f c.1)) = x}"}
11
+ {"name":"Set.equiv_filter_graph","declaration":"theorem Set.equiv_filter_graph {G : Type u_3} {G' : Type u_4} [AddCommGroup G] [Fintype G] [AddCommGroup G'] [Fintype G'] [DecidableEq G] [DecidableEq G'] (f : G → G') : let A := Set.Finite.toFinset ⋯;\n{ x //\n x ∈\n Finset.filter\n (fun x =>\n match x with\n | (a, a') => a + a' ∈ A)\n (A ×ˢ A) } ≃\n ↑{x | f (x.1 + x.2) = f x.1 + f x.2}"}
PFR-declarations/PFR.ForMathlib.MeasureReal.jsonl ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"sum_measure_preimage_singleton'","declaration":"/-- Variant of `sum_measure_preimage_singleton` using real numbers rather than extended nonnegative\nreals. -/\ntheorem sum_measure_preimage_singleton' {Ω : Type u_1} [MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] {T : Type u} [Fintype T] [MeasurableSpace T] [MeasurableSingletonClass T] {Y : Ω → T} (hY : Measurable Y) : (Finset.sum Finset.univ fun y => (↑↑μ (Y ⁻¹' {y})).toReal) = 1"}
2
+ {"name":"MeasureTheory.measureReal_symmDiff_le","declaration":"theorem MeasureTheory.measureReal_symmDiff_le {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} (s t u : Set α),\n autoParam (↑↑μ s ≠ ⊤) _auto✝ →\n autoParam (↑↑μ t ≠ ⊤) _auto✝¹ → μ.real (symmDiff s u) ≤ μ.real (symmDiff s t) + μ.real (symmDiff t u)"}
3
+ {"name":"Finset.sum_toReal_measure_singleton","declaration":"theorem Finset.sum_toReal_measure_singleton {S : Type u_1} {s : Finset S} : ∀ {x : MeasurableSpace S} [inst : MeasurableSingletonClass S] (μ : MeasureTheory.Measure S)\n [inst : MeasureTheory.IsFiniteMeasure μ], (Finset.sum s fun x_1 => (↑↑μ {x_1}).toReal) = (↑↑μ ↑s).toReal"}
4
+ {"name":"MeasureTheory.exists_nonempty_inter_of_measureReal_univ_lt_sum_measureReal","declaration":"/-- Pigeonhole principle for measure spaces: if `s` is a `Finset` and\n`∑ i in s, μ.real (t i) > μ.real univ`, then one of the intersections `t i ∩ t j` is not empty. -/\ntheorem MeasureTheory.exists_nonempty_inter_of_measureReal_univ_lt_sum_measureReal {α : Type u_1} {ι : Type u_3} {m : MeasurableSpace α} (μ : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] {s : Finset ι} {t : ι → Set α} (h : ∀ i ∈ s, MeasurableSet (t i)) (H : μ.real Set.univ < Finset.sum s fun i => μ.real (t i)) : ∃ i ∈ s, ∃ j ∈ s, ∃ (_ : i ≠ j), Set.Nonempty (t i ∩ t j)"}
5
+ {"name":"MeasureTheory.measureReal_le_measureReal_union_left","declaration":"theorem MeasureTheory.measureReal_le_measureReal_union_left {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s t : Set α},\n autoParam (↑↑μ t ≠ ⊤) _auto✝ → μ.real s ≤ μ.real (s ∪ t)"}
6
+ {"name":"sum_toReal_measure_singleton","declaration":"theorem sum_toReal_measure_singleton {S : Type u_1} [Fintype S] : ∀ {x : MeasurableSpace S} [inst : MeasurableSingletonClass S] (μ : MeasureTheory.Measure S)\n [inst : MeasureTheory.IsFiniteMeasure μ],\n (Finset.sum Finset.univ fun x_1 => (↑↑μ {x_1}).toReal) = (↑↑μ Set.univ).toReal"}
7
+ {"name":"MeasureTheory.measure_symmDiff_eq_top","declaration":"theorem MeasureTheory.measure_symmDiff_eq_top {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s t : Set α}, ↑↑μ s ≠ ⊤ → ↑↑μ t = ⊤ → ↑↑μ (symmDiff s t) = ⊤"}
8
+ {"name":"MeasureTheory.measureReal_mono","declaration":"theorem MeasureTheory.measureReal_mono {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s₁ s₂ : Set α},\n s₁ ⊆ s₂ → autoParam (↑↑μ s₂ ≠ ⊤) _auto✝ → μ.real s₁ ≤ μ.real s₂"}
9
+ {"name":"MeasureTheory.measureReal_symmDiff_eq","declaration":"theorem MeasureTheory.measureReal_symmDiff_eq {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s t : Set α},\n MeasurableSet s →\n MeasurableSet t →\n autoParam (↑↑μ s ≠ ⊤) _auto✝ →\n autoParam (↑↑μ t ≠ ⊤) _auto✝¹ → μ.real (symmDiff s t) = μ.real (s \\ t) + μ.real (t \\ s)"}
10
+ {"name":"MeasureTheory.measureReal_eq_measureReal_of_between_null_diff","declaration":"theorem MeasureTheory.measureReal_eq_measureReal_of_between_null_diff {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s₁ s₂ s₃ : Set α},\n s₁ ⊆ s₂ →\n s₂ ⊆ s₃ →\n μ.real (s₃ \\ s₁) = 0 → autoParam (↑↑μ (s₃ \\ s₁) ≠ ⊤) _auto✝ → μ.real s₁ = μ.real s₂ ∧ μ.real s₂ = μ.real s₃"}
11
+ {"name":"MeasureTheory.measureReal_empty","declaration":"theorem MeasureTheory.measureReal_empty {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α}, μ.real ∅ = 0"}
12
+ {"name":"MeasureTheory.nonempty_inter_of_measureReal_lt_add'","declaration":"/-- If two sets `s` and `t` are included in a set `u` of finite measure,\nand `μ.real s + μ.real t > μ.real u`, then `s` intersects `t`.\nVersion assuming that `s` is measurable. -/\ntheorem MeasureTheory.nonempty_inter_of_measureReal_lt_add' {α : Type u_1} {m : MeasurableSpace α} (μ : MeasureTheory.Measure α) {s : Set α} {t : Set α} {u : Set α} (hs : MeasurableSet s) (h's : s ⊆ u) (h't : t ⊆ u) (h : μ.real u < μ.real s + μ.real t) (hu : autoParam (↑↑μ u ≠ ⊤) _auto✝) : Set.Nonempty (s ∩ t)"}
13
+ {"name":"MeasureTheory.measureReal_union_null_iff","declaration":"theorem MeasureTheory.measureReal_union_null_iff {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s₁ s₂ : Set α},\n autoParam (↑↑μ s₁ ≠ ⊤) _auto✝ →\n autoParam (↑↑μ s₂ ≠ ⊤) _auto✝¹ → (μ.real (s₁ ∪ s₂) = 0 ↔ μ.real s₁ = 0 ∧ μ.real s₂ = 0)"}
14
+ {"name":"MeasureTheory.measureReal_nonneg","declaration":"theorem MeasureTheory.measureReal_nonneg {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α}, 0 ≤ μ.real s"}
15
+ {"name":"MeasureTheory.Measure.real","declaration":"/-- The real-valued version of a measure. Maps infinite measure sets to zero. Use as `μ.real s`. -/\ndef MeasureTheory.Measure.real {α : Type u_1} : {x : MeasurableSpace α} → MeasureTheory.Measure α → Set α → ℝ"}
16
+ {"name":"MeasureTheory.measureReal_union_congr_of_subset","declaration":"theorem MeasureTheory.measureReal_union_congr_of_subset {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s₁ s₂ t₁ t₂ : Set α},\n s₁ ⊆ s₂ →\n μ.real s₂ ≤ μ.real s₁ →\n t₁ ⊆ t₂ →\n μ.real t₂ ≤ μ.real t₁ →\n autoParam (↑↑μ s₂ ≠ ⊤) _auto✝ → autoParam (↑↑μ t₂ ≠ ⊤) _auto✝¹ → μ.real (s₁ ∪ t₁) = μ.real (s₂ ∪ t₂)"}
17
+ {"name":"MeasureTheory.measureReal_zero","declaration":"theorem MeasureTheory.measureReal_zero {α : Type u_1} : ∀ {x : MeasurableSpace α} (s : Set α), 0.real s = 0"}
18
+ {"name":"MeasureTheory.measureReal_union_le","declaration":"theorem MeasureTheory.measureReal_union_le {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} (s₁ s₂ : Set α), μ.real (s₁ ∪ s₂) ≤ μ.real s₁ + μ.real s₂"}
19
+ {"name":"MeasureTheory.measureReal_union₀'","declaration":"theorem MeasureTheory.measureReal_union₀' {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s t : Set α},\n MeasureTheory.NullMeasurableSet s μ →\n MeasureTheory.AEDisjoint μ s t →\n autoParam (↑↑μ s ≠ ⊤) _auto✝ → autoParam (↑↑μ t ≠ ⊤) _auto✝¹ → μ.real (s ∪ t) = μ.real s + μ.real t"}
20
+ {"name":"MeasureTheory.measureReal_biUnion_finset","declaration":"theorem MeasureTheory.measureReal_biUnion_finset {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ι : Type u_3} {s : Finset ι} {f : ι → Set α},\n Set.PairwiseDisjoint (↑s) f →\n (∀ b ∈ s, MeasurableSet (f b)) →\n autoParam (∀ b ∈ s, ↑↑μ (f b) ≠ ⊤) _auto✝ → μ.real (⋃ b ∈ s, f b) = Finset.sum s fun p => μ.real (f p)"}
21
+ {"name":"MeasureTheory.IsProbabilityMeasure.measureReal_univ","declaration":"theorem MeasureTheory.IsProbabilityMeasure.measureReal_univ {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} [inst : MeasureTheory.IsProbabilityMeasure μ],\n μ.real Set.univ = 1"}
22
+ {"name":"MeasureTheory.measureReal_inter_add_diff₀","declaration":"theorem MeasureTheory.measureReal_inter_add_diff₀ {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {t : Set α} (s : Set α),\n MeasureTheory.NullMeasurableSet t μ → autoParam (↑↑μ s ≠ ⊤) _auto✝ → μ.real (s ∩ t) + μ.real (s \\ t) = μ.real s"}
23
+ {"name":"measureReal_preimage_snd_singleton_eq_sum","declaration":"theorem measureReal_preimage_snd_singleton_eq_sum {S : Type u_1} {T : Type u_2} [Fintype S] : ∀ {x : MeasurableSpace S} [inst : MeasurableSingletonClass S] {x_1 : MeasurableSpace T}\n [inst : MeasurableSingletonClass T] (μ : MeasureTheory.Measure (S × T)) [inst : MeasureTheory.IsFiniteMeasure μ]\n (y : T), μ.real (Prod.snd ⁻¹' {y}) = Finset.sum Finset.univ fun x_2 => μ.real {(x_2, y)}"}
24
+ {"name":"MeasureTheory.measureReal_add_measureReal_compl₀","declaration":"theorem MeasureTheory.measureReal_add_measureReal_compl₀ {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} [inst : MeasureTheory.IsFiniteMeasure μ] {s : Set α},\n MeasureTheory.NullMeasurableSet s μ → μ.real s + μ.real sᶜ = μ.real Set.univ"}
25
+ {"name":"MeasureTheory.measureReal_diff","declaration":"theorem MeasureTheory.measureReal_diff {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s₁ s₂ : Set α},\n s₂ ⊆ s₁ → MeasurableSet s₂ → autoParam (↑↑μ s₁ ≠ ⊤) _auto✝ → μ.real (s₁ \\ s₂) = μ.real s₁ - μ.real s₂"}
26
+ {"name":"MeasureTheory.measureReal_iUnion_fintype","declaration":"theorem MeasureTheory.measureReal_iUnion_fintype {α : Type u_1} {β : Type u_2} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} [inst : Fintype β] {f : β → Set α},\n Pairwise (Disjoint on f) →\n (∀ (i : β), MeasurableSet (f i)) →\n autoParam (∀ (i : β), ↑↑μ (f i) ≠ ⊤) _auto✝ → μ.real (⋃ b, f b) = Finset.sum Finset.univ fun p => μ.real (f p)"}
27
+ {"name":"MeasureTheory.measureReal_diff_null'","declaration":"theorem MeasureTheory.measureReal_diff_null' {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s₁ s₂ : Set α},\n μ.real (s₁ ∩ s₂) = 0 → autoParam (↑↑μ s₁ ≠ ⊤) _auto✝ → μ.real (s₁ \\ s₂) = μ.real s₁"}
28
+ {"name":"MeasureTheory.measureReal_smul_apply","declaration":"theorem MeasureTheory.measureReal_smul_apply {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} (c : ENNReal), (c • μ).real s = c.toReal • μ.real s"}
29
+ {"name":"Finset.sum_measure_singleton","declaration":"theorem Finset.sum_measure_singleton {S : Type u_1} {s : Finset S} : ∀ {x : MeasurableSpace S} [inst : MeasurableSingletonClass S] (μ : MeasureTheory.Measure S),\n (Finset.sum s fun x_1 => ↑↑μ {x_1}) = ↑↑μ ↑s"}
30
+ {"name":"MeasureTheory.measureReal_union_add_inter₀","declaration":"theorem MeasureTheory.measureReal_union_add_inter₀ {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {t : Set α} (s : Set α),\n MeasureTheory.NullMeasurableSet t μ →\n autoParam (↑↑μ s ≠ ⊤) _auto✝ → autoParam (↑↑μ t ≠ ⊤) _auto✝¹ → μ.real (s ∪ t) + μ.real (s ∩ t) = μ.real s + μ.real t"}
31
+ {"name":"MeasureTheory.nonempty_of_measureReal_ne_zero","declaration":"theorem MeasureTheory.nonempty_of_measureReal_ne_zero {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α}, μ.real s ≠ 0 → Set.Nonempty s"}
32
+ {"name":"Mathlib.Meta.Positivity.evalMeasureReal","declaration":"/-- Extension for the `positivity` tactic: applications of `μ.real` are nonnegative. -/\ndef Mathlib.Meta.Positivity.evalMeasureReal : Mathlib.Meta.Positivity.PositivityExt"}
33
+ {"name":"MeasureTheory.measureReal_mono_null","declaration":"theorem MeasureTheory.measureReal_mono_null {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s₁ s₂ : Set α},\n s₁ ⊆ s₂ → μ.real s₂ = 0 → autoParam (↑↑μ s₂ ≠ ⊤) _auto✝ → μ.real s₁ = 0"}
34
+ {"name":"measureReal_preimage_fst_singleton_eq_sum","declaration":"theorem measureReal_preimage_fst_singleton_eq_sum {S : Type u_1} {T : Type u_2} : ∀ {x : MeasurableSpace S} [inst : MeasurableSingletonClass S] [inst : Fintype T] {x_1 : MeasurableSpace T}\n [inst_1 : MeasurableSingletonClass T] (μ : MeasureTheory.Measure (S × T)) [inst_2 : MeasureTheory.IsFiniteMeasure μ]\n (x_2 : S), μ.real (Prod.fst ⁻¹' {x_2}) = Finset.sum Finset.univ fun y => μ.real {(x_2, y)}"}
35
+ {"name":"MeasureTheory.measureReal_eq_measureReal_smaller_of_between_null_diff","declaration":"theorem MeasureTheory.measureReal_eq_measureReal_smaller_of_between_null_diff {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s₁ s₂ s₃ : Set α},\n s₁ ⊆ s₂ → s₂ ⊆ s₃ → μ.real (s₃ \\ s₁) = 0 → autoParam (↑↑μ (s₃ \\ s₁) ≠ ⊤) _auto✝ → μ.real s₁ = μ.real s₂"}
36
+ {"name":"MeasureTheory.sum_measureReal_preimage_singleton","declaration":"/-- If `s` is a `Finset`, then the measure of its preimage can be found as the sum of measures\nof the fibers `f ⁻¹' {y}`. -/\ntheorem MeasureTheory.sum_measureReal_preimage_singleton {α : Type u_1} {β : Type u_2} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} (s : Finset β) {f : α → β},\n (∀ y ∈ s, MeasurableSet (f ⁻¹' {y})) →\n autoParam (∀ a ∈ s, ↑↑μ (f ⁻¹' {a}) ≠ ⊤) _auto✝ → (Finset.sum s fun b => μ.real (f ⁻¹' {b})) = μ.real (f ⁻¹' ↑s)"}
37
+ {"name":"MeasureTheory.measureReal_union_null","declaration":"theorem MeasureTheory.measureReal_union_null {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s₁ s₂ : Set α},\n μ.real s₁ = 0 → μ.real s₂ = 0 → μ.real (s₁ ∪ s₂) = 0"}
38
+ {"name":"MeasureTheory.measureReal_union_add_inter₀'","declaration":"theorem MeasureTheory.measureReal_union_add_inter₀' {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α},\n MeasureTheory.NullMeasurableSet s μ →\n ∀ (t : Set α),\n autoParam (↑↑μ s ≠ ⊤) _auto✝ →\n autoParam (↑↑μ t ≠ ⊤) _auto✝¹ → μ.real (s ∪ t) + μ.real (s ∩ t) = μ.real s + μ.real t"}
39
+ {"name":"MeasureTheory.measureReal_union₀","declaration":"theorem MeasureTheory.measureReal_union₀ {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s t : Set α},\n MeasureTheory.NullMeasurableSet t μ →\n MeasureTheory.AEDisjoint μ s t →\n autoParam (↑↑μ s ≠ ⊤) _auto✝ → autoParam (↑↑μ t ≠ ⊤) _auto✝¹ → μ.real (s ∪ t) = μ.real s + μ.real t"}
40
+ {"name":"MeasureTheory.measureReal_univ_pos","declaration":"theorem MeasureTheory.measureReal_univ_pos {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} [inst : MeasureTheory.IsFiniteMeasure μ] [inst : NeZero μ],\n 0 < μ.real Set.univ"}
41
+ {"name":"sum_measure_singleton","declaration":"theorem sum_measure_singleton {S : Type u_1} [Fintype S] : ∀ {x : MeasurableSpace S} [inst : MeasurableSingletonClass S] (μ : MeasureTheory.Measure S),\n (Finset.sum Finset.univ fun x_1 => ↑↑μ {x_1}) = ↑↑μ Set.univ"}
42
+ {"name":"MeasureTheory.measureReal_iUnion_fintype_le","declaration":"theorem MeasureTheory.measureReal_iUnion_fintype_le {α : Type u_1} {β : Type u_2} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} [inst : Fintype β] (f : β → Set α),\n μ.real (⋃ b, f b) ≤ Finset.sum Finset.univ fun p => μ.real (f p)"}
43
+ {"name":"MeasureTheory.measureReal_univ_ne_zero","declaration":"theorem MeasureTheory.measureReal_univ_ne_zero {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} [inst : MeasureTheory.IsFiniteMeasure μ] [inst : NeZero μ],\n μ.real Set.univ ≠ 0"}
44
+ {"name":"MeasureTheory.measure_diff_eq_top","declaration":"theorem MeasureTheory.measure_diff_eq_top {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s t : Set α}, ↑↑μ s = ⊤ → ↑↑μ t ≠ ⊤ → ↑↑μ (s \\ t) = ⊤"}
45
+ {"name":"MeasureTheory.measureReal_congr","declaration":"/-- If two sets are equal modulo a set of measure zero, then `μ.real s = μ.real t`. -/\ntheorem MeasureTheory.measureReal_congr {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s t : Set α},\n s =ᶠ[MeasureTheory.Measure.ae μ] t → μ.real s = μ.real t"}
46
+ {"name":"MeasureTheory.measure_ne_top_of_subset","declaration":"theorem MeasureTheory.measure_ne_top_of_subset {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s t : Set α}, s ⊆ t → ↑↑μ t ≠ ⊤ → ↑↑μ s ≠ ⊤"}
47
+ {"name":"MeasureTheory.measureReal_union","declaration":"theorem MeasureTheory.measureReal_union {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s₁ s₂ : Set α},\n Disjoint s₁ s₂ →\n MeasurableSet s₂ →\n autoParam (↑↑μ s₁ ≠ ⊤) _auto✝ → autoParam (↑↑μ s₂ ≠ ⊤) _auto✝¹ → μ.real (s₁ ∪ s₂) = μ.real s₁ + μ.real s₂"}
48
+ {"name":"MeasureTheory.measureReal_le_measureReal_union_right","declaration":"theorem MeasureTheory.measureReal_le_measureReal_union_right {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s t : Set α},\n autoParam (↑↑μ s ≠ ⊤) _auto✝ → μ.real t ≤ μ.real (s ∪ t)"}
49
+ {"name":"MeasureTheory.map_measureReal_apply","declaration":"theorem MeasureTheory.map_measureReal_apply {α : Type u_1} {β : Type u_2} : ∀ {x : MeasurableSpace α} [inst : MeasurableSpace β] {μ : MeasureTheory.Measure α} {f : α → β},\n Measurable f → ∀ {s : Set β}, MeasurableSet s → (MeasureTheory.Measure.map f μ).real s = μ.real (f ⁻¹' s)"}
50
