--- language: - en license: apache-2.0 library_name: sentence-transformers datasets: - davanstrien/similarity-dataset-sc2-8b tags: - sentence-transformers - sentence-similarity - feature-extraction - dataset_size:n<1K - loss:MultipleNegativesRankingLoss base_model: microsoft/mpnet-base metrics: - cosine_accuracy - dot_accuracy - manhattan_accuracy - euclidean_accuracy - max_accuracy widget: - source_sentence: Write a Python function that counts the number of even numbers in a given list of integers or floats sentences: - Write a Python function that returns the number of even numbers in a list. - Create a Python function that adds up all the numbers in a given list. The function should support lists containing only positive integers. - Write a Python function that converts a JSON string into a Python dictionary using the json module and returns it. - source_sentence: Develop a Python function to validate whether a given string represents a valid IPv4 address or not. sentences: - Create a Python function to validate a string `s` as an IPv4 address. The function should return `True` if `s` is a valid IPv4 address, and `False` otherwise. - Write a Python function to find the key with the highest value in a dictionary. The function should return the value of the key if it exists - Write a Python function that, given a dictionary `d` and an integer `k`, returns the sum of the values of the first `k` keys in `d`. - source_sentence: Write a Python function to create a list of numbers with exactly one even number and n-1 odd numbers sentences: - Write a Python function that returns the number of even numbers in a list. - Write a Python function that recursively traverses a given folder structure and returns the absolute path of all files that end with ".txt". - Write a Python decorator function that overrides the docstring of the decorated function, and stores the old docstring and other metadata in a `_doc_metadata` attribute of the function. - source_sentence: 'Implement a Python function that prints the first character of a string using its indexing feature. ' sentences: - Write a Python function that takes a string as a parameter and returns the first character of the string. - Write a Python function that checks if the bit at position `bit` is set in the given `integer`. This function should return a boolean value. - 'Write a Python function `floor_division(x: int, y: int) -> int` that divides two integers `x` and `y` and returns the largest whole number less than or equal to the result.' - source_sentence: Write a Python function that takes a MIDI note number and returns the corresponding piano key number. sentences: - Create a Python function that translates MIDI note numbers into piano key numbers, facilitating music generation. - Write a Python function that accepts a dictionary and returns a set of distinct values. If a key maps to an empty list, return an empty set. - Write a Python function `join_strings_with_comma(lst)` that takes a list of strings and returns a single string with all the strings from the list, separated by commas. pipeline_tag: sentence-similarity co2_eq_emissions: emissions: 2.213004168952992 energy_consumed: 0.006336878829164133 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: Intel(R) Xeon(R) CPU @ 2.20GHz ram_total_size: 62.804237365722656 hours_used: 0.049 hardware_used: 1 x NVIDIA L4 model-index: - name: MPNet base trained on AllNLI triplets results: - task: type: triplet name: Triplet dataset: name: code similarity dev type: code-similarity-dev metrics: - type: cosine_accuracy value: 0.934010152284264 name: Cosine Accuracy - type: dot_accuracy value: 0.07106598984771574 name: Dot Accuracy - type: manhattan_accuracy value: 0.934010152284264 name: Manhattan Accuracy - type: euclidean_accuracy value: 0.9390862944162437 name: Euclidean Accuracy - type: max_accuracy value: 0.9390862944162437 name: Max Accuracy - task: type: triplet name: Triplet dataset: name: Unknown type: unknown metrics: - type: cosine_accuracy value: 0.934010152284264 name: Cosine Accuracy - type: dot_accuracy value: 0.07106598984771574 name: Dot Accuracy - type: manhattan_accuracy value: 0.934010152284264 name: Manhattan Accuracy - type: euclidean_accuracy value: 0.9390862944162437 name: Euclidean Accuracy - type: max_accuracy value: 0.9390862944162437 name: Max Accuracy --- # MPNet base trained on AllNLI triplets This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("davanstrien/code-prompt-similarity-model") # Run inference sentences = [ 'Write a Python function that takes a MIDI note number and returns the corresponding piano key number.', 'Create a Python function that translates MIDI note numbers into piano key numbers, facilitating music generation.', 'Write a Python function that accepts a dictionary and returns a set of distinct values. If a key maps to an empty list, return an empty set.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Triplet * Dataset: `code-similarity-dev` * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:-------------------|:-----------| | cosine_accuracy | 0.934 | | dot_accuracy | 0.0711 | | manhattan_accuracy | 0.934 | | euclidean_accuracy | 0.9391 | | **max_accuracy** | **0.9391** | #### Triplet * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:-------------------|:-----------| | cosine_accuracy | 0.934 | | dot_accuracy | 0.0711 | | manhattan_accuracy | 0.934 | | euclidean_accuracy | 0.9391 | | **max_accuracy** | **0.9391** | ## Training Details ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 10 - `warmup_ratio`: 0.1 - `bf16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 10 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | code-similarity-dev_max_accuracy | max_accuracy | |:-----:|:----:|:-------------:|:------:|:--------------------------------:|:------------:| | 0 | 0 | - | - | 0.8680 | - | | 2.0 | 100 | 0.6379 | 0.1845 | 0.9340 | - | | 4.0 | 200 | 0.0399 | 0.1577 | 0.9543 | - | | 6.0 | 300 | 0.0059 | 0.1577 | 0.9543 | - | | 8.0 | 400 | 0.0018 | 0.1662 | 0.9492 | - | | 10.0 | 500 | 0.0009 | 0.1643 | 0.9391 | 0.9391 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.006 kWh - **Carbon Emitted**: 0.002 kg of CO2 - **Hours Used**: 0.049 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA L4 - **CPU Model**: Intel(R) Xeon(R) CPU @ 2.20GHz - **RAM Size**: 62.80 GB ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.0 - Transformers: 4.41.1 - PyTorch: 2.3.0+cu121 - Accelerate: 0.30.1 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```