dbarbedillo commited on
Commit
bab4dd9
·
1 Parent(s): d084020

Initial commit

Browse files
.gitattributes CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zstandard filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
29
  *.zip filter=lfs diff=lfs merge=lfs -text
30
  *.zstandard filter=lfs diff=lfs merge=lfs -text
31
  *tfevents* filter=lfs diff=lfs merge=lfs -text
32
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 1748.24 +/- 84.28
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: AntBulletEnv-v0
20
+ type: AntBulletEnv-v0
21
+ ---
22
+
23
+ # **A2C** Agent playing **AntBulletEnv-v0**
24
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce7089bfd1e8b73ff6be30800bb783c8bb43174ad5fa3c2ff1e02b5bf21b8aa7
3
+ size 129189
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff9df7ac320>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff9df7ac3b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff9df7ac440>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff9df7ac4d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff9df7ac560>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff9df7ac5f0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff9df7ac680>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff9df7ac710>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff9df7ac7a0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff9df7ac830>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff9df7ac8c0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7ff9df7f0db0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 28
40
+ ],
41
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
42
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
43
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "_np_random": null
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
50
+ "dtype": "float32",
51
+ "_shape": [
52
+ 8
53
+ ],
54
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
55
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
56
+ "bounded_below": "[ True True True True True True True True]",
57
+ "bounded_above": "[ True True True True True True True True]",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 4,
61
+ "num_timesteps": 2000000,
62
