--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.9405 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1782 | 1.0 | 113 | 2.0403 | 0.46 | | 1.487 | 2.0 | 226 | 1.3902 | 0.64 | | 1.1634 | 3.0 | 339 | 1.0882 | 0.71 | | 0.9874 | 4.0 | 452 | 0.9260 | 0.68 | | 0.7754 | 5.0 | 565 | 0.7265 | 0.8 | | 0.4512 | 6.0 | 678 | 0.6141 | 0.84 | | 0.4947 | 7.0 | 791 | 0.8277 | 0.78 | | 0.1896 | 8.0 | 904 | 0.7220 | 0.81 | | 0.2142 | 9.0 | 1017 | 0.6393 | 0.85 | | 0.0413 | 10.0 | 1130 | 0.8113 | 0.82 | | 0.0105 | 11.0 | 1243 | 0.7368 | 0.82 | | 0.1392 | 12.0 | 1356 | 0.8139 | 0.85 | | 0.0051 | 13.0 | 1469 | 0.7893 | 0.86 | | 0.0041 | 14.0 | 1582 | 0.8515 | 0.83 | | 0.0041 | 15.0 | 1695 | 0.7707 | 0.85 | | 0.0033 | 16.0 | 1808 | 0.8931 | 0.84 | | 0.0772 | 17.0 | 1921 | 0.8411 | 0.86 | | 0.0028 | 18.0 | 2034 | 0.8884 | 0.83 | | 0.0025 | 19.0 | 2147 | 0.9094 | 0.84 | | 0.0027 | 20.0 | 2260 | 0.9405 | 0.83 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0