--- base_model: meta-llama/Meta-Llama-3.1-8B-Instruct library_name: peft license: llama3 tags: - axolotl - generated_from_trainer model-index: - name: empower-functions-llama3-1-8b-with-more-neg-5 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3.1-8B-Instruct model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer chat_template: llama3 load_in_8bit: false load_in_4bit: false strict: false datasets: - path: ./hf_data/function_not_used_no_unicode_7500.jsonl type: sharegpt conversation: llama-3 - path: ./hf_data/function_used_training_shuffled_no_unicode_without_examples_corrected_updated.jsonl type: sharegpt conversation: llama-3 - path: ./hf_data/parallel_data_training_no_unicode_updated.jsonl type: sharegpt conversation: llama-3 - path: ./hf_data/parallel_data_training_single_function.jsonl type: sharegpt conversation: llama-3 - path: ./hf_data/function_not_used_new.jsonl type: sharegpt conversation: llama-3 - path: ./hf_data/lambda_dataset_100.jsonl type: sharegpt conversation: llama-3 - path: ./hf_data/function_not_used_new_more.jsonl type: sharegpt conversation: llama-3 dataset_prepared_path: last_run_prepared val_set_size: 0.025 output_dir: ../empower-functions-llama3-1-8b-with-more-neg-5 hub_model_id: empower-dev-staging/empower-functions-llama3-1-8b-with-more-neg-5 sequence_len: 4096 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 16 lora_alpha: 32 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 10 eval_batch_size: 2 eval_max_new_tokens: 256 eval_steps: 0.1 eval_table_size: null saves_per_epoch: 4 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# empower-functions-llama3-1-8b-with-more-neg-5 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9991 | 0.0033 | 1 | 0.9484 | | 0.1914 | 0.1016 | 31 | 0.1566 | | 0.1563 | 0.2033 | 62 | 0.1268 | | 0.0598 | 0.3049 | 93 | 0.1189 | | 0.0936 | 0.4066 | 124 | 0.1115 | | 0.0926 | 0.5082 | 155 | 0.1067 | | 0.0829 | 0.6098 | 186 | 0.1024 | | 0.1267 | 0.7115 | 217 | 0.0996 | | 0.0827 | 0.8131 | 248 | 0.0978 | | 0.0991 | 0.9148 | 279 | 0.0968 | ### Framework versions - PEFT 0.12.0 - Transformers 4.44.0 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1