+ "_total_timesteps": 2000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1658957405.3295894,
67
+ "learning_rate": 0.00096,
68
+ "tensorboard_log": "./tensorboard",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAHIoEP9riKr+zS/m7DSg+P7yqDT73Bv0/G2b8PiFmx7/pkoe/REDBP9vUmj7bgqc/yN8Bvxl6ST+yvbQ+xEMqwEw1kj9EagW8OdQqPldxHL04orK/JHaOPqHKAEDMIEI+gprYv+xEoz6F2xI/P6GQP5jcOz8gTDq/2tqtvdANRD8QBZm+gEluwAYnfD9ItF6/3XgXPUvbMcCU23Y+1U68vxqvzD+dLNy9YvOGvlVSCcBy7Cq/OomIPwnnjj8rPAa+/f77PvFXc78GxTs+Ov8FQIKa2L/sRKM+uyDfv4WQYr8dr1E/K5CCvx6+Db+3nkw/L73fv61xZj8y1Yu/lqkiv37S/z68h1E/O7vuvaQvAb+Zhkg/BftXPoC8FD9oZN08XILYvdm3k78SsNq/9NewvIrS2z7G8qU/SHqrPgDlk7/vRxc/7ESjPoXbEj+FkGK/SDdvPkABc78Us9i+ikyeP/hsWL8zmuQ+KHylPQazIr+tTbS/lTTIPQU1275hS3U/nLXEP4aPOL9dX30+40fvP9wDsj9cqF9AMPoOPx3SHcDUhtk+Ri8lPa1tYT8xuxZAgprYv+xEoz67IN+/hZBiv5R0lGIu"
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
80
+ },
81
+ "_last_original_obs": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAHqow7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDLptk9AAAAAJ3W5r8AAAAADbrBvQAAAAAoEu8/AAAAAO6VzDwAAAAAqXX7PwAAAADylKE9AAAAALnz7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDQXIzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAu46xPAAAAABYgt+/AAAAAJ2hIL0AAAAAXYr4PwAAAAALCCC9AAAAACuc6T8AAAAA9c3avQAAAAB81gDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA853zNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgG2XCD0AAAAAsFD6vwAAAACVyRK9AAAAAAYr8z8AAAAAtwgOvQAAAABTz9k/AAAAACsMBb4AAAAAfBLwvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOsN37YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA2TAS9AAAAADkl5b8AAAAAjeDsvQAAAAC2dOU/AAAAAJ4Xob0AAAAAURfZPwAAAABGR/U9AAAAADqa378AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
84
+ },
85
+ "_episode_num": 0,
86
+ "use_sde": true,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": 0.0,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJdA/9qDbrWMAWyUTegDjAF0lEdAp7V71schknV9lChoBkdAmB4PfsNUfmgHTegDaAhHQKe2PczImw91fZQoaAZHQJcS3DqGDcxoB03oA2gIR0Cnt1W/8EV4dX2UKGgGR0CXlMIZZSvUaAdN6ANoCEdAp70RwEQoTnV9lChoBkdAki6v5ckdFWgHTegDaAhHQKfCmuwHJLd1fZQoaAZHQJh26G1x82JoB03oA2gIR0Cnw1jwH7gsdX2UKGgGR0CWkrTN+so2aAdN6ANoCEdAp8RkL+glGHV9lChoBkdAmVJW0Z3s5WgHTegDaAhHQKfJ8XoC+111fZQoaAZHQJekZeD3/PxoB03oA2gIR0Cnz17Uoa1kdX2UKGgGR0CWTLo24uscaAdN6ANoCEdAp9AW0G/vfHV9lChoBkdAl2ULaAWi12gHTegDaAhHQKfRJjVhCt11fZQoaAZHQJbOLLbHp8poB03oA2gIR0Cn1p4tYjjadX2UKGgGR0CJpFPa+N96aAdN6ANoCEdAp9v3b0voNnV9lChoBkdAlyp5PRArx2gHTegDaAhHQKfcrUH6dlN1fZQoaAZHQJW6YubqhURoB03oA2gIR0Cn3b2g3974dX2UKGgGR0CO4ituk1uSaAdN6ANoCEdAp+NICwKSgXV9lChoBkdAlr4oNy5qd2gHTegDaAhHQKforA/LTx51fZQoaAZHQJVb0LeANG5oB03oA2gIR0Cn6WgOz6acdX2UKGgGR0CSkfKk2xY8aAdN6ANoCEdAp+p4DzRQanV9lChoBkdAkZYoQOFxn2gHTegDaAhHQKfv+Vwgkkd1fZQoaAZHQJKT/bSJCSloB03oA2gIR0Cn9ZfgJkXldX2UKGgGR0CJjtu5z5oHaAdN6ANoCEdAp/ZeA7Ppp3V9lChoBkdAj0Id8zAN5WgHTegDaAhHQKf3ayKvV3F1fZQoaAZHQJocCvW6K+BoB03oA2gIR0Cn/PWGRFI/dX2UKGgGR0Cb3fce8wpOaAdN6ANoCEdAqAJfYFqzq3V9lChoBkdAk0RudGy5Z2gHTegDaAhHQKgDGpRXOnl1fZQoaAZHQJoJjVc2R7toB03oA2gIR0CoBCdsJpnIdX2UKGgGR0CaPOJ4SpR5aAdN6ANoCEdAqAnCup0fYHV9lChoBkdAjrx+Zw4sE2gHTegDaAhHQKgPKu7pV0d1fZQoaAZHQJyz+bF0gbJoB03oA2gIR0CoD+Nu1ndwdX2UKGgGR0CaQMDc/MW5aAdN6ANoCEdAqBD11loUSXV9lChoBkdAmqAIlyBClmgHTegDaAhHQKgWiMvysjp1fZQoaAZHQIL8NUVBUrFoB03oA2gIR0CoHAIO6NEPdX2UKGgGR0Cczp9Gqgh9aAdN6ANoCEdAqBzB/I8yOHV9lChoBkdAm5x+Lzf78GgHTegDaAhHQKgd3arWAgB1fZQoaAZHQJ5KagAZKnNoB03oA2gIR0CoI2qVyFPBdX2UKGgGR0CdCJtGus90aAdN6ANoCEdAqCi9Iy0rsnV9lChoBkdAnjkFUEPlMmgHTegDaAhHQKgpepgkTpR1fZQoaAZHQJu2f5sTFl1oB03oA2gIR0CoKoJEx7AtdX2UKGgGR0CT70ze40/GaAdN6ANoCEdAqDABKFqSHXV9lChoBkdAnF0esT37DWgHTegDaAhHQKg1a5DJEIB1fZQoaAZHQJuS4houf29oB03oA2gIR0CoNkPwmVqvdX2UKGgGR0CbRpiMHbAUaAdN6ANoCEdAqDfLeQ+2VnV9lChoBkdAnMO1toBaLWgHTegDaAhHQKg98gyuZCx1fZQoaAZHQJwVjr1M/QloB03oA2gIR0CoQ0ZFw1iwdX2UKGgGR0CXf/D1XeWOaAdN6ANoCEdAqEQDlcQiA3V9lChoBkdAmnyzqjafz2gHTegDaAhHQKhFFjbzshR1fZQoaAZHQJf9yF49ovloB03oA2gIR0CoSqemWMS9dX2UKGgGR0CaGIwyIpH7aAdN6ANoCEdAqFAO1fE4vXV9lChoBkdAmOVGUbDMvGgHTegDaAhHQKhQxsenyd51fZQoaAZHQJnKGI1tO21oB03oA2gIR0CoUdiQT238dX2UKGgGR0CaYTXFLnLaaAdN6ANoCEdAqFdSEUTL4nV9lChoBkdAl0aCP2f03GgHTegDaAhHQKhc2eqaPS51fZQoaAZHQJbGsgdOqNpoB03oA2gIR0CoXaAqNIbwdX2UKGgGR0CM8E8gZCOWaAdN6ANoCEdAqF62vUz9CXV9lChoBkdAheVLcTJyQ2gHTegDaAhHQKhkYCOmzjZ1fZQoaAZHQIRCHBLwnYxoB03oA2gIR0CoadkDhcZ+dX2UKGgGR0CWChDkU9IPaAdN6ANoCEdAqGqeBH09Q3V9lChoBkdAlIT/omoitGgHTegDaAhHQKhrtg5zYEp1fZQoaAZHQJx34oH9m6JoB03oA2gIR0CocUsoMKCydX2UKGgGR0CYdYvaDf3waAdN6ANoCEdAqHbbwWnCO3V9lChoBkdAm/OmYSg5BGgHTegDaAhHQKh3lWGRFJB1fZQoaAZHQJf0AtVaOghoB03