Upload PPO LunarLander-v2 trained agent. 1m timesteps default hyperparameters
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- lunar_lander_v2.zip +3 -0
- lunar_lander_v2/_stable_baselines3_version +1 -0
- lunar_lander_v2/data +94 -0
- lunar_lander_v2/policy.optimizer.pth +3 -0
- lunar_lander_v2/policy.pth +3 -0
- lunar_lander_v2/pytorch_variables.pth +3 -0
- lunar_lander_v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 264.62 +/- 15.44
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e9c1990e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e9c199170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e9c199200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e9c199290>", "_build": "<function ActorCriticPolicy._build at 0x7f7e9c199320>", "forward": "<function ActorCriticPolicy.forward at 0x7f7e9c1993b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e9c199440>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7e9c1994d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e9c199560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e9c1995f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e9c199680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7e9c1de810>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652358348.7423728, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3egLyY4m0/rjETOwUjJr8XZ3e9Z6tJPAAAAAAAAAAAM/2NPK4LirryR0wzB0mYr6fBF7tQVcuzAACAPwAAgD8A28K81+m9P9LJFL5++z69qmECvI4XOz0AAAAAAAAAAGa51T2M/ps/0PDdPqkYKr8OdC4+0oBKPgAAAAAAAAAAcwJfPpCRMD+mjIw9H2X4vq8XKD5ol9y9AAAAAAAAAACAsDm9d1GQPy6i/b0rHS6/02A0vdCLvrwAAAAAAAAAANrxvj3XXXo8+4qvPebljr6uG4Y9inMzvAAAAAAAAAAADZTNvZy7H7w++iI+DDwyPUrQgL1MpQ8+AACAPwAAAACtSy0+WzqGvG3FBrsLVj05CZDyvRw1MzoAAIA/AACAP8D6Pj6bLMs+CGZRvVUl0L5/pWg9X4OavQAAAAAAAAAAgO0rPvbgTLzllTm+MEyvvVR3n73eBCu/AACAPwAAgD/NFWQ9j2pFui/5hTUiNL6um76Fu8b4urQAAIA/AACAP2bKBLykvmM+zZf3PQ0EoL6701k76tl5PQAAAAAAAAAA5pe8PUgjqbomnkAzXhHwrouBPzpDv8azAACAPwAAgD9NyUa+cQF0PlYciz6cArW+