--- base_model: openai/clip-vit-base-patch32 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: document-spoof results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9767441860465116 --- # document-spoof This model is a fine-tuned version of [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1105 - Accuracy: 0.9767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.9524 | 5 | 0.5211 | 0.8837 | | No log | 1.9048 | 10 | 0.2271 | 0.8837 | | 0.545 | 2.8571 | 15 | 0.0975 | 0.9884 | | 0.545 | 4.0 | 21 | 0.1020 | 0.9767 | | 0.545 | 4.9524 | 26 | 0.3087 | 0.9535 | | 0.472 | 5.9048 | 31 | 0.3385 | 0.8023 | | 0.472 | 6.8571 | 36 | 0.2358 | 0.8605 | | 0.472 | 8.0 | 42 | 0.3675 | 0.8605 | | 0.3762 | 8.9524 | 47 | 0.1460 | 0.9535 | | 0.3762 | 9.9048 | 52 | 0.6158 | 0.8140 | | 0.3762 | 10.8571 | 57 | 0.3228 | 0.9186 | | 0.1586 | 12.0 | 63 | 0.0248 | 0.9884 | | 0.1586 | 12.9524 | 68 | 0.0639 | 0.9651 | | 0.1586 | 13.9048 | 73 | 0.5674 | 0.8488 | | 0.1159 | 14.8571 | 78 | 0.0291 | 0.9884 | | 0.1159 | 16.0 | 84 | 0.0539 | 0.9884 | | 0.1159 | 16.9524 | 89 | 0.0772 | 0.9767 | | 0.0366 | 17.9048 | 94 | 0.0031 | 1.0 | | 0.0366 | 18.8571 | 99 | 0.1506 | 0.9535 | | 0.0179 | 20.0 | 105 | 0.0007 | 1.0 | | 0.0179 | 20.9524 | 110 | 0.1427 | 0.9535 | | 0.0179 | 21.9048 | 115 | 0.2299 | 0.9419 | | 0.0036 | 22.8571 | 120 | 0.1373 | 0.9767 | | 0.0036 | 23.8095 | 125 | 0.1105 | 0.9767 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1