elyx commited on
Commit
70a23f9
·
verified ·
1 Parent(s): 45d3af8

step 1, run_id uovmto44

Browse files
Files changed (6) hide show
  1. README.md +199 -0
  2. config.json +29 -0
  3. config.py +166 -0
  4. generation_config.json +6 -0
  5. model.py +727 -0
  6. model.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "UltravoxModel"
4
+ ],
5
+ "audio_latency_block_size": null,
6
+ "audio_model_id": "openai/whisper-tiny",
7
+ "auto_map": {
8
+ "AutoConfig": "config.UltravoxConfig",
9
+ "AutoModel": "model.UltravoxModel"
10
+ },
11
+ "hidden_size": 4096,
12
+ "ignore_index": -100,
13
+ "initializer_range": 0.02,
14
+ "model_type": "ultravox",
15
+ "norm_init": 0.4,
16
+ "projector_act": "swiglu",
17
+ "stack_factor": 8,
18
+ "text_config": {
19
+ "head_dim": 2,
20
+ "hidden_size": 64,
21
+ "model_type": "llama",
22
+ "num_hidden_layers": 1,
23
+ "vocab_size": 128128
24
+ },
25
+ "text_model_id": null,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.46.3",
28
+ "vocab_size": 128128
29
+ }
config.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dataclasses
2
+ from enum import Enum
3
+ from typing import Any, Dict, List, Optional
4
+
5
+ import transformers
6
+
7
+
8
+ @dataclasses.dataclass
9
+ class LoraConfigSimplified:
10
+ """
11
+ Low Rank Approximation (LoRA) configuration.
12
+
13
+ Used for language and audio models separately.
14
+ """
15
+
16
+ # The rank of the approximation
17
+ r: int = 0
18
+ lora_alpha: float = 8
19
+ target_modules: Optional[List[str]] = dataclasses.field(
20
+ default_factory=lambda: ["k_proj", "q_proj", "linear_k", "linear_q"]
21
+ )
22
+
23
+
24
+ class LossFunction(str, Enum):
25
+ CrossEntropy = "ce"
26
+ KL_Divergence = "kl"
27
+
28
+
29
+ @dataclasses.dataclass
30
+ class LossConfig:
31
+ loss_function: LossFunction = LossFunction.KL_Divergence
32
+ kl_temperature: float = 2.0
33
+
34
+ @property
35
+ def requires_alt_fields(self):
36
+ return self.loss_function == LossFunction.KL_Divergence
37
+
38
+
39
+ class UltravoxConfig(transformers.PretrainedConfig):
40
+ r"""
41
+ This is the configuration class to store the configuration of a [`UltravoxForConditionalGeneration`]. It is used to instantiate an
42
+ Ultravox model according to the specified arguments, defining the model architecture.
43
+
44
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
45
+ documentation from [`PretrainedConfig`] for more information.
46
+
47
+ Args:
48
+ audio_config (`Wav2Vec2Config`, *optional*):
49
+ Custom audio config or dict
50
+ text_config (`Union[AutoConfig, dict]`, *optional*):
51
+ The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
52
+ ignore_index (`int`, *optional*, defaults to -100):
53
+ The ignore index for the loss function.
54
+ audio_token_index (`int`, *optional*, defaults to 32000):
55
+ The audio token index to encode the audio prompt.
56
+ stack_factor (`int`, *optional*, defaults to 8):
57
+ Audio downsampling factor for the multimodal projector.
58
+ norm_init (`float`, *optional*, defaults to 0.4):
59
+ The initialization value for the layer normalization.
60
+ projector_act (`str`, *optional*, defaults to `"swiglu"`):
61
+ The activation function used by the multimodal projector.
62
+ text_model_lora_config (`LoraConfigSimplified`, *optional*):
63
+ The LoRA configuration for finetuning the text model.
64
+ audio_model_lora_config (`LoraConfigSimplified`, *optional*):
65
+ The LoRA configuration for finetuning the audio model.
