Datasets:
lbox
/

Modalities:
Tabular
Text
Libraries:
Datasets
License:
lbox_open / lbox_open.py
wonseok's picture
Upload lbox_open.py
19b8851
raw
history blame
4.96 kB
# LBox
import json
import datasets
_CASENAME_CLASSIFICATION_FEATURES = {
"id": datasets.Value("int32"),
"casetype": datasets.Value("string"),
"casename": datasets.Value("string"),
"facts": datasets.Value("string"),
}
_STATUTE_CLASSIFICATION_FEATURES = {
"id": datasets.Value("int32"),
"casetype": datasets.Value("string"),
"casename": datasets.Value("string"),
"statutes": datasets.features.Sequence(datasets.Value("string")),
"facts": datasets.Value("string"),
}
_SUMMARIZATION_CLASSIFICATION_FEATURES = {
"id": datasets.Value("int32"),
"summary": datasets.Value("string"),
"precedent": datasets.Value("string"),
}
_CASE_CORPUS_FEATURES = {
"id": datasets.Value("int32"),
"precedent": datasets.Value("string"),
}
class LBoxOpenConfig(datasets.BuilderConfig):
"""BuilderConfig for OpenLBox."""
def __init__(self, features, data_url, citation, url, label_classes=("False", "True"), **kwargs):
# Version history:
# 0.1.0: Initial version.
super(LBoxOpenConfig, self).__init__(version=datasets.Version("0.1.0"), **kwargs)
self.features = features
self.label_classes = label_classes
self.data_url = data_url
self.citation = citation
self.url = url
class LBoxOpen(datasets.GeneratorBasedBuilder):
"""The Legal AI Benchmark dataset from Korean Legal Cases."""
BUILDER_CONFIGS = [
LBoxOpenConfig(
name="casename_classification",
description="",
features=_CASENAME_CLASSIFICATION_FEATURES,
data_url="https://lbox-open.s3.ap-northeast-2.amazonaws.com/precedent_benchmark_dataset/casename_classification/v0.1.0/",
citation="",
url="lbox.kr",
),
LBoxOpenConfig(
name="statute_classification",
description="",
features=_STATUTE_CLASSIFICATION_FEATURES,
data_url="https://lbox-open.s3.ap-northeast-2.amazonaws.com/precedent_benchmark_dataset/statute_classification/v0.1.0/",
citation="",
url="lbox.kr",
),
LBoxOpenConfig(
name="summarization",
description="",
features=_SUMMARIZATION_CLASSIFICATION_FEATURES,
data_url="https://lbox-open.s3.ap-northeast-2.amazonaws.com/precedent_benchmark_dataset/summarization/v0.1.0/",
citation="",
url="lbox.kr",
),
LBoxOpenConfig(
name="case_corpus",
description="",
features=_CASE_CORPUS_FEATURES,
data_url="https://lbox-open.s3.ap-northeast-2.amazonaws.com/precedent_benchmark_dataset/case_corpus/v0.1.0/",
citation="",
url="lbox.kr",
),
]
def _info(self):
return datasets.DatasetInfo(
description="",
features=datasets.Features(self.config.features),
homepage=self.config.url,
citation="",
)
def _split_generators(self, dl_manager):
if self.config.name == "case_corpus":
dl_dir = {
"train": dl_manager.download_and_extract(f"{self.config.data_url}case_corpus-150k.jsonl") or "",
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": dl_dir["train"],
"split": datasets.Split.TRAIN,
},
)
]
else:
dl_dir = {
"train": dl_manager.download_and_extract(f"{self.config.data_url}train.jsonl") or "",
"valid": dl_manager.download_and_extract(f"{self.config.data_url}valid.jsonl") or "",
"test": dl_manager.download_and_extract(f"{self.config.data_url}test.jsonl") or "",
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": dl_dir["train"],
"split": datasets.Split.TRAIN,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_file": dl_dir["valid"],
"split": datasets.Split.VALIDATION,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_file": dl_dir["test"],
"split": datasets.Split.TEST,
},
),
]
def _generate_examples(self, data_file, split):
with open(data_file, encoding="utf-8") as f:
for line in f:
row = json.loads(line)
yield row["id"], row