--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # embaas/sentence-transformers-e5-large-v2 This is a the sentence-transformers version of the [intfloat/e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('embaas/sentence-transformers-e5-large-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Using with API You can use the [embaas API](https://embaas.io) to encode your input. Get your free API key from [embaas.io](https://embaas.io) ```python import requests url = "https://api.embaas.io/v1/embeddings/" headers = { "Content-Type": "application/json", "Authorization": "Bearer ${YOUR_API_KEY}" } data = { "texts": ["This is an example sentence.", "Here is another sentence."], "instruction": "query" "model": "e5-large-v2" } response = requests.post(url, json=data, headers=headers) ``` ## Evaluation Results Find the results of the e5 at the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) (2): Normalize() ) ``` ## Citing & Authors