+ {"name":"MeasureTheory.measureReal_compl","declaration":"theorem MeasureTheory.measureReal_compl {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} [inst : MeasureTheory.IsFiniteMeasure μ],\n MeasurableSet s → μ.real sᶜ = μ.real Set.univ - μ.real s"}
51
+ {"name":"MeasureTheory.measureReal_diff'","declaration":"theorem MeasureTheory.measureReal_diff' {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {t : Set α} (s : Set α),\n MeasurableSet t →\n autoParam (↑↑μ s ≠ ⊤) _auto✝ → autoParam (↑↑μ t ≠ ⊤) _auto✝¹ → μ.real (s \\ t) = μ.real (s ∪ t) - μ.real t"}
52
+ {"name":"MeasureTheory.measureReal_union_add_inter'","declaration":"theorem MeasureTheory.measureReal_union_add_inter' {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α},\n MeasurableSet s →\n ∀ (t : Set α),\n autoParam (↑↑μ s ≠ ⊤) _auto✝ →\n autoParam (↑↑μ t ≠ ⊤) _auto✝¹ → μ.real (s ∪ t) + μ.real (s ∩ t) = μ.real s + μ.real t"}
53
+ {"name":"MeasureTheory.measureReal_union'","declaration":"theorem MeasureTheory.measureReal_union' {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s₁ s₂ : Set α},\n Disjoint s₁ s₂ →\n MeasurableSet s₁ →\n autoParam (↑↑μ s₁ ≠ ⊤) _auto✝ → autoParam (↑↑μ s₂ ≠ ⊤) _auto✝¹ → μ.real (s₁ ∪ s₂) = μ.real s₁ + μ.real s₂"}
54
+ {"name":"MeasureTheory.measureReal_def","declaration":"theorem MeasureTheory.measureReal_def {α : Type u_1} : ∀ {x : MeasurableSpace α} (μ : MeasureTheory.Measure α) (s : Set α), μ.real s = (↑↑μ s).toReal"}
55
+ {"name":"MeasureTheory.measureReal_eq_measureReal_of_null_diff","declaration":"theorem MeasureTheory.measureReal_eq_measureReal_of_null_diff {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s t : Set α},\n s ⊆ t → μ.real (t \\ s) = 0 → autoParam (↑↑μ (t \\ s) ≠ ⊤) _auto✝ → μ.real s = μ.real t"}
56
+ {"name":"MeasureTheory.measureReal_prod_prod","declaration":"theorem MeasureTheory.measureReal_prod_prod {α : Type u_1} {β : Type u_2} : ∀ {x : MeasurableSpace α} [inst : MeasurableSpace β] {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure β}\n [inst_1 : MeasureTheory.SigmaFinite ν] (s : Set α) (t : Set β),\n (MeasureTheory.Measure.prod μ ν).real (s ×ˢ t) = μ.real s * ν.real t"}
57
+ {"name":"MeasureTheory.Measure.ext_iff_singleton","declaration":"/-- Generalized in Measure.ext_iff_singleton_finiteSupport at Entropy.Measure -/\ntheorem MeasureTheory.Measure.ext_iff_singleton {S : Type u_3} [Fintype S] [MeasurableSpace S] [MeasurableSingletonClass S] {μ1 : MeasureTheory.Measure S} {μ2 : MeasureTheory.Measure S} : μ1 = μ2 ↔ ∀ (x : S), ↑↑μ1 {x} = ↑↑μ2 {x}"}
58
+ {"name":"MeasureTheory.measureReal_diff_null","declaration":"theorem MeasureTheory.measureReal_diff_null {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s₁ s₂ : Set α},\n μ.real s₂ = 0 → autoParam (↑↑μ s₂ ≠ ⊤) _auto✝ → μ.real (s₁ \\ s₂) = μ.real s₁"}
59
+ {"name":"MeasureTheory.measureReal_biUnion_finset_le","declaration":"theorem MeasureTheory.measureReal_biUnion_finset_le {α : Type u_1} {β : Type u_2} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} (s : Finset β) (f : β → Set α),\n μ.real (⋃ b ∈ s, f b) ≤ Finset.sum s fun p => μ.real (f p)"}
60
+ {"name":"MeasureTheory.measureReal_eq_measureReal_larger_of_between_null_diff","declaration":"theorem MeasureTheory.measureReal_eq_measureReal_larger_of_between_null_diff {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s₁ s₂ s₃ : Set α},\n s₁ ⊆ s₂ → s₂ ⊆ s₃ → μ.real (s₃ \\ s₁) = 0 → autoParam (↑↑μ (s₃ \\ s₁) ≠ ⊤) _auto✝ → μ.real s₂ = μ.real s₃"}
61
+ {"name":"MeasureTheory.le_measureReal_diff","declaration":"theorem MeasureTheory.le_measureReal_diff {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s₁ s₂ : Set α},\n autoParam (↑↑μ s₂ ≠ ⊤) _auto✝ → μ.real s₁ - μ.real s₂ ≤ μ.real (s₁ \\ s₂)"}
62
+ {"name":"MeasureTheory.measureReal_biUnion_finset₀","declaration":"theorem MeasureTheory.measureReal_biUnion_finset₀ {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ι : Type u_3} {s : Finset ι} {f : ι → Set α},\n Set.Pairwise (↑s) (MeasureTheory.AEDisjoint μ on f) →\n (∀ b ∈ s, MeasureTheory.NullMeasurableSet (f b) μ) →\n autoParam (∀ b ∈ s, ↑↑μ (f b) ≠ ⊤) _auto✝ → μ.real (⋃ b ∈ s, f b) = Finset.sum s fun p => μ.real (f p)"}
63
+ {"name":"MeasureTheory.measureReal_add_diff","declaration":"theorem MeasureTheory.measureReal_add_diff {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α},\n MeasurableSet s →\n ∀ (t : Set α),\n autoParam (↑↑μ s ≠ ⊤) _auto✝ → autoParam (↑↑μ t ≠ ⊤) _auto✝¹ → μ.real s + μ.real (t \\ s) = μ.real (s ∪ t)"}
64
+ {"name":"MeasureTheory.Finset.sum_realMeasure_singleton","declaration":"/-- If `s` is a `Finset`, then the sums of the real measures of the singletons in the set is the\nreal measure of the set. -/\ntheorem MeasureTheory.Finset.sum_realMeasure_singleton {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} [inst : MeasurableSingletonClass α]\n [inst : MeasureTheory.IsFiniteMeasure μ] (s : Finset α), (Finset.sum s fun b => μ.real {b}) = μ.real ↑s"}
65
+ {"name":"MeasureTheory.sum_measureReal_le_measureReal_univ","declaration":"theorem MeasureTheory.sum_measureReal_le_measureReal_univ {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {ι : Type u_3} [inst : MeasureTheory.IsFiniteMeasure μ]\n {s : Finset ι} {t : ι → Set α},\n (∀ i ∈ s, MeasurableSet (t i)) → Set.PairwiseDisjoint (↑s) t → (Finset.sum s fun i => μ.real (t i)) ≤ μ.real Set.univ"}
66
+ {"name":"MeasureTheory.measureReal_eq_zero_iff","declaration":"theorem MeasureTheory.measureReal_eq_zero_iff {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α},\n autoParam (↑↑μ s ≠ ⊤) _auto✝ → (μ.real s = 0 ↔ ↑↑μ s = 0)"}
67
+ {"name":"MeasureTheory.measureReal_diff_le_iff_le_add","declaration":"theorem MeasureTheory.measureReal_diff_le_iff_le_add {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s t : Set α},\n MeasurableSet s → s ⊆ t → ∀ (ε : ℝ), autoParam (↑↑μ t ≠ ⊤) _auto✝ → (μ.real (t \\ s) ≤ ε ↔ μ.real t ≤ μ.real s + ε)"}
68
+ {"name":"MeasureTheory.measureReal_add_measureReal_compl","declaration":"theorem MeasureTheory.measureReal_add_measureReal_compl {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} [inst : MeasureTheory.IsFiniteMeasure μ],\n MeasurableSet s → μ.real s + μ.real sᶜ = μ.real Set.univ"}
69
+ {"name":"MeasureTheory.measureReal_union_add_inter","declaration":"theorem MeasureTheory.measureReal_union_add_inter {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {t : Set α} (s : Set α),\n MeasurableSet t →\n autoParam (↑↑μ s ≠ ⊤) _auto✝ → autoParam (↑↑μ t ≠ ⊤) _auto✝¹ → μ.real (s ∪ t) + μ.real (s ∩ t) = μ.real s + μ.real t"}
70
+ {"name":"MeasureTheory.measureReal_diff_add_inter","declaration":"theorem MeasureTheory.measureReal_diff_add_inter {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {t : Set α} (s : Set α),\n MeasurableSet t → autoParam (↑↑μ s ≠ ⊤) _auto✝ → μ.real (s \\ t) + μ.real (s ∩ t) = μ.real s"}
71
+ {"name":"MeasureTheory.measureReal_inter_add_diff","declaration":"theorem MeasureTheory.measureReal_inter_add_diff {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {t : Set α} (s : Set α),\n MeasurableSet t → autoParam (↑↑μ s ≠ ⊤) _auto✝ → μ.real (s ∩ t) + μ.real (s \\ t) = μ.real s"}
72
+ {"name":"MeasureTheory.ext_iff_measureReal_singleton","declaration":"theorem MeasureTheory.ext_iff_measureReal_singleton {S : Type u_3} [Fintype S] [MeasurableSpace S] [MeasurableSingletonClass S] {μ1 : MeasureTheory.Measure S} {μ2 : MeasureTheory.Measure S} [MeasureTheory.IsFiniteMeasure μ1] [MeasureTheory.IsFiniteMeasure μ2] : μ1 = μ2 ↔ ∀ (x : S), μ1.real {x} = μ2.real {x}"}
73
+ {"name":"MeasureTheory.measureReal_diff_lt_of_lt_add","declaration":"theorem MeasureTheory.measureReal_diff_lt_of_lt_add {α : Type u_1} : ∀ {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s t : Set α},\n MeasurableSet s → s ⊆ t → ∀ (ε : ℝ), μ.real t < μ.real s + ε → autoParam (↑↑μ t ≠ ⊤) _auto✝ → μ.real (t \\ s) < ε"}
74
+ {"name":"MeasureTheory.nonempty_inter_of_measureReal_lt_add","declaration":"/-- If two sets `s` and `t` are included in a set `u` of finite measure,\nand `μ.real s + μ.real t > μ.real u`, then `s` intersects `t`.\nVersion assuming that `t` is measurable. -/\ntheorem MeasureTheory.nonempty_inter_of_measureReal_lt_add {α : Type u_1} {m : MeasurableSpace α} (μ : MeasureTheory.Measure α) {s : Set α} {t : Set α} {u : Set α} (ht : MeasurableSet t) (h's : s ⊆ u) (h't : t ⊆ u) (h : μ.real u < μ.real s + μ.real t) (hu : autoParam (↑↑μ u ≠ ⊤) _auto✝) : Set.Nonempty (s ∩ t)"}
PFR-declarations/PFR.ForMathlib.Pair.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {"name":"prod","declaration":"/-- The pair of two random variables -/\ndef prod {Ω : Type u_1} {S : Type u_2} {T : Type u_3} (X : Ω → S) (Y : Ω → T) (ω : Ω) : S × T"}
2
+ {"name":"«term⟨_,_⟩».delab","declaration":"/-- Pretty printer defined by `notation3` command. -/\ndef «term⟨_,_⟩».delab : Lean.PrettyPrinter.Delaborator.Delab"}
3
+ {"name":"«term⟨_,_⟩»","declaration":"/-- The pair of two random variables -/\ndef «term⟨_,_⟩» : Lean.ParserDescr"}
PFR-declarations/PFR.ForMathlib.ProbabilityMeasureProdCont.jsonl ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {"name":"MeasureTheory.ProbabilityMeasure.continuous_prod_of_finite","declaration":"/-- The product of two probability measures on finite spaces depend continuously on the two\nprobability measures.\nTODO: In Mathlib, this should be done on all separable metrizable spaces. -/\ntheorem MeasureTheory.ProbabilityMeasure.continuous_prod_of_finite {α : Type u_1} {β : Type u_2} [Finite α] [TopologicalSpace α] [DiscreteTopology α] [MeasurableSpace α] [BorelSpace α] [Finite β] [TopologicalSpace β] [DiscreteTopology β] [MeasurableSpace β] [BorelSpace β] : Continuous fun x =>\n match x with\n | (μ, ν) => MeasureTheory.ProbabilityMeasure.prod μ ν"}
2
+ {"name":"MeasureTheory.ProbabilityMeasure.tendsto_iff_forall_apply_tendsto","declaration":"/-- Probability measures on a finite space tend to a limit if and only if the probability masses\nof all points tend to the corresponding limits. -/\ntheorem MeasureTheory.ProbabilityMeasure.tendsto_iff_forall_apply_tendsto {ι : Type u_1} {α : Type u_2} {L : Filter ι} [Finite α] [TopologicalSpace α] [DiscreteTopology α] [MeasurableSpace α] [BorelSpace α] (μs : ι → MeasureTheory.ProbabilityMeasure α) (μ : MeasureTheory.ProbabilityMeasure α) : Filter.Tendsto μs L (nhds μ) ↔\n ∀ (a : α), Filter.Tendsto (fun x => (fun s => (↑↑↑(μs x) s).toNNReal) {a}) L (nhds ((fun s => (↑↑↑μ s).toNNReal) {a}))"}
3
+ {"name":"MeasureTheory.t1Space_probabilityMeasure_of_finite","declaration":"instance MeasureTheory.t1Space_probabilityMeasure_of_finite {α : Type u_1} [Finite α] [TopologicalSpace α] [DiscreteTopology α] [MeasurableSpace α] [BorelSpace α] : T1Space (MeasureTheory.ProbabilityMeasure α)"}
4
+ {"name":"MeasureTheory.ProbabilityMeasure.tendsto_prod_of_tendsto_of_tendsto","declaration":"/-- If probability measures on two finite spaces tend to limits, then the products of them\non the product space tend to the product of the limits.\nTODO: In Mathlib, this should be done on all separable metrizable spaces. -/\ntheorem MeasureTheory.ProbabilityMeasure.tendsto_prod_of_tendsto_of_tendsto {ι : Type u_1} {L : Filter ι} {α : Type u_2} {β : Type u_3} [Finite α] [TopologicalSpace α] [DiscreteTopology α] [MeasurableSpace α] [BorelSpace α] [Finite β] [TopologicalSpace β] [DiscreteTopology β] [MeasurableSpace β] [BorelSpace β] (μs : ι → MeasureTheory.ProbabilityMeasure α) (μ : MeasureTheory.ProbabilityMeasure α) (μs_lim : Filter.Tendsto μs L (nhds μ)) (νs : ι → MeasureTheory.ProbabilityMeasure β) (ν : MeasureTheory.ProbabilityMeasure β) (νs_lim : Filter.Tendsto νs L (nhds ν)) : Filter.Tendsto (fun i => MeasureTheory.ProbabilityMeasure.prod (μs i) (νs i)) L\n (nhds (MeasureTheory.ProbabilityMeasure.prod μ ν))"}
PFR-declarations/PFR.ForMathlib.Summable.jsonl ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ {"name":"tsum_of_not_summable","declaration":"/-- Currently not needed. -/\ntheorem tsum_of_not_summable {S : Type u_1} {f : S → ℝ} (hf : ∀ (s : S), 0 ≤ f s) (hsum : ¬Summable f) : ∑' (s : S), ENNReal.ofReal (f s) = ⊤"}
2
+ {"name":"tsum_eq_toReal_tsum_ofReal","declaration":"/-- Currently not needed. -/\ntheorem tsum_eq_toReal_tsum_ofReal {S : Type u_1} {f : S → ℝ} (hf : ∀ (s : S), 0 ≤ f s) : ∑' (s : S), f s = (∑' (s : S), ENNReal.ofReal (f s)).toReal"}
PFR-declarations/PFR.ForMathlib.Uniform.jsonl ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"ProbabilityTheory.exists_isUniform_measureSpace","declaration":"/-- Uniform distributions exist, version giving a measure space -/\ntheorem ProbabilityTheory.exists_isUniform_measureSpace {S : Type u} [MeasurableSpace S] [MeasurableSingletonClass S] (H : Finset S) (h : H.Nonempty) : ∃ Ω mΩ U,\n MeasureTheory.IsProbabilityMeasure MeasureTheory.volume ∧\n Measurable U ∧ ProbabilityTheory.IsUniform (↑H) U MeasureTheory.volume ∧ (∀ (ω : Ω), U ω ∈ H) ∧ FiniteRange U"}
2
+ {"name":"ProbabilityTheory.IsUniform.mk","declaration":"ctor ProbabilityTheory.IsUniform.mk {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] {H : Set S} {X : Ω → S} {μ : autoParam (MeasureTheory.Measure Ω) _auto✝} (eq_of_mem : ∀ (x y : S), x ∈ H → y ∈ H → ↑↑μ (X ⁻¹' {x}) = ↑↑μ (X ⁻¹' {y})) (measure_preimage_compl : ↑↑μ (X ⁻¹' Hᶜ) = 0) : ProbabilityTheory.IsUniform H X μ"}
3
+ {"name":"ProbabilityTheory.IsUniform.measureReal_preimage","declaration":"/-- $\\mathbb{P}(U_H \\in H') = \\dfrac{|H' \\cap H|}{|H|}$ -/\ntheorem ProbabilityTheory.IsUniform.measureReal_preimage {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] {X : Ω → S} {μ : MeasureTheory.Measure Ω} {H : Finset S} (h : ProbabilityTheory.IsUniform (↑H) X μ) (hX : Measurable X) (H' : Set S) : μ.real (X ⁻¹' H') = μ.real Set.univ * ↑(Nat.card ↑(H' ∩ ↑H)) / ↑(Nat.card { x // x ∈ H })"}
4
+ {"name":"ProbabilityTheory.exists_isUniform","declaration":"/-- Uniform distributions exist. -/\ntheorem ProbabilityTheory.exists_isUniform {S : Type uS} [MeasurableSpace S] [MeasurableSingletonClass S] (H : Finset S) (h : H.Nonempty) : ∃ Ω mΩ X μ,\n MeasureTheory.IsProbabilityMeasure μ ∧\n Measurable X ∧ ProbabilityTheory.IsUniform (↑H) X μ ∧ (∀ (ω : Ω), X ω ∈ H) ∧ FiniteRange X"}
5
+ {"name":"ProbabilityTheory.IsUniform.of_identDistrib","declaration":"/-- A copy of a uniform random variable is also uniform.-/\ntheorem ProbabilityTheory.IsUniform.of_identDistrib {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [MeasurableSpace S] [MeasurableSingletonClass S] {X : Ω → S} {μ : MeasureTheory.Measure Ω} {H : Set S} {Ω' : Type u_1} [MeasurableSpace Ω'] (h : ProbabilityTheory.IsUniform H X μ) {X' : Ω' → S} {μ' : MeasureTheory.Measure Ω'} (h' : ProbabilityTheory.IdentDistrib X X' μ μ') (hH : MeasurableSet H) : ProbabilityTheory.IsUniform H X' μ'"}
6
+ {"name":"ProbabilityTheory.IsUniform.nonempty_preimage_of_mem","declaration":"theorem ProbabilityTheory.IsUniform.nonempty_preimage_of_mem {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] {X : Ω → S} {μ : MeasureTheory.Measure Ω} [NeZero μ] {H : Finset S} (h : ProbabilityTheory.IsUniform (↑H) X μ) (hX : Measurable X) {s : S} (hs : s ∈ H) : Set.Nonempty (X ⁻¹' {s})"}
7
+ {"name":"ProbabilityTheory.IsUniform.full_measure","declaration":"theorem ProbabilityTheory.IsUniform.full_measure {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] {X : Ω → S} {μ : MeasureTheory.Measure Ω} {H : Set S} (h : ProbabilityTheory.IsUniform H X μ) (hX : Measurable X) : ↑↑(MeasureTheory.Measure.map X μ) H = ↑↑μ Set.univ"}
8
+ {"name":"ProbabilityTheory.IsUniform.comp","declaration":"/-- The image of a uniform random variable under an injective map is uniform on the image. -/\ntheorem ProbabilityTheory.IsUniform.comp {Ω : Type uΩ} {S : Type uS} {T : Type uT} [mΩ : MeasurableSpace Ω] {X : Ω → S} {μ : MeasureTheory.Measure Ω} [DecidableEq T] {H : Finset S} (h : ProbabilityTheory.IsUniform (↑H) X μ) {f : S → T} (hf : Function.Injective f) : ProbabilityTheory.IsUniform (↑(Finset.image f H)) (f ∘ X) μ"}
9
+ {"name":"ProbabilityTheory.IsUniform.measureReal_preimage_of_mem","declaration":"/-- A \"unit test\" for the definition of uniform distribution. -/\ntheorem ProbabilityTheory.IsUniform.measureReal_preimage_of_mem {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] {X : Ω → S} {μ : MeasureTheory.Measure Ω} {H : Finset S} [MeasureTheory.IsProbabilityMeasure μ] (h : ProbabilityTheory.IsUniform (↑H) X μ) (hX : Measurable X) {s : S} (hs : s ∈ H) : μ.real (X ⁻¹' {s}) = 1 / ↑(Nat.card { x // x ∈ H })"}