66
+
67
+
68
+ Example:
69
+
70
+ ```python
71
+ >>> from transformers import UltravoxForConditionalGeneration, Wav2Vec2Config, UltravoxConfig, LlamaConfig
72
+
73
+ >>> # Initializing an audio encoder config
74
+ >>> audio_config = Wav2Vec2Config()
75
+
76
+ >>> # Initializing a Llama config
77
+ >>> text_config = LlamaConfig()
78
+
79
+ >>> # Initializing a default configuration
80
+ >>> configuration = UltravoxConfig(audio_config, text_config)
81
+
82
+ >>> # Initializing a completely untrained model from the configuration
83
+ >>> model = UltravoxForConditionalGeneration(configuration)
84
+
85
+ >>> # Accessing the model configuration
86
+ >>> configuration = model.config
87
+
88
+ >>> # Initialize a model from pretrained checkpoints and random projector weights
89
+ >>> config = UltravoxConfig(audio_model_id="facebook/wav2vec2-base-960h", text_model_id="meta-llama/Llama-2-7b-chat-hf")
90
+ ```"""
91
+
92
+ model_type = "ultravox"
93
+ is_composition = False
94
+
95
+ def __init__(
96
+ self,
97
+ audio_config: Optional[Dict[str, Any]] = None,
98
+ text_config: Optional[Dict[str, Any]] = None,
99
+ audio_model_id: Optional[str] = None,
100
+ text_model_id: Optional[str] = None,
101
+ ignore_index: int = -100,
102
+ hidden_size: int = 4096,
103
+ stack_factor: int = 8,
104
+ norm_init: float = 0.4,
105
+ projector_act: str = "swiglu",
106
+ text_model_lora_config: Optional[LoraConfigSimplified] = None,
107
+ audio_model_lora_config: Optional[LoraConfigSimplified] = None,
108
+ **kwargs,
109
+ ):
110
+ self.ignore_index = ignore_index
111
+
112
+ self.audio_model_id = audio_model_id
113
+ self.text_model_id = text_model_id
114
+
115
+ self.hidden_size = hidden_size
116
+ self.stack_factor = stack_factor
117
+ self.norm_init = norm_init
118
+ self.projector_act = projector_act
119
+
120
+ if text_model_id is not None:
121
+ self.text_config: transformers.LlamaConfig = (
122
+ transformers.AutoConfig.from_pretrained(text_model_id)
123
+ )
124
+ else:
125
+ text_config = text_config or {}
126
+ self.text_config = transformers.CONFIG_MAPPING[
127
+ text_config.get("model_type", "llama")
128
+ ](**text_config)
129
+
130
+ if audio_model_id is not None:
131
+ self.audio_config: transformers.PretrainedConfig = (
132
+ transformers.AutoConfig.from_pretrained(audio_model_id)
133
+ )
134
+ else:
135
+ audio_config = audio_config or {}
136
+ self.audio_config = transformers.CONFIG_MAPPING[
137
+ audio_config.get("model_type", "wav2vec2")
138
+ ](**audio_config)
139
+
140
+ self.text_model_lora_config = (
141
+ text_model_lora_config
142
+ if isinstance(text_model_lora_config, dict)
143
+ else dataclasses.asdict(text_model_lora_config or LoraConfigSimplified())
144
+ )
145
+ self.audio_model_lora_config = (
146
+ audio_model_lora_config
147
+ if isinstance(audio_model_lora_config, dict)
148
+ else dataclasses.asdict(audio_model_lora_config or LoraConfigSimplified())
149
+ )
150
+
151
+ self.vocab_size = self.text_config.vocab_size
152
+
153
+ self.initializer_range = self.text_config.initializer_range
154
+
155
+ super().__init__(**kwargs)
156
+
157
+ def to_diff_dict(self) -> Dict[str, Any]:
158
+ diff_dict = super().to_diff_dict()
159
+
160
+ # remove text_config and audio_config if text_model_id and audio_model_id are present
161
+ if self.text_model_id is not None:
162
+ diff_dict.pop("text_config", None)
163
+ if self.audio_model_id is not None:
164
+ diff_dict.pop("audio_config", None)
165
+
166
+ return diff_dict
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.46.3"
6
+ }
model.py ADDED
@@ -0,0 +1,727 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from typing import Any, Dict, Optional, Set, Tuple, Union
3
+
4
+ import peft
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+ import transformers
9
+ import transformers.activations
10
+ import transformers.modeling_outputs
11
+ import transformers.models
12
+ from transformers.models.whisper import modeling_whisper as whisper
13
+
14
+ # We must use relative import in this directory to allow uploading to HF Hub
15
+ # Even "from . import X" pattern doesn't work (undocumented and unclear why)
16
+ from team17.modeling.config import LossConfig, LossFunction, UltravoxConfig
17
+
18
+
19
+ class UltravoxModel(transformers.LlamaPreTrainedModel):
20
+ """
21
+ The Ultravox model which consists of an audio encoder and a language model.
22
+
23
+ Audio input is processed by the audio encoder, then every `stack_factor` frames are stacked together and
24
+ projected to the language model's embedding space using a few linear layers.
25
+ The text is embedded by the language model as usual and then the audio and text embeddings are merged together.
26
+
27
+ A special token `<|audio|>` is used to indicate the start of the audio embeddings in the merged embeddings.
28
+
29
+ Parameters:
30
+ config: Model configuration class with all the parameters of the model.
31
+ """
32
+
33
+ config_class = UltravoxConfig
34
+ config: UltravoxConfig # for type hinting
35
+ # Usually we load encoder and LLM weights from a pretrained model separately, so they are allowed to be missing
36
+ _keys_to_ignore_on_load_missing = ["audio_tower.*", "language_model.*"]
37
+
38
+ def __init__(self, config: UltravoxConfig):
39
+ super().__init__(config)
40
+ self._register_load_state_dict_pre_hook(self._pre_load_state_dict_hook)
41
+
42
+ self.keep_params: Set[str] = set()
43
+ self.vocab_size = config.vocab_size
44
+ print(config)
45
+ self.audio_tower = self._create_audio_tower(config)
46
+ self.multi_modal_projector = self._create_multi_modal_projector(config)
47
+ self.language_model = self._create_language_model(config)
48
+
49
+ # Determine no_split_modules dynamically to use with FSDP auto_wrap policy.