IF0OvdAXeD0AAAAAAAAAAGbxzDzDAUy6PBCGt+SacrLN+M45VBOeNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILSKKydswcECUhpRSlIwBbJRL04wBdJRHQJZo45q/M4d1fZQoaAZoCWgPQwixahDmdi5yQJSGlFKUaBVL6mgWR0CWaOXgccU/dX2UKGgGaAloD0MIgPEMGrr9ckCUhpRSlGgVTQwBaBZHQJZpkjLSuyN1fZQoaAZoCWgPQwizsn3IG3dxQJSGlFKUaBVL3mgWR0CWaZLX+VC5dX2UKGgGaAloD0MIGD4ipsRyZUCUhpRSlGgVTegDaBZHQJZqYL7XQMR1fZQoaAZoCWgPQwjij6LO3KFyQJSGlFKUaBVL6mgWR0CWapUtI066dX2UKGgGaAloD0MI9wKzQhF7bkCUhpRSlGgVS8loFkdAlmw6WC2+f3V9lChoBmgJaA9DCHTudr00oltAlIaUUpRoFU3oA2gWR0CWbIOQyRCAdX2UKGgGaAloD0MIoS+9/bmWQ0CUhpRSlGgVS8NoFkdAlmypVKf4AXV9lChoBmgJaA9DCL8prFQQgXFAlIaUUpRoFU1cAWgWR0CWbO9cbBGhdX2UKGgGaAloD0MInaG4401Nb0CUhpRSlGgVS99oFkdAlmz+t0V8C3V9lChoBmgJaA9DCHxinSpfrGFAlIaUUpRoFU3oA2gWR0CWbiH0btJGdX2UKGgGaAloD0MIGZEotOxac0CUhpRSlGgVS/JoFkdAlm6n4XXRPXV9lChoBmgJaA9DCI3ROqqaUW9AlIaUUpRoFUvaaBZHQJZvDMgU1yh1fZQoaAZoCWgPQwi2TfG4qH9vQJSGlFKUaBVL2WgWR0CWb49SuQp4dX2UKGgGaAloD0MIj+Gxn8X7ckCUhpRSlGgVS/VoFkdAlm+5pWV/t3V9lChoBmgJaA9DCNCbilTY5XFAlIaUUpRoFU0RAWgWR0CWcEXNTtLMdX2UKGgGaAloD0MIu9bepyqZcECUhpRSlGgVS+poFkdAlnCWTX8O1HV9lChoBmgJaA9DCBe4PNaMom9AlIaUUpRoFUvKaBZHQJZxhocrAgx1fZQoaAZoCWgPQwioVl9d1WJwQJSGlFKUaBVLx2gWR0CWce1QqI8AdX2UKGgGaAloD0MIHLYtyuwfb0CUhpRSlGgVS+FoFkdAlnKUKmbb13V9lChoBmgJaA9DCFRyTuzhr3JAlIaUUpRoFU0CAWgWR0CWcy+NcW0rdX2UKGgGaAloD0MI9YQlHlDVckCUhpRSlGgVTXQBaBZHQJZzm4kNWlx1fZQoaAZoCWgPQwhiLqna7hRwQJSGlFKUaBVNLwFoFkdAlnQd+gDifnV9lChoBmgJaA9DCH8uGjIe8HBAlIaUUpRoFUv2aBZHQJZ0f24/eLx1fZQoaAZoCWgPQwg4TDRIQYNwQJSGlFKUaBVLx2gWR0CWdP85S3spdX2UKGgGaAloD0MId06zQLvycUCUhpRSlGgVS+FoFkdAlnWDKgZjx3V9lChoBmgJaA9DCOeMKO3NDHRAlIaUUpRoFU0YAWgWR0CWdn3bEgnudX2UKGgGaAloD0MIlDKpoY23ckCUhpRSlGgVS/poFkdAlncPv4M4LnV9lChoBmgJaA9DCOkQOBJoHm9AlIaUUpRoFUvJaBZHQJZ3G6vq1PZ1fZQoaAZoCWgPQwjGv8+48KhwQJSGlFKUaBVLwmgWR0CWeK9d/rjYdX2UKGgGaAloD0MIvHmqQ65AcECUhpRSlGgVS/9oFkdAlnkircTJyXV9lChoBmgJaA9DCEEsmzmkPWJAlIaUUpRoFU3oA2gWR0CWeUSv1UVBdX2UKGgGaAloD0MIUKc8utGJckCUhpRSlGgVS+9oFkdAlnlhOP/7znV9lChoBmgJaA9DCDUHCOaot3BAlIaUUpRoFUvGaBZHQJZ5vcJtzjp1fZQoaAZoCWgPQwjm54ambNNkQJSGlFKUaBVN6ANoFkdAlnmxV+7UX3V9lChoBmgJaA9DCMxFfCfm/2xAlIaUUpRoFUvSaBZHQJZ6ZutOmBR1fZQoaAZoCWgPQwhS81XycVdwQJSGlFKUaBVL0mgWR0CWe2HGjsUqdX2UKGgGaAloD0MI8gnZeZsEb0CUhpRSlGgVS85oFkdAlnw8e4kNWnV9lChoBmgJaA9DCEaXN4erbHJAlIaUUpRoFUvBaBZHQJZ8eA6Mir11fZQoaAZoCWgPQwheL00RYCFxQJSGlFKUaBVNKQFoFkdAln1AqNIbwXV9lChoBmgJaA9DCGIVb2SezW9AlIaUUpRoFUvhaBZHQJZ9UEpy6tl1fZQoaAZoCWgPQwi0ccRafCdxQJSGlFKUaBVNZQFoFkdAln2C6UaAF3V9lChoBmgJaA9DCE/rNqi9HXBAlIaUUpRoFUvaaBZHQJZ/GJzkp7V1fZQoaAZoCWgPQwgKoBhZMpFuQJSGlFKUaBVL4GgWR0CWf2UQ04zadX2UKGgGaAloD0MIPiR87y8BckCUhpRSlGgVS+FoFkdAln+K72+PBHV9lChoBmgJaA9DCE+Srpm8xHBAlIaUUpRoFUv4aBZHQJaAichC+lF1fZQoaAZoCWgPQwi0AdiACPttQJSGlFKUaBVNCgFoFkdAloEiHIp6QnV9lChoBmgJaA9DCF1Std2EdXJAlIaUUpRoFU0FAWgWR0CWgby1/lQudX2UKGgGaAloD0MIm6+Sj11lcUCUhpRSlGgVS+JoFkdAloHTltCRfXV9lChoBmgJaA9DCOc5It/lE3NAlIaUUpRoFUvhaBZHQJaCs4cWCVd1fZQoaAZoCWgPQwjGh9nLts5yQJSGlFKUaBVL12gWR0CWg4yKNyYHdX2UKGgGaAloD0MIxF+TNWrOb0CUhpRSlGgVS9ZoFkdAloO7t3OfNHV9lChoBmgJaA9DCJz8Fp3sJnJAlIaUUpRoFU0GAWgWR0CWhAmIj4YadX2UKGgGaAloD0MINnUeFb+IcUCUhpRSlGgVTQIBaBZHQJaEwgB91EF1fZQoaAZoCWgPQwhwRPesKyFwQJSGlFKUaBVLz2gWR0CWhac8DB/JdX2UKGgGaAloD0MIAiuHFlnzcECUhpRSlGgVS9doFkdAloW+kgwGnnV9lChoBmgJaA9DCEmil1Gs1mRAlIaUUpRoFU3oA2gWR0CWhnExZdOZdX2UKGgGaAloD0MIt2EUBI/CckCUhpRSlGgVS8hoFkdAlocZXp4bCXV9lChoBmgJaA9DCO9XAb6b4XBAlIaUUpRoFUveaBZHQJaHLaIvalF1fZQoaAZoCWgPQwiuDKoNzg9zQJSGlFKUaBVL8GgWR0CWiQXTEzfrdX2UKGgGaAloD0MImbhVEIMPcUCUhpRSlGgVS8xoFkdAloopdjXnQ3V9lChoBmgJaA9DCIOnkCs1rHBAlIaUUpRoFUvVaBZHQJaK3g3tKI11fZQoaAZoCWgPQwiiRbbzfTZwQJSGlFKUaBVNDQFoFkdAlotDUutfX3V9lChoBmgJaA9DCFNdwMsM/2BAlIaUUpRoFU3oA2gWR0CWi2q+ajN7dX2UKGgGaAloD0MIVkj5SbWxckCUhpRSlGgVTQcBaBZHQJaMBSl3yI51fZQoaAZoCWgPQwh6+3PR0ONxQJSGlFKUaBVL8mgWR0CWjb+wTufFdX2UKGgGaAloD0MIorQ3+MLfXUCUhpRSlGgVTegDaBZHQJaOAiX6ZYx1fZQoaAZoCWgPQwgg8SvWMAtxQJSGlFKUaBVL5mgWR0CWjhf0Eov0dX2UKGgGaAloD0MIVd6OcBrXckCUhpRSlGgVTSgBaBZHQJaOd3+uNgl1fZQoaAZoCWgPQwgkufyH9HlxQJSGlFKUaBVL42