10
+ {"name":"ProbabilityTheory.IsUniform.measureReal_preimage_of_nmem","declaration":"/-- Another \"unit test\" for the definition of uniform distribution. -/\ntheorem ProbabilityTheory.IsUniform.measureReal_preimage_of_nmem {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] {X : Ω → S} {μ : MeasureTheory.Measure Ω} {H : Set S} (h : ProbabilityTheory.IsUniform H X μ) {s : S} (hs : s ∉ H) : μ.real (X ⁻¹' {s}) = 0"}
11
+ {"name":"ProbabilityTheory.exists_isUniform_measureSpace'","declaration":"/-- Uniform distributions exist, version with a Finite set rather than a Finset and giving a measure space -/\ntheorem ProbabilityTheory.exists_isUniform_measureSpace' {S : Type u} [MeasurableSpace S] [MeasurableSingletonClass S] (H : Set S) [Finite ↑H] [Nonempty ↑H] : ∃ Ω mΩ U,\n MeasureTheory.IsProbabilityMeasure MeasureTheory.volume ∧\n Measurable U ∧ ProbabilityTheory.IsUniform H U MeasureTheory.volume ∧ (∀ (ω : Ω), U ω ∈ H) ∧ FiniteRange U"}
12
+ {"name":"ProbabilityTheory.IsUniform.restrict","declaration":"/-- If $X$ is uniform w.r.t. $\\mu$ on $H$, then $X$ is uniform w.r.t. $\\mu$ conditioned by\n$H'$ on $H' \\cap H$. -/\ntheorem ProbabilityTheory.IsUniform.restrict {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] {X : Ω → S} {μ : MeasureTheory.Measure Ω} {H : Set S} (h : ProbabilityTheory.IsUniform H X μ) (hX : Measurable X) (H' : Set S) : ProbabilityTheory.IsUniform (H' ∩ H) X (ProbabilityTheory.cond μ (X ⁻¹' H'))"}
13
+ {"name":"ProbabilityTheory.IsUniform.ae_mem","declaration":"/-- A uniform random variable on H almost surely takes values in H. -/\ntheorem ProbabilityTheory.IsUniform.ae_mem {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] {X : Ω → S} {μ : MeasureTheory.Measure Ω} {H : Set S} (h : ProbabilityTheory.IsUniform H X μ) : ∀ᵐ (ω : Ω) ∂μ, X ω ∈ H"}
14
+ {"name":"ProbabilityTheory.IsUniform.measure_preimage_of_mem","declaration":"/-- A \"unit test\" for the definition of uniform distribution. -/\ntheorem ProbabilityTheory.IsUniform.measure_preimage_of_mem {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] {X : Ω → S} {μ : MeasureTheory.Measure Ω} {H : Finset S} (h : ProbabilityTheory.IsUniform (↑H) X μ) (hX : Measurable X) {s : S} (hs : s ∈ H) : ↑↑μ (X ⁻¹' {s}) = ↑↑μ Set.univ / ↑(Nat.card { x // x ∈ H })"}
15
+ {"name":"ProbabilityTheory.IsUniform.nonempty","declaration":"/-- Uniform random variables only exist for non-empty sets H. -/\ntheorem ProbabilityTheory.IsUniform.nonempty {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] {X : Ω → S} {μ : MeasureTheory.Measure Ω} {H : Finset S} (h : ProbabilityTheory.IsUniform (↑H) X μ) [hμ : NeZero μ] : H.Nonempty"}
16
+ {"name":"ProbabilityTheory.IsUniform.measure_preimage_of_nmem","declaration":"/-- Another \"unit test\" for the definition of uniform distribution. -/\ntheorem ProbabilityTheory.IsUniform.measure_preimage_of_nmem {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] {X : Ω → S} {μ : MeasureTheory.Measure Ω} {H : Set S} (h : ProbabilityTheory.IsUniform H X μ) {s : S} (hs : s ∉ H) : ↑↑μ (X ⁻¹' {s}) = 0"}
17
+ {"name":"ProbabilityTheory.IsUniform.measure_preimage_compl","declaration":"def ProbabilityTheory.IsUniform.measure_preimage_compl {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] {H : Set S} {X : Ω → S} {μ : autoParam (MeasureTheory.Measure Ω) _auto✝} (self : ProbabilityTheory.IsUniform H X μ) : ↑↑μ (X ⁻¹' Hᶜ) = 0"}
18
+ {"name":"ProbabilityTheory.IsUniform.eq_of_mem","declaration":"def ProbabilityTheory.IsUniform.eq_of_mem {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] {H : Set S} {X : Ω → S} {μ : autoParam (MeasureTheory.Measure Ω) _auto✝} (self : ProbabilityTheory.IsUniform H X μ) (x : S) (y : S) : x ∈ H → y ∈ H → ↑↑μ (X ⁻¹' {x}) = ↑↑μ (X ⁻¹' {y})"}
19
+ {"name":"ProbabilityTheory.IdentDistrib.of_isUniform","declaration":"theorem ProbabilityTheory.IdentDistrib.of_isUniform {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] {μ : MeasureTheory.Measure Ω} {H : Set S} {Ω' : Type u_1} [MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] [Finite ↑H] {X : Ω → S} {X' : Ω' → S} (hX : Measurable X) (hX' : Measurable X') (hX_unif : ProbabilityTheory.IsUniform H X μ) (hX'_unif : ProbabilityTheory.IsUniform H X' μ') : ProbabilityTheory.IdentDistrib X X' μ μ'"}
20
+ {"name":"ProbabilityTheory.IsUniform","declaration":"/-- The assertion that the law of $X$ is the uniform probability measure on a finite set $H$.\nWhile in applications $H$ will be non-empty finite set, $X$ measurable, and and $μ$ a probability\nmeasure, it could be technically convenient to have a definition that works even without these\nhypotheses. (For instance, `isUniform` would be well-defined, but false, for infinite `H`) -/\nstructure ProbabilityTheory.IsUniform {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] (H : Set S) (X : Ω → S) (μ : autoParam (MeasureTheory.Measure Ω) _auto✝) : Prop"}
21
+ {"name":"ProbabilityTheory.IsUniform.measure_preimage_ne_zero","declaration":"/-- $\\mathbb{P}(U_H \\in H') \\neq 0$ if $H'$ intersects $H$ and the measure is non-zero. -/\ntheorem ProbabilityTheory.IsUniform.measure_preimage_ne_zero {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] {X : Ω → S} {μ : MeasureTheory.Measure Ω} {H : Finset S} [NeZero μ] (h : ProbabilityTheory.IsUniform (↑H) X μ) (hX : Measurable X) (H' : Set S) [Nonempty ↑(H' ∩ ↑H)] : ↑↑μ (X ⁻¹' H') ≠ 0"}
22
+ {"name":"ProbabilityTheory.IsUniform.measureReal_preimage_of_mem'","declaration":"theorem ProbabilityTheory.IsUniform.measureReal_preimage_of_mem' {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] {X : Ω → S} {μ : MeasureTheory.Measure Ω} {H : Finset S} [MeasureTheory.IsProbabilityMeasure μ] (h : ProbabilityTheory.IsUniform (↑H) X μ) (hX : Measurable X) {s : S} (hs : s ∈ H) : (MeasureTheory.Measure.map X μ).real {s} = 1 / ↑(Nat.card { x // x ∈ H })"}
23
+ {"name":"ProbabilityTheory.IsUniform.measure_preimage","declaration":"/-- $\\mathbb{P}(U_H \\in H') = \\dfrac{|H' \\cap H|}{|H|}$ -/\ntheorem ProbabilityTheory.IsUniform.measure_preimage {Ω : Type uΩ} {S : Type uS} [mΩ : MeasurableSpace Ω] [Countable S] [MeasurableSpace S] [MeasurableSingletonClass S] {X : Ω → S} {μ : MeasureTheory.Measure Ω} {H : Finset S} (h : ProbabilityTheory.IsUniform (↑H) X μ) (hX : Measurable X) (H' : Set S) : ↑↑μ (X ⁻¹' H') = ↑↑μ Set.univ * ↑(Nat.card ↑(H' ∩ ↑H)) / ↑(Nat.card { x // x ∈ H })"}
PFR-declarations/PFR.HomPFR.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {"name":"hahn_banach","declaration":"/-- Let $H_0$ be a subgroup of $G$. Then every homomorphism $\\phi: H_0 \\to G'$ can be extended to a\nhomomorphism $\\tilde \\phi: G \\to G'$. -/\ntheorem hahn_banach {G : Type u_1} {G' : Type u_2} [AddCommGroup G] [AddCommGroup G'] [ElementaryAddCommGroup G 2] [ElementaryAddCommGroup G' 2] (H₀ : AddSubgroup G) (φ : ↥H₀ →+ G') : ∃ φ', ∀ (x : ↥H₀), φ x = φ' ↑x"}
2
+ {"name":"homomorphism_pfr","declaration":"/-- Let $f: G \\to G'$ be a function, and let $S$ denote the set\n$$ S := \\{ f(x+y)-f(x)-f(y): x,y \\in G \\}.$$\nThen there exists a homomorphism $\\phi: G \\to G'$ such that\n$$ |\\{f(x) - \\phi(x)\\}| \\leq |S|^{12}. $$ -/\ntheorem homomorphism_pfr {G : Type u_1} {G' : Type u_2} [AddCommGroup G] [Fintype G] [AddCommGroup G'] [Fintype G'] [ElementaryAddCommGroup G 2] [ElementaryAddCommGroup G' 2] (f : G → G') (S : Set G') (hS : ∀ (x y : G), f (x + y) - f x - f y ∈ S) : ∃ φ T, Nat.card ↑T ≤ Nat.card ↑S ^ 12 ∧ ∀ (x : G), f x - φ x ∈ T"}
3
+ {"name":"goursat","declaration":"/-- Let $H$ be a subgroup of $G \\times G'$. Then there exists a subgroup $H_0$ of $G$, a\nsubgroup $H_1$ of $G'$, and a homomorphism $\\phi: G \\to G'$ such that\n$$ H := \\{ (x, \\phi(x) + y): x \\in H_0, y \\in H_1 \\}.$$\nIn particular, $|H| = |H_0| |H_1|$. -/\ntheorem goursat {G : Type u_1} {G' : Type u_2} [AddCommGroup G] [AddCommGroup G'] [ElementaryAddCommGroup G 2] [ElementaryAddCommGroup G' 2] (H : AddSubgroup (G × G')) : ∃ H₀ H₁ φ, (∀ (x : G × G'), x ∈ H ↔ x.1 ∈ H₀ ∧ x.2 - φ x.1 ∈ H₁) ∧ Nat.card ↥H = Nat.card ↥H₀ * Nat.card ↥H₁"}
PFR-declarations/PFR.HundredPercent.jsonl ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {"name":"mem_symmGroup","declaration":"theorem mem_symmGroup {Ω : Type u_1} {G : Type u_2} [MeasureTheory.MeasureSpace Ω] [AddCommGroup G] [MeasurableSpace G] [MeasurableAdd₂ G] {X : Ω → G} (hX : Measurable X) {x : G} : x ∈ symmGroup X hX ↔ ProbabilityTheory.IdentDistrib X (fun ω => X ω + x) MeasureTheory.volume MeasureTheory.volume"}
2
+ {"name":"exists_isUniform_of_rdist_eq_zero","declaration":"/-- If $d[X_1;X_2]=0$, then there exists a subgroup $H \\leq G$ such that\n$d[X_1;U_H] = d[X_2;U_H] = 0$. Follows from the preceding claim by the triangle inequality. -/\ntheorem exists_isUniform_of_rdist_eq_zero {Ω : Type u_1} {G : Type u_2} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [AddCommGroup G] [Fintype G] [MeasurableSpace G] [MeasurableAdd₂ G] [MeasurableSub₂ G] {X : Ω → G} [MeasurableSingletonClass G] {Ω' : Type u_3} [MeasureTheory.MeasureSpace Ω'] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {X' : Ω' → G} (hX : Measurable X) (hX' : Measurable X') (hdist : d[X # X'] = 0) : ∃ H U, Measurable U ∧ ProbabilityTheory.IsUniform (↑H) U MeasureTheory.volume ∧ d[X # U] = 0 ∧ d[X' # U] = 0"}
3
+ {"name":"sub_mem_symmGroup","declaration":"/-- If $d[X ;X]=0$, and $x,y \\in G$ are such that $P[X=x], P[X=y]>0$,\nthen $x-y \\in \\mathrm{Sym}[X]$. -/\ntheorem sub_mem_symmGroup {Ω : Type u_1} {G : Type u_2} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [AddCommGroup G] [Fintype G] [MeasurableSpace G] [MeasurableAdd₂ G] [MeasurableSub₂ G] {X : Ω → G} [MeasurableSingletonClass G] (hX : Measurable X) (hdist : d[X # X] = 0) {x : G} {y : G} (hx : ↑↑MeasureTheory.volume (X ⁻¹' {x}) ≠ 0) (hy : ↑↑MeasureTheory.volume (X ⁻¹' {y}) ≠ 0) : x - y ∈ symmGroup X hX"}
4
+ {"name":"exists_isUniform_of_rdist_self_eq_zero","declaration":"/-- If $d[X ;X]=0$, then there exists a subgroup $H \\leq G$ such that $d[X ;U_H] = 0$. -/\ntheorem exists_isUniform_of_rdist_self_eq_zero {Ω : Type u_1} {G : Type u_2} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [AddCommGroup G] [Fintype G] [MeasurableSpace G] [MeasurableAdd₂ G] [MeasurableSub₂ G] {X : Ω → G} [MeasurableSingletonClass G] (hX : Measurable X) (hdist : d[X # X] = 0) : ∃ H U, Measurable U ∧ ProbabilityTheory.IsUniform (↑H) U MeasureTheory.volume ∧ d[X # U] = 0"}
5
+ {"name":"symmGroup","declaration":"/-- The symmetry group Sym of $X$: the set of all $h ∈ G$ such that $X + h$ has an identical\ndistribution to $X$. -/\ndef symmGroup {Ω : Type u_1} {G : Type u_2} [MeasureTheory.MeasureSpace Ω] [AddCommGroup G] [MeasurableSpace G] [MeasurableAdd₂ G] (X : Ω → G) (hX : Measurable X) : AddSubgroup G"}
6
+ {"name":"ProbabilityTheory.IdentDistrib.symmGroup_eq","declaration":"theorem ProbabilityTheory.IdentDistrib.symmGroup_eq {Ω : Type u_1} {G : Type u_2} [MeasureTheory.MeasureSpace Ω] [AddCommGroup G] [MeasurableSpace G] [MeasurableAdd₂ G] {X : Ω → G} {Ω' : Type u_3} [MeasureTheory.MeasureSpace Ω'] {X' : Ω' → G} (hX : Measurable X) (hX' : Measurable X') (h : ProbabilityTheory.IdentDistrib X X' MeasureTheory.volume MeasureTheory.volume) : symmGroup X hX = symmGroup X' hX'"}
7
+ {"name":"isUniform_sub_const_of_rdist_eq_zero","declaration":"/-- If `d[X # X] = 0`, then `X - x₀` is the uniform distribution on the subgroup of `G`\nstabilizing the distribution of `X`, for any `x₀` of positive probability. -/\ntheorem isUniform_sub_const_of_rdist_eq_zero {Ω : Type u_1} {G : Type u_2} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [AddCommGroup G] [Fintype G] [MeasurableSpace G] [MeasurableAdd₂ G] [MeasurableSub₂ G] {X : Ω → G} [MeasurableSingletonClass G] (hX : Measurable X) (hdist : d[X # X] = 0) {x₀ : G} (hx₀ : ↑↑MeasureTheory.volume (X ⁻¹' {x₀}) ≠ 0) : ProbabilityTheory.IsUniform (↑(symmGroup X hX)) (fun ω => X ω - x₀) MeasureTheory.volume"}
PFR-declarations/PFR.ImprovedPFR.jsonl ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"entropic_PFR_conjecture_improv","declaration":"/-- `entropic_PFR_conjecture_improv`: For two $G$-valued random variables $X^0_1, X^0_2$, there is some\nsubgroup $H \\leq G$ such that $d[X^0_1;U_H] + d[X^0_2;U_H] \\le 10 d[X^0_1;X^0_2]$. -/\ntheorem entropic_PFR_conjecture_improv {Ω₀₁ : Type u_1} {Ω₀₂ : Type u_2} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {G : Type uG} [AddCommGroup G] [ElementaryAddCommGroup G 2] [Fintype G] [MeasurableSpace G] [MeasurableSingletonClass G] (p : refPackage Ω₀₁ Ω₀₂ G) (hpη : p.η = 1 / 8) : ∃ H Ω mΩ U,\n MeasureTheory.IsProbabilityMeasure MeasureTheory.volume ∧\n Measurable U ∧\n ProbabilityTheory.IsUniform (↑H) U MeasureTheory.volume ∧ d[p.X₀₁ # U] + d[p.X₀₂ # U] ≤ 10 * d[p.X₀₁ # p.X₀₂]"}
2
+ {"name":"gen_ineq_aux1","declaration":"theorem gen_ineq_aux1 {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω : Type u_2} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {Ω₀ : Type u_3} [MeasureTheory.MeasureSpace Ω₀] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (Y : Ω₀ → G) (hY : Measurable Y) (Z₁ : Ω → G) (Z₂ : Ω → G) (Z₃ : Ω → G) (Z₄ : Ω → G) (hZ₁ : Measurable Z₁) (hZ₂ : Measurable Z₂) (hZ₃ : Measurable Z₃) (hZ₄ : Measurable Z₄) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : d[Y # Z₁ + Z₂ | ⟨Z₁ + Z₃, Z₁ + Z₂ + Z₃ + Z₄⟩] ≤\n d[Y # Z₁] + (d[Z₁ # Z₂] + d[Z₁ # Z₃] + d[Z₂ # Z₄] - d[Z₁ | Z₁ + Z₂ # Z₃ | Z₃ + Z₄]) / 2 +\n (H[Z₁ + Z₂] - H[Z₃ + Z₄] + H[Z₂] - H[Z₁]) / 4"}
3
+ {"name":"tau_strictly_decreases_aux'","declaration":"/-- Suppose $0 < \\eta < 1/8$. Let $X_1, X_2$ be tau-minimizers. Then $d[X_1;X_2] = 0$. The proof\nof this lemma uses copies `X₁', X₂'` already in the context. For a version that does not assume\nthese are given and constructs them instead, use `tau_strictly_decreases'`.\n-/\ntheorem tau_strictly_decreases_aux' {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {X₁ : Ω → G} {X₂ : Ω → G} {X₁' : Ω → G} {X₂' : Ω → G} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₂', X₁'] MeasureTheory.volume) (h_min : tau_minimizes p X₁ X₂) (hp : 8 * p.η < 1) : d[X₁ # X₂] = 0"}
4
+ {"name":"entropic_PFR_conjecture_improv'","declaration":"/-- `entropic_PFR_conjecture_improv'`: For two $G$-valued random variables $X^0_1, X^0_2$, there is\nsome subgroup $H \\leq G$ such that $d[X^0_1;U_H] + d[X^0_2;U_H] \\le 10 d[X^0_1;X^0_2]$., and\nd[X^0_1; U_H] and d[X^0_2; U_H] are at most 5/2 * d[X^0_1;X^0_2] -/\ntheorem entropic_PFR_conjecture_improv' {Ω₀₁ : Type u_1} {Ω₀₂ : Type u_2} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {G : Type uG} [AddCommGroup G] [ElementaryAddCommGroup G 2] [Fintype G] [MeasurableSpace G] [MeasurableSingletonClass G] (p : refPackage Ω₀₁ Ω₀₂ G) (hpη : p.η = 1 / 8) : ∃ H Ω mΩ U,\n MeasureTheory.IsProbabilityMeasure MeasureTheory.volume ∧\n Measurable U ∧\n ProbabilityTheory.IsUniform (↑H) U MeasureTheory.volume ∧\n d[p.X₀₁ # U] + d[p.X₀₂ # U] ≤ 10 * d[p.X₀₁ # p.X₀₂] ∧\n d[p.X₀₁ # U] ≤ 11 / 2 * d[p.X₀₁ # p.X₀₂] ∧ d[p.X₀₂ # U] ≤ 11 / 2 * d[p.X₀₁ # p.X₀₂]"}
5
+ {"name":"dist_diff_bound_1","declaration":"theorem dist_diff_bound_1 {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {X₁ : Ω → G} {X₂ : Ω → G} {X₁' : Ω → G} {X₂' : Ω → G} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₂', X₁'] MeasureTheory.volume) : d[p.X₀₁ # X₁ + X₂ | ⟨X₁' + X₂, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₁ # X₁] +\n (d[p.X₀₁ # X₁ + X₂ | ⟨X₁' + X₁, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₁ # X₁]) +\n (d[p.X₀₁ # X₁' + X₂ | ⟨X₁ + X₂, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₁ # X₁]) +\n (d[p.X₀₁ # X₁' + X₂ | ⟨X₁' + X₁, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₁ # X₁]) +\n (d[p.X₀₁ # X₁' + X₁ | ⟨X₁ + X₂, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₁ # X₁]) +\n (d[p.X₀₁ # X₁' + X₁ | ⟨X₁' + X₂, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₁ # X₁]) ≤\n (16 * d[X₁ # X₂] + 6 * d[X₁ # X₁] + 2 * d[X₂ # X₂]) / 4 + (H[X₁ + X₁'] - H[X₂ + X₂']) / 4 +\n (H[X₂ | X₂ + X₂'] - H[X₁ | X₁ + X₁']) / 4"}
6
