|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Wav2Vec2 model configuration""" |
|
|
|
import functools |
|
import operator |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", |
|
|
|
} |
|
|
|
|
|
class Wav2Vec2Config(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`Wav2Vec2Model`]. It is used to instantiate an |
|
Wav2Vec2 model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the Wav2Vec2 |
|
[facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 32): |
|
Vocabulary size of the Wav2Vec2 model. Defines the number of different tokens that can be represented by |
|
the `inputs_ids` passed when calling [`Wav2Vec2Model`] or [`TFWav2Vec2Model`]. Vocabulary size of the |
|
model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward |
|
method of [`Wav2Vec2Model`]. |
|
hidden_size (`int`, *optional*, defaults to 768): |
|
Dimensionality of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
intermediate_size (`int`, *optional*, defaults to 3072): |
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, |
|
`"relu"`, `"selu"` and `"gelu_new"` are supported. |
|
hidden_dropout (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
attention_dropout (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention probabilities. |
|
final_dropout (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for the final projection layer of [`Wav2Vec2ForCTC`]. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
layer_norm_eps (`float`, *optional*, defaults to 1e-12): |
|
The epsilon used by the layer normalization layers. |
|
feat_extract_norm (`str`, *optional*, defaults to `"group"`): |
|
The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group |
|
normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D |
|
convolutional layers. |
|
feat_proj_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout probability for output of the feature encoder. |
|
feat_extract_activation (`str, `optional`, defaults to `"gelu"`): |
|
The non-linear activation function (function or string) in the 1D convolutional layers of the feature |
|
extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. |
|
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout probabilitiy for quantized feature encoder states. |
|
conv_dim (`Tuple[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`): |
|
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the |
|
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. |
|
conv_stride (`Tuple[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`): |
|
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length |
|
of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. |
|
conv_kernel (`Tuple[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`): |
|
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The |
|
length of *conv_kernel* defines the number of convolutional layers and has to match the length of |
|
*conv_dim*. |
|
conv_bias (`bool`, *optional*, defaults to `False`): |
|
Whether the 1D convolutional layers have a bias. |
|
num_conv_pos_embeddings (`int`, *optional*, defaults to 128): |
|
Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional |
|
embeddings layer. |
|
num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): |
|
Number of groups of 1D convolutional positional embeddings layer. |
|
do_stable_layer_norm (`bool`, *optional*, defaults to `False`): |
|
Whether to apply *stable* layer norm architecture of the Transformer encoder. `do_stable_layer_norm is |
|
True` corresponds to applying layer norm before the attention layer, whereas `do_stable_layer_norm is |
|
False` corresponds to applying layer norm after the attention layer. |
|
apply_spec_augment (`bool`, *optional*, defaults to `True`): |
|
Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see |
|
[SpecAugment: A Simple Data Augmentation Method for Automatic Speech |
|
Recognition](https://arxiv.org/abs/1904.08779). |
|
mask_time_prob (`float`, *optional*, defaults to 0.05): |
|
Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking |
|
procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If |
|
reasoning from the propability of each feature vector to be chosen as the start of the vector span to be |
|
masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the |
|
actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. |
|
mask_time_length (`int`, *optional*, defaults to 10): |
|
Length of vector span along the time axis. |
|
mask_time_min_masks (`int`, *optional*, defaults to 2),: |
|
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, |
|
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < |
|
mask_time_min_masks'' |
|
