dudoxu commited on
Commit
719809a
·
1 Parent(s): 1d977c0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -5
README.md CHANGED
@@ -1,5 +1,15 @@
1
  ---
2
  language: de, en
 
 
 
 
 
 
 
 
 
 
3
 
4
  ```
5
  HasAns_exact = 85.79622132253711
@@ -8,12 +18,36 @@ HasAns_total = 5928
8
  NoAns_exact = 94.76871320437343
9
  NoAns_f1 = 94.76871320437343
10
  NoAns_total = 5945
11
- best_exact = 90.28889076054915
12
- best_exact_thresh = 0.0
13
- best_f1 = 92.84713483219731
14
- best_f1_thresh = 0.0
15
- epoch = 3.0
16
  exact = 90.28889076054915
17
  f1 = 92.84713483219753
18
  total = 11873
19
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  language: de, en
3
+ ---
4
+
5
+ # Bilingual English + German SQuAD2.0
6
+
7
+ We created German Squad 2.0 (deQuAD) and merged with [**SQuAD2.0**](https://rajpurkar.github.io/SQuAD-explorer/) into an English and German training data for question answering. The [**bert-base-multilingual-cased**](https://github.com/google-research/bert/blob/master/multilingual.md) is used to fine-tune bilingual QA downstream task.
8
+
9
+ # Details of deQuAD 2.0
10
+ [**SQuAD2.0**](https://rajpurkar.github.io/SQuAD-explorer/) was auto-translated into German. We hired professional editors to proofread the translated transcripts, correct mistakes and double check the answers to further polish the text and enhance annotation quality. The final German dataset contains **130k** training and **11k** test samples.
11
+
12
+ Evaluation on English SQuAD2.0
13
 
14
  ```
15
  HasAns_exact = 85.79622132253711
 
18
  NoAns_exact = 94.76871320437343
19
  NoAns_f1 = 94.76871320437343
20
  NoAns_total = 5945
 
 
 
 
 
21
  exact = 90.28889076054915
22
  f1 = 92.84713483219753
23
  total = 11873
24
  ```
25
+
26
+ ## Use Model in Pipeline
27
+
28
+
29
+ ```python
30
+ from transformers import pipeline
31
+
32
+ qa_pipeline = pipeline(
33
+ "question-answering",
34
+ model="deutsche-telekom/bert-multi-english-german-squad2",
35
+ tokenizer="deutsche-telekom/bert-multi-english-german-squad2"
36
+ )
37
+
38
+ qa_pipeline({
39
+ 'context': " ",
40
+ 'question': " "})
41
+
42
+ ```
43
+
44
+ # Output:
45
+
46
+ ```json
47
+ {
48
+ "score": 0.83,
49
+ "start": 0,
50
+ "end": 9,
51
+ "answer": " "
52
+ }
53
+ ```