+ {"name":"PFR_conjecture_improv'","declaration":"/-- Corollary of `PFR_conjecture_improv` in which the ambient group is not required to be finite\n(but) then $H$ and $c$ are finite. -/\ntheorem PFR_conjecture_improv' {G : Type u_3} [AddCommGroup G] [ElementaryAddCommGroup G 2] {A : Set G} {K : ℝ} (h₀A : Set.Nonempty A) (Afin : Set.Finite A) (hA : ↑(Nat.card ↑(A + A)) ≤ K * ↑(Nat.card ↑A)) : ∃ H c, Set.Finite c ∧ Set.Finite ↑H ∧ ↑(Nat.card ↑c) < 2 * K ^ 11 ∧ Nat.card ↥H ≤ Nat.card ↑A ∧ A ⊆ c + ↑H"}
7
+ {"name":"PFR_conjecture_improv_aux","declaration":"/-- Auxiliary statement towards the polynomial Freiman-Ruzsa (PFR) conjecture: if $A$ is a subset of\nan elementary abelian 2-group of doubling constant at most $K$, then there exists a subgroup $H$\nsuch that $A$ can be covered by at most $K^6 |A|^{1/2} / |H|^{1/2}$ cosets of $H$, and $H$ has\nthe same cardinality as $A$ up to a multiplicative factor $K^10$. -/\ntheorem PFR_conjecture_improv_aux {G : Type u_1} [AddCommGroup G] [ElementaryAddCommGroup G 2] [Fintype G] {A : Set G} {K : ℝ} (h₀A : Set.Nonempty A) (hA : ↑(Nat.card ↑(A + A)) ≤ K * ↑(Nat.card ↑A)) : ∃ H c,\n ↑(Nat.card ↑c) ≤ K ^ 6 * ↑(Nat.card ↑A) ^ (1 / 2) * ↑(Nat.card ↑↑H) ^ (-1 / 2) ∧\n ↑(Nat.card ↥H) ≤ K ^ 10 * ↑(Nat.card ↑A) ∧ ↑(Nat.card ↑A) ≤ K ^ 10 * ↑(Nat.card ↥H) ∧ A ⊆ c + ↑H"}
8
+ {"name":"tau_strictly_decreases'","declaration":"theorem tau_strictly_decreases' {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {X₁ : Ω → G} {X₂ : Ω → G} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (h_min : tau_minimizes p X₁ X₂) (hp : 8 * p.η < 1) : d[X₁ # X₂] = 0"}
9
+ {"name":"gen_ineq_00","declaration":"/-- Let $Z_1, Z_2, Z_3, Z_4$ be independent $G$-valued random variables, and let $Y$ be another\n$G$-valued random variable. Set $S := Z_1+Z_2+Z_3+Z_4$. Then\n$d[Y; Z_1+Z_2|Z_1 + Z_3, S] - d[Y; Z_1]$ is at most\n$$ \\tfrac{1}{4} (d[Z_1;Z_2] + 2d[Z_1;Z_3] + d[Z_2;Z_4])$$\n$$+ \\tfrac{1}{4}(d[Z_1|Z_1 + Z_3 ; Z_2|Z_2+Z_4] - d[Z_1|Z_1+Z_2 ; Z_3|Z_3+Z_4]])$$\n$$+ \\tfrac{1}{8} (\\bbH[Z_1+Z_2] - \\bbH[Z_3+Z_4] + \\bbH[Z_2] - \\bbH[Z_3]$$\n$$ + \\bbH[Z_2|Z_2+Z_4] - \\bbH[Z_1|Z_1+Z_3]).$$\n-/\ntheorem gen_ineq_00 {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω : Type u_2} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {Ω₀ : Type u_3} [MeasureTheory.MeasureSpace Ω₀] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (Y : Ω₀ → G) (hY : Measurable Y) (Z₁ : Ω → G) (Z₂ : Ω → G) (Z₃ : Ω → G) (Z₄ : Ω → G) (hZ₁ : Measurable Z₁) (hZ₂ : Measurable Z₂) (hZ₃ : Measurable Z₃) (hZ₄ : Measurable Z₄) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : d[Y # Z₁ + Z₂ | ⟨Z₁ + Z₃, Z₁ + Z₂ + Z₃ + Z₄⟩] - d[Y # Z₁] ≤\n (d[Z₁ # Z₂] + 2 * d[Z₁ # Z₃] + d[Z₂ # Z₄]) / 4 +\n (d[Z₁ | Z₁ + Z₃ # Z₂ | Z₂ + Z₄] - d[Z₁ | Z₁ + Z₂ # Z₃ | Z₃ + Z₄]) / 4 +\n (H[Z₁ + Z₂] - H[Z₃ + Z₄] + H[Z₂] - H[Z₃] + H[Z₂ | Z₂ + Z₄] - H[Z₁ | Z₁ + Z₃]) / 8"}
10
+ {"name":"tau_minimizer_exists_rdist_eq_zero","declaration":"/-- For `p.η ≤ 1/8`, there exist τ-minimizers `X₁, X₂` at zero Rusza distance. For `p.η < 1/8`,\nall minimizers are fine, by `tau_strictly_decreases'`. For `p.η = 1/8`, we use a limit of\nminimizers for `η < 1/8`, which exists by compactness. -/\ntheorem tau_minimizer_exists_rdist_eq_zero {Ω₀₁ : Type u_1} {Ω₀₂ : Type u_2} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {G : Type uG} [AddCommGroup G] [ElementaryAddCommGroup G 2] [Fintype G] [MeasurableSpace G] [MeasurableSingletonClass G] (p : refPackage Ω₀₁ Ω₀₂ G) : ∃ Ω mΩ X₁ X₂,\n Measurable X₁ ∧\n Measurable X₂ ∧ MeasureTheory.IsProbabilityMeasure MeasureTheory.volume ∧ tau_minimizes p X₁ X₂ ∧ d[X₁ # X₂] = 0"}
11
+ {"name":"construct_good_improved''","declaration":"/-- Rephrase `construct_good_improved'` with an explicit probability measure, as we will\napply it to (varying) conditional measures. -/\ntheorem construct_good_improved'' {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] {p : refPackage Ω₀₁ Ω₀₂ G} {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] {X₁ : Ω → G} {X₂ : Ω → G} (h_min : tau_minimizes p X₁ X₂) {Ω' : Type u_6} [MeasurableSpace Ω'] (μ : MeasureTheory.Measure Ω') [MeasureTheory.IsProbabilityMeasure μ] {T₁ : Ω' → G} {T₂ : Ω' → G} {T₃ : Ω' → G} (hT : T₁ + T₂ + T₃ = 0) (hT₁ : Measurable T₁) (hT₂ : Measurable T₂) (hT₃ : Measurable T₃) : d[X₁ # X₂] ≤\n I[T₁ : T₂ ; μ] + I[T₂ : T₃ ; μ] + I[T₃ : T₁ ; μ] +\n p.η / 6 *\n (d[p.X₀₁ ; MeasureTheory.volume # T₁ | T₂ ; μ] - d[p.X₀₁ # X₁] +\n (d[p.X₀₁ ; MeasureTheory.volume # T₁ | T₃ ; μ] - d[p.X₀₁ # X₁]) +\n (d[p.X₀₁ ; MeasureTheory.volume # T₂ | T₁ ; μ] - d[p.X₀₁ # X₁]) +\n (d[p.X₀₁ ; MeasureTheory.volume # T₂ | T₃ ; μ] - d[p.X₀₁ # X₁]) +\n (d[p.X₀₁ ; MeasureTheory.volume # T₃ | T₁ ; μ] - d[p.X₀₁ # X₁]) +\n (d[p.X₀₁ ; MeasureTheory.volume # T₃ | T₂ ; μ] - d[p.X₀₁ # X₁]) +\n (d[p.X₀₂ ; MeasureTheory.volume # T₁ | T₂ ; μ] - d[p.X₀₂ # X₂]) +\n (d[p.X₀₂ ; MeasureTheory.volume # T₁ | T₃ ; μ] - d[p.X₀₂ # X₂]) +\n (d[p.X₀₂ ; MeasureTheory.volume # T₂ | T₁ ; μ] - d[p.X₀₂ # X₂]) +\n (d[p.X₀₂ ; MeasureTheory.volume # T₂ | T₃ ; μ] - d[p.X₀₂ # X₂]) +\n (d[p.X₀₂ ; MeasureTheory.volume # T₃ | T₁ ; μ] - d[p.X₀₂ # X₂]) +\n (d[p.X₀₂ ; MeasureTheory.volume # T₃ | T₂ ; μ] - d[p.X₀₂ # X₂]))"}
12
+ {"name":"construct_good_prelim'","declaration":"/-- For any $T_1, T_2, T_3$ adding up to $0$, then $k$ is at most\n$$ \\delta + \\eta (d[X^0_1;T_1|T_3]-d[X^0_1;X_1]) + \\eta (d[X^0_2;T_2|T_3]-d[X^0_2;X_2])$$\nwhere $\\delta = I[T₁ : T₂ ; μ] + I[T₂ : T₃ ; μ] + I[T₃ : T₁ ; μ]$. -/\ntheorem construct_good_prelim' {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] {p : refPackage Ω₀₁ Ω₀₂ G} {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] {X₁ : Ω → G} {X₂ : Ω → G} (h_min : tau_minimizes p X₁ X₂) {Ω' : Type u_5} [MeasureTheory.MeasureSpace Ω'] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {T₁ : Ω' → G} {T₂ : Ω' → G} {T₃ : Ω' → G} (hT : T₁ + T₂ + T₃ = 0) (hT₁ : Measurable T₁) (hT₂ : Measurable T₂) (hT₃ : Measurable T₃) : d[X₁ # X₂] ≤\n I[T₁ : T₂] + I[T₂ : T₃] + I[T₃ : T₁] +\n p.η * (d[p.X₀₁ # T₁ | T₃] - d[p.X₀₁ # X₁] + (d[p.X₀₂ # T₂ | T₃] - d[p.X₀₂ # X₂]))"}
13
+ {"name":"gen_ineq_10","declaration":"/-- Other version of `gen_ineq_00`, in which we switch to the complement in the first term. -/\ntheorem gen_ineq_10 {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω : Type u_2} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {Ω₀ : Type u_3} [MeasureTheory.MeasureSpace Ω₀] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (Y : Ω₀ → G) (hY : Measurable Y) (Z₁ : Ω → G) (Z₂ : Ω → G) (Z₃ : Ω → G) (Z₄ : Ω → G) (hZ₁ : Measurable Z₁) (hZ₂ : Measurable Z₂) (hZ₃ : Measurable Z₃) (hZ₄ : Measurable Z₄) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : d[Y # Z₃ + Z₄ | ⟨Z₁ + Z₃, Z₁ + Z₂ + Z₃ + Z₄⟩] - d[Y # Z₁] ≤\n (d[Z₁ # Z₂] + 2 * d[Z₁ # Z₃] + d[Z₂ # Z₄]) / 4 +\n (d[Z₁ | Z₁ + Z₃ # Z₂ | Z₂ + Z₄] - d[Z₁ | Z₁ + Z₂ # Z₃ | Z₃ + Z₄]) / 4 +\n (H[Z₁ + Z₂] - H[Z₃ + Z₄] + H[Z₂] - H[Z₃] + H[Z₂ | Z₂ + Z₄] - H[Z₁ | Z₁ + Z₃]) / 8"}
14
+ {"name":"PFR_conjecture_improv","declaration":"/-- The polynomial Freiman-Ruzsa (PFR) conjecture: if $A$ is a subset of an elementary abelian\n2-group of doubling constant at most $K$, then $A$ can be covered by at most $2K^{11$} cosets of\na subgroup of cardinality at most $|A|$. -/\ntheorem PFR_conjecture_improv {G : Type u_1} [AddCommGroup G] [ElementaryAddCommGroup G 2] [Fintype G] {A : Set G} {K : ℝ} (h₀A : Set.Nonempty A) (hA : ↑(Nat.card ↑(A + A)) ≤ K * ↑(Nat.card ↑A)) : ∃ H c, ↑(Nat.card ↑c) < 2 * K ^ 11 ∧ Nat.card ↥H ≤ Nat.card ↑A ∧ A ⊆ c + ↑H"}
15
+ {"name":"averaged_construct_good","declaration":"/-- $k$ is at most\n$$ \\leq I(U : V \\, | \\, S) + I(V : W \\, | \\,S) + I(W : U \\, | \\, S) + \\frac{\\eta}{6} \\sum_{i=1}^2 \\sum_{A,B \\in \\{U,V,W\\}: A \\neq B} (d[X^0_i;A|B,S] - d[X^0_i; X_i]).$$\n-/\ntheorem averaged_construct_good {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] {p : refPackage Ω₀₁ Ω₀₂ G} {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {X₁ : Ω → G} {X₂ : Ω → G} {X₁' : Ω → G} {X₂' : Ω → G} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h_min : tau_minimizes p X₁ X₂) : d[X₁ # X₂] ≤\n I[X₁ + X₂ : X₁' + X₂|X₁ + X₂ + X₁' + X₂'] + I[X₁' + X₂ : X₁' + X₁|X₁ + X₂ + X₁' + X₂'] +\n I[X₁' + X₁ : X₁ + X₂|X₁ + X₂ + X₁' + X₂'] +\n p.η / 6 *\n (d[p.X₀₁ # X₁ + X₂ | ⟨X₁' + X₂, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₁ # X₁] +\n (d[p.X₀₁ # X₁ + X₂ | ⟨X₁' + X₁, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₁ # X₁]) +\n (d[p.X₀₁ # X₁' + X₂ | ⟨X₁ + X₂, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₁ # X₁]) +\n (d[p.X₀₁ # X₁' + X₂ | ⟨X₁' + X₁, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₁ # X₁]) +\n (d[p.X₀₁ # X₁' + X₁ | ⟨X₁ + X₂, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₁ # X₁]) +\n (d[p.X₀₁ # X₁' + X₁ | ⟨X₁' + X₂, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₁ # X₁]) +\n (d[p.X₀₂ # X₁ + X₂ | ⟨X₁' + X₂, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₂ # X₂] +\n (d[p.X₀₂ # X₁ + X₂ | ⟨X₁' + X₁, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₂ # X₂]) +\n (d[p.X₀₂ # X₁' + X₂ | ⟨X₁ + X₂, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₂ # X₂]) +\n (d[p.X₀₂ # X₁' + X₂ | ⟨X₁' + X₁, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₂ # X₂]) +\n (d[p.X₀₂ # X₁' + X₁ | ⟨X₁ + X₂, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₂ # X₂]) +\n (d[p.X₀₂ # X₁' + X₁ | ⟨X₁' + X₂, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₂ # X₂])))"}
16
+ {"name":"averaged_final","declaration":"theorem averaged_final {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {X₁ : Ω → G} {X₂ : Ω → G} {X₁' : Ω → G} {X₂' : Ω → G} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₂', X₁'] MeasureTheory.volume) (h_min : tau_minimizes p X₁ X₂) : d[X₁ # X₂] ≤\n 6 * p.η * d[X₁ # X₂] -\n (1 - 5 * p.η) / (1 - p.η) * (2 * p.η * d[X₁ # X₂] - I[X₁ + X₂ : X₁' + X₂|X₁ + X₂ + X₁' + X₂']) +\n p.η / 6 * (8 * d[X₁ # X₂] + 2 * (d[X₁ # X₁] + d[X₂ # X₂]))"}
17
+ {"name":"construct_good_improved'","declaration":"/-- In fact $k$ is at most\n$$ \\delta + \\frac{\\eta}{6} \\sum_{i=1}^2 \\sum_{1 \\leq j,l \\leq 3; j \\neq l}\n (d[X^0_i;T_j|T_l] - d[X^0_i; X_i]).$$\n-/\ntheorem construct_good_improved' {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] {p : refPackage Ω₀₁ Ω₀₂ G} {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] {X₁ : Ω → G} {X₂ : Ω → G} (h_min : tau_minimizes p X₁ X₂) {Ω' : Type u_5} [MeasureTheory.MeasureSpace Ω'] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {T₁ : Ω' → G} {T₂ : Ω' → G} {T₃ : Ω' → G} (hT : T₁ + T₂ + T₃ = 0) (hT₁ : Measurable T₁) (hT₂ : Measurable T₂) (hT₃ : Measurable T₃) : d[X₁ # X₂] ≤\n I[T₁ : T₂] + I[T₂ : T₃] + I[T₃ : T₁] +\n p.η / 6 *\n (d[p.X₀₁ # T₁ | T₂] - d[p.X₀₁ # X₁] + (d[p.X₀₁ # T₁ | T₃] - d[p.X₀₁ # X₁]) +\n (d[p.X₀₁ # T₂ | T₁] - d[p.X₀₁ # X₁]) +\n (d[p.X₀₁ # T₂ | T₃] - d[p.X₀₁ # X₁]) +\n (d[p.X₀₁ # T₃ | T₁] - d[p.X₀₁ # X₁]) +\n (d[p.X₀₁ # T₃ | T₂] - d[p.X₀₁ # X₁]) +\n (d[p.X₀₂ # T₁ | T₂] - d[p.X₀₂ # X₂]) +\n (d[p.X₀₂ # T₁ | T₃] - d[p.X₀₂ # X₂]) +\n (d[p.X₀₂ # T₂ | T₁] - d[p.X₀₂ # X₂]) +\n (d[p.X₀₂ # T₂ | T₃] - d[p.X₀₂ # X₂]) +\n (d[p.X₀₂ # T₃ | T₁] - d[p.X₀₂ # X₂]) +\n (d[p.X₀₂ # T₃ | T₂] - d[p.X₀₂ # X₂]))"}
18
+ {"name":"dist_diff_bound_2","declaration":"theorem dist_diff_bound_2 {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω₀₁ : Type u_2} {Ω₀₂ : Type u_3} [MeasureTheory.MeasureSpace Ω₀₁] [MeasureTheory.MeasureSpace Ω₀₂] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (p : refPackage Ω₀₁ Ω₀₂ G) {Ω : Type u_4} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {X₁ : Ω → G} {X₂ : Ω → G} {X₁' : Ω → G} {X₂' : Ω → G} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₁' : Measurable X₁') (hX₂' : Measurable X₂') (h₁ : ProbabilityTheory.IdentDistrib X₁ X₁' MeasureTheory.volume MeasureTheory.volume) (h₂ : ProbabilityTheory.IdentDistrib X₂ X₂' MeasureTheory.volume MeasureTheory.volume) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![X₁, X₂, X₂', X₁'] MeasureTheory.volume) : d[p.X₀₂ # X₁ + X₂ | ⟨X₁' + X₂, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₂ # X₂] +\n (d[p.X₀₂ # X₁ + X₂ | ⟨X₁' + X₁, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₂ # X₂]) +\n (d[p.X₀₂ # X₁' + X₂ | ⟨X₁ + X₂, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₂ # X₂]) +\n (d[p.X₀₂ # X₁' + X₂ | ⟨X₁' + X₁, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₂ # X₂]) +\n (d[p.X₀₂ # X₁' + X₁ | ⟨X₁ + X₂, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₂ # X₂]) +\n (d[p.X₀₂ # X₁' + X₁ | ⟨X₁' + X₂, X₁ + X₂ + X₁' + X₂'⟩] - d[p.X₀₂ # X₂]) ≤\n (16 * d[X₁ # X₂] + 6 * d[X₂ # X₂] + 2 * d[X₁ # X₁]) / 4 + (H[X₂ + X₂'] - H[X₁ + X₁']) / 4 +\n (H[X₁ | X₁ + X₁'] - H[X₂ | X₂ + X₂']) / 4"}
19
+ {"name":"gen_ineq_01","declaration":"/-- Other version of `gen_ineq_00`, in which we switch to the complement in the second term. -/\ntheorem gen_ineq_01 {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω : Type u_2} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {Ω₀ : Type u_3} [MeasureTheory.MeasureSpace Ω₀] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (Y : Ω₀ → G) (hY : Measurable Y) (Z₁ : Ω → G) (Z₂ : Ω → G) (Z₃ : Ω → G) (Z₄ : Ω → G) (hZ₁ : Measurable Z₁) (hZ₂ : Measurable Z₂) (hZ₃ : Measurable Z₃) (hZ₄ : Measurable Z₄) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : d[Y # Z₁ + Z₂ | ⟨Z₂ + Z₄, Z₁ + Z₂ + Z₃ + Z₄⟩] - d[Y # Z₁] ≤\n (d[Z₁ # Z₂] + 2 * d[Z₁ # Z₃] + d[Z₂ # Z₄]) / 4 +\n (d[Z₁ | Z₁ + Z₃ # Z₂ | Z₂ + Z₄] - d[Z₁ | Z₁ + Z₂ # Z₃ | Z₃ + Z₄]) / 4 +\n (H[Z₁ + Z₂] - H[Z₃ + Z₄] + H[Z₂] - H[Z₃] + H[Z₂ | Z₂ + Z₄] - H[Z₁ | Z₁ + Z₃]) / 8"}
20
+ {"name":"gen_ineq_aux2","declaration":"theorem gen_ineq_aux2 {G : Type u_1} [AddCommGroup G] [Fintype G] [hG : MeasurableSpace G] [MeasurableSingletonClass G] [ElementaryAddCommGroup G 2] [MeasurableAdd₂ G] {Ω : Type u_2} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {Ω₀ : Type u_3} [MeasureTheory.MeasureSpace Ω₀] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] (Y : Ω₀ → G) (hY : Measurable Y) (Z₁ : Ω → G) (Z₂ : Ω → G) (Z₃ : Ω → G) (Z₄ : Ω → G) (hZ₁ : Measurable Z₁) (hZ₂ : Measurable Z₂) (hZ₃ : Measurable Z₃) (hZ₄ : Measurable Z₄) (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : d[Y # Z₁ + Z₂ | ⟨Z₁ + Z₃, Z₁ + Z₂ + Z₃ + Z₄⟩] ≤\n d[Y # Z₁] + (d[Z₁ # Z₃] + d[Z₁ | Z₁ + Z₃ # Z₂ | Z₂ + Z₄]) / 2 +\n (H[Z₂ | Z₂ + Z₄] - H[Z₁ | Z₁ + Z₃] + H[Z₁] - H[Z₃]) / 4"}
PFR-declarations/PFR.Main.jsonl ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"PFR_conjecture_pos_aux","declaration":"/-- Record positivity results that are useful in the proof of PFR. -/\ntheorem PFR_conjecture_pos_aux {G : Type u_1} [AddCommGroup G] {A : Set G} [Finite ↑A] {K : ℝ} (h₀A : Set.Nonempty A) (hA : ↑(Nat.card ↑(A - A)) ≤ K * ↑(Nat.card ↑A)) : 0 < ↑(Nat.card ↑A) ∧ 0 < ↑(Nat.card ↑(A - A)) ∧ 0 < K"}
2
+ {"name":"PFR_conjecture","declaration":"/-- The polynomial Freiman-Ruzsa (PFR) conjecture: if $A$ is a subset of an elementary abelian\n2-group of doubling constant at most $K$, then $A$ can be covered by at most $2K^{12}$ cosets of\na subgroup of cardinality at most $|A|$. -/\ntheorem PFR_conjecture {G : Type u_1} [AddCommGroup G] {A : Set G} [Finite ↑A] {K : ℝ} [Countable G] [ElementaryAddCommGroup G 2] [Fintype G] (h₀A : Set.Nonempty A) (hA : ↑(Nat.card ↑(A + A)) ≤ K * ↑(Nat.card ↑A)) : ∃ H c, ↑(Nat.card ↑c) < 2 * K ^ 12 ∧ Nat.card ↥H ≤ Nat.card ↑A ∧ A ⊆ c + ↑H"}
3
+ {"name":"PFR_conjecture_pos_aux'","declaration":"theorem PFR_conjecture_pos_aux' {G : Type u_1} [AddCommGroup G] {A : Set G} [Finite ↑A] {K : ℝ} (h₀A : Set.Nonempty A) (hA : ↑(Nat.card ↑(A + A)) ≤ K * ↑(Nat.card ↑A)) : 0 < ↑(Nat.card ↑A) ∧ 0 < ↑(Nat.card ↑(A + A)) ∧ 0 < K"}
4
+ {"name":"rdist_le_of_isUniform_of_card_add_le","declaration":"/-- A uniform distribution on a set with doubling constant `K` has self Rusza distance\nat most `log K`. -/\ntheorem rdist_le_of_isUniform_of_card_add_le {G : Type u_1} [AddCommGroup G] [MeasurableSpace G] [MeasurableSingletonClass G] {A : Set G} [Finite ↑A] {K : ℝ} [Countable G] (h₀A : Set.Nonempty A) (hA : ↑(Nat.card ↑(A - A)) ≤ K * ↑(Nat.card ↑A)) {Ω : Type u_2} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {U₀ : Ω → G} (U₀unif : ProbabilityTheory.IsUniform A U₀ MeasureTheory.volume) (U₀meas : Measurable U₀) : d[U₀ # U₀] ≤ Real.log K"}
5