50
+ # FSDP throws an error if some of the layer types are not found in the model.
51
+ # This would be something like ["LlamaDecoderLayer", "WhisperEncoderLayer"]
52
+ self._no_split_modules = (self.language_model._no_split_modules or []) + (
53
+ self.audio_tower._no_split_modules or []
54
+ )
55
+
56
+ self.loss_config = LossConfig()
57
+ self.post_init()
58
+
59
+ def get_input_embeddings(self):
60
+ return self.language_model.get_input_embeddings()
61
+
62
+ def set_input_embeddings(self, value):
63
+ self.language_model.set_input_embeddings(value)
64
+
65
+ def get_output_embeddings(self):
66
+ return self.language_model.get_output_embeddings()
67
+
68
+ def set_output_embeddings(self, new_embeddings):
69
+ self.language_model.set_output_embeddings(new_embeddings)
70
+
71
+ def set_decoder(self, decoder):
72
+ self.language_model.set_decoder(decoder)
73
+
74
+ def get_decoder(self):
75
+ return self.language_model.get_decoder()
76
+
77
+ def tie_weights(self):
78
+ return self.language_model.tie_weights()
79
+
80
+ def set_loss_config(self, loss_config: LossConfig):
81
+ self.loss_config = loss_config
82
+
83
+ def _setup_cache(
84
+ self, cache_cls, max_batch_size: int, max_cache_len: Optional[int] = None
85
+ ):
86
+ self.language_model._setup_cache(cache_cls, max_batch_size, max_cache_len)
87
+
88
+ def _reorder_cache(self, past_key_values, beam_idx):
89
+ return self.language_model._reorder_cache(past_key_values, beam_idx)
90
+
91
+ def resize_token_embeddings(
92
+ self,
93
+ new_num_tokens: Optional[int] = None,
94
+ pad_to_multiple_of: Optional[int] = None,
95
+ ) -> nn.Embedding:
96
+ model_embeds = self.language_model.resize_token_embeddings(
97
+ new_num_tokens, pad_to_multiple_of
98
+ )
99
+ # update vocab size
100
+ self.config.text_config.vocab_size = model_embeds.num_embeddings
101
+ self.config.vocab_size = model_embeds.num_embeddings
102
+ self.vocab_size = model_embeds.num_embeddings
103
+ return model_embeds
104
+
105
+ def _compute_kl_loss(
106
+ self,
107
+ lm_output: transformers.modeling_outputs.CausalLMOutputWithPast,
108
+ labels: Optional[torch.Tensor] = None,
109
+ past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
110
+ alt_input_ids: Optional[torch.Tensor] = None,
111
+ alt_attention_mask: Optional[torch.Tensor] = None,
112
+ alt_labels: Optional[torch.Tensor] = None,
113
+ **kwargs,
114
+ ):
115
+ # disable gradient computation for the teacher model
116
+ with torch.no_grad():
117
+ # compute the teacher (text-only) model's distribution
118
+ alt_inputs_embeds = self.get_input_embeddings().forward(alt_input_ids)
119
+ alt_lm_output = self.language_model.forward(
120
+ inputs_embeds=alt_inputs_embeds,
121
+ labels=alt_labels,
122
+ attention_mask=alt_attention_mask,
123
+ past_key_values=past_key_values,
124
+ **kwargs,
125
+ )
126
+ # compute the KL divergence loss between the two models
127
+ kl_loss = F.kl_div(
128
+ F.log_softmax(
129
+ lm_output.logits[labels != -100] / self.loss_config.kl_temperature,
130
+ dim=-1,
131
+ ),
132
+ F.softmax(
133
+ alt_lm_output.logits[alt_labels != -100]
134
+ / self.loss_config.kl_temperature,
135
+ dim=-1,
136
+ ),
137
+ reduction="batchmean",
138
+ )
139
+ return {"loss": kl_loss}
140
+
141
+ def forward(
142
+ self,
143
+ input_ids: torch.Tensor,
144
+ audio_values: Optional[torch.FloatTensor] = None,
145
+ inputs_embeds: Optional[torch.FloatTensor] = None,
146
+ labels: Optional[torch.Tensor] = None,
147
+ attention_mask: Optional[torch.Tensor] = None,
148
+ audio_token_start_idx: Optional[torch.Tensor] = None,
149
+ audio_len: Optional[torch.Tensor] = None,
150
+ audio_token_len: Optional[torch.Tensor] = None,
151
+ past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
152
+ # the alt_* fields are needed for KL divergence loss
153
+ alt_input_ids: Optional[torch.Tensor] = None,
154
+ alt_attention_mask: Optional[torch.Tensor] = None,
155
+ alt_labels: Optional[torch.Tensor] = None,
156
+ **kwargs,
157
+ ) -> Union[Tuple, transformers.modeling_outputs.CausalLMOutputWithPast]:
158
+ """
159
+ Forward pass for the Ultravox model.
