File size: 6,417 Bytes
5d21927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
[paths]
train = "data/engagement_three_train5.spacy"
dev = "data/engagement_three_dev5.spacy"
vectors = null
init_tok2vec = null

[system]
gpu_allocator = "pytorch"
seed = 0

[nlp]
lang = "en"
pipeline = ["transformer","parser","tagger","ner","attribute_ruler","lemmatizer","trainable_transformer","spancat"]
batch_size = 10
disabled = []
before_creation = null
after_creation = null
after_pipeline_creation = null
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}

[components]

[components.attribute_ruler]
factory = "attribute_ruler"
scorer = {"@scorers":"spacy.attribute_ruler_scorer.v1"}
validate = false

[components.lemmatizer]
factory = "lemmatizer"
mode = "rule"
model = null
overwrite = false
scorer = {"@scorers":"spacy.lemmatizer_scorer.v1"}

[components.ner]
factory = "ner"
incorrect_spans_key = null
moves = null
scorer = {"@scorers":"spacy.ner_scorer.v1"}
update_with_oracle_cut_size = 100

[components.ner.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "ner"
extra_state_tokens = false
hidden_width = 64
maxout_pieces = 2
use_upper = false
nO = null

[components.ner.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
upstream = "transformer"
pooling = {"@layers":"reduce_mean.v1"}

[components.parser]
factory = "parser"
learn_tokens = false
min_action_freq = 30
moves = null
scorer = {"@scorers":"spacy.parser_scorer.v1"}
update_with_oracle_cut_size = 100

[components.parser.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "parser"
extra_state_tokens = false
hidden_width = 64
maxout_pieces = 2
use_upper = false
nO = null

[components.parser.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
upstream = "transformer"
pooling = {"@layers":"reduce_mean.v1"}

[components.spancat]
factory = "spancat"
max_positive = null
scorer = {"@scorers":"spacy.spancat_scorer.v1"}
spans_key = ${vars.spans_key}
threshold = 0.5

[components.spancat.model]
@architectures = "Ensemble_SpanCategorizer.v2"
LSTMhidden = 200
LSTMdepth = 1
LSTMdropout = 0.0

[components.spancat.model.reducer1]
@layers = "Mish_two_way_reducer.v2"
depth = 2
dropout = 0.2
hidden_size = 256

[components.spancat.model.reducer2]
@layers = "Mish_mean_max_reducer.v1"
depth = 1
dropout = 0.4
hidden_size = 128

[components.spancat.model.scorer]
@layers = "spacy.LinearLogistic.v1"
nO = null
nI = null

[components.spancat.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
pooling = {"@layers":"reduce_mean.v1"}
upstream = "trainable_transformer"

[components.spancat.model.tok2vec_trf]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 0
pooling = {"@layers":"reduce_mean.v1"}
upstream = "transformer"

[components.spancat.suggester]
@misc = "spacy-experimental.ngram_subtree_suggester.v1"
sizes = [1,2,3,4,5,6,7,8,9,10,11,12]

[components.tagger]
factory = "tagger"
neg_prefix = "!"
overwrite = false
scorer = {"@scorers":"spacy.tagger_scorer.v1"}

[components.tagger.model]
@architectures = "spacy.Tagger.v2"
nO = null
normalize = false

[components.tagger.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
upstream = "transformer"
pooling = {"@layers":"reduce_mean.v1"}

[components.trainable_transformer]
factory = "transformer"
max_batch_items = 4096
set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"}

[components.trainable_transformer.model]
name = "egumasa/roberta-base-academic3"
@architectures = "spacy-transformers.TransformerModel.v1"

[components.trainable_transformer.model.get_spans]
@span_getters = "spacy-transformers.strided_spans.v1"
window = 384
stride = 288

[components.trainable_transformer.model.tokenizer_config]
use_fast = true

[components.transformer]
factory = "transformer"
max_batch_items = 4096
set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"}

[components.transformer.model]
@architectures = "spacy-transformers.TransformerModel.v3"
name = "roberta-base"
mixed_precision = false

[components.transformer.model.get_spans]
@span_getters = "spacy-transformers.strided_spans.v1"
window = 128
stride = 96

[components.transformer.model.grad_scaler_config]

[components.transformer.model.tokenizer_config]
use_fast = true

[components.transformer.model.transformer_config]

[corpora]

[corpora.dev]
@readers = "spacy.Corpus.v1"
path = ${paths.dev}
max_length = 0
gold_preproc = false
limit = 0
augmenter = null

[corpora.train]
@readers = "spacy.Corpus.v1"
path = ${paths.train}
max_length = 2000
gold_preproc = false
limit = 0
augmenter = null

[training]
dev_corpus = "corpora.dev"
train_corpus = "corpora.train"
seed = ${system.seed}
gpu_allocator = ${system.gpu_allocator}
dropout = 0.1
accumulate_gradient = 4
patience = 3000
max_epochs = 0
max_steps = 20000
eval_frequency = 200
frozen_components = ["transformer","parser","tagger","ner","attribute_ruler","lemmatizer"]
annotating_components = ["transformer","parser"]
before_to_disk = null

[training.batcher]
@batchers = "spacy.batch_by_words.v1"
discard_oversize = false
tolerance = 0.2
get_length = null

[training.batcher.size]
start = 500
@schedules = "compounding.v1"
stop = 1000
compound = 1.0002
t = 0.0

[training.logger]
@loggers = "spacy.WandbLogger.v4"
project_name = "Spancat_5-fold"
remove_config_values = ["paths.train","paths.dev","corpora.train.path","corpora.dev.path"]
model_log_interval = null
entity = "e-masaki0101"
log_dataset_dir = null
run_name = null
log_best_dir = null
log_latest_dir = null

[training.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = false
eps = 0.00000001

[training.optimizer.learn_rate]
initial_rate = 0.0000565344
@schedules = "warmup_linear.v1"
warmup_steps = 1000
total_steps = 20000

[training.score_weights]
dep_uas = null
dep_las = null
dep_las_per_type = null
sents_p = null
sents_r = null
sents_f = null
tag_acc = null
ents_f = null
ents_p = null
ents_r = null
ents_per_type = null
lemma_acc = null
spans_sc_f = 0.5
spans_sc_p = 0.0
spans_sc_r = 0.5

[pretraining]

[initialize]
vectors = ${paths.vectors}
init_tok2vec = ${paths.init_tok2vec}
vocab_data = null
lookups = null
before_init = null
after_init = null

[initialize.components]

[initialize.tokenizer]

[vars]
spans_key = "sc"