+ {"name":"ProbabilityTheory.IsUniform.measureReal_preimage_sub","declaration":"/-- Given two independent random variables `U` and `V` uniformly distributed respectively on `A`\nand `B`, then `U = V + x` with probability `# (A ∩ (B + x)) / #A ⬝ #B`. -/\ntheorem ProbabilityTheory.IsUniform.measureReal_preimage_sub {G : Type u_1} {Ω : Type u_2} [AddCommGroup G] [Fintype G] [MeasurableSpace G] [MeasurableSingletonClass G] {A : Finset G} {B : Finset G} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {U : Ω → G} {V : Ω → G} (Uunif : ProbabilityTheory.IsUniform (↑A) U MeasureTheory.volume) (Umeas : Measurable U) (Vunif : ProbabilityTheory.IsUniform (↑B) V MeasureTheory.volume) (Vmeas : Measurable V) (hindep : ProbabilityTheory.IndepFun U V MeasureTheory.volume) (x : G) : MeasureTheory.volume.real ((U - V) ⁻¹' {x}) =\n ↑(Nat.card ↑(↑A ∩ (↑B + {x}))) / (↑(Nat.card { x // x ∈ A }) * ↑(Nat.card { x // x ∈ B }))"}
6
+ {"name":"sumset_eq_sub","declaration":"theorem sumset_eq_sub {G : Type u_1} [AddCommGroup G] {A : Set G} [ElementaryAddCommGroup G 2] : A + A = A - A"}
7
+ {"name":"ProbabilityTheory.IsUniform.measureReal_preimage_sub_zero","declaration":"/-- Given two independent random variables `U` and `V` uniformly distributed respectively on `A`\nand `B`, then `U = V` with probability `# (A ∩ B) / #A ⬝ #B`. -/\ntheorem ProbabilityTheory.IsUniform.measureReal_preimage_sub_zero {G : Type u_1} {Ω : Type u_2} [AddCommGroup G] [Fintype G] [MeasurableSpace G] [MeasurableSingletonClass G] {A : Finset G} {B : Finset G} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {U : Ω → G} {V : Ω → G} (Uunif : ProbabilityTheory.IsUniform (↑A) U MeasureTheory.volume) (Umeas : Measurable U) (Vunif : ProbabilityTheory.IsUniform (↑B) V MeasureTheory.volume) (Vmeas : Measurable V) (hindep : ProbabilityTheory.IndepFun U V MeasureTheory.volume) : MeasureTheory.volume.real ((U - V) ⁻¹' {0}) =\n ↑(Nat.card ↑(↑A ∩ ↑B)) / (↑(Nat.card { x // x ∈ A }) * ↑(Nat.card { x // x ∈ B }))"}
8
+ {"name":"PFR_conjecture_aux","declaration":"/-- Auxiliary statement towards the polynomial Freiman-Ruzsa (PFR) conjecture: if $A$ is a subset of\nan elementary abelian 2-group of doubling constant at most $K$, then there exists a subgroup $H$\nsuch that $A$ can be covered by at most $K^{13/2} |A|^{1/2} / |H|^{1/2}$ cosets of $H$, and $H$ has\nthe same cardinality as $A$ up to a multiplicative factor $K^11$. -/\ntheorem PFR_conjecture_aux {G : Type u_1} [AddCommGroup G] {A : Set G} [Finite ↑A] {K : ℝ} [Countable G] [ElementaryAddCommGroup G 2] [Fintype G] (h₀A : Set.Nonempty A) (hA : ↑(Nat.card ↑(A + A)) ≤ K * ↑(Nat.card ↑A)) : ∃ H c,\n ↑(Nat.card ↑c) ≤ K ^ (13 / 2) * ↑(Nat.card ↑A) ^ (1 / 2) * ↑(Nat.card ↑↑H) ^ (-1 / 2) ∧\n ↑(Nat.card ↥H) ≤ K ^ 11 * ↑(Nat.card ↑A) ∧ ↑(Nat.card ↑A) ≤ K ^ 11 * ↑(Nat.card ↥H) ∧ A ⊆ c + ↑H"}
9
+ {"name":"PFR_conjecture'","declaration":"/-- Corollary of `PFR_conjecture` in which the ambient group is not required to be finite (but) then\n$H$ and $c$ are finite. -/\ntheorem PFR_conjecture' {G : Type u_2} [AddCommGroup G] [ElementaryAddCommGroup G 2] {A : Set G} {K : ℝ} (h₀A : Set.Nonempty A) (Afin : Set.Finite A) (hA : ↑(Nat.card ↑(A + A)) ≤ K * ↑(Nat.card ↑A)) : ∃ H c, Set.Finite c ∧ Set.Finite ↑H ∧ ↑(Nat.card ↑c) < 2 * K ^ 12 ∧ Nat.card ↥H ≤ Nat.card ↑A ∧ A ⊆ c + ↑H"}
PFR-declarations/PFR.Mathlib.Data.Fin.VecNotation.jsonl ADDED
File without changes
PFR-declarations/PFR.Mathlib.Data.Set.Pointwise.SMul.jsonl ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {"name":"Set.singleton_add'","declaration":"theorem Set.singleton_add' {α : Type u_1} [Add α] (a : α) (s : Set α) : {a} + s = a +ᵥ s"}
2
+ {"name":"Set.vadd_sub_vadd_comm","declaration":"theorem Set.vadd_sub_vadd_comm {α : Type u_1} [AddCommGroup α] (a : α) (s : Set α) (b : α) (t : Set α) : a +ᵥ s - (b +ᵥ t) = a - b +ᵥ (s - t)"}
3
+ {"name":"Set.singleton_mul'","declaration":"theorem Set.singleton_mul' {α : Type u_1} [Mul α] (a : α) (s : Set α) : {a} * s = a • s"}
4
+ {"name":"Set.smul_div_smul_comm","declaration":"theorem Set.smul_div_smul_comm {α : Type u_1} [CommGroup α] (a : α) (s : Set α) (b : α) (t : Set α) : a • s / b • t = (a / b) • (s / t)"}
5
+ {"name":"Set.mul_singleton'","declaration":"theorem Set.mul_singleton' {α : Type u_1} [Mul α] (s : Set α) (a : α) : s * {a} = MulOpposite.op a • s"}
6
+ {"name":"Set.add_singleton'","declaration":"theorem Set.add_singleton' {α : Type u_1} [Add α] (s : Set α) (a : α) : s + {a} = AddOpposite.op a +ᵥ s"}
PFR-declarations/PFR.Mathlib.GroupTheory.Subgroup.Pointwise.jsonl ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {"name":"AddSubgroupClass.coe_sub_coe","declaration":"theorem AddSubgroupClass.coe_sub_coe {S : Type u_1} {G : Type u_2} [SetLike S G] [SubtractionMonoid G] [AddSubgroupClass S G] (H : S) : ↑H - ↑H = ↑H"}
2
+ {"name":"AddSubgroupClass.neg_coe","declaration":"theorem AddSubgroupClass.neg_coe {S : Type u_1} {G : Type u_2} [SetLike S G] [SubtractionMonoid G] [AddSubgroupClass S G] (H : S) : -↑H = ↑H"}
3
+ {"name":"AddSubgroupClass.coe_add_coe","declaration":"theorem AddSubgroupClass.coe_add_coe {S : Type u_1} {G : Type u_2} [SetLike S G] [SubNegMonoid G] [AddSubgroupClass S G] (H : S) : ↑H + ↑H = ↑H"}
4
+ {"name":"SubgroupClass.inv_coe","declaration":"theorem SubgroupClass.inv_coe {S : Type u_1} {G : Type u_2} [SetLike S G] [DivisionMonoid G] [SubgroupClass S G] (H : S) : (↑H)⁻¹ = ↑H"}
5
+ {"name":"SubgroupClass.coe_div_coe","declaration":"theorem SubgroupClass.coe_div_coe {S : Type u_1} {G : Type u_2} [SetLike S G] [DivisionMonoid G] [SubgroupClass S G] (H : S) : ↑H / ↑H = ↑H"}
6
+ {"name":"SubgroupClass.coe_mul_coe","declaration":"theorem SubgroupClass.coe_mul_coe {S : Type u_1} {G : Type u_2} [SetLike S G] [DivInvMonoid G] [SubgroupClass S G] (H : S) : ↑H * ↑H = ↑H"}
PFR-declarations/PFR.Mathlib.GroupTheory.Torsion.jsonl ADDED
@@ -0,0 +1 @@
 
 
1
+ {"name":"AddMonoid.IsTorsionFree.noZeroNsmulDivisors","declaration":"/-- See note [reducible non-instances]. -/\ndef AddMonoid.IsTorsionFree.noZeroNsmulDivisors {M : Type u_1} [AddMonoid M] (hM : AddMonoid.IsTorsionFree M) : NoZeroSMulDivisors ℕ M"}
PFR-declarations/PFR.Mathlib.LinearAlgebra.Basis.VectorSpace.jsonl ADDED
@@ -0,0 +1 @@
 
 
1
+ {"name":"Submodule.exists_equiv_fst_sndModFst","declaration":"/-- Given a submodule $E$ of $B \\times F$, there is an equivalence $f : E \\to B' \\times F'$\ngiven by the projections $E \\to B$ and $E \\to F$ \"modulo\" $φ : B \\to F$. -/\ntheorem Submodule.exists_equiv_fst_sndModFst {B : Type u_1} {F : Type u_2} {R : Type u_3} [DivisionRing R] [AddCommGroup B] [AddCommGroup F] [Module R B] [Module R F] (E : Submodule R (B × F)) : ∃ B' F' f φ,\n (∀ (x : ↥E), ↑(f x).1 = (↑x).1 ∧ ↑(f x).2 = (↑x).2 - φ (↑x).1) ∧\n ∀ (x₁ : ↥B') (x₂ : ↥F'), ↑((LinearEquiv.symm f) (x₁, x₂)) = (↑x₁, ↑x₂ + φ ↑x₁)"}
PFR-declarations/PFR.Mathlib.MeasureTheory.Constructions.Pi.jsonl ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {"name":"MeasureTheory.Measure.pi_pi_finset","declaration":"theorem MeasureTheory.Measure.pi_pi_finset {ι : Type u_1} {α : ι → Type u_2} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) [∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)] (t : Finset ι) (s : (i : ι) → Set (α i)) : ↑↑(MeasureTheory.Measure.pi μ) (Set.pi (↑t) s) = Finset.prod t fun i => ↑↑(μ i) (s i)"}
2
+ {"name":"MeasureTheory.Measure.instIsProbabilityMeasureForAllPiPi","declaration":"instance MeasureTheory.Measure.instIsProbabilityMeasureForAllPiPi {ι : Type u_1} {α : ι → Type u_2} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) [∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)] : MeasureTheory.IsProbabilityMeasure (MeasureTheory.Measure.pi μ)"}
3
+ {"name":"MeasureTheory.Measure.pi_eval_preimage","declaration":"theorem MeasureTheory.Measure.pi_eval_preimage {ι : Type u_1} {α : ι → Type u_2} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) [∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)] (i : ι) (s : Set (α i)) : ↑↑(MeasureTheory.Measure.pi μ) (Function.eval i ⁻¹' s) = ↑↑(μ i) s"}
4
+ {"name":"MeasureTheory.Measure.map_eval_pi","declaration":"theorem MeasureTheory.Measure.map_eval_pi {ι : Type u_1} {α : ι → Type u_2} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) [∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)] (i : ι) : MeasureTheory.Measure.map (Function.eval i) (MeasureTheory.Measure.pi μ) = μ i"}
5
+ {"name":"MeasureTheory.Measure.pi_pi_set","declaration":"theorem MeasureTheory.Measure.pi_pi_set {ι : Type u_1} {α : ι → Type u_2} [Fintype ι] [(i : ι) → MeasurableSpace (α i)] (μ : (i : ι) → MeasureTheory.Measure (α i)) [∀ (i : ι), MeasureTheory.IsProbabilityMeasure (μ i)] (t : Set ι) [DecidablePred fun x => x ∈ t] (s : (i : ι) → Set (α i)) : ↑↑(MeasureTheory.Measure.pi μ) (Set.pi t s) =\n Finset.prod (Finset.filter (fun x => x ∈ t) Finset.univ) fun i => ↑↑(μ i) (s i)"}
PFR-declarations/PFR.Mathlib.MeasureTheory.Constructions.Prod.Basic.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {"name":"MeasureTheory.Measure.map_prod_comap_swap","declaration":"/-- The law of $(X, Z)$ is the image of the law of $(Z,X)$.-/\ntheorem MeasureTheory.Measure.map_prod_comap_swap {Ω : Type u_1} {α : Type u_2} {γ : Type u_4} [MeasurableSpace Ω] [MeasurableSpace α] [MeasurableSpace γ] {X : Ω → α} {Z : Ω → γ} (hX : Measurable X) (hZ : Measurable Z) (μ : MeasureTheory.Measure Ω) : MeasureTheory.Measure.comap Prod.swap (MeasureTheory.Measure.map (fun ω => (X ω, Z ω)) μ) =\n MeasureTheory.Measure.map (fun ω => (Z ω, X ω)) μ"}
2
+ {"name":"MeasureTheory.Measure.prod_apply_singleton","declaration":"theorem MeasureTheory.Measure.prod_apply_singleton {α : Type u_5} {β : Type u_6} : ∀ {x : MeasurableSpace α} {x_1 : MeasurableSpace β} (μ : MeasureTheory.Measure α) (ν : MeasureTheory.Measure β)\n [inst : MeasureTheory.SigmaFinite ν] (x_2 : α × β),\n ↑↑(MeasureTheory.Measure.prod μ ν) {x_2} = ↑↑μ {x_2.1} * ↑↑ν {x_2.2}"}
3
+ {"name":"MeasureTheory.Measure.prod_of_full_measure_finset","declaration":"theorem MeasureTheory.Measure.prod_of_full_measure_finset {α : Type u_2} {β : Type u_3} [MeasurableSpace α] [MeasurableSpace β] {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure β} [MeasureTheory.SigmaFinite ν] {A : Finset α} {B : Finset β} (hA : ↑↑μ (↑A)ᶜ = 0) (hB : ↑↑ν (↑B)ᶜ = 0) : ↑↑(MeasureTheory.Measure.prod μ ν) (↑(A ×ˢ B))ᶜ = 0"}
PFR-declarations/PFR.Mathlib.MeasureTheory.Integral.Bochner.jsonl ADDED
@@ -0,0 +1 @@
 
 
1
+ {"name":"MeasureTheory.integral_eq_sum","declaration":"theorem MeasureTheory.integral_eq_sum {α : Type u_1} {E : Type u_2} [MeasurableSpace α] [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E] (μ : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] [MeasurableSingletonClass α] [Fintype α] (f : α → E) : ∫ (x : α), f x ∂μ = Finset.sum Finset.univ fun x => (↑↑μ {x}).toReal • f x"}
PFR-declarations/PFR.Mathlib.MeasureTheory.Integral.Lebesgue.jsonl ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {"name":"MeasureTheory.lintegral_eq_sum'","declaration":"theorem MeasureTheory.lintegral_eq_sum' {α : Type u_1} [MeasurableSpace α] [MeasurableSingletonClass α] (μ : MeasureTheory.Measure α) {s : Finset α} (hA : ↑↑μ (↑s)ᶜ = 0) (f : α → ENNReal) : ∫⁻ (x : α), f x ∂μ = Finset.sum s fun x => f x * ↑↑μ {x}"}
2
+ {"name":"MeasureTheory.lintegral_eq_single","declaration":"theorem MeasureTheory.lintegral_eq_single {α : Type u_1} [MeasurableSpace α] [MeasurableSingletonClass α] (μ : MeasureTheory.Measure α) (a : α) (f : α → ENNReal) (ha : ∀ (b : α), b ≠ a → f b = 0) : ∫⁻ (x : α), f x ∂μ = f a * ↑↑μ {a}"}
3
+ {"name":"MeasureTheory.lintegral_eq_sum","declaration":"theorem MeasureTheory.lintegral_eq_sum {α : Type u_1} [MeasurableSpace α] [MeasurableSingletonClass α] (μ : MeasureTheory.Measure α) (f : α → ENNReal) [Fintype α] : ∫⁻ (x : α), f x ∂μ = Finset.sum Finset.univ fun x => ↑↑μ {x} * f x"}
4
+ {"name":"MeasureTheory.lintegral_eq_zero_of_ae_zero","declaration":"theorem MeasureTheory.lintegral_eq_zero_of_ae_zero {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {f : α → ENNReal} {E : Set α} (hE : ↑↑μ Eᶜ = 0) (hf : ∀ x ∈ E, f x = 0) (hmes : MeasurableSet E) : ∫⁻ (x : α), f x ∂μ = 0"}
5
+ {"name":"MeasureTheory.lintegral_eq_sum_countable","declaration":"theorem MeasureTheory.lintegral_eq_sum_countable {α : Type u_1} [MeasurableSpace α] [MeasurableSingletonClass α] (μ : MeasureTheory.Measure α) (f : α → ENNReal) [Countable α] : ∫⁻ (x : α), f x ∂μ = ∑' (x : α), ↑↑μ {x} * f x"}
PFR-declarations/PFR.Mathlib.MeasureTheory.Integral.SetIntegral.jsonl ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ {"name":"MeasureTheory.setIntegral_eq_sum","declaration":"theorem MeasureTheory.setIntegral_eq_sum {α : Type u_1} {E : Type u_2} [MeasurableSpace α] [MeasurableSingletonClass α] [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E] (μ : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] (s : Finset α) (f : α → E) : ∫ (x : α) in ↑s, f x ∂μ = Finset.sum s fun x => (↑↑μ {x}).toReal • f x"}
2
+ {"name":"MeasureTheory.integral_eq_sum'","declaration":"theorem MeasureTheory.integral_eq_sum' {α : Type u_1} {E : Type u_2} [MeasurableSpace α] [MeasurableSingletonClass α] [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E] (μ : MeasureTheory.Measure α) [MeasureTheory.IsFiniteMeasure μ] {s : Finset α} (hs : ↑↑μ (↑s)ᶜ = 0) (f : α → E) : ∫ (x : α), f x ∂μ = Finset.sum s fun x => (↑↑μ {x}).toReal • f x"}
PFR-declarations/PFR.Mathlib.MeasureTheory.MeasurableSpace.Basic.jsonl ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ {"name":"prodMKLeft_unit_equiv","declaration":"/-- Measurable equivalence with the product with the one-point space `Unit`.-/\ndef prodMKLeft_unit_equiv (α : Type u_4) [MeasurableSpace α] : Unit × α ≃ᵐ α"}
2
+ {"name":"prodAssoc","declaration":"/-- Canonical bijection between `(α × β) × γ` and `α × β × γ`. -/\ndef prodAssoc {α : Type u_1} {β : Type u_2} {γ : Type u_3} : {x : MeasurableSpace α} → {x_1 : MeasurableSpace β} → {x_2 : MeasurableSpace γ} → (α × β) × γ ≃ᵐ α × β × γ"}
PFR-declarations/PFR.Mathlib.MeasureTheory.Measure.MeasureSpace.jsonl ADDED
@@ -0,0 +1 @@
 
 
1
+ {"name":"MeasureTheory.full_measure_of_null_compl","declaration":"theorem MeasureTheory.full_measure_of_null_compl {α : Type u_1} [MeasurableSpace α] [MeasurableSingletonClass α] {μ : MeasureTheory.Measure α} {A : Finset α} (hA : ↑↑μ (↑A)ᶜ = 0) : ↑↑μ ↑A = ↑↑μ Set.univ"}
PFR-declarations/PFR.Mathlib.MeasureTheory.Measure.NullMeasurable.jsonl ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {"name":"MeasureTheory.measure_preimage_snd_singleton_eq_sum","declaration":"theorem MeasureTheory.measure_preimage_snd_singleton_eq_sum {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSingletonClass α] [MeasurableSpace β] [MeasurableSingletonClass β] [Fintype α] (μ : MeasureTheory.Measure (α × β)) (y : β) : ↑↑μ (Prod.snd ⁻¹' {y}) = Finset.sum Finset.univ fun x => ↑↑μ {(x, y)}"}
2
+ {"name":"MeasureTheory.measure_preimage_snd_singleton_eq_sum_countable","declaration":"theorem MeasureTheory.measure_preimage_snd_singleton_eq_sum_countable {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSingletonClass α] [MeasurableSpace β] [MeasurableSingletonClass β] [Countable α] (μ : MeasureTheory.Measure (α × β)) (y : β) : ↑↑μ (Prod.snd ⁻¹' {y}) = ∑' (x : α), ↑↑μ {(x, y)}"}
3
+ {"name":"MeasureTheory.measure_preimage_fst_singleton_eq_sum_countable","declaration":"theorem MeasureTheory.measure_preimage_fst_singleton_eq_sum_countable {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSingletonClass α] [MeasurableSpace β] [MeasurableSingletonClass β] [Countable β] (μ : MeasureTheory.Measure (α × β)) (x : α) : ↑↑μ (Prod.fst ⁻¹' {x}) = ∑' (y : β), ↑↑μ {(x, y)}"}
4
+ {"name":"MeasureTheory.measure_preimage_fst_singleton_eq_sum","declaration":"theorem MeasureTheory.measure_preimage_fst_singleton_eq_sum {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSingletonClass α] [MeasurableSpace β] [MeasurableSingletonClass β] [Fintype β] (μ : MeasureTheory.Measure (α × β)) (x : α) : ↑↑μ (Prod.fst ⁻¹' {x}) = Finset.sum Finset.univ fun y => ↑↑μ {(x, y)}"}
PFR-declarations/PFR.Mathlib.MeasureTheory.Measure.ProbabilityMeasure.jsonl ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {"name":"lintegral_indicatorBCF","declaration":"theorem lintegral_indicatorBCF {α : Type u_1} [TopologicalSpace α] [MeasurableSpace α] (μ : MeasureTheory.Measure α) {s : Set α} (s_clopen : IsClopen s) (s_mble : MeasurableSet s) : ∫⁻ (x : α), ENNReal.ofReal ((indicatorBCF s_clopen) x) ∂μ = ↑↑μ s"}
2
