ddobokki commited on
Commit
14f5a89
·
1 Parent(s): cf24ca6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -99
README.md CHANGED
@@ -5,14 +5,11 @@ tags:
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
 
8
  ---
9
 
10
  # ddobokki/unsup-simcse-klue-roberta-small
11
 
12
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
-
14
- <!--- Describe your model here -->
15
-
16
  ## Usage (Sentence-Transformers)
17
 
18
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
@@ -31,98 +28,5 @@ model = SentenceTransformer('ddobokki/unsup-simcse-klue-roberta-small')
31
  embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
34
-
35
-
36
-
37
- ## Usage (HuggingFace Transformers)
38
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
39
-
40
- ```python
41
- from transformers import AutoTokenizer, AutoModel
42
- import torch
43
-
44
-
45
- #Mean Pooling - Take attention mask into account for correct averaging
46
- def mean_pooling(model_output, attention_mask):
47
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
48
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
49
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
50
-
51
-
52
- # Sentences we want sentence embeddings for
53
- sentences = ['This is an example sentence', 'Each sentence is converted']
54
-
55
- # Load model from HuggingFace Hub
56
- tokenizer = AutoTokenizer.from_pretrained('ddobokki/unsup-simcse-klue-roberta-small')
57
- model = AutoModel.from_pretrained('ddobokki/unsup-simcse-klue-roberta-small')
58
-
59
- # Tokenize sentences
60
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
61
-
62
- # Compute token embeddings
63
- with torch.no_grad():
64
- model_output = model(**encoded_input)
65
-
66
- # Perform pooling. In this case, mean pooling.
67
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
68
-
69
- print("Sentence embeddings:")
70
- print(sentence_embeddings)
71
- ```
72
-
73
-
74
-
75
- ## Evaluation Results
76
-
77
- <!--- Describe how your model was evaluated -->
78
-
79
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ddobokki/unsup-simcse-klue-roberta-small)
80
-
81
-
82
- ## Training
83
- The model was trained with the parameters:
84
-
85
- **DataLoader**:
86
-
87
- `torch.utils.data.dataloader.DataLoader` of length 11312 with parameters:
88
- ```
89
- {'batch_size': 256, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
90
- ```
91
-
92
- **Loss**:
93
-
94
- `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
95
- ```
96
- {'scale': 20.0, 'similarity_fct': 'cos_sim'}
97
- ```
98
-
99
- Parameters of the fit()-Method:
100
- ```
101
- {
102
- "epochs": 1,
103
- "evaluation_steps": 1131,
104
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
105
- "max_grad_norm": 1,
106
- "optimizer_class": "<class 'transformers.optimization.AdamW'>",
107
- "optimizer_params": {
108
- "lr": 5e-05
109
- },
110
- "scheduler": "WarmupLinear",
111
- "steps_per_epoch": null,
112
- "warmup_steps": 1132,
113
- "weight_decay": 0.01
114
- }
115
- ```
116
-
117
-
118
- ## Full Model Architecture
119
- ```
120
- SentenceTransformer(
121
- (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: RobertaModel
122
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
123
- )
124
- ```
125
-
126
- ## Citing & Authors
127
-
128
- <!--- Describe where people can find more information -->
 
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+ - ko
9
  ---
10
 
11
  # ddobokki/unsup-simcse-klue-roberta-small
12
 
 
 
 
 
13
  ## Usage (Sentence-Transformers)
14
 
15
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
 
28
  embeddings = model.encode(sentences)
29
  print(embeddings)
30
  ```
31
+ (개발중)
32
+ git:https://github.com/ddobokki/KoSimCSE