--- language: - en license: apache-2.0 library_name: transformers tags: - autoround - auto-round - intel - gptq - auto-awq - autoawq - awq - woq - pytorch - transformers - safetensors - onnx - transformers.js model_name: SmolLM2 1.7B Instruct base_model: HuggingFaceTB/SmolLM2-1.7B-Instruct inference: false model_creator: HuggingFaceTB pipeline_tag: text-generation prompt_template: '{prompt} ' quantized_by: fbaldassarri --- ## Model Information Quantized version of [HuggingFaceTB/SmolLM2-1.7B-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct) using torch.float32 for quantization tuning. - 4 bits (INT4) - group size = 128 - Asymmetrical Quantization - Method AutoAWQ Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) Note: this INT4 version of SmolLM2-1.7B-Instruct has been quantized to run inference through CPU. ## Replication Recipe ### Step 1 Install Requirements I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment. ``` python -m pip install --upgrade ``` - accelerate==1.0.1 - auto_gptq==0.7.1 - neural_compressor==3.1 - torch==2.3.0+cpu - torchaudio==2.5.0+cpu - torchvision==0.18.0+cpu - transformers==4.45.2 ### Step 2 Build Intel Autoround wheel from sources ``` python -m pip install git+https://github.com/intel/auto-round.git ``` ### Step 3 Script for Quantization ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "HuggingFaceTB/SmolLM2-1.7B-Instruct" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) from auto_round import AutoRound bits, group_size, sym, device, amp = 4, 128, False, 'cpu', False autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp) autoround.quantize() output_dir = "./AutoRound/HuggingFaceTB_SmolLM2-1.7B-Instruct-auto_awq-int4-gs128-asym" autoround.save_quantized(output_dir, format='auto_awq', inplace=True) ``` ## License [Apache 2.0 License](https://choosealicense.com/licenses/apache-2.0/) ## Disclaimer This quantized model comes with no warrenty. It has been developed only for research purposes.