+ {"name":"integral_indicatorBCF","declaration":"theorem integral_indicatorBCF {α : Type u_1} [TopologicalSpace α] [MeasurableSpace α] (μ : MeasureTheory.Measure α) {s : Set α} (s_clopen : IsClopen s) (s_mble : MeasurableSet s) : ∫ (x : α), (indicatorBCF s_clopen) x ∂μ = (↑↑μ s).toReal"}
3
+ {"name":"continuous_integral_finiteMeasure","declaration":"theorem continuous_integral_finiteMeasure {α : Type u_1} [TopologicalSpace α] [MeasurableSpace α] [OpensMeasurableSpace α] (f : BoundedContinuousFunction α ℝ) : Continuous fun μ => ∫ (x : α), f x ∂↑μ"}
4
+ {"name":"indicatorBCF_apply","declaration":"theorem indicatorBCF_apply {α : Type u_1} [TopologicalSpace α] {s : Set α} (s_clopen : IsClopen s) (x : α) : (indicatorBCF s_clopen) x = Set.indicator s (fun x => 1) x"}
5
+ {"name":"indicatorBCF","declaration":"/-- The indicator function of a clopen set, as a bounded continuous function. -/\ndef indicatorBCF {α : Type u_1} [TopologicalSpace α] {s : Set α} (s_clopen : IsClopen s) : BoundedContinuousFunction α ℝ"}
6
+ {"name":"continuous_integral_probabilityMeasure","declaration":"theorem continuous_integral_probabilityMeasure {α : Type u_1} [TopologicalSpace α] [MeasurableSpace α] [OpensMeasurableSpace α] (f : BoundedContinuousFunction α ℝ) : Continuous fun μ => ∫ (x : α), f x ∂↑μ"}
PFR-declarations/PFR.Mathlib.MeasureTheory.Measure.Typeclasses.jsonl ADDED
@@ -0,0 +1 @@
 
 
1
+ {"name":"MeasureTheory.IsFiniteMeasure_comap_equiv","declaration":"instance MeasureTheory.IsFiniteMeasure_comap_equiv {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] {μ : MeasureTheory.Measure α} (f : β ≃ᵐ α) [MeasureTheory.IsFiniteMeasure μ] : MeasureTheory.IsFiniteMeasure (MeasureTheory.Measure.comap (⇑f) μ)"}
PFR-declarations/PFR.Mathlib.Probability.ConditionalProbability.jsonl ADDED
File without changes
PFR-declarations/PFR.Mathlib.Probability.IdentDistrib.jsonl ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"ProbabilityTheory.identDistrib_map","declaration":"/-- A random variable is identically distributed to its pullbacks. -/\ntheorem ProbabilityTheory.identDistrib_map {Ω : Type u_5} {α : Type u_7} {β : Type u_9} {mΩ : MeasurableSpace Ω} [MeasurableSpace α] [MeasurableSpace β] {X : Ω → α} (hX : Measurable X) {f : α → β} (hf : Measurable f) (μ : MeasureTheory.Measure Ω) : ProbabilityTheory.IdentDistrib f (f ∘ X) (MeasureTheory.Measure.map X μ) μ"}
2
+ {"name":"ProbabilityTheory.identDistrib_of_finiteRange","declaration":"/-- If `X` has identical distribution to `X₀`, and `X₀` has finite range, then `X` is almost everywhere equivalent to a random variable of finite range. -/\ntheorem ProbabilityTheory.identDistrib_of_finiteRange {Ω : Type u_11} {Ω₀ : Type u_12} {S : Type u_13} [MeasurableSpace Ω] [MeasurableSpace Ω₀] [MeasurableSpace S] [MeasurableSingletonClass S] [hS : Nonempty S] {μ : MeasureTheory.Measure Ω} {μ₀ : MeasureTheory.Measure Ω₀} {X₀ : Ω₀ → S} [FiniteRange X₀] {X : Ω → S} (hX : Measurable X) (hi : ProbabilityTheory.IdentDistrib X₀ X μ₀ μ) : ∃ X', Measurable X' ∧ FiniteRange X' ∧ X' =ᶠ[MeasureTheory.Measure.ae μ] X"}
3
+ {"name":"ProbabilityTheory.IdentDistrib.snd_id","declaration":"/-- The second projection in a product space with measure `μ.prod ν` is distributed like `ν`. -/\ntheorem ProbabilityTheory.IdentDistrib.snd_id {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure β} [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure ν] : ProbabilityTheory.IdentDistrib Prod.snd id (MeasureTheory.Measure.prod μ ν) ν"}
4
+ {"name":"ProbabilityTheory.identDistrib_ulift_self","declaration":"theorem ProbabilityTheory.identDistrib_ulift_self {Ω : Type u_5} {α : Type u_7} {mΩ : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} [MeasurableSpace α] {X : Ω → α} (hX : Measurable X) : ProbabilityTheory.IdentDistrib X (X ∘ ULift.down) μ (MeasureTheory.Measure.comap ULift.down μ)"}
5
+ {"name":"ProbabilityTheory.independent_copies4_nondep","declaration":"/-- A version with exactly 4 random variables that have the same codomain.\nIt's unfortunately incredibly painful to prove this from the general case. -/\ntheorem ProbabilityTheory.independent_copies4_nondep {α : Type u} [mS : MeasurableSpace α] {Ω₁ : Type u_1} {Ω₂ : Type u_2} {Ω₃ : Type u_3} {Ω₄ : Type u_4} [mΩ₁ : MeasurableSpace Ω₁] [mΩ₂ : MeasurableSpace Ω₂] [mΩ₃ : MeasurableSpace Ω₃] [mΩ₄ : MeasurableSpace Ω₄] {X₁ : Ω₁ → α} {X₂ : Ω₂ → α} {X₃ : Ω₃ → α} {X₄ : Ω₄ → α} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₃ : Measurable X₃) (hX₄ : Measurable X₄) (μ₁ : MeasureTheory.Measure Ω₁) (μ₂ : MeasureTheory.Measure Ω₂) (μ₃ : MeasureTheory.Measure Ω₃) (μ₄ : MeasureTheory.Measure Ω₄) [hμ₁ : MeasureTheory.IsProbabilityMeasure μ₁] [hμ₂ : MeasureTheory.IsProbabilityMeasure μ₂] [hμ₃ : MeasureTheory.IsProbabilityMeasure μ₃] [hμ₄ : MeasureTheory.IsProbabilityMeasure μ₄] : ∃ A mA μA X₁' X₂' X₃' X₄',\n MeasureTheory.IsProbabilityMeasure μA ∧\n ProbabilityTheory.iIndepFun (fun x => mS) ![X₁', X₂', X₃', X₄'] μA ∧\n Measurable X₁' ∧\n Measurable X₂' ∧\n Measurable X₃' ∧\n Measurable X₄' ∧\n ProbabilityTheory.IdentDistrib X₁' X₁ μA μ₁ ∧\n ProbabilityTheory.IdentDistrib X₂' X₂ μA μ₂ ∧\n ProbabilityTheory.IdentDistrib X₃' X₃ μA μ₃ ∧ ProbabilityTheory.IdentDistrib X₄' X₄ μA μ₄"}
6
+ {"name":"ProbabilityTheory.identDistrib_comp_snd","declaration":"/-- A random variable is identically distributed to its lift to a product space (in the second factor). -/\ntheorem ProbabilityTheory.identDistrib_comp_snd {Ω : Type u_5} {Ω' : Type u_6} {α : Type u_7} {mΩ : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} [MeasurableSpace α] {X : Ω → α} (hX : Measurable X) (μ : MeasureTheory.Measure Ω) (μ' : MeasureTheory.Measure Ω') [MeasureTheory.SigmaFinite μ] [MeasureTheory.IsProbabilityMeasure μ'] : ProbabilityTheory.IdentDistrib (X ∘ Prod.snd) X (MeasureTheory.Measure.prod μ' μ) μ"}
7
+ {"name":"ProbabilityTheory.identDistrib_comp_left","declaration":"/-- A function is identically distributed to itself composed with a measurable embedding of conull\nrange. -/\ntheorem ProbabilityTheory.identDistrib_comp_left {α : Type u_1} {γ : Type u_3} {δ : Type u_4} [MeasurableSpace α] [MeasurableSpace γ] [MeasurableSpace δ] {μ : MeasureTheory.Measure α} {f : α → γ} {i : δ → α} (hi : MeasurableEmbedding i) (hi' : ∀ᵐ (a : α) ∂μ, a ∈ Set.range i) (hf : Measurable f) : ProbabilityTheory.IdentDistrib (f ∘ i) f (MeasureTheory.Measure.comap i μ) μ"}
8
+ {"name":"ProbabilityTheory.independent_copies_finiteRange","declaration":"/-- A version of `independent_copies` that guarantees that the copies have `FiniteRange` if the original variables do. -/\ntheorem ProbabilityTheory.independent_copies_finiteRange {Ω : Type u_5} {Ω' : Type u_6} {α : Type u_7} {β : Type u_9} {mΩ : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} [MeasurableSpace α] [MeasurableSpace β] {X : Ω → α} {Y : Ω' → β} (hX : Measurable X) (hY : Measurable Y) [FiniteRange X] [FiniteRange Y] [MeasurableSingletonClass α] [Nonempty α] [MeasurableSingletonClass β] [Nonempty β] (μ : MeasureTheory.Measure Ω) (μ' : MeasureTheory.Measure Ω') [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] : ∃ ν X' Y',\n MeasureTheory.IsProbabilityMeasure ν ∧\n Measurable X' ∧\n Measurable Y' ∧\n ProbabilityTheory.IndepFun X' Y' ν ∧\n ProbabilityTheory.IdentDistrib X' X ν μ ∧\n ProbabilityTheory.IdentDistrib Y' Y ν μ' ∧ FiniteRange X' ∧ FiniteRange Y'"}
9
+ {"name":"ProbabilityTheory.IdentDistrib.cond","declaration":"theorem ProbabilityTheory.IdentDistrib.cond {α : Type u_1} {β : Type u_2} {γ : Type u_3} [MeasurableSpace α] [MeasurableSpace β] [MeasurableSpace γ] {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure β} {f : α → γ} {f' : α → γ} {g : β → γ} {g' : β → γ} {s : Set γ} (hs : MeasurableSet s) (hf' : Measurable f') (hg' : Measurable g') (hfg : ProbabilityTheory.IdentDistrib (fun a => (f a, f' a)) (fun b => (g b, g' b)) μ ν) : ProbabilityTheory.IdentDistrib f g (ProbabilityTheory.cond μ (f' ⁻¹' s)) (ProbabilityTheory.cond ν (g' ⁻¹' s))"}
10
+ {"name":"ProbabilityTheory.independent_copies","declaration":"/-- For $X, Y$ random variables, one can find independent copies $X', Y'$ of $X, Y$. -/\ntheorem ProbabilityTheory.independent_copies {Ω : Type u_5} {Ω' : Type u_6} {α : Type u_7} {β : Type u_9} {mΩ : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} [MeasurableSpace α] [MeasurableSpace β] {X : Ω → α} {Y : Ω' → β} (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) (μ' : MeasureTheory.Measure Ω') [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] : ∃ ν X' Y',\n MeasureTheory.IsProbabilityMeasure ν ∧\n Measurable X' ∧\n Measurable Y' ∧\n ProbabilityTheory.IndepFun X' Y' ν ∧\n ProbabilityTheory.IdentDistrib X' X ν μ ∧ ProbabilityTheory.IdentDistrib Y' Y ν μ'"}
11
+ {"name":"ProbabilityTheory.independent_copies3_nondep_finiteRange","declaration":"/-- A version of `independent_copies3_nondep` that guarantees that the copies have `FiniteRange` if the original variables do. -/\ntheorem ProbabilityTheory.independent_copies3_nondep_finiteRange {α : Type u} [mS : MeasurableSpace α] [MeasurableSingletonClass α] [Nonempty α] {Ω₁ : Type u_1} {Ω₂ : Type u_2} {Ω₃ : Type u_3} [MeasurableSpace Ω₁] [MeasurableSpace Ω₂] [MeasurableSpace Ω₃] {X₁ : Ω₁ → α} {X₂ : Ω₂ → α} {X₃ : Ω₃ → α} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₃ : Measurable X₃) [FiniteRange X₁] [FiniteRange X₂] [FiniteRange X₃] (μ₁ : MeasureTheory.Measure Ω₁) (μ₂ : MeasureTheory.Measure Ω₂) (μ₃ : MeasureTheory.Measure Ω₃) [hμ₁ : MeasureTheory.IsProbabilityMeasure μ₁] [hμ₂ : MeasureTheory.IsProbabilityMeasure μ₂] [hμ₃ : MeasureTheory.IsProbabilityMeasure μ₃] : ∃ A mA μA X₁' X₂' X₃',\n MeasureTheory.IsProbabilityMeasure μA ∧\n ProbabilityTheory.iIndepFun (fun x => mS) ![X₁', X₂', X₃'] μA ∧\n Measurable X₁' ∧\n Measurable X₂' ∧\n Measurable X₃' ∧\n ProbabilityTheory.IdentDistrib X₁' X₁ μA μ₁ ∧\n ProbabilityTheory.IdentDistrib X₂' X₂ μA μ₂ ∧\n ProbabilityTheory.IdentDistrib X₃' X₃ μA μ₃ ∧ FiniteRange X₁' ∧ FiniteRange X₂' ∧ FiniteRange X₃'"}
12
+ {"name":"ProbabilityTheory.IdentDistrib.mul","declaration":"theorem ProbabilityTheory.IdentDistrib.mul {Ω : Type u_5} {Ω' : Type u_6} {β : Type u_9} {mΩ : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure Ω} {ν : MeasureTheory.Measure Ω'} {f : Ω → β} {g : Ω → β} {f' : Ω' → β} {g' : Ω' → β} [Mul β] [MeasurableMul₂ β] [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hff' : ProbabilityTheory.IdentDistrib f f' μ ν) (hgg' : ProbabilityTheory.IdentDistrib g g' μ ν) (h : ProbabilityTheory.IndepFun f g μ) (h' : ProbabilityTheory.IndepFun f' g' ν) : ProbabilityTheory.IdentDistrib (f * g) (f' * g') μ ν"}
13
+ {"name":"ProbabilityTheory.independent_copies'","declaration":"/-- Let $X_i : \\Omega_i \\to S_i$ be random variables for $i=1,\\dots,k$.\nThen there exist jointly independent random variables $X'_i : \\Omega' \\to S_i$ for $i=1,\\dots,k$\nsuch that each $X'_i$ is a copy of $X_i$. -/\ntheorem ProbabilityTheory.independent_copies' {I : Type u} [Fintype I] {α : I → Type u'} [mS : (i : I) → MeasurableSpace (α i)] {Ω : I → Type v} [mΩ : (i : I) → MeasurableSpace (Ω i)] (X : (i : I) → Ω i → α i) (hX : ��� (i : I), Measurable (X i)) (μ : (i : I) → MeasureTheory.Measure (Ω i)) [∀ (i : I), MeasureTheory.IsProbabilityMeasure (μ i)] : ∃ A mA μA X',\n MeasureTheory.IsProbabilityMeasure μA ∧\n ProbabilityTheory.iIndepFun mS X' μA ∧\n ∀ (i : I), Measurable (X' i) ∧ ProbabilityTheory.IdentDistrib (X' i) (X i) μA (μ i)"}
14
+ {"name":"ProbabilityTheory.identDistrib_id_left","declaration":"theorem ProbabilityTheory.identDistrib_id_left {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] {μ : MeasureTheory.Measure α} {X : α → β} (hX : AEMeasurable X μ) : ProbabilityTheory.IdentDistrib id X (MeasureTheory.Measure.map X μ) μ"}
15
+ {"name":"ProbabilityTheory.IdentDistrib.add","declaration":"theorem ProbabilityTheory.IdentDistrib.add {Ω : Type u_5} {Ω' : Type u_6} {β : Type u_9} {mΩ : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure Ω} {ν : MeasureTheory.Measure Ω'} {f : Ω → β} {g : Ω → β} {f' : Ω' → β} {g' : Ω' → β} [Add β] [MeasurableAdd₂ β] [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hff' : ProbabilityTheory.IdentDistrib f f' μ ν) (hgg' : ProbabilityTheory.IdentDistrib g g' μ ν) (h : ProbabilityTheory.IndepFun f g μ) (h' : ProbabilityTheory.IndepFun f' g' ν) : ProbabilityTheory.IdentDistrib (f + g) (f' + g') μ ν"}
16
+ {"name":"ProbabilityTheory.identDistrib_of_sum","declaration":"/-- To show identical distribution of two random variables on a mixture of probability measures, it suffices to do so on each non-trivial component. -/\ntheorem ProbabilityTheory.identDistrib_of_sum {Ω : Type u_5} {Ω' : Type u_6} {α : Type u_7} {mΩ : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} [MeasurableSpace α] {T : Type u_11} {X : Ω → α} {Y : Ω' → α} [Fintype T] {μ : T → MeasureTheory.Measure Ω} {μ' : T → MeasureTheory.Measure Ω'} {w : T → ENNReal} (hX : Measurable X) (hY : Measurable Y) (h_ident : ∀ (y : T), w y ≠ 0 → ProbabilityTheory.IdentDistrib X Y (μ y) (μ' y)) : ProbabilityTheory.IdentDistrib X Y (Finset.sum Finset.univ fun y => w y • μ y)\n (Finset.sum Finset.univ fun y => w y • μ' y)"}
17
+ {"name":"ProbabilityTheory.identDistrib_id","declaration":"theorem ProbabilityTheory.identDistrib_id {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure α} : ProbabilityTheory.IdentDistrib id id μ ν ↔ μ = ν"}
18
+ {"name":"ProbabilityTheory.independent_copies3_nondep","declaration":"/-- A version with exactly 3 random variables that have the same codomain.\nIt's unfortunately incredibly painful to prove this from the general case. -/\ntheorem ProbabilityTheory.independent_copies3_nondep {α : Type u} [mS : MeasurableSpace α] {Ω₁ : Type u_1} {Ω₂ : Type u_2} {Ω₃ : Type u_3} [MeasurableSpace Ω₁] [MeasurableSpace Ω₂] [MeasurableSpace Ω₃] {X₁ : Ω₁ → α} {X₂ : Ω₂ → α} {X₃ : Ω₃ → α} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₃ : Measurable X₃) (μ₁ : MeasureTheory.Measure Ω₁) (μ₂ : MeasureTheory.Measure Ω₂) (μ₃ : MeasureTheory.Measure Ω₃) [hμ₁ : MeasureTheory.IsProbabilityMeasure μ₁] [hμ₂ : MeasureTheory.IsProbabilityMeasure μ₂] [hμ₃ : MeasureTheory.IsProbabilityMeasure μ₃] : ∃ A mA μA X₁' X₂' X₃',\n MeasureTheory.IsProbabilityMeasure μA ∧\n ProbabilityTheory.iIndepFun (fun x => mS) ![X₁', X₂', X₃'] μA ∧\n Measurable X₁' ∧\n Measurable X₂' ∧\n Measurable X₃' ∧\n ProbabilityTheory.IdentDistrib X₁' X₁ μA μ₁ ∧\n ProbabilityTheory.IdentDistrib X₂' X₂ μA μ₂ ∧ ProbabilityTheory.IdentDistrib X₃' X₃ μA μ₃"}
19
+ {"name":"ProbabilityTheory.independent_copies4_nondep_finiteRange","declaration":"/-- A version of `independent_copies4_nondep` that guarantees that the copies have `FiniteRange` if the original variables do. -/\ntheorem ProbabilityTheory.independent_copies4_nondep_finiteRange {α : Type u} [mS : MeasurableSpace α] [MeasurableSingletonClass α] [Nonempty α] {Ω₁ : Type u_1} {Ω₂ : Type u_2} {Ω₃ : Type u_3} {Ω₄ : Type u_4} [MeasurableSpace Ω₁] [MeasurableSpace Ω₂] [MeasurableSpace Ω₃] [MeasurableSpace Ω₄] {X₁ : Ω₁ → α} {X₂ : Ω₂ → α} {X₃ : Ω₃ → α} {X₄ : Ω₄ → α} (hX₁ : Measurable X₁) (hX₂ : Measurable X₂) (hX₃ : Measurable X₃) (hX₄ : Measurable X₄) [FiniteRange X₁] [FiniteRange X₂] [FiniteRange X₃] [FiniteRange X₄] (μ₁ : MeasureTheory.Measure Ω₁) (μ₂ : MeasureTheory.Measure Ω₂) (μ₃ : MeasureTheory.Measure Ω₃) (μ₄ : MeasureTheory.Measure Ω₄) [hμ₁ : MeasureTheory.IsProbabilityMeasure μ₁] [hμ₂ : MeasureTheory.IsProbabilityMeasure μ₂] [hμ₃ : MeasureTheory.IsProbabilityMeasure μ₃] [hμ₄ : MeasureTheory.IsProbabilityMeasure μ₄] : ∃ A mA μA X₁' X₂' X₃' X₄',\n MeasureTheory.IsProbabilityMeasure μA ∧\n ProbabilityTheory.iIndepFun (fun x => mS) ![X₁', X₂', X₃', X₄'] μA ∧\n Measurable X₁' ∧\n Measurable X₂' ∧\n Measurable X₃' ∧\n Measurable X₄' ∧\n ProbabilityTheory.IdentDistrib X₁' X₁ μA μ₁ ∧\n ProbabilityTheory.IdentDistrib X₂' X₂ μA μ₂ ∧\n ProbabilityTheory.IdentDistrib X₃' X₃ μA μ₃ ∧\n ProbabilityTheory.IdentDistrib X₄' X₄ μA μ₄ ∧\n FiniteRange X₁' ∧ FiniteRange X₂' ∧ FiniteRange X₃' ∧ FiniteRange X₄'"}
20
+ {"name":"ProbabilityTheory.identDistrib_id_right","declaration":"theorem ProbabilityTheory.identDistrib_id_right {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] {μ : MeasureTheory.Measure α} {X : α → β} (hX : AEMeasurable X μ) : ProbabilityTheory.IdentDistrib X id μ (MeasureTheory.Measure.map X μ)"}