oA2gIR0CoeK5aePJadX2UKGgGR0CXaaHpKSPmaAdN6ANoCEdAqH4ndAPd23V9lChoBkdAmKh8BIWgvmgHTegDaAhHQKiDd47ihnJ1fZQoaAZHQJvbkl/pdKNoB03oA2gIR0CohC63qiXZdX2UKGgGR0CXAP8Z1mrbaAdN6ANoCEdAqIU+54GD+XV9lChoBkdAmOc1XNke62gHTegDaAhHQKiKub2Dg651fZQoaAZHQJgEGa5PM0RoB03oA2gIR0CokBj2JzkqdX2UKGgGR0CYgP+NtIkJaAdN6ANoCEdAqJDWfh/AkHV9lChoBkdAmCRyKrJbMWgHTegDaAhHQKiR6VDa4+d1fZQoaAZHQJWy6S0Sh8JoB03oA2gIR0Col3kAxSHedX2UKGgGR0CUJtTgVGkOaAdN6ANoCEdAqJzub/ffoHV9lChoBkdAlwA2hRIjGGgHTegDaAhHQKidrUWEbo91fZQoaAZHQJfJO8Djin5oB03oA2gIR0Conrl5nlGPdX2UKGgGR0CXwDErGza9aAdN6ANoCEdAqKRMo4MnZ3V9lChoBkdAmJOGJemelWgHTegDaAhHQKipzbVz6rN1fZQoaAZHQJcKkJUo8ZFoB03oA2gIR0Coqow9aEBbdX2UKGgGR0CVcPWj4593aAdN6ANoCEdAqKupzaK1onV9lChoBkdAjBM2vB7/oGgHTegDaAhHQKixVMj/uLJ1fZQoaAZHQJeWcpPRArxoB03oA2gIR0Cotsc4HX2/dX2UKGgGR0CYqDOXE61caAdN6ANoCEdAqLeEbcXWOXV9lChoBkdAmAdyj1wo9mgHTegDaAhHQKi4lH7xd6d1fZQoaAZHQJAGGDqW1MNoB03oA2gIR0CovjbzkIX1dX2UKGgGR0CWgrg9Net0aAdN6ANoCEdAqMOgEdNnG3V9lChoBkdAlPf9SuQp4WgHTegDaAhHQKjEXxm03Ox1fZQoaAZHQJg6DnKW9lFoB03oA2gIR0CoxW0NKAavdX2UKGgGR0CYsqq0+kgwaAdN6ANoCEdAqMr1QwblzXV9lChoBkdAl/sNcSoOx2gHTegDaAhHQKjQTtXPqs51fZQoaAZHQJgMGlvZRKpoB03oA2gIR0Co0QioCMgmdX2UKGgGR0CR2mSJj2BbaAdN6ANoCEdAqNIfCAMDwHV9lChoBkdAk9I/IfbKzWgHTegDaAhHQKjXsKsMiKR1fZQoaAZHQI3k77Q9ic5oB03oA2gIR0Co3VSZKFqSdX2UKGgGR0CPYpYW+GoKaAdN6ANoCEdAqN4W0TlDGHV9lChoBkdAje4zKLbYb2gHTegDaAhHQKjfOXWOIZZ1fZQoaAZHQH5NlyimEXdoB03oA2gIR0Co5h80Ltu2dX2UKGgGR0CUrbsLv1DjaAdN6ANoCEdAqOuLr3TNMXV9lChoBkdAkVZqOtGNJmgHTegDaAhHQKjsTNKyv9t1fZQoaAZHQJXx4Q2/BWRoB03oA2gIR0Co7WXjdYW+dX2UKGgGR0CH9kur6tT2aAdN6ANoCEdAqPMFQ40dinVlLg=="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 62500,
98
+ "n_steps": 8,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.9,
101
+ "ent_coef": 0.0,
102
+ "vf_coef": 0.4,
103
+ "max_grad_norm": 0.5,
104
+ "normalize_advantage": false
105
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df206a6769a46a923564056a9f009ee0daf0a547daef4e6e2a89fe0169d147f9
3
+ size 56126
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa09e69465be1a48fbc19d1ba205ccf5581d0341504c6603798ce84bc5505781
3
+ size 56766