gWR0CWjq34sVcmdX2UKGgGaAloD0MISfPHtPbJcUCUhpRSlGgVS/VoFkdAlo9G5DqnnHV9lChoBmgJaA9DCDwSL09nr3NAlIaUUpRoFU06AWgWR0CWj9PAfuCxdX2UKGgGaAloD0MIi3H+JpR0cECUhpRSlGgVS8VoFkdAlpETBAOav3V9lChoBmgJaA9DCJ5CrtRzFnRAlIaUUpRoFU0OAWgWR0CWkb1qFh5PdX2UKGgGaAloD0MIpn1zfzU6cECUhpRSlGgVS9ZoFkdAlpHxnSOR1XV9lChoBmgJaA9DCKyOHOkMU3FAlIaUUpRoFUvgaBZHQJaTCJ40Mw11fZQoaAZoCWgPQwgZkpOJGwxzQJSGlFKUaBVNGwFoFkdAlpM7K/20zHV9lChoBmgJaA9DCGCTNephXnJAlIaUUpRoFU0MAWgWR0CWk9VJL/S6dX2UKGgGaAloD0MI1ZY6yOtZcUCUhpRSlGgVS+ZoFkdAlpTqcZtNz3V9lChoBmgJaA9DCMnH7gLlAnBAlIaUUpRoFUvcaBZHQJaU7xd6cAl1fZQoaAZoCWgPQwiveOqRhvxuQJSGlFKUaBVL1GgWR0CWlRAz544ZdX2UKGgGaAloD0MIRkHw+PZhckCUhpRSlGgVTQ0BaBZHQJaXMM3IdU91fZQoaAZoCWgPQwi6gQLv5ENzQJSGlFKUaBVNIwFoFkdAlpc3dTHbRHV9lChoBmgJaA9DCL3iqUcajGFAlIaUUpRoFU3oA2gWR0CWl0lxOtW/dX2UKGgGaAloD0MIVvSHZp7cckCUhpRSlGgVTRIBaBZHQJaX+SSvC/J1fZQoaAZoCWgPQwjjp3FvPl5yQJSGlFKUaBVLy2gWR0CWmFamXPZ7dX2UKGgGaAloD0MIj8L1KNzXb0CUhpRSlGgVS8RoFkdAlphPg3tKI3V9lChoBmgJaA9DCNaQuMfSMU5AlIaUUpRoFUuvaBZHQJaYzy6MBIZ1fZQoaAZoCWgPQwhI/mDg+WxyQJSGlFKUaBVNJQFoFkdAlpkMg2ZRbnV9lChoBmgJaA9DCKs97IWC7HBAlIaUUpRoFUvMaBZHQJaZbrmhdt51fZQoaAZoCWgPQwj5ZwbxwRlxQJSGlFKUaBVNEQFoFkdAlpmn7Hhjv3V9lChoBmgJaA9DCLjn+dPGnHBAlIaUUpRoFUvUaBZHQJaaS0E5hjR1fZQoaAZoCWgPQwjX3xKAf+1tQJSGlFKUaBVLwWgWR0CWmsyon8badX2UKGgGaAloD0MI8IY0KjDocECUhpRSlGgVS+toFkdAlpvZYT0xunV9lChoBmgJaA9DCJSilXsBa3FAlIaUUpRoFUvBaBZHQJacv+aScLB1fZQoaAZoCWgPQwgF+G7zRiFzQJSGlFKUaBVL3WgWR0CWnYY0EX+EdX2UKGgGaAloD0MIP4178xtKcUCUhpRSlGgVS95oFkdAlp2SKR+z+nV9lChoBmgJaA9DCI0LB0Kyn2BAlIaUUpRoFU3oA2gWR0CWnfJm/WUbdX2UKGgGaAloD0MImdcRh2xMcUCUhpRSlGgVTTQBaBZHQJaeE4ZMtbt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar_lander_v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b847c4f130208b49478bc26ec69e5bf8bea5c59b9bd78e0e6b65546b830efc9a
|
3 |
+
size 144032
|
lunar_lander_v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