21
+ {"name":"ProbabilityTheory.IdentDistrib.comp_left","declaration":"/-- Composing identically distributed functions with a measurable embedding of conull range\ngives identically distributed functions. -/\ntheorem ProbabilityTheory.IdentDistrib.comp_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} [MeasurableSpace α] [MeasurableSpace β] [MeasurableSpace γ] [MeasurableSpace δ] {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure β} {f : α → γ} {g : β → γ} {i : δ → α} (hi : MeasurableEmbedding i) (hi' : ∀ᵐ (a : α) ∂μ, a ∈ Set.range i) (hf : Measurable f) (hfg : ProbabilityTheory.IdentDistrib f g μ ν) : ProbabilityTheory.IdentDistrib (f ∘ i) g (MeasureTheory.Measure.comap i μ) ν"}
22
+ {"name":"ProbabilityTheory.identDistrib_comp_fst","declaration":"/-- A random variable is identically distributed to its lift to a product space (in the first factor). -/\ntheorem ProbabilityTheory.identDistrib_comp_fst {Ω : Type u_5} {Ω' : Type u_6} {α : Type u_7} {mΩ : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} [MeasurableSpace α] {X : Ω → α} (hX : Measurable X) (μ : MeasureTheory.Measure Ω) (μ' : MeasureTheory.Measure Ω') [MeasureTheory.IsProbabilityMeasure μ'] : ProbabilityTheory.IdentDistrib (X ∘ Prod.fst) X (MeasureTheory.Measure.prod μ μ') μ"}
23
+ {"name":"ProbabilityTheory.independent_copies_two","declaration":"/-- For $X, Y$ random variables, one can find independent copies $X', Y'$ of $X, Y$. Version\nformulated in spaces with a canonical measures. -/\ntheorem ProbabilityTheory.independent_copies_two {α : Type u_7} {β : Type u_9} [MeasurableSpace α] [MeasurableSpace β] {Ω : Type u} {Ω' : Type v} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.MeasureSpace Ω'] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {X : Ω → α} {Y : Ω' → β} (hX : Measurable X) (hY : Measurable Y) : ∃ Ω'' m'' X' Y',\n MeasureTheory.IsProbabilityMeasure MeasureTheory.volume ∧\n Measurable X' ∧\n Measurable Y' ∧\n ProbabilityTheory.IndepFun X' Y' MeasureTheory.volume ∧\n ProbabilityTheory.IdentDistrib X' X MeasureTheory.volume MeasureTheory.volume ∧\n ProbabilityTheory.IdentDistrib Y' Y MeasureTheory.volume MeasureTheory.volume"}
24
+ {"name":"ProbabilityTheory.identDistrib_iff","declaration":"theorem ProbabilityTheory.identDistrib_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} [MeasurableSpace α] [MeasurableSpace β] [MeasurableSpace γ] (f : α → γ) (g : β → γ) (μ : autoParam (MeasureTheory.Measure α) _auto✝) (ν : autoParam (MeasureTheory.Measure β) _auto✝) : ProbabilityTheory.IdentDistrib f g μ ν ↔\n AEMeasurable f μ ∧ AEMeasurable g ν ∧ MeasureTheory.Measure.map f μ = MeasureTheory.Measure.map g ν"}
25
+ {"name":"ProbabilityTheory.IdentDistrib.comp_right","declaration":"/-- Composing identically distributed functions with a measurable embedding of conull range\ngives identically distributed functions. -/\ntheorem ProbabilityTheory.IdentDistrib.comp_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} [MeasurableSpace α] [MeasurableSpace β] [MeasurableSpace γ] [MeasurableSpace δ] {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure β} {f : α → γ} {g : β → γ} {i : δ → β} (hi : MeasurableEmbedding i) (hi' : ∀ᵐ (a : β) ∂ν, a ∈ Set.range i) (hg : Measurable g) (hfg : ProbabilityTheory.IdentDistrib f g μ ν) : ProbabilityTheory.IdentDistrib f (g ∘ i) μ (MeasureTheory.Measure.comap i ν)"}
26
+ {"name":"ProbabilityTheory.IdentDistrib.prod_mk","declaration":"theorem ProbabilityTheory.IdentDistrib.prod_mk {Ω : Type u_5} {Ω' : Type u_6} {β : Type u_9} {mΩ : MeasurableSpace Ω} {mΩ' : MeasurableSpace Ω'} {mβ : MeasurableSpace β} {μ : MeasureTheory.Measure Ω} {ν : MeasureTheory.Measure Ω'} {f : Ω → β} {g : Ω → β} {f' : Ω' → β} {g' : Ω' → β} [MeasureTheory.IsFiniteMeasure μ] [MeasureTheory.IsFiniteMeasure ν] (hff' : ProbabilityTheory.IdentDistrib f f' μ ν) (hgg' : ProbabilityTheory.IdentDistrib g g' μ ν) (h : ProbabilityTheory.IndepFun f g μ) (h' : ProbabilityTheory.IndepFun f' g' ν) : ProbabilityTheory.IdentDistrib (fun x => (f x, g x)) (fun x => (f' x, g' x)) μ ν"}
27
+ {"name":"ProbabilityTheory.identDistrib_comp_right","declaration":"/-- A function is identically distributed to itself composed with a measurable embedding of conull\nrange. -/\ntheorem ProbabilityTheory.identDistrib_comp_right {α : Type u_1} {γ : Type u_3} {δ : Type u_4} [MeasurableSpace α] [MeasurableSpace γ] [MeasurableSpace δ] {μ : MeasureTheory.Measure α} {f : α → γ} {i : δ → α} (hi : MeasurableEmbedding i) (hi' : ∀ᵐ (a : α) ∂μ, a ∈ Set.range i) (hf : Measurable f) : ProbabilityTheory.IdentDistrib f (f ∘ i) μ (MeasureTheory.Measure.comap i μ)"}
28
+ {"name":"ProbabilityTheory.IdentDistrib.fst_id","declaration":"/-- The first projection in a product space with measure `μ.prod ν` is distributed like `μ`. -/\ntheorem ProbabilityTheory.IdentDistrib.fst_id {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure β} [MeasureTheory.IsProbabilityMeasure ν] : ProbabilityTheory.IdentDistrib Prod.fst id (MeasureTheory.Measure.prod μ ν) μ"}
PFR-declarations/PFR.Mathlib.Probability.Independence.Basic.jsonl ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"ProbabilityTheory.iIndepFun_iff'","declaration":"theorem ProbabilityTheory.iIndepFun_iff' {Ω : Type u_1} {ι : Type u_2} [MeasurableSpace Ω] {β : ι → Type u_11} (m : (i : ι) → MeasurableSpace (β i)) (f : (i : ι) → Ω → β i) (μ : MeasureTheory.Measure Ω) : ProbabilityTheory.iIndepFun m f μ ↔\n ∀ (s : Finset ι) ⦃f' : ι → Set Ω⦄,\n (∀ (i : ι), MeasurableSet (f' i)) → ↑↑μ (⋂ i ∈ s, f' i) = Finset.prod s fun i => ↑↑μ (f' i)"}
2
+ {"name":"ProbabilityTheory.EventuallyEq.finite_iInter","declaration":"/-- The new Mathlib tool `Finset.eventuallyEq_iInter` will supersede this result. -/\ntheorem ProbabilityTheory.EventuallyEq.finite_iInter {ι : Type u_14} {α : Type u_2} {l : Filter α} (s : Finset ι) {E : ι → Set α} {F : ι → Set α} (h : ∀ i ∈ s, E i =ᶠ[l] F i) : ⋂ i ∈ s, E i =ᶠ[l] ⋂ i ∈ s, F i"}
3
+ {"name":"ProbabilityTheory.iIndepFun.pi","declaration":"/-- If a family of functions `(i, j) ↦ f i j` is independent, then the family of function tuples\n`i ↦ (f i j)ⱼ` is independent. -/\ntheorem ProbabilityTheory.iIndepFun.pi {Ω : Type u_2} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {ι : Type u_5} {κ : ι → Type u_6} [(i : ι) → Fintype (κ i)] {α : (i : ι) → κ i → Type u_7} {f : (i : ι) → (j : κ i) → Ω → α i j} [m : (i : ι) → (j : κ i) → MeasurableSpace (α i j)] (f_meas : ∀ (i : ι) (j : κ i), Measurable (f i j)) (hf : ProbabilityTheory.iIndepFun (fun ij => m ij.fst ij.snd) (fun ij => f ij.fst ij.snd) μ) : ProbabilityTheory.iIndepFun (fun i => MeasurableSpace.pi) (fun i ω j => f i j ω) μ"}
4
+ {"name":"ProbabilityTheory.iIndepFun.neg","declaration":"theorem ProbabilityTheory.iIndepFun.neg {Ω : Type u_10} {ι : Type u_11} [MeasurableSpace Ω] {α : ι → Type u_13} [n : (i : ι) → MeasurableSpace (α i)] {f : (i : ι) → Ω → α i} {μ : MeasureTheory.Measure Ω} (i : ι) [Neg (α i)] [MeasurableNeg (α i)] [DecidableEq ι] (h : ProbabilityTheory.iIndepFun n f μ) : ProbabilityTheory.iIndepFun n (Function.update f i (-f i)) μ"}
5
+ {"name":"ProbabilityTheory.IndepFun.comp_right","declaration":"/-- Composing independent functions with a measurable embedding of conull range gives independent\nfunctions. -/\ntheorem ProbabilityTheory.IndepFun.comp_right {α : Type u_11} {Ω : Type u_1} {β : Type u_6} {mΩ : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {Ω' : Type u_10} [MeasurableSpace Ω'] [MeasurableSpace α] [MeasurableSpace β] {f : Ω → α} {g : Ω → β} {i : Ω' → Ω} (hi : MeasurableEmbedding i) (hi' : ∀ᵐ (a : Ω) ∂μ, a ∈ Set.range i) (hf : Measurable f) (hg : Measurable g) (hfg : ProbabilityTheory.IndepFun f g μ) : ProbabilityTheory.IndepFun (f ∘ i) (g ∘ i) (MeasureTheory.Measure.comap i μ)"}
6
+ {"name":"ProbabilityTheory.IndepFun.measureReal_inter_preimage_eq_mul","declaration":"theorem ProbabilityTheory.IndepFun.measureReal_inter_preimage_eq_mul {Ω : Type u_1} {β : Type u_10} {β' : Type u_11} {mΩ : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {f : Ω → β} {g : Ω → β'} {_mβ : MeasurableSpace β} {_mβ' : MeasurableSpace β'} (h : ProbabilityTheory.IndepFun f g μ) {s : Set β} {t : Set β'} (hs : MeasurableSet s) (ht : MeasurableSet t) : μ.real (f ⁻¹' s ∩ g ⁻¹' t) = μ.real (f ⁻¹' s) * μ.real (g ⁻¹' t)"}
7
+ {"name":"Finset.prod_univ_prod","declaration":"theorem Finset.prod_univ_prod {ι : Type u_1} {κ : ι → Type u_3} [Fintype ι] [(i : ι) → Fintype (κ i)] {β : Type u_5} [CommMonoid β] (f : (i : ι) → κ i → β) : (Finset.prod Finset.univ fun ij => f ij.fst ij.snd) =\n Finset.prod Finset.univ fun i => Finset.prod Finset.univ fun j => f i j"}
8
+ {"name":"ProbabilityTheory.iIndepFun_reindex_iff","declaration":"theorem ProbabilityTheory.iIndepFun_reindex_iff {Ω : Type u_10} {ι : Type u_11} {ι' : Type u_12} [MeasurableSpace Ω] {α : ι → Type u_13} [n : (i : ι) → MeasurableSpace (α i)] {f : (i : ι) → Ω → α i} {μ : MeasureTheory.Measure Ω} (g : ι' ≃ ι) : ProbabilityTheory.iIndepFun ((fun {x} => n) ∘' ⇑g) ((fun {x} => f) ∘' ⇑g) μ ↔ ProbabilityTheory.iIndepFun n f μ"}
9
+ {"name":"ProbabilityTheory.iIndepFun.reindex_of_injective","declaration":"theorem ProbabilityTheory.iIndepFun.reindex_of_injective {Ω : Type u_10} {ι : Type u_11} {ι' : Type u_12} [MeasurableSpace Ω] {α : ι → Type u_13} [n : (i : ι) → MeasurableSpace (α i)] {f : (i : ι) → Ω → α i} {μ : MeasureTheory.Measure Ω} (h : ProbabilityTheory.iIndepFun n f μ) (g : ι' → ι) (hg : Function.Injective g) : ProbabilityTheory.iIndepFun ((fun {x} => n) ∘' g) ((fun {x} => f) ∘' g) μ"}
10
+ {"name":"ProbabilityTheory.iIndepFun.reindex_symm","declaration":"theorem ProbabilityTheory.iIndepFun.reindex_symm {Ω : Type u_10} {ι : Type u_11} {ι' : Type u_12} [MeasurableSpace Ω] {α : ι → Type u_13} [n : (i : ι) → MeasurableSpace (α i)] {f : (i : ι) → Ω → α i} {μ : MeasureTheory.Measure Ω} (g : ι' ≃ ι) (h : ProbabilityTheory.iIndepFun n f μ) : ProbabilityTheory.iIndepFun ((fun {x} => n) ∘' ⇑g) ((fun {x} => f) ∘' ⇑g) μ"}
11
+ {"name":"ProbabilityTheory.indepFun_const","declaration":"/-- Random variables are always independent of constants. -/\ntheorem ProbabilityTheory.indepFun_const {α : Type u_11} {Ω : Type u_1} {β : Type u_6} {mΩ : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {f : Ω → β} [MeasurableSpace α] [MeasurableSpace β] [MeasureTheory.IsProbabilityMeasure μ] (c : α) : ProbabilityTheory.IndepFun f (fun x => c) μ"}
12
+ {"name":"ProbabilityTheory.iIndepFun.pi'","declaration":"/-- If a family of functions `(i, j) ↦ f i j` is independent, then the family of function tuples\n`i ↦ (f i j)ⱼ` is independent. -/\ntheorem ProbabilityTheory.iIndepFun.pi' {Ω : Type u_2} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {ι : Type u_5} {κ : ι → Type u_6} [(i : ι) → Fintype (κ i)] {α : (i : ι) → κ i → Type u_7} [m : (i : ι) → (j : κ i) → MeasurableSpace (α i j)] {f : (ij : (i : ι) × κ i) → Ω → α ij.fst ij.snd} (f_meas : ∀ (i : (i : ι) × κ i), Measurable (f i)) (hf : ProbabilityTheory.iIndepFun (fun ij => m ij.fst ij.snd) f μ) : ProbabilityTheory.iIndepFun (fun _i => MeasurableSpace.pi) (fun i ω j => f { fst := i, snd := j } ω) μ"}
13
+ {"name":"Finset.sum_univ_sum","declaration":"theorem Finset.sum_univ_sum {ι : Type u_1} {κ : ι → Type u_3} [Fintype ι] [(i : ι) → Fintype (κ i)] {β : Type u_5} [AddCommMonoid β] (f : (i : ι) → κ i → β) : (Finset.sum Finset.univ fun ij => f ij.fst ij.snd) =\n Finset.sum Finset.univ fun i => Finset.sum Finset.univ fun j => f i j"}
14
+ {"name":"Finset.sum_univ_sum'","declaration":"theorem Finset.sum_univ_sum' {ι : Type u_1} {κ : ι → Type u_3} [Fintype ι] [(i : ι) → Fintype (κ i)] {β : Type u_5} [AddCommMonoid β] (f : (i : ι) × κ i → β) : (Finset.sum Finset.univ fun ij => f ij) =\n Finset.sum Finset.univ fun i => Finset.sum Finset.univ fun j => f { fst := i, snd := j }"}
15
+ {"name":"ProbabilityTheory.IndepFun.symm'","declaration":"/-- in mathlib as of `4d385393cd569f08ac30425ef886a57bb10daaa5` (TODO: bump) -/\ntheorem ProbabilityTheory.IndepFun.symm' {γ : Type u_14} {β : Type u_15} {Ω : Type u_16} : ∀ {x : MeasurableSpace γ} {x_1 : MeasurableSpace β} {x_2 : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {f : Ω → β}\n {g : Ω → γ}, ProbabilityTheory.IndepFun f g μ → ProbabilityTheory.IndepFun g f μ"}
16
+ {"name":"ProbabilityTheory.kernel.IndepFun.symm'","declaration":"/-- in mathlib as of `4d385393cd569f08ac30425ef886a57bb10daaa5` (TODO: bump) -/\ntheorem ProbabilityTheory.kernel.IndepFun.symm' {Ω : Type u_14} {α : Type u_15} {β : Type u_16} {γ : Type u_17} : ∀ {x : MeasurableSpace Ω} {x_1 : MeasurableSpace α} {x_2 : MeasurableSpace β} {x_3 : MeasurableSpace γ}\n {κ : ↥(ProbabilityTheory.kernel α Ω)} {f : Ω → β} {g : Ω → γ} {μ : MeasureTheory.Measure α},\n ProbabilityTheory.kernel.IndepFun f g κ μ → ProbabilityTheory.kernel.IndepFun g f κ μ"}
17
+ {"name":"ProbabilityTheory.IndepFun.measure_inter_preimage_eq_mul","declaration":"theorem ProbabilityTheory.IndepFun.measure_inter_preimage_eq_mul {Ω : Type u_1} {β : Type u_10} {β' : Type u_11} {mΩ : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {f : Ω → β} {g : Ω → β'} {_mβ : MeasurableSpace β} {_mβ' : MeasurableSpace β'} (h : ProbabilityTheory.IndepFun f g μ) {s : Set β} {t : Set β'} (hs : MeasurableSet s) (ht : MeasurableSet t) : ↑↑μ (f ⁻¹' s ∩ g ⁻¹' t) = ↑↑μ (f ⁻¹' s) * ↑↑μ (g ⁻¹' t)"}
18
+ {"name":"ProbabilityTheory.iIndepFun.ae_eq","declaration":"/-- TODO: a kernel version of this theorem-/\ntheorem ProbabilityTheory.iIndepFun.ae_eq {Ω : Type u_13} {mΩ : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {ι : Type u_14} {β : ι → Type u_15} {m : (i : ι) → MeasurableSpace (β i)} {f : (i : ι) → Ω → β i} {g : (i : ι) → Ω → β i} (hf_Indep : ProbabilityTheory.iIndepFun m f μ) (hfg : ∀ (i : ι), f i =ᶠ[MeasureTheory.Measure.ae μ] g i) : ProbabilityTheory.iIndepFun m g μ"}
19
+ {"name":"Finset.prod_univ_prod'","declaration":"theorem Finset.prod_univ_prod' {ι : Type u_1} {κ : ι → Type u_3} [Fintype ι] [(i : ι) → Fintype (κ i)] {β : Type u_5} [CommMonoid β] (f : (i : ι) × κ i → β) : (Finset.prod Finset.univ fun ij => f ij) =\n Finset.prod Finset.univ fun i => Finset.prod Finset.univ fun j => f { fst := i, snd := j }"}
20
+ {"name":"ProbabilityTheory.measurable_sigmaCurry","declaration":"theorem ProbabilityTheory.measurable_sigmaCurry {ι : Type u_1} {κ : ι → Type u_3} {α : (i : ι) → κ i → Type u_4} [m : (i : ι) → (j : κ i) → MeasurableSpace (α i j)] : Measurable Sigma.curry"}
21
+ {"name":"ProbabilityTheory.IndepFun.ae_eq'","declaration":"/-- in mathlib as of `4d385393cd569f08ac30425ef886a57bb10daaa5` (TODO: bump) -/\ntheorem ProbabilityTheory.IndepFun.ae_eq' {β : Type u_11} {β' : Type u_12} {Ω : Type u_13} {mΩ : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {mβ : MeasurableSpace β} {mβ' : MeasurableSpace β'} {f : Ω → β} {f' : Ω → β} {g : Ω → β'} {g' : Ω → β'} (hfg : ProbabilityTheory.IndepFun f g μ) (hf : f =ᶠ[MeasureTheory.Measure.ae μ] f') (hg : g =ᶠ[MeasureTheory.Measure.ae μ] g') : ProbabilityTheory.IndepFun f' g' μ"}
22
+ {"name":"ProbabilityTheory.iIndepFun.prod","declaration":"theorem ProbabilityTheory.iIndepFun.prod {Ω : Type u_2} [MeasurableSpace Ω] {μ : MeasureTheory.Measure Ω} [MeasureTheory.IsProbabilityMeasure μ] {ι : Type u_8} {ι' : Type u_9} {α : ι → Type u_10} {n : (i : ι) → MeasurableSpace (α i)} {f : (i : ι) → Ω → α i} {hf : ∀ (i : ι), Measurable (f i)} {ST : ι' → Finset ι} (hS : Pairwise (Disjoint on ST)) (h : ProbabilityTheory.iIndepFun n f μ) : let β := fun k => (i : { x // x ∈ ST k }) → α ↑i;\nProbabilityTheory.iIndepFun (fun k => MeasurableSpace.pi) (fun k x i => f (↑i) x) μ"}
23
+ {"name":"ProbabilityTheory.indepFun_iff_map_prod_eq_prod_map_map'","declaration":"theorem ProbabilityTheory.indepFun_iff_map_prod_eq_prod_map_map' {Ω : Type u_1} {β : Type u_6} {β' : Type u_7} {mΩ : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {mβ : MeasurableSpace β} {mβ' : MeasurableSpace β'} {f : Ω → β} {g : Ω → β'} [MeasureTheory.IsFiniteMeasure μ] (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) : ProbabilityTheory.IndepFun f g μ ↔\n MeasureTheory.Measure.map (fun ω => (f ω, g ω)) μ =\n MeasureTheory.Measure.prod (MeasureTheory.Measure.map f μ) (MeasureTheory.Measure.map g μ)"}
24