160
+
161
+ `input_ids` are the tokenized text input. They are embedded by the language model as usual.
162
+ `audio_values` are processed by the audio encoder and then every `stack_factor` frames are stacked together and
163
+ projected to the language model's embedding space using a few linear layers.
164
+ The audio and text embeddings are merged together. A special token `<|audio|>` is used to indicate the start
165
+ of the audio embeddings in the merged embeddings.
166
+
167
+ Args:
168
+ input_ids: The tokenized text input.
169
+ audio_values: The processed audio values.
170
+ inputs_embeds: The embeddings for the input tokens.
171
+ labels: The tokenized text labels.
172
+ attention_mask: The attention mask for the input.
173
+ position_ids: The position ids for the input.
174
+ past_key_values: The past key value cache for the language model attention layers.
175
+ **kwargs: Additional keyword arguments. Passed directly to the language model.
176
+ """
177
+ if inputs_embeds is None:
178
+ # B x T -> B x T x D
179
+ inputs_embeds = self.get_input_embeddings().forward(input_ids)
180
+
181
+ if audio_values is not None:
182
+ assert (
183
+ audio_token_start_idx is not None and audio_token_len is not None
184
+ ), "audio_token_start_idx and audio_token_len must be provided if audio_values are provided."
185
+ assert (
186
+ len(audio_token_start_idx) == len(audio_token_len) == len(audio_values)
187
+ ), "audio_token_start_idx, audio_token_len, and audio_values must have the same batch size."
188
+
189
+ # B x A/3200 x D
190
+ audio_tower_output = self.audio_tower.forward(
191
+ audio_values.to(self.audio_tower.dtype),
192
+ audio_len=audio_len,
193
+ ).last_hidden_state
194
+ audio_tower_output = audio_tower_output.to(inputs_embeds.dtype)
195
+
196
+ audio_embeds = self.multi_modal_projector.forward(audio_tower_output)
197
+
198
+ # combine audio and text embeddings
199
+ for i, (audio, start, length) in enumerate(
200
+ zip(audio_embeds, audio_token_start_idx, audio_token_len)
201
+ ):
202
+ length = min(length, audio.shape[0])
203
+ inputs_embeds[i, start : start + length] = audio[:length]
204
+
205
+ lm_output = self.language_model.forward(
206
+ inputs_embeds=inputs_embeds,
207
+ labels=labels,
208
+ attention_mask=attention_mask,
209
+ past_key_values=past_key_values,
210
+ **kwargs,
211
+ )
212
+ if self.training:
213
+ if self.loss_config.loss_function == LossFunction.CrossEntropy:
214
+ return lm_output
215
+ elif self.loss_config.loss_function == LossFunction.KL_Divergence:
216
+ return self._compute_kl_loss(
217
+ lm_output=lm_output,
218
+ labels=labels,
219
+ past_key_values=past_key_values,
220
+ alt_input_ids=alt_input_ids,
221
+ alt_attention_mask=alt_attention_mask,
222
+ alt_labels=alt_labels,
223
+ **kwargs,
224
+ )
225
+ else:
226
+ raise ValueError(
227
+ f"Unsupported loss function: {self.loss_config.loss_function}"
228
+ )
229
+ else:
230
+ return lm_output
231
+
232
+ def prepare_inputs_for_generation(
233
+ self,
234
+ input_ids: torch.Tensor,
235
+ audio_values: Optional[torch.FloatTensor] = None,
236
+ audio_token_start_idx: Optional[torch.Tensor] = None,
237
+ audio_token_len: Optional[torch.Tensor] = None,
238
+ audio_len: Optional[torch.Tensor] = None,
239
+ past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
240
+ attention_mask: Optional[torch.Tensor] = None,
241
+ inputs_embeds: Optional[torch.Tensor] = None,
242
+ cache_position: Optional[torch.Tensor] = None,
243
+ **kwargs,
244
+ ) -> Dict[str, Any]:
245
+ model_input = self.language_model.prepare_inputs_for_generation(
246
+ input_ids=input_ids,
247
+ past_key_values=past_key_values,
248
+ attention_mask=attention_mask,
249
+ inputs_embeds=inputs_embeds,
