--- license: apache-2.0 tags: - medical - vision --- # Model Card for MedSAM MedSAM is a fine-tuned version of [SAM](https://huggingface.co/docs/transformers/main/model_doc/sam) for the medical domain. This repository is based on the paper, code and pre-trained model released by the authors in July 2023. ## Model Description MedSAM was trained on a large-scale medical image segmentation dataset of 1,090,486 image-mask pairs collected from different publicly available sources. The image-mask pairs cover 15 imaging modalities and over 30 cancer types. MedSAM was initialized using the pre-trained SAM model with the ViT-Base backbone. The prompt encoder weights were frozen, while the image encoder and mask decoder weights were updated during training. The training was performed for 100 epochs with a batch size of 160 using the AdamW optimizer with a learning rate of 10−4 and a weight decay of 0.01. - **Repository:** [MedSAM Official GitHub Repository](https://github.com/bowang-lab/medsam) - **Paper:** [Segment Anything in Medical Images](https://arxiv.org/abs/2304.12306v1) ## Usage ```python import requests import numpy as np import matplotlib.pyplot as plt from PIL import Image from transformers import SamModel, SamProcessor import torch device = "cuda" if torch.cuda.is_available() else "cpu" model = SamModel.from_pretrained("flaviagiammarino/medsam-vit-base").to(device) processor = SamProcessor.from_pretrained("flaviagiammarino/medsam-vit-base") img_url = "https://huggingface.co/flaviagiammarino/medsam-vit-base/resolve/main/scripts/input.png" raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB") input_boxes = [95., 255., 190., 350.] inputs = processor(raw_image, input_boxes=[[input_boxes]], return_tensors="pt").to(device) outputs = model(**inputs, multimask_output=False) probs = processor.image_processor.post_process_masks(outputs.pred_masks.sigmoid().cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu(), binarize=False) def show_mask(mask, ax, random_color): if random_color: color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: color = np.array([251/255, 252/255, 30/255, 0.6]) h, w = mask.shape[-2:] mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) ax.imshow(mask_image) def show_box(box, ax): x0, y0 = box[0], box[1] w, h = box[2] - box[0], box[3] - box[1] ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor="blue", facecolor=(0, 0, 0, 0), lw=2)) fig, ax = plt.subplots(1, 2, figsize=(10, 5)) ax[0].imshow(np.array(raw_image)) show_box(input_boxes, ax[0]) ax[0].set_title("Input Image and Bounding Box") ax[0].axis("off") ax[1].imshow(np.array(raw_image)) show_mask(mask=probs[0] > 0.5, ax=ax[1], random_color=False) show_box(input_boxes, ax[1]) ax[1].set_title("MedSAM Segmentation") ax[1].axis("off") plt.show() ``` ![results](scripts/output.png) ## Additional Information ### Licensing Information The authors have released the model code and pre-trained checkpoint under the [Apache License 2.0](https://github.com/bowang-lab/MedSAM/blob/main/LICENSE). ### Citation Information ``` @article{ma2023segment, title={Segment anything in medical images}, author={Ma, Jun and Wang, Bo}, journal={arXiv preprint arXiv:2304.12306}, year={2023} } ```