lunar_lander_v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7e9c1990e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7e9c199170>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7e9c199200>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7e9c199290>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7e9c199320>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7e9c1993b0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7e9c199440>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7e9c1994d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7e9c199560>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7e9c1995f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7e9c199680>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f7e9c1de810>"
|
20 |
+
},
|
21 |
+
"verbose": true,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652358348.7423728,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3egLyY4m0/rjETOwUjJr8XZ3e9Z6tJPAAAAAAAAAAAM/2NPK4LirryR0wzB0mYr6fBF7tQVcuzAACAPwAAgD8A28K81+m9P9LJFL5++z69qmECvI4XOz0AAAAAAAAAAGa51T2M/ps/0PDdPqkYKr8OdC4+0oBKPgAAAAAAAAAAcwJfPpCRMD+mjIw9H2X4vq8XKD5ol9y9AAAAAAAAAACAsDm9d1GQPy6i/b0rHS6/02A0vdCLvrwAAAAAAAAAANrxvj3XXXo8+4qvPebljr6uG4Y9inMzvAAAAAAAAAAADZTNvZy7H7w++iI+DDwyPUrQgL1MpQ8+AACAPwAAAACtSy0+WzqGvG3FBrsLVj05CZDyvRw1MzoAAIA/AACAP8D6Pj6bLMs+CGZRvVUl0L5/pWg9X4OavQAAAAAAAAAAgO0rPvbgTLzllTm+MEyvvVR3n73eBCu/AACAPwAAgD/NFWQ9j2pFui/5hTUiNL6um76Fu8b4urQAAIA/AACAP2bKBLykvmM+zZf3PQ0EoL6701k76tl5PQAAAAAAAAAA5pe8PUgjqbomnkAzXhHwrouBPzpDv8azAACAPwAAgD9NyUa+cQF0PlYciz6cArW+IF0OvdAXeD0AAAAAAAAAAGbxzDzDAUy6PBCGt+SacrLN+M45VBOeNgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVQRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILSKKydswcECUhpRSlIwBbJRL04wBdJRHQJZo45q/M4d1fZQoaAZoCWgPQwixahDmdi5yQJSGlFKUaBVL6mgWR0CWaOXgccU/dX2UKGgGaAloD0MIgPEMGrr9ckCUhpRSlGgVTQwBaBZHQJZpkjLSuyN1fZQoaAZoCWgPQwizsn3IG3dxQJSGlFKUaBVL3mgWR0CWaZLX+VC5dX2UKGgGaAloD0MIGD4ipsRyZUCUhpRSlGgVTegDaBZHQJZqYL7XQMR1fZQoaAZoCWgPQwjij6LO3KFyQJSGlFKUaBVL6mgWR0CWapUtI066dX2UKGgGaAloD0MI9wKzQhF7bkCUhpRSlGgVS8loFkdAlmw6WC2+f3V9lChoBmgJaA9DCHTudr00oltAlIaUUpRoFU3oA2gWR0CWbIOQyRCAdX2UKGgGaAloD0MIoS+9/bmWQ0CUhpRSlGgVS8NoFkdAlmypVKf4AXV9lChoBmgJaA9DCL8prFQQgXFAlIaUUpRoFU1cAWgWR0CWbO9cbBGhdX2UKGgGaAloD0MInaG4401Nb0CUhpRSlGgVS99oFkdAlmz+t0V8C3V9lChoBmgJaA9DCHxinSpfrGFAlIaUUpRoFU3oA2gWR0CWbiH0btJGdX2UKGgGaAloD0MIGZEotOxac0CUhpRSlGgVS/JoFkdAlm6n4XXRPXV9lChoBmgJaA9DCI3ROqqaUW9AlIaUUpRoFUvaaBZHQJZvDMgU1yh1fZQoaAZoCWgPQwi2TfG4qH9vQJSGlFKUaBVL2WgWR0CWb49SuQp4dX2UKGgGaAloD0MIj+Gxn8X7ckCUhpRSlGgVS/VoFkdAlm+5pWV/t3V9lChoBmgJaA9DCNCbilTY5XFAlIaUUpRoFU0RAWgWR0CWcEXNTtLMdX2UKGgGaAloD0MIu9bepyqZcECUhpRSlGgVS+poFkdAlnCWTX8O1HV9lChoBmgJaA9DCBe4PNaMom9AlIaUUpRoFUvKaBZHQJZxhocrAgx1fZQoaAZoCWgPQwioVl9d1WJwQJSGlFKUaBVLx2gWR0CWce1QqI8AdX2UKGgGaAloD0MIHLYtyuwfb0CUhpRSlGgVS+FoFkdAlnKUKmbb13V9lChoBmgJaA9DCFRyTuzhr3JAlIaUUpRoFU0CAWgWR0CWcy+NcW0rdX2UKGgGaAloD0MI9YQlHlDVckCUhpRSlGgVTXQBaBZHQJZzm4kNWlx1fZQoaAZoCWgPQwhiLqna7hRwQJSGlFKUaBVNLwFoFkdAlnQd+gDifnV9lChoBmgJaA9DCH8uGjIe8HBAlIaUUpRoFUv2aBZHQJZ0f24/eLx1fZQoaAZoCWgPQwg4TDRIQYNwQJSGlFKUaBVLx2gWR0CWdP85S3spdX2UKGgGaAloD0MId06zQLvycUCUhpRSlGgVS+FoFkdAlnWDKgZjx3V9lChoBmgJaA9DCOeMKO3NDHRAlIaUUpRoFU0YAWgWR0CWdn3bEgnudX2UKGgGaAloD0MIlDKpoY23ckCUhpRSlGgVS/poFkdAlncPv4M4LnV9lChoBmgJaA9DCOkQOBJoHm9AlIaUUpRoFUvJaBZHQJZ3G6vq1PZ1fZQoaAZoCWgPQwjGv8+48KhwQJSGlFKUaBVLwmgWR0CWeK9d/rjYdX2UKGgGaAloD0MIvHmqQ65AcECUhpRSlGgVS/9oFkdAlnkircTJyXV9lChoBmgJaA9DCEEsmzmkPWJAlIaUUpRoFU3oA2gWR0CWeUSv1UVBdX2UKGgGaAloD0MIUKc8utGJckCUhpRSlGgVS+9oFkdAlnlhOP/7znV9lChoBmgJaA9DCDUHCOaot3BAlIaUUpRoFUvGaBZHQJZ5vcJtzjp1fZQoaAZoCWgPQwjm54ambNNkQJSGlFKUaBVN6ANoFkdAlnmxV+7UX3V9lChoBmgJaA9DCMxFfCfm/2xAlIaUUpRoFUvSaBZHQJZ6ZutOmBR1fZQoaAZoCWgPQwhS81XycVdwQJSGlFKUaBVL0mgWR0CWe2HGjsUqdX2UKGgGaAloD0MI8gnZeZsEb0CUhpRSlGgVS85oFkdAlnw8e4kNWnV9lChoBmgJaA9DCEaXN4erbHJAlIaUUpRoFUvBaBZHQJZ8eA6Mir11fZQoaAZoCWgPQwheL00RYCFxQJSGlFKUaBVNKQFoFkdAln1AqNIbwXV9lChoBmgJaA9DCGIVb2SezW9AlIaUUpRoFUvhaBZHQJZ9UEpy6tl1fZQoaAZoCWgPQwi0ccRafCdxQJSGlFKUaBVNZQFoFkdAln2C6UaAF3V9lChoBmgJaA9DCE/rNqi9HXBAlIaUUpRoFUvaaBZHQJZ/GJzkp7V1fZQoaAZoCWgPQwgKoBhZMpFuQJSGlFKUaBVL4GgWR0CWf2UQ04zadX2UKGgGaAloD0MIPiR87y8BckCUhpRSlGgVS+FoFkdAln+K72+PBHV9lChoBmgJaA9DCE+Srpm8xHBAlIaUUpRoFUv4aBZHQJaAichC+lF1fZQoaAZoCWgPQwi0AdiACPttQJSGlFKUaBVNCgFoFkdAloEiHIp6QnV9lChoBmgJaA9DCF1Std2EdXJAlIaUUpRoFU0FAWgWR0CWgby1/lQudX2UKGgGaAloD0MIm6+Sj11lcUCUhpRSlGgVS+JoFkdAloHTltCRfXV9lChoBmgJaA9DCOc5It/lE3NAlIaUUpRoFUvhaBZHQJaCs4cWCVd1fZQoaAZoCWgPQwjGh9nLts5yQJSGlFKUaBVL12gWR0CWg4yKNyYHdX2UKGgGaAloD0MIxF+TNWrOb0CUhpRSlGgVS9ZoFkdAloO7t3OfNHV9lChoBmgJaA9DCJz8Fp3sJnJAlIaUUpRoFU0GAWgWR0CWhAmIj4YadX2UKGgGaAloD0MINnUeFb+IcUCUhpRSlGgVTQIBaBZHQJaEwgB91EF1fZQoaAZoCWgPQwhwRPesKyFwQJSGlFKUaBVLz2gWR0CWhac8DB/JdX2UKGgGaAloD0MIAiuHFlnzcECUhpRSlGgVS9doFkdAloW+kgwGnnV9lChoBmgJaA9DCEmil1Gs1mRAlIaUUpRoFU3oA2gWR0CWhnExZdOZdX2UKGgGaAloD0MIt2EUBI/CckCUhpRSlGgVS8hoFkdAlocZXp4bCXV9lChoBmgJaA9DCO9XAb6b4XBAlIaUUpRoFUveaBZHQJaHLaIvalF1fZQoaAZoCWgPQwiuDKoNzg9zQJSGlFKUaBVL8GgWR0CWiQXTEzfrdX2UKGgGaAloD0MImbhVEIMPcUCUhpRSlGgVS8xoFkdAloopdjXnQ3V9lChoBmgJaA9DCIOnkCs1rHBAlIaUUpRoFUvVaBZHQJaK3g3tKI11fZQoaAZoCWgPQwiiRbbzfTZwQJSGlFKUaBVNDQFoFkdAlotDUutfX3V9lChoBmgJaA9DCFNdwMsM/2BAlIaUUpRoFU3oA2gWR0CWi2q+ajN7dX2UKGgGaAloD0MIVkj5SbWxckCUhpRSlGgVTQcBaBZHQJaMBSl3yI51fZQoaAZoCWgPQwh6+3PR0ONxQJSGlFKUaBVL8mgWR0CWjb+wTufFdX2UKGgGaAloD0MIorQ3+MLfXUCUhpRSlGgVTegDaBZHQJaOAiX6ZYx1fZQoaAZoCWgPQwgg8SvWMAtxQJSGlFKUaBVL5mgWR0CWjhf0Eov0dX2UKGgGaAloD0MIVd6OcBrXckCUhpRSlGgVTSgBaBZHQJaOd3+uNgl1fZQoaAZoCWgPQwgkufyH9HlxQJSGlFKUaBVL42gWR0CWjq34sVcmdX2UKGgGaAloD0MISfPHtPbJcUCUhpRSlGgVS/VoFkdAlo9G5DqnnHV9lChoBmgJaA9DCDwSL09nr3NAlIaUUpRoFU06AWgWR0CWj9PAfuCxdX2UKGgGaAloD0MIi3H+JpR0cECUhpRSlGgVS8VoFkdAlpETBAOav3V9lChoBmgJaA9DCJ5CrtRzFnRAlIaUUpRoFU0OAWgWR0CWkb1qFh5PdX2UKGgGaAloD0MIpn1zfzU6cECUhpRSlGgVS9ZoFkdAlpHxnSOR1XV9lChoBmgJaA9DCKyOHOkMU3FAlIaUUpRoFUvgaBZHQJaTCJ40Mw11fZQoaAZoCWgPQwgZkpOJGwxzQJSGlFKUaBVNGwFoFkdAlpM7K/20zHV9lChoBmgJaA9DCGCTNephXnJAlIaUUpRoFU0MAWgWR0CWk