250
+ cache_position=cache_position,
251
+ **kwargs,
252
+ )
253
+
254
+ # include audio information in model_input only when it is needed during prefilling
255
+ # audio_token_start_idx should always be relative to the current cache position
256
+ prefill_start_idx = 0 if cache_position is None else cache_position[0]
257
+ if (
258
+ audio_values is not None
259
+ and audio_token_start_idx is not None
260
+ and prefill_start_idx <= torch.max(audio_token_start_idx)
261
+ ):
262
+ model_input["audio_values"] = audio_values
263
+ model_input["audio_token_start_idx"] = (
264
+ audio_token_start_idx - prefill_start_idx
265
+ )
266
+ model_input["audio_token_len"] = audio_token_len
267
+ model_input["audio_len"] = audio_len
268
+
269
+ return model_input
270
+
271
+ @classmethod
272
+ def _create_multi_modal_projector(
273
+ cls, config: UltravoxConfig
274
+ ) -> "UltravoxProjector":
275
+ projector = UltravoxProjector(config)
276
+ projector.to(config.torch_dtype)
277
+ return projector
278
+
279
+ @classmethod
280
+ def _create_audio_tower(
281
+ cls, config: UltravoxConfig
282
+ ) -> Union[transformers.Wav2Vec2Model, "ModifiedWhisperEncoder"]:
283
+ if config.audio_model_id is not None:
284
+ if "whisper" in config.audio_model_id is not None:
285
+ audio_tower = ModifiedWhisperEncoder.from_pretrained(
286
+ config.audio_model_id, torch_dtype=config.torch_dtype
287
+ )
288
+ audio_tower.init_latency_mask(
289
+ config.audio_latency_block_size, dtype=config.torch_dtype
290
+ )
291
+ else:
292
+ assert (
293
+ config.audio_latency_block_size
294
+ not in (
295
+ None,
296
+ 0,
297
+ )
298
+ ), "only whisper audio tower supports audio latency masking, got non-zero value for 'audio_latency_block_size'"
299
+ audio_tower = transformers.AutoModel.from_pretrained(
300
+ config.audio_model_id, torch_dtype=config.torch_dtype
301
+ )
302
+ else:
303
+ if "whisper" in config.audio_config._name_or_path:
304
+ audio_tower = ModifiedWhisperEncoder(config.audio_config)
305
+ audio_tower.init_latency_mask(
306
+ config.audio_latency_block_size, dtype=config.torch_dtype
307
+ )
308
+ else:
309
+ assert (
310
+ config.audio_latency_block_size
311
+ not in (
312
+ None,
313
+ 0,
314
+ )
315
+ ), "only whisper audio tower supports audio latency masking, got non-zero value for 'audio_latency_block_size'"
316
+ with transformers.modeling_utils.no_init_weights():
317
+ # we only ever use from_config if the weights are retrained, hence initializing is not
318
+ # required. This makes the model quite creation faster since init on CPU is quite slow.
319
+ audio_tower = transformers.AutoModel.from_config(
320
+ config.audio_config
321
+ )
322
+
323
+ if isinstance(
324
+ audio_tower,
325
+ (transformers.Wav2Vec2BertModel, transformers.WhisperModel),
326
+ ):
327
+ # For these models we only need the encoder part
328
+ # Wav2Vec2BertModel -> Wav2Vec2BertEncoder
329
+ # WhisperModel -> WhisperEncoder
330
+ audio_tower = audio_tower.encoder
331
+
332
+ audio_tower = apply_lora(audio_tower, config.audio_model_lora_config)
333
+ return audio_tower
334
+
335
+ @classmethod
336
+ def _create_language_model(
337
+ cls, config: UltravoxConfig
338
+ ) -> transformers.LlamaForCausalLM:
339
+ if config.text_model_id is not None:
340
+ language_model = transformers.AutoModelForCausalLM.from_pretrained(
341
+ config.text_model_id,
342
+ attn_implementation=config._attn_implementation,
343
+ torch_dtype=config.torch_dtype,
344
+ )
345
+ else:
346
+ with transformers.modeling_utils.no_init_weights():
347
+ # we only ever use from_config if the weights are retrained, hence initializing is not
348
+ # required. This makes the model quite creation faster since init on CPU is quite slow.