mask_feature_prob (`float`, *optional*, defaults to 0.0): |
|
Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The |
|
masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over |
|
the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector |
|
span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap |
|
may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is |
|
True`. |
|
mask_feature_length (`int`, *optional*, defaults to 10): |
|
Length of vector span along the feature axis. |
|
mask_feature_min_masks (`int`, *optional*, defaults to 0),: |
|
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time |
|
step, irrespectively of `mask_feature_prob`. Only relevant if |
|
''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' |
|
num_codevectors_per_group (`int`, *optional*, defaults to 320): |
|
Number of entries in each quantization codebook (group). |
|
num_codevector_groups (`int`, *optional*, defaults to 2): |
|
Number of codevector groups for product codevector quantization. |
|
contrastive_logits_temperature (`float`, *optional*, defaults to 0.1): |
|
The temperature *kappa* in the contrastive loss. |
|
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout probabilitiy for the output of the feature encoder that's used by the quantizer. |
|
num_negatives (`int`, *optional*, defaults to 100): |
|
Number of negative samples for the contrastive loss. |
|
codevector_dim (`int`, *optional*, defaults to 256): |
|
Dimensionality of the quantized feature vectors. |
|
proj_codevector_dim (`int`, *optional*, defaults to 256): |
|
Dimensionality of the final projection of both the quantized and the transformer features. |
|
diversity_loss_weight (`int`, *optional*, defaults to 0.1): |
|
The weight of the codebook diversity loss component. |
|
ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`): |
|
Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an |
|
instance of [`Wav2Vec2ForCTC`]. |
|
ctc_zero_infinity (`bool`, *optional*, defaults to `False`): |
|
Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly |
|
occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance |
|
of [`Wav2Vec2ForCTC`]. |
|
use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): |
|
Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an |
|
instance of [`Wav2Vec2ForSequenceClassification`]. |
|
classifier_proj_size (`int`, *optional*, defaults to 256): |
|
Dimensionality of the projection before token mean-pooling for classification. |
|
tdnn_dim (`Tuple[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`): |
|
A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN* |
|
module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers. |
|
tdnn_kernel (`Tuple[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`): |
|
A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the |
|
*XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*. |
|
tdnn_dilation (`Tuple[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`): |
|
A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the |
|
*XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*. |
|
xvector_output_dim (`int`, *optional*, defaults to 512): |
|
Dimensionality of the *XVector* embedding vectors. |
|
add_adapter (`bool`, *optional*, defaults to `False`): |
|
Whether a convolutional network should be stacked on top of the Wav2Vec2 Encoder. Can be very useful for |
|
warm-starting Wav2Vec2 for SpeechEncoderDecoder models. |
|
adapter_kernel_size (`int`, *optional*, defaults to 3): |
|
Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. |
|
adapter_stride (`int`, *optional*, defaults to 2): |
|
Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. |
|
num_adapter_layers (`int`, *optional*, defaults to 3): |
|
Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is |
|
True`. |
|
output_hidden_size (`int`, *optional*): |
|
Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant |
|
if `add_adapter is True`. |
|
use_scan (`bool`, *optional*, defaults to `False`): |
|
Whether or not to use nn.scan in the Flax Wav2Vec2 transformer layers. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import Wav2Vec2Model, Wav2Vec2Config |
|
|
|
>>> # Initializing a Wav2Vec2 facebook/wav2vec2-base-960h style configuration |
|
>>> configuration = Wav2Vec2Config() |
|
|
|
>>> # Initializing a model from the facebook/wav2vec2-base-960h style configuration |
|
>>> model = Wav2Vec2Model(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "wav2vec2" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32, |
|
hidden_size=768, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
intermediate_size=3072, |
|
hidden_act="gelu", |