9VJL/S6dX2UKGgGaAloD0MI1ZY6yOtZcUCUhpRSlGgVS+ZoFkdAlpTqcZtNz3V9lChoBmgJaA9DCMnH7gLlAnBAlIaUUpRoFUvcaBZHQJaU7xd6cAl1fZQoaAZoCWgPQwiveOqRhvxuQJSGlFKUaBVL1GgWR0CWlRAz544ZdX2UKGgGaAloD0MIRkHw+PZhckCUhpRSlGgVTQ0BaBZHQJaXMM3IdU91fZQoaAZoCWgPQwi6gQLv5ENzQJSGlFKUaBVNIwFoFkdAlpc3dTHbRHV9lChoBmgJaA9DCL3iqUcajGFAlIaUUpRoFU3oA2gWR0CWl0lxOtW/dX2UKGgGaAloD0MIVvSHZp7cckCUhpRSlGgVTRIBaBZHQJaX+SSvC/J1fZQoaAZoCWgPQwjjp3FvPl5yQJSGlFKUaBVLy2gWR0CWmFamXPZ7dX2UKGgGaAloD0MIj8L1KNzXb0CUhpRSlGgVS8RoFkdAlphPg3tKI3V9lChoBmgJaA9DCNaQuMfSMU5AlIaUUpRoFUuvaBZHQJaYzy6MBIZ1fZQoaAZoCWgPQwhI/mDg+WxyQJSGlFKUaBVNJQFoFkdAlpkMg2ZRbnV9lChoBmgJaA9DCKs97IWC7HBAlIaUUpRoFUvMaBZHQJaZbrmhdt51fZQoaAZoCWgPQwj5ZwbxwRlxQJSGlFKUaBVNEQFoFkdAlpmn7Hhjv3V9lChoBmgJaA9DCLjn+dPGnHBAlIaUUpRoFUvUaBZHQJaaS0E5hjR1fZQoaAZoCWgPQwjX3xKAf+1tQJSGlFKUaBVLwWgWR0CWmsyon8badX2UKGgGaAloD0MI8IY0KjDocECUhpRSlGgVS+toFkdAlpvZYT0xunV9lChoBmgJaA9DCJSilXsBa3FAlIaUUpRoFUvBaBZHQJacv+aScLB1fZQoaAZoCWgPQwgF+G7zRiFzQJSGlFKUaBVL3WgWR0CWnYY0EX+EdX2UKGgGaAloD0MIP4178xtKcUCUhpRSlGgVS95oFkdAlp2SKR+z+nV9lChoBmgJaA9DCI0LB0Kyn2BAlIaUUpRoFU3oA2gWR0CWnfJm/WUbdX2UKGgGaAloD0MImdcRh2xMcUCUhpRSlGgVTTQBaBZHQJaeE4ZMtbt1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 310,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
lunar_lander_v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:584e216aad32fc7ea4a45625a1831ec88cc1a224cc12b5a8305bc3320733b578
|
3 |
+
size 84893
|
lunar_lander_v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dbf963d9e4726fbc2cb6e4b8c933a411a975534e2a326d614f488ac32ff4285
|
3 |
+
size 43201
|
lunar_lander_v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_lander_v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ccb38cb64d28faa96a66c42de218d28c7ed95cb377439f648263fcb075e6691
|
3 |
+
size 188380
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 264.6234400626884, "std_reward": 15.43961815289653, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-12T12:51:42.827317"}
|