349
+ language_model = transformers.AutoModelForCausalLM.from_config(
350
+ config.text_config,
351
+ attn_implementation=config._attn_implementation,
352
+ torch_dtype=config.torch_dtype,
353
+ )
354
+
355
+ language_model = apply_lora(language_model, config.text_model_lora_config)
356
+ return language_model
357
+
358
+ def merge_and_unload(self):
359
+ if isinstance(self.language_model, peft.PeftModel):
360
+ self.language_model = self.language_model.merge_and_unload()
361
+ # no need to download base language model weights anymore, so we can remove the id
362
+ self.config.text_model_id = None
363
+ self.keep_params.update(
364
+ set(
365
+ [
366
+ f"language_model.{name}"
367
+ for name, _ in self.language_model.named_parameters()
368
+ ]
369
+ )
370
+ )
371
+
372
+ if isinstance(self.audio_tower, peft.PeftModel):
373
+ self.audio_tower = self.audio_tower.merge_and_unload()
374
+ # no need to download base audio model weights anymore, so we can remove the id
375
+ self.config.audio_model_id = None
376
+ self.keep_params.update(
377
+ set(
378
+ [
379
+ f"audio_tower.{name}"
380
+ for name, _ in self.audio_tower.named_parameters()
381
+ ]
382
+ )
383
+ )
384
+
385
+ for param in ["text_model_lora_config", "audio_model_lora_config"]:
386
+ if hasattr(self.config, param):
387
+ delattr(self.config, param)
388
+
389
+ def push_to_hub(self, *args, **kwargs):
390
+ self.merge_and_unload()
391
+ self.to(self.language_model.dtype)
392
+ return super().push_to_hub(*args, **kwargs)
393
+
394
+ def save_pretrained(
395
+ self, *args, state_dict: Optional[Dict[str, Any]] = None, **kwargs
396
+ ):
397
+ if state_dict is None:
398
+ state_dict = super().state_dict()
399
+
400
+ named_params = dict(self.named_parameters())
401
+
402
+ state_dict = {
403
+ k: v
404
+ for k, v in state_dict.items()
405
+ if k in self.keep_params
406
+ or (k in named_params and named_params[k].requires_grad)
407
+ }
408
+
409
+ super().save_pretrained(*args, state_dict=state_dict, **kwargs)
410
+
411
+ def _pre_load_state_dict_hook(self, state_dict: Dict[str, Any], *args, **kwargs):
412
+ self.keep_params.update(set(state_dict.keys()))
413
+
414
+ def print_trainable_parameters(self):
415
+ """
416
+ Prints the number of trainable parameters in the model (reuses Peft model's method)
417
+ """
418
+ count_params = peft.peft_model.PeftModel.get_nb_trainable_parameters
419
+
420
+ trainable_params, all_param = count_params(self)
421
+
422
+ logging.info(
423
+ f"trainable params: {trainable_params:,d} || all params: {all_param:,d}"
424
+ f" || trainable%: {100 * trainable_params / all_param:.1f}%"
425
+ )
426
+
427
+ lm_trainable_params, lm_all_params = count_params(self.language_model)
428
+ audio_trainable_params, audio_all_params = count_params(self.audio_tower)
429
+
430
+ projector_trainable_params = (
431
+ trainable_params - lm_trainable_params - audio_trainable_params
432
+ )
433
+ projector_all_params = all_param - lm_all_params - audio_all_params
434
+
435
+ logging.info(
436
+ f"Trainable%: "
437
+ f" LLM: {100 * lm_trainable_params / lm_all_params:.1f}%"
438
+ f" || Audio Encoder: {100 * audio_trainable_params / audio_all_params:.1f}%"
439
+ f" || Projector: {100 * projector_trainable_params / projector_all_params:.1f}%"
440
+ )
441
+
442
+
443
+ def is_cache_empty(
444
+ past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]],
445
+ ) -> bool:
446
+ """
447
+ Check if the cache is empty.
448
+ """
449
+ if past_key_values is None:
450
+ return True
451
+ if isinstance(past_key_values, tuple):
452
+ return all(len(c) == 0 for c in past_key_values)
453
+ return past_key_values.get_seq_length() == 0
454
+
455
+
456
+ def apply_lora(model: torch.nn.Module, lora_config: dict) -> torch.nn.Module:
457
+ """
458
+ Applies LoRA finetuning to the model. If the `r` parameter is set to 0, the model is frozen instead.
459
+ """
460
+ lora_config = peft.LoraConfig(**lora_config or {})
461
+
462
+ if lora_config.r == 0:
463
+ # freeze the model entirely
464
+ for param in model.parameters():
465
+ param.requires_grad = False
466
+ else:
467
+ model = peft.get_peft_model(model, lora_config)
468
+
469
+ return model
470
+
471
+
472
+ class StackAudioFrames(nn.Module):
473
+ """
474
+ Stack the audio embedding frames to reduce the sequence length by a factor of `stack_factor`.
475
+
476
+ The number of output frames will be `ceil(T / stack_factor) + 1` where `T` is the number of input frames.
477
+ NOTE: the extra +1 is intentional: in case the number of audio tokens are over-estimated by the processor,
478
+ we want to make sure `processor.audio_token_replacement` (i.e. EOS) doesn't get leaked into the middle of embeddings.
479
+ In most cases this extra padding will get removed in the model's forward function so it has no effect.