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff9df7ac320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff9df7ac3b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff9df7ac440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff9df7ac4d0>", "_build": "<function ActorCriticPolicy._build at 0x7ff9df7ac560>", "forward": "<function ActorCriticPolicy.forward at 0x7ff9df7ac5f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff9df7ac680>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff9df7ac710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff9df7ac7a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff9df7ac830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff9df7ac8c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff9df7f0db0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658957405.3295894, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAHIoEP9riKr+zS/m7DSg+P7yqDT73Bv0/G2b8PiFmx7/pkoe/REDBP9vUmj7bgqc/yN8Bvxl6ST+yvbQ+xEMqwEw1kj9EagW8OdQqPldxHL04orK/JHaOPqHKAEDMIEI+gprYv+xEoz6F2xI/P6GQP5jcOz8gTDq/2tqtvdANRD8QBZm+gEluwAYnfD9ItF6/3XgXPUvbMcCU23Y+1U68vxqvzD+dLNy9YvOGvlVSCcBy7Cq/OomIPwnnjj8rPAa+/f77PvFXc78GxTs+Ov8FQIKa2L/sRKM+uyDfv4WQYr8dr1E/K5CCvx6+Db+3nkw/L73fv61xZj8y1Yu/lqkiv37S/z68h1E/O7vuvaQvAb+Zhkg/BftXPoC8FD9oZN08XILYvdm3k78SsNq/9NewvIrS2z7G8qU/SHqrPgDlk7/vRxc/7ESjPoXbEj+FkGK/SDdvPkABc78Us9i+ikyeP/hsWL8zmuQ+KHylPQazIr+tTbS/lTTIPQU1275hS3U/nLXEP4aPOL9dX30+40fvP9wDsj9cqF9AMPoOPx3SHcDUhtk+Ri8lPa1tYT8xuxZAgprYv+xEoz67IN+/hZBiv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAHqow7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDLptk9AAAAAJ3W5r8AAAAADbrBvQAAAAAoEu8/AAAAAO6VzDwAAAAAqXX7PwAAAADylKE9AAAAALnz7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDQXIzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAu46xPAAAAABYgt+/AAAAAJ2hIL0AAAAAXYr4PwAAAAALCCC9AAAAACuc6T8AAAAA9c3avQAAAAB81gDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA853zNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgG2XCD0AAAAAsFD6vwAAAACVyRK9AAAAAAYr8z8AAAAAtwgOvQAAAABTz9k/AAAAACsMBb4AAAAAfBLwvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOsN37YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA2TAS9AAAAADkl5b8AAAAAjeDsvQAAAAC2dOU/AAAAAJ4Xob0AAAAAURfZPwAAAABGR/U9AAAAADqa378AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJdA/9qDbrWMAWyUTegDjAF0lEdAp7V71schknV9lChoBkdAmB4PfsNUfmgHTegDaAhHQKe2PczImw91fZQoaAZHQJcS3DqGDcxoB03oA2gIR0Cnt1W/8EV4dX2UKGgGR0CXlMIZZSvUaAdN6ANoCEdAp70RwEQoTnV9lChoBkdAki6v5ckdFWgHTegDaAhHQKfCmuwHJLd1fZQoaAZHQJh26G1x82JoB03oA2gIR0Cnw1jwH7gsdX2UKGgGR0CWkrTN+so2aAdN6ANoCEdAp8RkL+glGHV9lChoBkdAmVJW0Z3s5WgHTegDaAhHQKfJ8XoC+111fZQoaAZHQJekZeD3/PxoB03oA2gIR0Cnz17Uoa1kdX2UKGgGR0CWTLo24uscaAdN6ANoCEdAp9AW0G/vfHV9lChoBkdAl2ULaAWi12gHTegDaAhHQKfRJjVhCt11fZQoaAZHQJbOLLbHp8poB03oA2gIR0Cn1p4tYjjadX2UKGgGR0CJpFPa+N96aAdN6ANoCEdAp9v3b0voNnV9lChoBkdAlyp5PRArx2gHTegDaAhHQKfcrUH6dlN1fZQoaAZHQJW6YubqhURoB03oA2gIR0Cn3b2g3974dX2UKGgGR0CO4ituk1uSaAdN6ANoCEdAp+NICwKSgXV9lChoBkdAlr4oNy5qd2gHTegDaAhHQKforA/LTx51fZQoaAZHQJVb0LeANG5oB03oA2gIR0Cn6WgOz6acdX2UKGgGR0CSkfKk2xY8aAdN6ANoCEdAp+p4DzRQanV9lChoBkdAkZYoQOFxn2gHTegDaAhHQKfv+Vwgkkd1fZQoaAZHQJKT/bSJCSloB03oA2gIR0Cn9ZfgJkXldX2UKGgGR0CJjtu5z5oHaAdN6ANoCEdAp/ZeA7Ppp3V9lChoBkdAj0Id8zAN5WgHTegDaAhHQKf3ayKvV3F1fZQoaAZHQJocCvW6K+BoB03oA2gIR0Cn/PWGRFI/dX2UKGgGR0Cb3fce8wpOaAdN6ANoCEdAqAJfYFqzq3V9lChoBkdAk0RudGy5Z2gHTegDaAhHQKgDGpRXOnl1fZQoaAZHQJoJjVc2R7toB03oA2gIR0CoBCdsJpnIdX2UKGgGR0CaPOJ4SpR5aAdN6ANoCEdAqAnCup0fYHV9lChoBkdAjrx+Zw4sE2gHTegDaAhHQKgPKu7pV0d1fZQoaAZHQJyz+bF0gbJoB03oA2gIR0CoD+Nu1ndwdX2UKGgGR0CaQMDc/MW5aAdN6ANoCEdAqBD11loUSXV9lChoBkdAmqAIlyBClmgHTegDaAhHQKgWiMvysjp1fZQoaAZHQIL8NUVBUrFoB03oA2gIR0CoHAIO6NEPdX2UKGgGR0Cczp9Gqgh9aAdN6ANoCEdAqBzB/I8yOHV9lChoBkdAm5x+Lzf78GgHTegDaAhHQKgd3arWAgB1fZQoaAZHQJ5KagAZKnNoB03oA2gIR0CoI2qVyFPBdX2UKGgGR0CdCJtGus90aAdN6ANoCEdAqCi9Iy0rsnV9lChoBkdAnjkFUEPlMmgHTegDaAhHQKgpepgkTpR1fZQoaAZHQJu2f5sTFl1oB03oA2gIR0CoKoJEx7AtdX2UKGgGR0CT70ze40/GaAdN6ANoCEdAqDABKFqSHXV9lChoBkdAnF0esT37DWgHTegDaAhHQKg1a5DJEIB1fZQoaAZHQJuS4houf29oB03oA2gIR0CoNkPwmVqvdX2UKGgGR0CbRpiMHbAUaAdN6ANoCEdAqDfLeQ+2VnV9lChoBkdAnMO1toBaLWgHTegDaAhHQKg98gyuZCx1fZQoaAZHQJwVjr1M/QloB03oA2gIR0CoQ0ZFw1iwdX2UKGgGR0CXf/D1XeWOaAdN6ANoCEdAqEQDlcQiA3V9lChoBkdAmnyzqjafz2gHTegDaAhHQKhFFjbzshR1fZQoaAZHQJf9yF49ovloB03oA2gIR0CoSqemWMS9dX2UKGgGR0CaGIwyIpH7aAdN6ANoCEdAqFAO1fE4vXV9lChoBkdAmOVGUbDMvGgHTegDaAhHQKhQxsenyd51fZQoaAZHQJnKGI1tO21oB03oA2gIR0CoUdiQT238dX2UKGgGR0CaYTXFLnLaaAdN6ANoCEdAqFdSEUTL4nV9lChoBkdAl0aCP2f03GgHTegDaAhHQKhc2eqaPS51fZQoaAZHQJbGsgdOqNpoB03oA2gIR0CoXaAqNIbwdX2UKGgGR0CM8E8gZCOWaAdN6ANoCEdAqF62vUz9CXV9lChoBkdAheVLcTJyQ2gHTegDaAhHQKhkYCOmzjZ1fZQoaAZHQIRCHBLwnYxoB03