# LBox Open # Copyright (c) 2022-present LBox Co. Ltd. # CC BY-NC-ND 4.0 # 2022.10.18, Wonseok: Add casename_classification_plus, statute_classification_plus, summarization_plus datasets import json import datasets _CASENAME_CLASSIFICATION_FEATURES = { "id": datasets.Value("int64"), "casetype": datasets.Value("string"), "casename": datasets.Value("string"), "facts": datasets.Value("string"), } _CASENAME_CLASSIFICATION_PLUS_FEATURES = { "id": datasets.Value("int64"), "casetype": datasets.Value("string"), "casename": datasets.Value("string"), "facts": datasets.Value("string"), } _STATUTE_CLASSIFICATION_FEATURES = { "id": datasets.Value("int64"), "casetype": datasets.Value("string"), "casename": datasets.Value("string"), "statutes": datasets.features.Sequence(datasets.Value("string")), "facts": datasets.Value("string"), } _STATUTE_CLASSIFICATION_PLUS_FEATURES = { "id": datasets.Value("int64"), "casetype": datasets.Value("string"), "casename": datasets.Value("string"), "statutes": datasets.features.Sequence(datasets.Value("string")), "facts": datasets.Value("string"), } _LJP_CRIMINAL = { "id": datasets.Value("int64"), "casetype": datasets.Value("string"), "casename": datasets.Value("string"), "facts": datasets.Value("string"), "reason": datasets.Value("string"), "label": { "text": datasets.Value("string"), "fine_lv": datasets.Value("int64"), "imprisonment_with_labor_lv": datasets.Value("int64"), "imprisonment_without_labor_lv": datasets.Value("int64"), }, "ruling": { "text": datasets.Value("string"), "parse": { "fine": { "type": datasets.Value("string"), "unit": datasets.Value("string"), "value": datasets.Value("int64"), }, "imprisonment": { "type": datasets.Value("string"), "unit": datasets.Value("string"), "value": datasets.Value("int64"), }, }, }, } _LJP_CIVIL = { "id": datasets.Value("int64"), "casetype": datasets.Value("string"), "casename": datasets.Value("string"), "facts": datasets.Value("string"), "claim_acceptance_lv": datasets.Value("int64"), "gist_of_claim": { "text": datasets.Value("string"), "money": { "provider": datasets.Value("string"), "taker": datasets.Value("string"), "unit": datasets.Value("string"), "value": datasets.Value("int64"), }, }, "ruling": { "text": datasets.Value("string"), "money": { "provider": datasets.Value("string"), "taker": datasets.Value("string"), "unit": datasets.Value("string"), "value": datasets.Value("int64"), }, "litigation_cost": datasets.Value("float32"), }, } _SUMMARIZATION_FEATURES = { "id": datasets.Value("int64"), "summary": datasets.Value("string"), "precedent": datasets.Value("string"), } _SUMMARIZATION_PLUS_FEATURES = { "id": datasets.Value("int64"), "summary": datasets.Value("string"), "precedent": datasets.Value("string"), } _PRECEDENT_CORPUS_FEATURES = { "id": datasets.Value("int64"), "precedent": datasets.Value("string"), } class LBoxOpenConfig(datasets.BuilderConfig): """BuilderConfig for OpenLBox.""" def __init__( self, features, data_url, citation, url, label_classes=("False", "True"), **kwargs, ): # Version history: # 0.1.0: Initial version. super(LBoxOpenConfig, self).__init__( version=datasets.Version("0.2.0"), **kwargs ) self.features = features self.label_classes = label_classes self.data_url = data_url self.citation = citation self.url = url class LBoxOpen(datasets.GeneratorBasedBuilder): """The Legal AI Benchmark dataset from Korean Legal Cases.""" BUILDER_CONFIGS = [ LBoxOpenConfig( name="casename_classification", description="", features=_CASENAME_CLASSIFICATION_FEATURES, data_url="https://lbox-open.s3.ap-northeast-2.amazonaws.com/precedent_benchmark_dataset/casename_classification/v0.1.2/", citation="", url="lbox.kr", ), LBoxOpenConfig( name="casename_classification_plus", description="", features=_CASENAME_CLASSIFICATION_FEATURES, data_url="https://lbox-open.s3.ap-northeast-2.amazonaws.com/precedent_benchmark_dataset/casename_classification/v0.1.2_plus/", citation="", url="lbox.kr", ), LBoxOpenConfig( name="statute_classification", description="", features=_STATUTE_CLASSIFICATION_FEATURES, data_url="https://lbox-open.s3.ap-northeast-2.amazonaws.com/precedent_benchmark_dataset/statute_classification/v0.1.2/", citation="", url="lbox.kr", ), LBoxOpenConfig( name="statute_classification_plus", description="", features=_STATUTE_CLASSIFICATION_FEATURES, data_url="https://lbox-open.s3.ap-northeast-2.amazonaws.com/precedent_benchmark_dataset/statute_classification/v0.1.2_plus/", citation="", url="lbox.kr", ), LBoxOpenConfig( name="ljp_criminal", description="", features=_LJP_CRIMINAL, data_url="https://lbox-open.s3.ap-northeast-2.amazonaws.com/precedent_benchmark_dataset/judgement_prediction/v0.1.2/criminal/", citation="", url="lbox.kr", ), LBoxOpenConfig( name="ljp_civil", description="", features=_LJP_CIVIL, data_url="https://lbox-open.s3.ap-northeast-2.amazonaws.com/precedent_benchmark_dataset/judgement_prediction/v0.1.2/civil/", citation="", url="lbox.kr", ), LBoxOpenConfig( name="summarization", description="", features=_SUMMARIZATION_FEATURES, data_url="https://lbox-open.s3.ap-northeast-2.amazonaws.com/precedent_benchmark_dataset/summarization/v0.1.0/", citation="", url="lbox.kr", ), LBoxOpenConfig( name="summarization_plus", description="", features=_SUMMARIZATION_FEATURES, data_url="https://lbox-open.s3.ap-northeast-2.amazonaws.com/precedent_benchmark_dataset/summarization/v0.1.0_plus/", citation="", url="lbox.kr", ), LBoxOpenConfig( name="precedent_corpus", description="", features=_PRECEDENT_CORPUS_FEATURES, data_url="https://lbox-open.s3.ap-northeast-2.amazonaws.com/precedent_benchmark_dataset/case_corpus/v0.1.0/", citation="", url="lbox.kr", ), ] def _info(self): return datasets.DatasetInfo( description="", features=datasets.Features(self.config.features), homepage=self.config.url, citation="", ) def _split_generators(self, dl_manager): if self.config.name == "precedent_corpus": dl_dir = { "train": dl_manager.download_and_extract( f"{self.config.data_url}case_corpus-150k.jsonl" ) or "", } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_file": dl_dir["train"], "split": datasets.Split.TRAIN, }, ) ] elif self.config.name in [ "casename_classification", "statute_classification", "ljp_criminal", "ljp_civil", ]: dl_dir = { "train": dl_manager.download_and_extract( f"{self.config.data_url}train.jsonl" ) or "", "valid": dl_manager.download_and_extract( f"{self.config.data_url}valid.jsonl" ) or "", "test": dl_manager.download_and_extract( f"{self.config.data_url}test.jsonl" ) or "", "test2": dl_manager.download_and_extract( f"{self.config.data_url}test2.jsonl" ) or "", } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_file": dl_dir["train"], "split": datasets.Split.TRAIN, }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "data_file": dl_dir["valid"], "split": datasets.Split.VALIDATION, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "data_file": dl_dir["test"], "split": datasets.Split.TEST, }, ), datasets.SplitGenerator( name="test2", gen_kwargs={ "data_file": dl_dir["test2"], "split": "test2", }, ), ] else: dl_dir = { "train": dl_manager.download_and_extract( f"{self.config.data_url}train.jsonl" ) or "", "valid": dl_manager.download_and_extract( f"{self.config.data_url}valid.jsonl" ) or "", "test": dl_manager.download_and_extract( f"{self.config.data_url}test.jsonl" ) or "", } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_file": dl_dir["train"], "split": datasets.Split.TRAIN, }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "data_file": dl_dir["valid"], "split": datasets.Split.VALIDATION, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "data_file": dl_dir["test"], "split": datasets.Split.TEST, }, ), ] def _generate_examples(self, data_file, split): with open(data_file, encoding="utf-8") as f: for line in f: row = json.loads(line) yield row["id"], row