+ {"name":"ProbabilityTheory.iIndepFun.reindex","declaration":"theorem ProbabilityTheory.iIndepFun.reindex {Ω : Type u_10} {ι : Type u_11} {ι' : Type u_12} [MeasurableSpace Ω] {α : ι → Type u_13} [n : (i : ι) → MeasurableSpace (α i)] {f : (i : ι) → Ω → α i} {μ : MeasureTheory.Measure Ω} (g : ι' ≃ ι) (h : ProbabilityTheory.iIndepFun ((fun {x} => n) ∘' ⇑g) ((fun {x} => f) ∘' ⇑g) μ) : ProbabilityTheory.iIndepFun n f μ"}
25
+ {"name":"ProbabilityTheory.iIndepFun.comp","declaration":"theorem ProbabilityTheory.iIndepFun.comp {Ω : Type u_10} {ι : Type u_11} [MeasurableSpace Ω] {α : ι → Type u_13} {β : ι → Type u_14} [n : (i : ι) → MeasurableSpace (α i)] [m : (i : ι) → MeasurableSpace (β i)] {f : (i : ι) → Ω → α i} {μ : MeasureTheory.Measure Ω} (h : ProbabilityTheory.iIndepFun n f μ) (g : (i : ι) → α i → β i) (hg : ∀ (i : ι), Measurable (g i)) : ProbabilityTheory.iIndepFun m (fun i => g i ∘ f i) μ"}
26
+ {"name":"ProbabilityTheory.indepFun_fst_snd","declaration":"theorem ProbabilityTheory.indepFun_fst_snd {Ω : Type u_1} {mΩ : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {Ω' : Type u_10} [MeasurableSpace Ω'] {μ' : MeasureTheory.Measure Ω'} [MeasureTheory.IsProbabilityMeasure μ] [MeasureTheory.IsProbabilityMeasure μ'] : ProbabilityTheory.IndepFun Prod.fst Prod.snd (MeasureTheory.Measure.prod μ μ')"}
27
+ {"name":"ProbabilityTheory.iIndepFun_iff_pi_map_eq_map","declaration":"theorem ProbabilityTheory.iIndepFun_iff_pi_map_eq_map {Ω : Type u_1} {mΩ : MeasurableSpace Ω} {μ : MeasureTheory.Measure Ω} {ι : Type u_11} {β : ι → Type u_12} [Fintype ι] (f : (x : ι) → Ω → β x) [m : (x : ι) → MeasurableSpace (β x)] [MeasureTheory.IsProbabilityMeasure μ] (hf : ∀ (x : ι), Measurable (f x)) : ProbabilityTheory.iIndepFun m f μ ↔\n (MeasureTheory.Measure.pi fun i => MeasureTheory.Measure.map (f i) μ) = MeasureTheory.Measure.map (fun ω i => f i ω) μ"}
28
+ {"name":"ProbabilityTheory.iIndepFun.inv","declaration":"theorem ProbabilityTheory.iIndepFun.inv {Ω : Type u_10} {ι : Type u_11} [MeasurableSpace Ω] {α : ι → Type u_13} [n : (i : ι) → MeasurableSpace (α i)] {f : (i : ι) → Ω → α i} {μ : MeasureTheory.Measure Ω} (i : ι) [Inv (α i)] [MeasurableInv (α i)] [DecidableEq ι] (h : ProbabilityTheory.iIndepFun n f μ) : ProbabilityTheory.iIndepFun n (Function.update f i (f i)⁻¹) μ"}
PFR-declarations/PFR.Mathlib.Probability.Independence.Conditional.jsonl ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"ProbabilityTheory.CondIndepFun.comp_right","declaration":"/-- Composing independent functions with a measurable embedding of conull range gives independent\nfunctions. -/\ntheorem ProbabilityTheory.CondIndepFun.comp_right {Ω : Type u_1} {Ω' : Type u_2} {α : Type u_3} {β : Type u_4} {γ : Type u_5} [MeasurableSpace Ω] [MeasurableSpace Ω'] [MeasurableSpace α] [MeasurableSpace β] [MeasurableSpace γ] {μ : MeasureTheory.Measure Ω} {f : Ω → α} {g : Ω → β} {h : Ω → γ} [MeasurableSingletonClass γ] {i : Ω' → Ω} (hi : MeasurableEmbedding i) (hi' : ∀ᵐ (a : Ω) ∂μ, a ∈ Set.range i) (hf : Measurable f) (hg : Measurable g) (hh : Measurable h) (hfg : ProbabilityTheory.CondIndepFun f g h μ) : ProbabilityTheory.CondIndepFun (f ∘ i) (g ∘ i) (h ∘ i) (MeasureTheory.Measure.comap i μ)"}
2
+ {"name":"ProbabilityTheory.IndepFun.identDistrib_cond","declaration":"/-- If `A` is independent from `B`, then conditioning on an event given by `B` does not change\nthe distribution of `A`. -/\ntheorem ProbabilityTheory.IndepFun.identDistrib_cond {Ω : Type u_1} {α : Type u_2} {β : Type u_3} : ∀ {x : MeasurableSpace Ω} {x_1 : MeasurableSpace α} {x_2 : MeasurableSpace β} {μ : MeasureTheory.Measure Ω} {A : Ω → α}\n {B : Ω → β} [inst : MeasureTheory.IsProbabilityMeasure μ],\n ProbabilityTheory.IndepFun A B μ →\n ∀ {s : Set β},\n MeasurableSet s →\n Measurable A →\n Measurable B → ↑↑μ (B ⁻¹' s) ≠ 0 → ProbabilityTheory.IdentDistrib A A μ (ProbabilityTheory.cond μ (B ⁻¹' s))"}
3
+ {"name":"ProbabilityTheory.condIndep_copies","declaration":"/-- For $X, Y$ random variables, there exist conditionally independent trials $X_1, X_2, Y'$. -/\ntheorem ProbabilityTheory.condIndep_copies {Ω : Type u_1} {α : Type u} {β : Type u} [MeasurableSpace Ω] [MeasurableSpace α] [MeasurableSpace β] [MeasurableSingletonClass β] [Fintype β] (X : Ω → α) (Y : Ω → β) (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] : ∃ Ω' mΩ' X₁ X₂ Y' ν,\n MeasureTheory.IsProbabilityMeasure ν ∧\n Measurable X₁ ∧\n Measurable X₂ ∧\n Measurable Y' ∧\n ProbabilityTheory.CondIndepFun X₁ X₂ Y' ν ∧\n ProbabilityTheory.IdentDistrib (⟨X₁, Y'⟩) (⟨X, Y⟩) ν μ ∧\n ProbabilityTheory.IdentDistrib (⟨X₂, Y'⟩) (⟨X, Y⟩) ν μ"}
4
+ {"name":"ProbabilityTheory.IndepFun.cond_right","declaration":"/-- If `A` is independent of `B`, then they remain independent when conditioning on an event\nof the form `B ∈ t` of positive probability. -/\ntheorem ProbabilityTheory.IndepFun.cond_right {Ω : Type u_1} {α : Type u_2} {β : Type u_3} : ∀ {x : MeasurableSpace Ω} {x_1 : MeasurableSpace α} {x_2 : MeasurableSpace β} {μ : MeasureTheory.Measure Ω} {A : Ω → α}\n {B : Ω → β},\n ProbabilityTheory.IndepFun A B μ →\n ∀ {t : Set β}, MeasurableSet t → Measurable B → ProbabilityTheory.IndepFun A B (ProbabilityTheory.cond μ (B ⁻¹' t))"}
5
+ {"name":"ProbabilityTheory.IndepFun.cond","declaration":"/-- If `A` is independent of `B`, then they remain independent when conditioning on an event\nof the form `A ∈ s ∩ B ∈ t` of positive probability. -/\ntheorem ProbabilityTheory.IndepFun.cond {Ω : Type u_1} {α : Type u_2} {β : Type u_3} : ∀ {x : MeasurableSpace Ω} {x_1 : MeasurableSpace α} {x_2 : MeasurableSpace β} {μ : MeasureTheory.Measure Ω} {A : Ω → α}\n {B : Ω → β},\n ProbabilityTheory.IndepFun A B μ →\n ∀ {s : Set α} {t : Set β},\n MeasurableSet s →\n MeasurableSet t →\n Measurable A → Measurable B → ProbabilityTheory.IndepFun A B (ProbabilityTheory.cond μ (A ⁻¹' s ∩ B ⁻¹' t))"}
6
+ {"name":"ProbabilityTheory.condIndep_copies'","declaration":"/-- For $X, Y$ random variables, there exist conditionally independent trials $X_1, X_2, Y'$. -/\ntheorem ProbabilityTheory.condIndep_copies' {Ω : Type u_1} {α : Type u} {β : Type u} [MeasurableSpace Ω] [MeasurableSpace α] [MeasurableSpace β] [MeasurableSingletonClass β] [Fintype β] (X : Ω → α) (Y : Ω → β) (hX : Measurable X) (hY : Measurable Y) (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] (p : α → β → Prop) (hp : Measurable (Function.uncurry p)) (hp' : ∀ᵐ (ω : Ω) ∂μ, p (X ω) (Y ω)) : ∃ Ω' mΩ' X₁ X₂ Y' ν,\n MeasureTheory.IsProbabilityMeasure ν ∧\n Measurable X₁ ∧\n Measurable X₂ ∧\n Measurable Y' ∧\n ProbabilityTheory.CondIndepFun X₁ X₂ Y' ν ∧\n ProbabilityTheory.IdentDistrib (⟨X₁, Y'⟩) (⟨X, Y⟩) ν μ ∧\n ProbabilityTheory.IdentDistrib (⟨X₂, Y'⟩) (⟨X, Y⟩) ν μ ∧\n (∀ (ω : Ω'), p (X₁ ω) (Y' ω)) ∧ ∀ (ω : Ω'), p (X₂ ω) (Y' ω)"}
7
+ {"name":"ProbabilityTheory.condIndepFun_iff","declaration":"theorem ProbabilityTheory.condIndepFun_iff {Ω : Type u_1} {α : Type u_3} {β : Type u_4} {γ : Type u_5} [MeasurableSpace ��] [MeasurableSpace α] [MeasurableSpace β] [MeasurableSpace γ] {μ : MeasureTheory.Measure Ω} {f : Ω → α} {g : Ω → β} {h : Ω → γ} : ProbabilityTheory.CondIndepFun f g h μ ↔\n ∀ᵐ (z : γ) ∂MeasureTheory.Measure.map h μ, ProbabilityTheory.IndepFun f g (ProbabilityTheory.cond μ (h ⁻¹' {z}))"}
8
+ {"name":"ProbabilityTheory.IndepFun.cond_left","declaration":"/-- If `A` is independent of `B`, then they remain independent when conditioning on an event\nof the form `A ∈ s` of positive probability. -/\ntheorem ProbabilityTheory.IndepFun.cond_left {Ω : Type u_1} {α : Type u_2} {β : Type u_3} : ∀ {x : MeasurableSpace Ω} {x_1 : MeasurableSpace α} {x_2 : MeasurableSpace β} {μ : MeasureTheory.Measure Ω} {A : Ω → α}\n {B : Ω → β},\n ProbabilityTheory.IndepFun A B μ →\n ∀ {s : Set α}, MeasurableSet s → Measurable A → ProbabilityTheory.IndepFun A B (ProbabilityTheory.cond μ (A ⁻¹' s))"}
9
+ {"name":"ProbabilityTheory.CondIndepFun","declaration":"/-- The assertion that `f` and `g` are conditionally independent relative to `h`. -/\ndef ProbabilityTheory.CondIndepFun {Ω : Type u_1} {α : Type u_3} {β : Type u_4} {γ : Type u_5} [MeasurableSpace Ω] [MeasurableSpace α] [MeasurableSpace β] [MeasurableSpace γ] (f : Ω → α) (g : Ω → β) (h : Ω → γ) (μ : autoParam (MeasureTheory.Measure Ω) _auto✝) : Prop"}
PFR-declarations/PFR.Mathlib.Probability.Independence.FourVariables.jsonl ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"name":"ProbabilityTheory.iIndepFun.reindex_four_abdc","declaration":"theorem ProbabilityTheory.iIndepFun.reindex_four_abdc {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {G : Type u_2} [hG : MeasurableSpace G] {Z₁ : Ω → G} {Z₂ : Ω → G} {Z₃ : Ω → G} {Z₄ : Ω → G} (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![Z₁, Z₂, Z₄, Z₃] MeasureTheory.volume"}
2
+ {"name":"ProbabilityTheory.iIndepFun.reindex_four_badc","declaration":"theorem ProbabilityTheory.iIndepFun.reindex_four_badc {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {G : Type u_2} [hG : MeasurableSpace G] {Z₁ : Ω → G} {Z₂ : Ω → G} {Z₃ : Ω → G} {Z₄ : Ω → G} (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![Z₂, Z₁, Z₄, Z₃] MeasureTheory.volume"}
3
+ {"name":"ProbabilityTheory.iIndepFun.reindex_four_bdca","declaration":"theorem ProbabilityTheory.iIndepFun.reindex_four_bdca {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {G : Type u_2} [hG : MeasurableSpace G] {Z₁ : Ω → G} {Z₂ : Ω → G} {Z₃ : Ω → G} {Z₄ : Ω → G} (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![Z₂, Z₄, Z₃, Z₁] MeasureTheory.volume"}
4
+ {"name":"ProbabilityTheory.iIndepFun.reindex_four_adcb","declaration":"theorem ProbabilityTheory.iIndepFun.reindex_four_adcb {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {G : Type u_2} [hG : MeasurableSpace G] {Z₁ : Ω → G} {Z₂ : Ω → G} {Z₃ : Ω → G} {Z₄ : Ω → G} (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![Z₁, Z₄, Z₃, Z₂] MeasureTheory.volume"}
5
+ {"name":"ProbabilityTheory.iIndepFun.reindex_four_dabc","declaration":"theorem ProbabilityTheory.iIndepFun.reindex_four_dabc {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {G : Type u_2} [hG : MeasurableSpace G] {Z₁ : Ω → G} {Z₂ : Ω → G} {Z₃ : Ω → G} {Z₄ : Ω → G} (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![Z₄, Z₁, Z₂, Z₃] MeasureTheory.volume"}
6
+ {"name":"ProbabilityTheory.iIndepFun.reindex_four_bcad","declaration":"theorem ProbabilityTheory.iIndepFun.reindex_four_bcad {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {G : Type u_2} [hG : MeasurableSpace G] {Z₁ : Ω → G} {Z₂ : Ω → G} {Z₃ : Ω → G} {Z₄ : Ω → G} (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![Z₂, Z₃, Z₁, Z₄] MeasureTheory.volume"}
7
+ {"name":"ProbabilityTheory.iIndepFun.reindex_four_bcda","declaration":"theorem ProbabilityTheory.iIndepFun.reindex_four_bcda {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {G : Type u_2} [hG : MeasurableSpace G] {Z₁ : Ω → G} {Z₂ : Ω → G} {Z₃ : Ω → G} {Z₄ : Ω → G} (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![Z₂, Z₃, Z₄, Z₁] MeasureTheory.volume"}
8
+ {"name":"ProbabilityTheory.iIndepFun.reindex_four_dbca","declaration":"theorem ProbabilityTheory.iIndepFun.reindex_four_dbca {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {G : Type u_2} [hG : MeasurableSpace G] {Z₁ : Ω → G} {Z₂ : Ω → G} {Z₃ : Ω → G} {Z₄ : Ω → G} (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![Z₄, Z₂, Z₃, Z₁] MeasureTheory.volume"}
9
+ {"name":"ProbabilityTheory.iIndepFun.κ","declaration":"def ProbabilityTheory.iIndepFun.κ : Fin 3 → Type"}
10
+ {"name":"ProbabilityTheory.iIndepFun.reindex_four_acdb","declaration":"theorem ProbabilityTheory.iIndepFun.reindex_four_acdb {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {G : Type u_2} [hG : MeasurableSpace G] {Z₁ : Ω → G} {Z₂ : Ω → G} {Z₃ : Ω → G} {Z₄ : Ω → G} (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![Z₁, Z₃, Z₄, Z₂] MeasureTheory.volume"}
11
+ {"name":"ProbabilityTheory.iIndepFun.reindex_four_bacd","declaration":"theorem ProbabilityTheory.iIndepFun.reindex_four_bacd {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {G : Type u_2} [hG : MeasurableSpace G] {Z₁ : Ω → G} {Z₂ : Ω → G} {Z₃ : Ω → G} {Z₄ : Ω → G} (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![Z₂, Z₁, Z₃, Z₄] MeasureTheory.volume"}
12
+ {"name":"ProbabilityTheory.iIndepFun.reindex_four_acbd","declaration":"theorem ProbabilityTheory.iIndepFun.reindex_four_acbd {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {G : Type u_2} [hG : MeasurableSpace G] {Z₁ : Ω → G} {Z₂ : Ω → G} {Z₃ : Ω → G} {Z₄ : Ω → G} (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![Z₁, Z₃, Z₂, Z₄] MeasureTheory.volume"}
13
+ {"name":"ProbabilityTheory.iIndepFun.reindex_four_cadb","declaration":"theorem ProbabilityTheory.iIndepFun.reindex_four_cadb {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {G : Type u_2} [hG : MeasurableSpace G] {Z₁ : Ω → G} {Z₂ : Ω → G} {Z₃ : Ω → G} {Z₄ : Ω → G} (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![Z₃, Z₁, Z₄, Z₂] MeasureTheory.volume"}
14
+ {"name":"ProbabilityTheory.iIndepFun.reindex_four_cbad","declaration":"theorem ProbabilityTheory.iIndepFun.reindex_four_cbad {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {G : Type u_2} [hG : MeasurableSpace G] {Z₁ : Ω → G} {Z₂ : Ω → G} {Z₃ : Ω → G} {Z₄ : Ω → G} (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![Z₃, Z₂, Z₁, Z₄] MeasureTheory.volume"}
15
+ {"name":"ProbabilityTheory.iIndepFun.reindex_four_abcd","declaration":"theorem ProbabilityTheory.iIndepFun.reindex_four_abcd {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {G : Type u_2} [hG : MeasurableSpace G] {Z₁ : Ω → G} {Z₂ : Ω → G} {Z₃ : Ω → G} {Z₄ : Ω → G} (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume"}
16
+ {"name":"ProbabilityTheory.iIndepFun.reindex_four_bdac","declaration":"theorem ProbabilityTheory.iIndepFun.reindex_four_bdac {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {G : Type u_2} [hG : MeasurableSpace G] {Z₁ : Ω → G} {Z₂ : Ω → G} {Z₃ : Ω → G} {Z₄ : Ω → G} (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![Z₂, Z₄, Z₁, Z₃] MeasureTheory.volume"}
17
+ {"name":"ProbabilityTheory.iIndepFun.reindex_four_adbc","declaration":"theorem ProbabilityTheory.iIndepFun.reindex_four_adbc {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {G : Type u_2} [hG : MeasurableSpace G] {Z₁ : Ω → G} {Z₂ : Ω → G} {Z₃ : Ω → G} {Z₄ : Ω → G} (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![Z₁, Z₄, Z₂, Z₃] MeasureTheory.volume"}
18
+ {"name":"ProbabilityTheory.iIndepFun.apply_two_last","declaration":"/-- If `(Z₁, Z₂, Z₃, Z₄)` are independent, so are `(Z₁, Z₂, φ Z₃ Z₄)` for any measurable `φ`. -/\ntheorem ProbabilityTheory.iIndepFun.apply_two_last {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] [MeasureTheory.IsProbabilityMeasure MeasureTheory.volume] {G : Type u_2} [hG : MeasurableSpace G] {Z₁ : Ω → G} {Z₂ : Ω → G} {Z₃ : Ω → G} {Z₄ : Ω → G} (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) (hZ₁ : Measurable Z₁) (hZ₂ : Measurable Z₂) (hZ₃ : Measurable Z₃) (hZ₄ : Measurable Z₄) {phi : G → G → G} (hphi : Measurable (Function.uncurry phi)) : ProbabilityTheory.iIndepFun (fun x => hG) ![Z₁, Z₂, fun ω => phi (Z₃ ω) (Z₄ ω)] MeasureTheory.volume"}
19
+ {"name":"ProbabilityTheory.iIndepFun.reindex_four_dbac","declaration":"theorem ProbabilityTheory.iIndepFun.reindex_four_dbac {Ω : Type u_1} [MeasureTheory.MeasureSpace Ω] {G : Type u_2} [hG : MeasurableSpace G] {Z₁ : Ω → G} {Z₂ : Ω → G} {Z₃ : Ω → G} {Z₄ : Ω → G} (h_indep : ProbabilityTheory.iIndepFun (fun _i => hG) ![Z₁, Z₂, Z₃, Z₄] MeasureTheory.volume) : ProbabilityTheory.iIndepFun (fun x => hG) ![Z₄, Z₂, Z₁, Z₃] MeasureTheory.volume"}
PFR-declarations/PFR.Mathlib.Probability.Independence.Kernel.jsonl ADDED
@@ -0,0 +1 @@
 
 
1
+ {"name":"ProbabilityTheory.kernel.IndepFun.ae_eq'","declaration":"/-- in mathlib as of `4d385393cd569f08ac30425ef886a57bb10daaa5` (TODO: bump) -/\ntheorem ProbabilityTheory.kernel.IndepFun.ae_eq' {α : Type u_6} {Ω : Type u_5} {β : Type u_1} {β' : Type u_2} {_mα : MeasurableSpace α} {_mΩ : MeasurableSpace Ω} {κ : ↥(ProbabilityTheory.kernel α Ω)} {μ : MeasureTheory.Measure α} {mβ : MeasurableSpace β} {mβ' : MeasurableSpace β'} {f : Ω → β} {f' : Ω → β} {g : Ω → β'} {g' : Ω → β'} (hfg : ProbabilityTheory.kernel.IndepFun f g κ μ) (hf : ∀ᵐ (a : α) ∂μ, f =ᶠ[MeasureTheory.Measure.ae (κ a)] f') (hg : ∀ᵐ (a : α) ∂μ, g =ᶠ[MeasureTheory.Measure.ae (κ a)] g') : ProbabilityTheory.kernel.IndepFun f' g' κ μ"}