480
+ """
481
+
482
+ def __init__(self, stack_factor: int = 8):
483
+ super().__init__()
484
+ self.stack_factor = stack_factor
485
+
486
+ def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor:
487
+ B, T, C = audio_embeds.shape
488
+ T_pad = (T + self.stack_factor - 1) // self.stack_factor * self.stack_factor
489
+ audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T + self.stack_factor))
490
+ B, T, C = audio_embeds.shape
491
+ audio_embeds = audio_embeds.view(
492
+ B, T // self.stack_factor, C * self.stack_factor
493
+ )
494
+ return audio_embeds
495
+
496
+
497
+ class RMSNorm(transformers.models.llama.modeling_llama.LlamaRMSNorm):
498
+ def __init__(self, hidden_size: int, init: float = 1, eps: float = 1e-6):
499
+ super().__init__(hidden_size=hidden_size, eps=eps)
500
+ self.weight.data.fill_(init)
501
+
502
+
503
+ class SwiGLU(nn.Module):
504
+ def forward(self, x):
505
+ x, gate = x.chunk(2, dim=-1)
506
+ return F.silu(gate) * x
507
+
508
+
509
+ class UltravoxProjector(nn.Sequential):
510
+ def __init__(self, config: UltravoxConfig):
511
+ super().__init__()
512
+ self.hidden_dim = config.hidden_size
513
+ self._pad_and_stack = StackAudioFrames(config.stack_factor)
514
+ dim = config.audio_config.hidden_size * config.stack_factor
515
+ self.ln_pre = RMSNorm(dim, init=config.norm_init)
516
+ self.linear_1 = nn.Linear(dim, self.hidden_dim, bias=False)
517
+ dim = self.hidden_dim
518
+ self.act = transformers.activations.get_activation(config.projector_act)
519
+ dim = dim // 2 if config.projector_act == "swiglu" else dim
520
+ self.linear_2 = nn.Linear(dim, config.text_config.hidden_size, bias=False)
521
+ self.ln_post = RMSNorm(config.text_config.hidden_size, init=config.norm_init)
522
+
523
+ def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
524
+ audio_features = self._pad_and_stack(audio_features)
525
+ audio_features = self.ln_pre(audio_features)
526
+ hidden_states = self.linear_1(audio_features)
527
+ hidden_states = self.act(hidden_states)
528
+ hidden_states = self.linear_2(hidden_states)
529
+ hidden_states = self.ln_post(hidden_states)
530
+ return hidden_states
531
+
532
+
533
+ class ModifiedWhisperEncoder(
534
+ whisper.WhisperEncoder, transformers.modeling_utils.ModuleUtilsMixin
535
+ ):
536
+ """
537
+ Encoder portion of OpenAI's Whisper model.
538
+
539
+ This implementation is a slightly modified version of HF Transformers' Whisper Encoder, with only a few fixes:
540
+ 1. base_model_prefix updated to allow for doing `.from_pretrained` directly on the encoder
541
+ 2. allow less than 30 second of audio padding to be passed in:
542
+ - relaxed ValueError check for `input_features` length to be less than or equal to `expected_seq_length` instead of strictly equal
543
+ - embed_pos is now sliced to match the length of `inputs_embeds`
544
+
545
+ Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
546
+ """
547
+
548
+ base_model_prefix = "model.encoder"
549
+ _no_split_modules = ["WhisperEncoderLayer"]
550
+
551
+ def init_latency_mask(self, audio_latency_block_size: int, dtype: torch.dtype):
552
+ if audio_latency_block_size is None:
553
+ self.audio_streaming_mask = None
554
+ return
555
+
556
+ # maximum sequence length
557
+ max_seqlen = (
558
+ self.config.max_source_positions
559
+ * self.conv1.stride[0]
560
+ * self.conv2.stride[0]
561
+ )
562
+ assert (
563
+ max_seqlen > 0
564
+ ), f"maximum sequence length must be positive, got {max_seqlen}"
565
+ assert (
566
+ max_seqlen % audio_latency_block_size == 0
567
+ ), f"audio_latency_block_size {audio_latency_block_size} must divide {max_seqlen} evenly."
568
+ # Given the block size, we calculate number of blocks.
569
+ audio_latency_nblocks = max_seqlen // audio_latency_block_size
570
+ audio_streaming_mask = (
571
+ torch.tril(
572
+ torch.ones(audio_latency_nblocks, audio_latency_nblocks),
573
+ diagonal=0,
574
+ )
575
+ .repeat_interleave(audio_latency_block_size, dim=0)
576
+ .repeat_interleave(audio_latency_block_size, dim=1)
577
+ )
578
+ audio_streaming_mask = (1.0 - audio_streaming_mask) * torch.finfo(dtype).min
579
+ audio_streaming_mask = audio_streaming_mask[None, None, :, :]
580
+ self.register_buffer(
581
+ "audio_streaming_mask", audio_streaming_mask, persistent=False
582
+ )
583
+
584
+ def forward(
585
+ self,
586
+ input_features,
587
+ audio_len=None,
588
+ head_mask=None,
589
+ output_attentions=None,
590
+ output_hidden_states=None,
591
+ return_dict=None,
592
+ ):
593
+ expected_seq_length = (
594
+ self.config.max_source_positions
595
+ * self.conv1.stride[0]
596
+ * self.conv2.stride[0]
597
+ )
598
+ if input_features.shape[-1] > expected_seq_length:
599
+ raise ValueError(
600
+ f"Whisper expects the mel input features to be of length {expected_seq_length} or less, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