|
hidden_dropout=0.1, |
|
activation_dropout=0.1, |
|
attention_dropout=0.1, |
|
feat_proj_dropout=0.0, |
|
feat_quantizer_dropout=0.0, |
|
final_dropout=0.1, |
|
layerdrop=0.1, |
|
initializer_range=0.02, |
|
layer_norm_eps=1e-5, |
|
feat_extract_norm="group", |
|
feat_extract_activation="gelu", |
|
conv_dim=(512, 512, 512, 512, 512, 512, 512), |
|
conv_stride=(5, 2, 2, 2, 2, 2, 2), |
|
conv_kernel=(10, 3, 3, 3, 3, 2, 2), |
|
conv_bias=False, |
|
num_conv_pos_embeddings=128, |
|
num_conv_pos_embedding_groups=16, |
|
do_stable_layer_norm=False, |
|
apply_spec_augment=True, |
|
mask_time_prob=0.05, |
|
mask_time_length=10, |
|
mask_time_min_masks=2, |
|
mask_feature_prob=0.0, |
|
mask_feature_length=10, |
|
mask_feature_min_masks=0, |
|
num_codevectors_per_group=320, |
|
num_codevector_groups=2, |
|
contrastive_logits_temperature=0.1, |
|
num_negatives=100, |
|
codevector_dim=256, |
|
proj_codevector_dim=256, |
|
diversity_loss_weight=0.1, |
|
ctc_loss_reduction="sum", |
|
ctc_zero_infinity=False, |
|
use_weighted_layer_sum=False, |
|
classifier_proj_size=256, |
|
tdnn_dim=(512, 512, 512, 512, 1500), |
|
tdnn_kernel=(5, 3, 3, 1, 1), |
|
tdnn_dilation=(1, 2, 3, 1, 1), |
|
xvector_output_dim=512, |
|
pad_token_id=0, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
add_adapter=False, |
|
adapter_kernel_size=3, |
|
adapter_stride=2, |
|
num_adapter_layers=3, |
|
output_hidden_size=None, |
|
use_scan=False, |
|
fuse_matmuls=False, |
|
**kwargs |
|
): |
|
super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) |
|
self.hidden_size = hidden_size |
|
self.feat_extract_norm = feat_extract_norm |
|
self.feat_extract_activation = feat_extract_activation |
|
self.conv_dim = list(conv_dim) |
|
self.conv_stride = list(conv_stride) |
|
self.conv_kernel = list(conv_kernel) |
|
self.conv_bias = conv_bias |
|
self.num_conv_pos_embeddings = num_conv_pos_embeddings |
|
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups |
|
self.num_feat_extract_layers = len(self.conv_dim) |
|
self.num_hidden_layers = num_hidden_layers |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_dropout = hidden_dropout |
|
self.attention_dropout = attention_dropout |
|
self.activation_dropout = activation_dropout |
|
self.feat_proj_dropout = feat_proj_dropout |
|
self.final_dropout = final_dropout |
|
self.layerdrop = layerdrop |
|
self.layer_norm_eps = layer_norm_eps |
|
self.initializer_range = initializer_range |
|
self.vocab_size = vocab_size |
|
self.do_stable_layer_norm = do_stable_layer_norm |
|
self.use_weighted_layer_sum = use_weighted_layer_sum |
|
self.use_scan = use_scan |
|
self.fuse_matmuls = fuse_matmuls |
|
|
|
if ( |
|
(len(self.conv_stride) != self.num_feat_extract_layers) |
|
or (len(self.conv_kernel) != self.num_feat_extract_layers) |
|
or (len(self.conv_dim) != self.num_feat_extract_layers) |
|
): |
|
raise ValueError( |
|
"Configuration for convolutional layers is incorrect. " |
|
"It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`, " |
|
f"but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride) " |
|
f"= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`." |
|
) |
|
|
|
|
|
self.apply_spec_augment = apply_spec_augment |
|
self.mask_time_prob = mask_time_prob |
|
self.mask_time_length = mask_time_length |
|
self.mask_time_min_masks = mask_time_min_masks |
|
self.mask_feature_prob = mask_feature_prob |
|
self.mask_feature_length = mask_feature_length |
|
self.mask_feature_min_masks = mask_feature_min_masks |
|
|
|
|
|
self.num_codevectors_per_group = num_codevectors_per_group |
|
self.num_codevector_groups = num_codevector_groups |
|
self.contrastive_logits_temperature = contrastive_logits_temperature |
|
self.feat_quantizer_dropout = feat_quantizer_dropout |
|
self.num_negatives = num_negatives |
|
self.codevector_dim = codevector_dim |
|
self.proj_codevector_dim = proj_codevector_dim |
|
self.diversity_loss_weight = diversity_loss_weight |
|
|
|
|
|
self.ctc_loss_reduction = ctc_loss_reduction |
|
self.ctc_zero_infinity = ctc_zero_infinity |
|
|
|
|
|
self.add_adapter = add_adapter |
|
self.adapter_kernel_size = adapter_kernel_size |
|
self.adapter_stride = adapter_stride |
|
self.num_adapter_layers = num_adapter_layers |
|
self.output_hidden_size = output_hidden_size or hidden_size |
|
|
|
|
|
self.classifier_proj_size = classifier_proj_size |
|
|
|
|
|
self.tdnn_dim = list(tdnn_dim) |
|
self.tdnn_kernel = list(tdnn_kernel) |
|
self.tdnn_dilation = list(tdnn_dilation) |
|
self.xvector_output_dim = xvector_output_dim |
|
|
|
@property |
|
def inputs_to_logits_ratio(self): |
|
return functools.reduce(operator.mul, self.conv_stride, 1) |
|
|