oA2gIR0CoadkDhcZ+dX2UKGgGR0CWChDkU9IPaAdN6ANoCEdAqGqeBH09Q3V9lChoBkdAlIT/omoitGgHTegDaAhHQKhrtg5zYEp1fZQoaAZHQJx34oH9m6JoB03oA2gIR0CocUsoMKCydX2UKGgGR0CYdYvaDf3waAdN6ANoCEdAqHbbwWnCO3V9lChoBkdAm/OmYSg5BGgHTegDaAhHQKh3lWGRFJB1fZQoaAZHQJf0AtVaOghoB03oA2gIR0CoeK5aePJadX2UKGgGR0CXaaHpKSPmaAdN6ANoCEdAqH4ndAPd23V9lChoBkdAmKh8BIWgvmgHTegDaAhHQKiDd47ihnJ1fZQoaAZHQJvbkl/pdKNoB03oA2gIR0CohC63qiXZdX2UKGgGR0CXAP8Z1mrbaAdN6ANoCEdAqIU+54GD+XV9lChoBkdAmOc1XNke62gHTegDaAhHQKiKub2Dg651fZQoaAZHQJgEGa5PM0RoB03oA2gIR0CokBj2JzkqdX2UKGgGR0CYgP+NtIkJaAdN6ANoCEdAqJDWfh/AkHV9lChoBkdAmCRyKrJbMWgHTegDaAhHQKiR6VDa4+d1fZQoaAZHQJWy6S0Sh8JoB03oA2gIR0Col3kAxSHedX2UKGgGR0CUJtTgVGkOaAdN6ANoCEdAqJzub/ffoHV9lChoBkdAlwA2hRIjGGgHTegDaAhHQKidrUWEbo91fZQoaAZHQJfJO8Djin5oB03oA2gIR0Conrl5nlGPdX2UKGgGR0CXwDErGza9aAdN6ANoCEdAqKRMo4MnZ3V9lChoBkdAmJOGJemelWgHTegDaAhHQKipzbVz6rN1fZQoaAZHQJcKkJUo8ZFoB03oA2gIR0Coqow9aEBbdX2UKGgGR0CVcPWj4593aAdN6ANoCEdAqKupzaK1onV9lChoBkdAjBM2vB7/oGgHTegDaAhHQKixVMj/uLJ1fZQoaAZHQJeWcpPRArxoB03oA2gIR0Cotsc4HX2/dX2UKGgGR0CYqDOXE61caAdN6ANoCEdAqLeEbcXWOXV9lChoBkdAmAdyj1wo9mgHTegDaAhHQKi4lH7xd6d1fZQoaAZHQJAGGDqW1MNoB03oA2gIR0CovjbzkIX1dX2UKGgGR0CWgrg9Net0aAdN6ANoCEdAqMOgEdNnG3V9lChoBkdAlPf9SuQp4WgHTegDaAhHQKjEXxm03Ox1fZQoaAZHQJg6DnKW9lFoB03oA2gIR0CoxW0NKAavdX2UKGgGR0CYsqq0+kgwaAdN6ANoCEdAqMr1QwblzXV9lChoBkdAl/sNcSoOx2gHTegDaAhHQKjQTtXPqs51fZQoaAZHQJgMGlvZRKpoB03oA2gIR0Co0QioCMgmdX2UKGgGR0CR2mSJj2BbaAdN6ANoCEdAqNIfCAMDwHV9lChoBkdAk9I/IfbKzWgHTegDaAhHQKjXsKsMiKR1fZQoaAZHQI3k77Q9ic5oB03oA2gIR0Co3VSZKFqSdX2UKGgGR0CPYpYW+GoKaAdN6ANoCEdAqN4W0TlDGHV9lChoBkdAje4zKLbYb2gHTegDaAhHQKjfOXWOIZZ1fZQoaAZHQH5NlyimEXdoB03oA2gIR0Co5h80Ltu2dX2UKGgGR0CUrbsLv1DjaAdN6ANoCEdAqOuLr3TNMXV9lChoBkdAkVZqOtGNJmgHTegDaAhHQKjsTNKyv9t1fZQoaAZHQJXx4Q2/BWRoB03oA2gIR0Co7WXjdYW+dX2UKGgGR0CH9kur6tT2aAdN6ANoCEdAqPMFQ40dinVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5935bcd0936e61ee473c53e8573b526fc4a0e3d8cd271a3a827bba74a00676f6
3
+ size 1215297
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1748.2383368908427, "std_reward": 84.28451675493679, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-27T22:25:05.536742"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28c0d45f7b8a712ba4ee0071652071e85ec67edf7c8eaf66c3b33910fa8d7d02
3
+ size 2763