601
+ )
602
+
603
+ output_attentions = (
604
+ output_attentions
605
+ if output_attentions is not None
606
+ else self.config.output_attentions
607
+ )
608
+ output_hidden_states = (
609
+ output_hidden_states
610
+ if output_hidden_states is not None
611
+ else self.config.output_hidden_states
612
+ )
613
+ return_dict = (
614
+ return_dict if return_dict is not None else self.config.use_return_dict
615
+ )
616
+ inputs_embeds = nn.functional.gelu(self.conv1(input_features))
617
+ inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
618
+
619
+ inputs_embeds = inputs_embeds.permute(0, 2, 1)
620
+ embed_pos = self.embed_positions.weight[: inputs_embeds.size(-2)]
621
+
622
+ hidden_states = inputs_embeds + embed_pos
623
+ hidden_states = nn.functional.dropout(
624
+ hidden_states, p=self.dropout, training=self.training
625
+ )
626
+
627
+ encoder_states = () if output_hidden_states else None
628
+ all_attentions = () if output_attentions else None
629
+
630
+ # Create attention mask based on audio lengths to mask out padding tokens
631
+ # For each sample in batch:
632
+ # - Convert raw audio length to feature length after convolutions
633
+ # - Create boolean mask that is True for valid positions and False for padding
634
+ # - Convert to extended attention mask format expected by transformer layers
635
+ # (1.0 for positions to attend to, large negative for positions to ignore)
636
+ # This masking ensures consistent behavior between training and inference
637
+ # by preventing the model from attending to padding tokens in both cases
638
+ attention_mask = None
639
+ if audio_len is not None:
640
+ audio_feature_len = self._get_feat_extract_output_lengths(audio_len)
641
+ max_seq_len = hidden_states.shape[1]
642
+ attention_mask = torch.arange(max_seq_len, device=hidden_states.device)[
643
+ None, :
644
+ ].lt(audio_feature_len.view(-1, 1))
645
+ attention_mask = self.get_extended_attention_mask(
646
+ attention_mask,
647
+ None,
648
+ device=hidden_states.device,
649
+ dtype=hidden_states.dtype,
650
+ )
651
+
652
+ if self.audio_streaming_mask is not None:
653
+ seqlen = hidden_states.size(-2)
654
+ if attention_mask is not None:
655
+ attention_mask = torch.minimum(
656
+ self.audio_streaming_mask[:, :, :seqlen, :seqlen], attention_mask
657
+ ) # merge
658
+ else:
659
+ attention_mask = self.audio_streaming_mask[:, :, :seqlen, :seqlen]
660
+ attention_mask = attention_mask.to(hidden_states.dtype)
661
+
662
+ # check if head_mask has a correct number of layers specified if desired
663
+ if head_mask is not None:
664
+ assert (
665
+ head_mask.size()[0] == (len(self.layers))
666
+ ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
667
+
668
+ for idx, encoder_layer in enumerate(self.layers):
669
+ if output_hidden_states:
670
+ encoder_states = encoder_states + (hidden_states,)
671
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
672
+ to_drop = False
673
+ if self.training:
674
+ dropout_probability = torch.rand([])
675
+ if dropout_probability < self.layerdrop: # skip the layer
676
+ to_drop = True
677
+
678
+ if to_drop:
679
+ layer_outputs = (None, None)
680
+ else:
681
+ if self.gradient_checkpointing and self.training:
682
+ layer_outputs = self._gradient_checkpointing_func(
683
+ encoder_layer.__call__,
684
+ hidden_states,
685
+ attention_mask,
686
+ (head_mask[idx] if head_mask is not None else None),
687
+ output_attentions,
688
+ )
689
+ else:
690
+ layer_outputs = encoder_layer(
691
+ hidden_states,
692
+ attention_mask,
693
+ layer_head_mask=(
694
+ head_mask[idx] if head_mask is not None else None
695
+ ),
696
+ output_attentions=output_attentions,
697
+ )
698
+
699
+ hidden_states = layer_outputs[0]
700
+
701
+ if output_attentions:
702
+ all_attentions = all_attentions + (layer_outputs[1],)
703
+
704
+ hidden_states = self.layer_norm(hidden_states)
705
+ if output_hidden_states:
706
+ encoder_states = encoder_states + (hidden_states,)
707
+
708
+ if not return_dict:
709
+ return tuple(
710
+ v
711
+ for v in [hidden_states, encoder_states, all_attentions]
712
+ if v is not None
713
+ )
714
+ return transformers.modeling_outputs.BaseModelOutput(
715
+ last_hidden_state=hidden_states,
716
+ hidden_states=encoder_states,
717
+ attentions=all_attentions,
718
+ )
719
+
720
+
721
+ UltravoxConfig.register_for_auto_class()
722
+ UltravoxModel.register_for_auto_class()
723
+
724
+ transformers.AutoConfig.register("ultravox", UltravoxConfig)
725
+ transformers.AutoModel.register(UltravoxConfig, UltravoxModel)
726
+
727
+ transformers.activations.ACT2FN["swiglu"] = SwiGLU
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b98801d56507f1f4289adb66703a71da5bd07b29d1786abebff40203d3756af4
3
+ size 60501952